1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the primary stateless implementation of the 11 // Alias Analysis interface that implements identities (two different 12 // globals cannot alias, etc), but does no stateful analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/BasicAliasAnalysis.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/CFG.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/MemoryBuiltins.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Analysis/PhiValues.h" 32 #include "llvm/IR/Argument.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/CallSite.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GetElementPtrTypeIterator.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalVariable.h" 44 #include "llvm/IR/InstrTypes.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/Metadata.h" 50 #include "llvm/IR/Operator.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/User.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/KnownBits.h" 59 #include <cassert> 60 #include <cstdint> 61 #include <cstdlib> 62 #include <utility> 63 64 #define DEBUG_TYPE "basicaa" 65 66 using namespace llvm; 67 68 /// Enable analysis of recursive PHI nodes. 69 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden, 70 cl::init(false)); 71 /// SearchLimitReached / SearchTimes shows how often the limit of 72 /// to decompose GEPs is reached. It will affect the precision 73 /// of basic alias analysis. 74 STATISTIC(SearchLimitReached, "Number of times the limit to " 75 "decompose GEPs is reached"); 76 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 77 78 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 79 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be 80 /// careful with value equivalence. We use reachability to make sure a value 81 /// cannot be involved in a cycle. 82 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 83 84 // The max limit of the search depth in DecomposeGEPExpression() and 85 // GetUnderlyingObject(), both functions need to use the same search 86 // depth otherwise the algorithm in aliasGEP will assert. 87 static const unsigned MaxLookupSearchDepth = 6; 88 89 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA, 90 FunctionAnalysisManager::Invalidator &Inv) { 91 // We don't care if this analysis itself is preserved, it has no state. But 92 // we need to check that the analyses it depends on have been. Note that we 93 // may be created without handles to some analyses and in that case don't 94 // depend on them. 95 if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) || 96 (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) || 97 (LI && Inv.invalidate<LoopAnalysis>(Fn, PA)) || 98 (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA))) 99 return true; 100 101 // Otherwise this analysis result remains valid. 102 return false; 103 } 104 105 //===----------------------------------------------------------------------===// 106 // Useful predicates 107 //===----------------------------------------------------------------------===// 108 109 /// Returns true if the pointer is to a function-local object that never 110 /// escapes from the function. 111 static bool isNonEscapingLocalObject(const Value *V) { 112 // If this is a local allocation, check to see if it escapes. 113 if (isa<AllocaInst>(V) || isNoAliasCall(V)) 114 // Set StoreCaptures to True so that we can assume in our callers that the 115 // pointer is not the result of a load instruction. Currently 116 // PointerMayBeCaptured doesn't have any special analysis for the 117 // StoreCaptures=false case; if it did, our callers could be refined to be 118 // more precise. 119 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 120 121 // If this is an argument that corresponds to a byval or noalias argument, 122 // then it has not escaped before entering the function. Check if it escapes 123 // inside the function. 124 if (const Argument *A = dyn_cast<Argument>(V)) 125 if (A->hasByValAttr() || A->hasNoAliasAttr()) 126 // Note even if the argument is marked nocapture, we still need to check 127 // for copies made inside the function. The nocapture attribute only 128 // specifies that there are no copies made that outlive the function. 129 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 130 131 return false; 132 } 133 134 /// Returns true if the pointer is one which would have been considered an 135 /// escape by isNonEscapingLocalObject. 136 static bool isEscapeSource(const Value *V) { 137 if (ImmutableCallSite(V)) 138 return true; 139 140 if (isa<Argument>(V)) 141 return true; 142 143 // The load case works because isNonEscapingLocalObject considers all 144 // stores to be escapes (it passes true for the StoreCaptures argument 145 // to PointerMayBeCaptured). 146 if (isa<LoadInst>(V)) 147 return true; 148 149 return false; 150 } 151 152 /// Returns the size of the object specified by V or UnknownSize if unknown. 153 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 154 const TargetLibraryInfo &TLI, 155 bool NullIsValidLoc, 156 bool RoundToAlign = false) { 157 uint64_t Size; 158 ObjectSizeOpts Opts; 159 Opts.RoundToAlign = RoundToAlign; 160 Opts.NullIsUnknownSize = NullIsValidLoc; 161 if (getObjectSize(V, Size, DL, &TLI, Opts)) 162 return Size; 163 return MemoryLocation::UnknownSize; 164 } 165 166 /// Returns true if we can prove that the object specified by V is smaller than 167 /// Size. 168 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 169 const DataLayout &DL, 170 const TargetLibraryInfo &TLI, 171 bool NullIsValidLoc) { 172 // Note that the meanings of the "object" are slightly different in the 173 // following contexts: 174 // c1: llvm::getObjectSize() 175 // c2: llvm.objectsize() intrinsic 176 // c3: isObjectSmallerThan() 177 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 178 // refers to the "entire object". 179 // 180 // Consider this example: 181 // char *p = (char*)malloc(100) 182 // char *q = p+80; 183 // 184 // In the context of c1 and c2, the "object" pointed by q refers to the 185 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 186 // 187 // However, in the context of c3, the "object" refers to the chunk of memory 188 // being allocated. So, the "object" has 100 bytes, and q points to the middle 189 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 190 // parameter, before the llvm::getObjectSize() is called to get the size of 191 // entire object, we should: 192 // - either rewind the pointer q to the base-address of the object in 193 // question (in this case rewind to p), or 194 // - just give up. It is up to caller to make sure the pointer is pointing 195 // to the base address the object. 196 // 197 // We go for 2nd option for simplicity. 198 if (!isIdentifiedObject(V)) 199 return false; 200 201 // This function needs to use the aligned object size because we allow 202 // reads a bit past the end given sufficient alignment. 203 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc, 204 /*RoundToAlign*/ true); 205 206 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; 207 } 208 209 /// Returns true if we can prove that the object specified by V has size Size. 210 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, 211 const TargetLibraryInfo &TLI, bool NullIsValidLoc) { 212 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc); 213 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; 214 } 215 216 //===----------------------------------------------------------------------===// 217 // GetElementPtr Instruction Decomposition and Analysis 218 //===----------------------------------------------------------------------===// 219 220 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 221 /// B are constant integers. 222 /// 223 /// Returns the scale and offset values as APInts and return V as a Value*, and 224 /// return whether we looked through any sign or zero extends. The incoming 225 /// Value is known to have IntegerType, and it may already be sign or zero 226 /// extended. 227 /// 228 /// Note that this looks through extends, so the high bits may not be 229 /// represented in the result. 230 /*static*/ const Value *BasicAAResult::GetLinearExpression( 231 const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits, 232 unsigned &SExtBits, const DataLayout &DL, unsigned Depth, 233 AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) { 234 assert(V->getType()->isIntegerTy() && "Not an integer value"); 235 236 // Limit our recursion depth. 237 if (Depth == 6) { 238 Scale = 1; 239 Offset = 0; 240 return V; 241 } 242 243 if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) { 244 // If it's a constant, just convert it to an offset and remove the variable. 245 // If we've been called recursively, the Offset bit width will be greater 246 // than the constant's (the Offset's always as wide as the outermost call), 247 // so we'll zext here and process any extension in the isa<SExtInst> & 248 // isa<ZExtInst> cases below. 249 Offset += Const->getValue().zextOrSelf(Offset.getBitWidth()); 250 assert(Scale == 0 && "Constant values don't have a scale"); 251 return V; 252 } 253 254 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 255 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 256 // If we've been called recursively, then Offset and Scale will be wider 257 // than the BOp operands. We'll always zext it here as we'll process sign 258 // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases). 259 APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth()); 260 261 switch (BOp->getOpcode()) { 262 default: 263 // We don't understand this instruction, so we can't decompose it any 264 // further. 265 Scale = 1; 266 Offset = 0; 267 return V; 268 case Instruction::Or: 269 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 270 // analyze it. 271 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, 272 BOp, DT)) { 273 Scale = 1; 274 Offset = 0; 275 return V; 276 } 277 LLVM_FALLTHROUGH; 278 case Instruction::Add: 279 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 280 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 281 Offset += RHS; 282 break; 283 case Instruction::Sub: 284 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 285 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 286 Offset -= RHS; 287 break; 288 case Instruction::Mul: 289 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 290 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 291 Offset *= RHS; 292 Scale *= RHS; 293 break; 294 case Instruction::Shl: 295 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 296 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 297 298 // We're trying to linearize an expression of the kind: 299 // shl i8 -128, 36 300 // where the shift count exceeds the bitwidth of the type. 301 // We can't decompose this further (the expression would return 302 // a poison value). 303 if (Offset.getBitWidth() < RHS.getLimitedValue() || 304 Scale.getBitWidth() < RHS.getLimitedValue()) { 305 Scale = 1; 306 Offset = 0; 307 return V; 308 } 309 310 Offset <<= RHS.getLimitedValue(); 311 Scale <<= RHS.getLimitedValue(); 312 // the semantics of nsw and nuw for left shifts don't match those of 313 // multiplications, so we won't propagate them. 314 NSW = NUW = false; 315 return V; 316 } 317 318 if (isa<OverflowingBinaryOperator>(BOp)) { 319 NUW &= BOp->hasNoUnsignedWrap(); 320 NSW &= BOp->hasNoSignedWrap(); 321 } 322 return V; 323 } 324 } 325 326 // Since GEP indices are sign extended anyway, we don't care about the high 327 // bits of a sign or zero extended value - just scales and offsets. The 328 // extensions have to be consistent though. 329 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) { 330 Value *CastOp = cast<CastInst>(V)->getOperand(0); 331 unsigned NewWidth = V->getType()->getPrimitiveSizeInBits(); 332 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 333 unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits; 334 const Value *Result = 335 GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL, 336 Depth + 1, AC, DT, NSW, NUW); 337 338 // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this 339 // by just incrementing the number of bits we've extended by. 340 unsigned ExtendedBy = NewWidth - SmallWidth; 341 342 if (isa<SExtInst>(V) && ZExtBits == 0) { 343 // sext(sext(%x, a), b) == sext(%x, a + b) 344 345 if (NSW) { 346 // We haven't sign-wrapped, so it's valid to decompose sext(%x + c) 347 // into sext(%x) + sext(c). We'll sext the Offset ourselves: 348 unsigned OldWidth = Offset.getBitWidth(); 349 Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth); 350 } else { 351 // We may have signed-wrapped, so don't decompose sext(%x + c) into 352 // sext(%x) + sext(c) 353 Scale = 1; 354 Offset = 0; 355 Result = CastOp; 356 ZExtBits = OldZExtBits; 357 SExtBits = OldSExtBits; 358 } 359 SExtBits += ExtendedBy; 360 } else { 361 // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b) 362 363 if (!NUW) { 364 // We may have unsigned-wrapped, so don't decompose zext(%x + c) into 365 // zext(%x) + zext(c) 366 Scale = 1; 367 Offset = 0; 368 Result = CastOp; 369 ZExtBits = OldZExtBits; 370 SExtBits = OldSExtBits; 371 } 372 ZExtBits += ExtendedBy; 373 } 374 375 return Result; 376 } 377 378 Scale = 1; 379 Offset = 0; 380 return V; 381 } 382 383 /// To ensure a pointer offset fits in an integer of size PointerSize 384 /// (in bits) when that size is smaller than 64. This is an issue in 385 /// particular for 32b programs with negative indices that rely on two's 386 /// complement wrap-arounds for precise alias information. 387 static int64_t adjustToPointerSize(int64_t Offset, unsigned PointerSize) { 388 assert(PointerSize <= 64 && "Invalid PointerSize!"); 389 unsigned ShiftBits = 64 - PointerSize; 390 return (int64_t)((uint64_t)Offset << ShiftBits) >> ShiftBits; 391 } 392 393 /// If V is a symbolic pointer expression, decompose it into a base pointer 394 /// with a constant offset and a number of scaled symbolic offsets. 395 /// 396 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 397 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 398 /// specified amount, but which may have other unrepresented high bits. As 399 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 400 /// 401 /// When DataLayout is around, this function is capable of analyzing everything 402 /// that GetUnderlyingObject can look through. To be able to do that 403 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search 404 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks 405 /// through pointer casts. 406 bool BasicAAResult::DecomposeGEPExpression(const Value *V, 407 DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC, 408 DominatorTree *DT) { 409 // Limit recursion depth to limit compile time in crazy cases. 410 unsigned MaxLookup = MaxLookupSearchDepth; 411 SearchTimes++; 412 413 Decomposed.StructOffset = 0; 414 Decomposed.OtherOffset = 0; 415 Decomposed.VarIndices.clear(); 416 do { 417 // See if this is a bitcast or GEP. 418 const Operator *Op = dyn_cast<Operator>(V); 419 if (!Op) { 420 // The only non-operator case we can handle are GlobalAliases. 421 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 422 if (!GA->isInterposable()) { 423 V = GA->getAliasee(); 424 continue; 425 } 426 } 427 Decomposed.Base = V; 428 return false; 429 } 430 431 if (Op->getOpcode() == Instruction::BitCast || 432 Op->getOpcode() == Instruction::AddrSpaceCast) { 433 V = Op->getOperand(0); 434 continue; 435 } 436 437 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 438 if (!GEPOp) { 439 if (auto CS = ImmutableCallSite(V)) { 440 // CaptureTracking can know about special capturing properties of some 441 // intrinsics like launder.invariant.group, that can't be expressed with 442 // the attributes, but have properties like returning aliasing pointer. 443 // Because some analysis may assume that nocaptured pointer is not 444 // returned from some special intrinsic (because function would have to 445 // be marked with returns attribute), it is crucial to use this function 446 // because it should be in sync with CaptureTracking. Not using it may 447 // cause weird miscompilations where 2 aliasing pointers are assumed to 448 // noalias. 449 if (auto *RP = getArgumentAliasingToReturnedPointer(CS)) { 450 V = RP; 451 continue; 452 } 453 } 454 455 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 456 // can come up with something. This matches what GetUnderlyingObject does. 457 if (const Instruction *I = dyn_cast<Instruction>(V)) 458 // TODO: Get a DominatorTree and AssumptionCache and use them here 459 // (these are both now available in this function, but this should be 460 // updated when GetUnderlyingObject is updated). TLI should be 461 // provided also. 462 if (const Value *Simplified = 463 SimplifyInstruction(const_cast<Instruction *>(I), DL)) { 464 V = Simplified; 465 continue; 466 } 467 468 Decomposed.Base = V; 469 return false; 470 } 471 472 // Don't attempt to analyze GEPs over unsized objects. 473 if (!GEPOp->getSourceElementType()->isSized()) { 474 Decomposed.Base = V; 475 return false; 476 } 477 478 unsigned AS = GEPOp->getPointerAddressSpace(); 479 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 480 gep_type_iterator GTI = gep_type_begin(GEPOp); 481 unsigned PointerSize = DL.getPointerSizeInBits(AS); 482 // Assume all GEP operands are constants until proven otherwise. 483 bool GepHasConstantOffset = true; 484 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 485 I != E; ++I, ++GTI) { 486 const Value *Index = *I; 487 // Compute the (potentially symbolic) offset in bytes for this index. 488 if (StructType *STy = GTI.getStructTypeOrNull()) { 489 // For a struct, add the member offset. 490 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 491 if (FieldNo == 0) 492 continue; 493 494 Decomposed.StructOffset += 495 DL.getStructLayout(STy)->getElementOffset(FieldNo); 496 continue; 497 } 498 499 // For an array/pointer, add the element offset, explicitly scaled. 500 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 501 if (CIdx->isZero()) 502 continue; 503 Decomposed.OtherOffset += 504 DL.getTypeAllocSize(GTI.getIndexedType()) * CIdx->getSExtValue(); 505 continue; 506 } 507 508 GepHasConstantOffset = false; 509 510 uint64_t Scale = DL.getTypeAllocSize(GTI.getIndexedType()); 511 unsigned ZExtBits = 0, SExtBits = 0; 512 513 // If the integer type is smaller than the pointer size, it is implicitly 514 // sign extended to pointer size. 515 unsigned Width = Index->getType()->getIntegerBitWidth(); 516 if (PointerSize > Width) 517 SExtBits += PointerSize - Width; 518 519 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 520 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 521 bool NSW = true, NUW = true; 522 Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits, 523 SExtBits, DL, 0, AC, DT, NSW, NUW); 524 525 // All GEP math happens in the width of the pointer type, 526 // so we can truncate the value to 64-bits as we don't handle 527 // currently pointers larger than 64 bits and we would crash 528 // later. TODO: Make `Scale` an APInt to avoid this problem. 529 if (IndexScale.getBitWidth() > 64) 530 IndexScale = IndexScale.sextOrTrunc(64); 531 532 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 533 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 534 Decomposed.OtherOffset += IndexOffset.getSExtValue() * Scale; 535 Scale *= IndexScale.getSExtValue(); 536 537 // If we already had an occurrence of this index variable, merge this 538 // scale into it. For example, we want to handle: 539 // A[x][x] -> x*16 + x*4 -> x*20 540 // This also ensures that 'x' only appears in the index list once. 541 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { 542 if (Decomposed.VarIndices[i].V == Index && 543 Decomposed.VarIndices[i].ZExtBits == ZExtBits && 544 Decomposed.VarIndices[i].SExtBits == SExtBits) { 545 Scale += Decomposed.VarIndices[i].Scale; 546 Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i); 547 break; 548 } 549 } 550 551 // Make sure that we have a scale that makes sense for this target's 552 // pointer size. 553 Scale = adjustToPointerSize(Scale, PointerSize); 554 555 if (Scale) { 556 VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, 557 static_cast<int64_t>(Scale)}; 558 Decomposed.VarIndices.push_back(Entry); 559 } 560 } 561 562 // Take care of wrap-arounds 563 if (GepHasConstantOffset) { 564 Decomposed.StructOffset = 565 adjustToPointerSize(Decomposed.StructOffset, PointerSize); 566 Decomposed.OtherOffset = 567 adjustToPointerSize(Decomposed.OtherOffset, PointerSize); 568 } 569 570 // Analyze the base pointer next. 571 V = GEPOp->getOperand(0); 572 } while (--MaxLookup); 573 574 // If the chain of expressions is too deep, just return early. 575 Decomposed.Base = V; 576 SearchLimitReached++; 577 return true; 578 } 579 580 /// Returns whether the given pointer value points to memory that is local to 581 /// the function, with global constants being considered local to all 582 /// functions. 583 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc, 584 bool OrLocal) { 585 assert(Visited.empty() && "Visited must be cleared after use!"); 586 587 unsigned MaxLookup = 8; 588 SmallVector<const Value *, 16> Worklist; 589 Worklist.push_back(Loc.Ptr); 590 do { 591 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL); 592 if (!Visited.insert(V).second) { 593 Visited.clear(); 594 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 595 } 596 597 // An alloca instruction defines local memory. 598 if (OrLocal && isa<AllocaInst>(V)) 599 continue; 600 601 // A global constant counts as local memory for our purposes. 602 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 603 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 604 // global to be marked constant in some modules and non-constant in 605 // others. GV may even be a declaration, not a definition. 606 if (!GV->isConstant()) { 607 Visited.clear(); 608 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 609 } 610 continue; 611 } 612 613 // If both select values point to local memory, then so does the select. 614 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 615 Worklist.push_back(SI->getTrueValue()); 616 Worklist.push_back(SI->getFalseValue()); 617 continue; 618 } 619 620 // If all values incoming to a phi node point to local memory, then so does 621 // the phi. 622 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 623 // Don't bother inspecting phi nodes with many operands. 624 if (PN->getNumIncomingValues() > MaxLookup) { 625 Visited.clear(); 626 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 627 } 628 for (Value *IncValue : PN->incoming_values()) 629 Worklist.push_back(IncValue); 630 continue; 631 } 632 633 // Otherwise be conservative. 634 Visited.clear(); 635 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 636 } while (!Worklist.empty() && --MaxLookup); 637 638 Visited.clear(); 639 return Worklist.empty(); 640 } 641 642 /// Returns the behavior when calling the given call site. 643 FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) { 644 if (CS.doesNotAccessMemory()) 645 // Can't do better than this. 646 return FMRB_DoesNotAccessMemory; 647 648 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 649 650 // If the callsite knows it only reads memory, don't return worse 651 // than that. 652 if (CS.onlyReadsMemory()) 653 Min = FMRB_OnlyReadsMemory; 654 else if (CS.doesNotReadMemory()) 655 Min = FMRB_DoesNotReadMemory; 656 657 if (CS.onlyAccessesArgMemory()) 658 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 659 else if (CS.onlyAccessesInaccessibleMemory()) 660 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 661 else if (CS.onlyAccessesInaccessibleMemOrArgMem()) 662 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 663 664 // If CS has operand bundles then aliasing attributes from the function it 665 // calls do not directly apply to the CallSite. This can be made more 666 // precise in the future. 667 if (!CS.hasOperandBundles()) 668 if (const Function *F = CS.getCalledFunction()) 669 Min = 670 FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F)); 671 672 return Min; 673 } 674 675 /// Returns the behavior when calling the given function. For use when the call 676 /// site is not known. 677 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) { 678 // If the function declares it doesn't access memory, we can't do better. 679 if (F->doesNotAccessMemory()) 680 return FMRB_DoesNotAccessMemory; 681 682 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 683 684 // If the function declares it only reads memory, go with that. 685 if (F->onlyReadsMemory()) 686 Min = FMRB_OnlyReadsMemory; 687 else if (F->doesNotReadMemory()) 688 Min = FMRB_DoesNotReadMemory; 689 690 if (F->onlyAccessesArgMemory()) 691 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 692 else if (F->onlyAccessesInaccessibleMemory()) 693 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 694 else if (F->onlyAccessesInaccessibleMemOrArgMem()) 695 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 696 697 return Min; 698 } 699 700 /// Returns true if this is a writeonly (i.e Mod only) parameter. 701 static bool isWriteOnlyParam(ImmutableCallSite CS, unsigned ArgIdx, 702 const TargetLibraryInfo &TLI) { 703 if (CS.paramHasAttr(ArgIdx, Attribute::WriteOnly)) 704 return true; 705 706 // We can bound the aliasing properties of memset_pattern16 just as we can 707 // for memcpy/memset. This is particularly important because the 708 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 709 // whenever possible. 710 // FIXME Consider handling this in InferFunctionAttr.cpp together with other 711 // attributes. 712 LibFunc F; 713 if (CS.getCalledFunction() && TLI.getLibFunc(*CS.getCalledFunction(), F) && 714 F == LibFunc_memset_pattern16 && TLI.has(F)) 715 if (ArgIdx == 0) 716 return true; 717 718 // TODO: memset_pattern4, memset_pattern8 719 // TODO: _chk variants 720 // TODO: strcmp, strcpy 721 722 return false; 723 } 724 725 ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS, 726 unsigned ArgIdx) { 727 // Checking for known builtin intrinsics and target library functions. 728 if (isWriteOnlyParam(CS, ArgIdx, TLI)) 729 return ModRefInfo::Mod; 730 731 if (CS.paramHasAttr(ArgIdx, Attribute::ReadOnly)) 732 return ModRefInfo::Ref; 733 734 if (CS.paramHasAttr(ArgIdx, Attribute::ReadNone)) 735 return ModRefInfo::NoModRef; 736 737 return AAResultBase::getArgModRefInfo(CS, ArgIdx); 738 } 739 740 static bool isIntrinsicCall(ImmutableCallSite CS, Intrinsic::ID IID) { 741 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 742 return II && II->getIntrinsicID() == IID; 743 } 744 745 #ifndef NDEBUG 746 static const Function *getParent(const Value *V) { 747 if (const Instruction *inst = dyn_cast<Instruction>(V)) { 748 if (!inst->getParent()) 749 return nullptr; 750 return inst->getParent()->getParent(); 751 } 752 753 if (const Argument *arg = dyn_cast<Argument>(V)) 754 return arg->getParent(); 755 756 return nullptr; 757 } 758 759 static bool notDifferentParent(const Value *O1, const Value *O2) { 760 761 const Function *F1 = getParent(O1); 762 const Function *F2 = getParent(O2); 763 764 return !F1 || !F2 || F1 == F2; 765 } 766 #endif 767 768 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 769 const MemoryLocation &LocB) { 770 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 771 "BasicAliasAnalysis doesn't support interprocedural queries."); 772 773 // If we have a directly cached entry for these locations, we have recursed 774 // through this once, so just return the cached results. Notably, when this 775 // happens, we don't clear the cache. 776 auto CacheIt = AliasCache.find(LocPair(LocA, LocB)); 777 if (CacheIt != AliasCache.end()) 778 return CacheIt->second; 779 780 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr, 781 LocB.Size, LocB.AATags); 782 // AliasCache rarely has more than 1 or 2 elements, always use 783 // shrink_and_clear so it quickly returns to the inline capacity of the 784 // SmallDenseMap if it ever grows larger. 785 // FIXME: This should really be shrink_to_inline_capacity_and_clear(). 786 AliasCache.shrink_and_clear(); 787 VisitedPhiBBs.clear(); 788 return Alias; 789 } 790 791 /// Checks to see if the specified callsite can clobber the specified memory 792 /// object. 793 /// 794 /// Since we only look at local properties of this function, we really can't 795 /// say much about this query. We do, however, use simple "address taken" 796 /// analysis on local objects. 797 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS, 798 const MemoryLocation &Loc) { 799 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && 800 "AliasAnalysis query involving multiple functions!"); 801 802 const Value *Object = GetUnderlyingObject(Loc.Ptr, DL); 803 804 // Calls marked 'tail' cannot read or write allocas from the current frame 805 // because the current frame might be destroyed by the time they run. However, 806 // a tail call may use an alloca with byval. Calling with byval copies the 807 // contents of the alloca into argument registers or stack slots, so there is 808 // no lifetime issue. 809 if (isa<AllocaInst>(Object)) 810 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) 811 if (CI->isTailCall() && 812 !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal)) 813 return ModRefInfo::NoModRef; 814 815 // If the pointer is to a locally allocated object that does not escape, 816 // then the call can not mod/ref the pointer unless the call takes the pointer 817 // as an argument, and itself doesn't capture it. 818 if (!isa<Constant>(Object) && CS.getInstruction() != Object && 819 isNonEscapingLocalObject(Object)) { 820 821 // Optimistically assume that call doesn't touch Object and check this 822 // assumption in the following loop. 823 ModRefInfo Result = ModRefInfo::NoModRef; 824 bool IsMustAlias = true; 825 826 unsigned OperandNo = 0; 827 for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end(); 828 CI != CE; ++CI, ++OperandNo) { 829 // Only look at the no-capture or byval pointer arguments. If this 830 // pointer were passed to arguments that were neither of these, then it 831 // couldn't be no-capture. 832 if (!(*CI)->getType()->isPointerTy() || 833 (!CS.doesNotCapture(OperandNo) && 834 OperandNo < CS.getNumArgOperands() && !CS.isByValArgument(OperandNo))) 835 continue; 836 837 // Call doesn't access memory through this operand, so we don't care 838 // if it aliases with Object. 839 if (CS.doesNotAccessMemory(OperandNo)) 840 continue; 841 842 // If this is a no-capture pointer argument, see if we can tell that it 843 // is impossible to alias the pointer we're checking. 844 AliasResult AR = 845 getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object)); 846 if (AR != MustAlias) 847 IsMustAlias = false; 848 // Operand doesnt alias 'Object', continue looking for other aliases 849 if (AR == NoAlias) 850 continue; 851 // Operand aliases 'Object', but call doesn't modify it. Strengthen 852 // initial assumption and keep looking in case if there are more aliases. 853 if (CS.onlyReadsMemory(OperandNo)) { 854 Result = setRef(Result); 855 continue; 856 } 857 // Operand aliases 'Object' but call only writes into it. 858 if (CS.doesNotReadMemory(OperandNo)) { 859 Result = setMod(Result); 860 continue; 861 } 862 // This operand aliases 'Object' and call reads and writes into it. 863 // Setting ModRef will not yield an early return below, MustAlias is not 864 // used further. 865 Result = ModRefInfo::ModRef; 866 break; 867 } 868 869 // No operand aliases, reset Must bit. Add below if at least one aliases 870 // and all aliases found are MustAlias. 871 if (isNoModRef(Result)) 872 IsMustAlias = false; 873 874 // Early return if we improved mod ref information 875 if (!isModAndRefSet(Result)) { 876 if (isNoModRef(Result)) 877 return ModRefInfo::NoModRef; 878 return IsMustAlias ? setMust(Result) : clearMust(Result); 879 } 880 } 881 882 // If the CallSite is to malloc or calloc, we can assume that it doesn't 883 // modify any IR visible value. This is only valid because we assume these 884 // routines do not read values visible in the IR. TODO: Consider special 885 // casing realloc and strdup routines which access only their arguments as 886 // well. Or alternatively, replace all of this with inaccessiblememonly once 887 // that's implemented fully. 888 auto *Inst = CS.getInstruction(); 889 if (isMallocOrCallocLikeFn(Inst, &TLI)) { 890 // Be conservative if the accessed pointer may alias the allocation - 891 // fallback to the generic handling below. 892 if (getBestAAResults().alias(MemoryLocation(Inst), Loc) == NoAlias) 893 return ModRefInfo::NoModRef; 894 } 895 896 // The semantics of memcpy intrinsics forbid overlap between their respective 897 // operands, i.e., source and destination of any given memcpy must no-alias. 898 // If Loc must-aliases either one of these two locations, then it necessarily 899 // no-aliases the other. 900 if (auto *Inst = dyn_cast<AnyMemCpyInst>(CS.getInstruction())) { 901 AliasResult SrcAA, DestAA; 902 903 if ((SrcAA = getBestAAResults().alias(MemoryLocation::getForSource(Inst), 904 Loc)) == MustAlias) 905 // Loc is exactly the memcpy source thus disjoint from memcpy dest. 906 return ModRefInfo::Ref; 907 if ((DestAA = getBestAAResults().alias(MemoryLocation::getForDest(Inst), 908 Loc)) == MustAlias) 909 // The converse case. 910 return ModRefInfo::Mod; 911 912 // It's also possible for Loc to alias both src and dest, or neither. 913 ModRefInfo rv = ModRefInfo::NoModRef; 914 if (SrcAA != NoAlias) 915 rv = setRef(rv); 916 if (DestAA != NoAlias) 917 rv = setMod(rv); 918 return rv; 919 } 920 921 // While the assume intrinsic is marked as arbitrarily writing so that 922 // proper control dependencies will be maintained, it never aliases any 923 // particular memory location. 924 if (isIntrinsicCall(CS, Intrinsic::assume)) 925 return ModRefInfo::NoModRef; 926 927 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 928 // that proper control dependencies are maintained but they never mods any 929 // particular memory location. 930 // 931 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 932 // heap state at the point the guard is issued needs to be consistent in case 933 // the guard invokes the "deopt" continuation. 934 if (isIntrinsicCall(CS, Intrinsic::experimental_guard)) 935 return ModRefInfo::Ref; 936 937 // Like assumes, invariant.start intrinsics were also marked as arbitrarily 938 // writing so that proper control dependencies are maintained but they never 939 // mod any particular memory location visible to the IR. 940 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start 941 // intrinsic is now modeled as reading memory. This prevents hoisting the 942 // invariant.start intrinsic over stores. Consider: 943 // *ptr = 40; 944 // *ptr = 50; 945 // invariant_start(ptr) 946 // int val = *ptr; 947 // print(val); 948 // 949 // This cannot be transformed to: 950 // 951 // *ptr = 40; 952 // invariant_start(ptr) 953 // *ptr = 50; 954 // int val = *ptr; 955 // print(val); 956 // 957 // The transformation will cause the second store to be ignored (based on 958 // rules of invariant.start) and print 40, while the first program always 959 // prints 50. 960 if (isIntrinsicCall(CS, Intrinsic::invariant_start)) 961 return ModRefInfo::Ref; 962 963 // The AAResultBase base class has some smarts, lets use them. 964 return AAResultBase::getModRefInfo(CS, Loc); 965 } 966 967 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1, 968 ImmutableCallSite CS2) { 969 // While the assume intrinsic is marked as arbitrarily writing so that 970 // proper control dependencies will be maintained, it never aliases any 971 // particular memory location. 972 if (isIntrinsicCall(CS1, Intrinsic::assume) || 973 isIntrinsicCall(CS2, Intrinsic::assume)) 974 return ModRefInfo::NoModRef; 975 976 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 977 // that proper control dependencies are maintained but they never mod any 978 // particular memory location. 979 // 980 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 981 // heap state at the point the guard is issued needs to be consistent in case 982 // the guard invokes the "deopt" continuation. 983 984 // NB! This function is *not* commutative, so we specical case two 985 // possibilities for guard intrinsics. 986 987 if (isIntrinsicCall(CS1, Intrinsic::experimental_guard)) 988 return isModSet(createModRefInfo(getModRefBehavior(CS2))) 989 ? ModRefInfo::Ref 990 : ModRefInfo::NoModRef; 991 992 if (isIntrinsicCall(CS2, Intrinsic::experimental_guard)) 993 return isModSet(createModRefInfo(getModRefBehavior(CS1))) 994 ? ModRefInfo::Mod 995 : ModRefInfo::NoModRef; 996 997 // The AAResultBase base class has some smarts, lets use them. 998 return AAResultBase::getModRefInfo(CS1, CS2); 999 } 1000 1001 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators, 1002 /// both having the exact same pointer operand. 1003 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1, 1004 LocationSize V1Size, 1005 const GEPOperator *GEP2, 1006 LocationSize V2Size, 1007 const DataLayout &DL) { 1008 assert(GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() == 1009 GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() && 1010 GEP1->getPointerOperandType() == GEP2->getPointerOperandType() && 1011 "Expected GEPs with the same pointer operand"); 1012 1013 // Try to determine whether GEP1 and GEP2 index through arrays, into structs, 1014 // such that the struct field accesses provably cannot alias. 1015 // We also need at least two indices (the pointer, and the struct field). 1016 if (GEP1->getNumIndices() != GEP2->getNumIndices() || 1017 GEP1->getNumIndices() < 2) 1018 return MayAlias; 1019 1020 // If we don't know the size of the accesses through both GEPs, we can't 1021 // determine whether the struct fields accessed can't alias. 1022 if (V1Size == MemoryLocation::UnknownSize || 1023 V2Size == MemoryLocation::UnknownSize) 1024 return MayAlias; 1025 1026 ConstantInt *C1 = 1027 dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1)); 1028 ConstantInt *C2 = 1029 dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1)); 1030 1031 // If the last (struct) indices are constants and are equal, the other indices 1032 // might be also be dynamically equal, so the GEPs can alias. 1033 if (C1 && C2 && C1->getSExtValue() == C2->getSExtValue()) 1034 return MayAlias; 1035 1036 // Find the last-indexed type of the GEP, i.e., the type you'd get if 1037 // you stripped the last index. 1038 // On the way, look at each indexed type. If there's something other 1039 // than an array, different indices can lead to different final types. 1040 SmallVector<Value *, 8> IntermediateIndices; 1041 1042 // Insert the first index; we don't need to check the type indexed 1043 // through it as it only drops the pointer indirection. 1044 assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine"); 1045 IntermediateIndices.push_back(GEP1->getOperand(1)); 1046 1047 // Insert all the remaining indices but the last one. 1048 // Also, check that they all index through arrays. 1049 for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) { 1050 if (!isa<ArrayType>(GetElementPtrInst::getIndexedType( 1051 GEP1->getSourceElementType(), IntermediateIndices))) 1052 return MayAlias; 1053 IntermediateIndices.push_back(GEP1->getOperand(i + 1)); 1054 } 1055 1056 auto *Ty = GetElementPtrInst::getIndexedType( 1057 GEP1->getSourceElementType(), IntermediateIndices); 1058 StructType *LastIndexedStruct = dyn_cast<StructType>(Ty); 1059 1060 if (isa<SequentialType>(Ty)) { 1061 // We know that: 1062 // - both GEPs begin indexing from the exact same pointer; 1063 // - the last indices in both GEPs are constants, indexing into a sequential 1064 // type (array or pointer); 1065 // - both GEPs only index through arrays prior to that. 1066 // 1067 // Because array indices greater than the number of elements are valid in 1068 // GEPs, unless we know the intermediate indices are identical between 1069 // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't 1070 // partially overlap. We also need to check that the loaded size matches 1071 // the element size, otherwise we could still have overlap. 1072 const uint64_t ElementSize = 1073 DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType()); 1074 if (V1Size != ElementSize || V2Size != ElementSize) 1075 return MayAlias; 1076 1077 for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i) 1078 if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1)) 1079 return MayAlias; 1080 1081 // Now we know that the array/pointer that GEP1 indexes into and that 1082 // that GEP2 indexes into must either precisely overlap or be disjoint. 1083 // Because they cannot partially overlap and because fields in an array 1084 // cannot overlap, if we can prove the final indices are different between 1085 // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias. 1086 1087 // If the last indices are constants, we've already checked they don't 1088 // equal each other so we can exit early. 1089 if (C1 && C2) 1090 return NoAlias; 1091 { 1092 Value *GEP1LastIdx = GEP1->getOperand(GEP1->getNumOperands() - 1); 1093 Value *GEP2LastIdx = GEP2->getOperand(GEP2->getNumOperands() - 1); 1094 if (isa<PHINode>(GEP1LastIdx) || isa<PHINode>(GEP2LastIdx)) { 1095 // If one of the indices is a PHI node, be safe and only use 1096 // computeKnownBits so we don't make any assumptions about the 1097 // relationships between the two indices. This is important if we're 1098 // asking about values from different loop iterations. See PR32314. 1099 // TODO: We may be able to change the check so we only do this when 1100 // we definitely looked through a PHINode. 1101 if (GEP1LastIdx != GEP2LastIdx && 1102 GEP1LastIdx->getType() == GEP2LastIdx->getType()) { 1103 KnownBits Known1 = computeKnownBits(GEP1LastIdx, DL); 1104 KnownBits Known2 = computeKnownBits(GEP2LastIdx, DL); 1105 if (Known1.Zero.intersects(Known2.One) || 1106 Known1.One.intersects(Known2.Zero)) 1107 return NoAlias; 1108 } 1109 } else if (isKnownNonEqual(GEP1LastIdx, GEP2LastIdx, DL)) 1110 return NoAlias; 1111 } 1112 return MayAlias; 1113 } else if (!LastIndexedStruct || !C1 || !C2) { 1114 return MayAlias; 1115 } 1116 1117 // We know that: 1118 // - both GEPs begin indexing from the exact same pointer; 1119 // - the last indices in both GEPs are constants, indexing into a struct; 1120 // - said indices are different, hence, the pointed-to fields are different; 1121 // - both GEPs only index through arrays prior to that. 1122 // 1123 // This lets us determine that the struct that GEP1 indexes into and the 1124 // struct that GEP2 indexes into must either precisely overlap or be 1125 // completely disjoint. Because they cannot partially overlap, indexing into 1126 // different non-overlapping fields of the struct will never alias. 1127 1128 // Therefore, the only remaining thing needed to show that both GEPs can't 1129 // alias is that the fields are not overlapping. 1130 const StructLayout *SL = DL.getStructLayout(LastIndexedStruct); 1131 const uint64_t StructSize = SL->getSizeInBytes(); 1132 const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue()); 1133 const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue()); 1134 1135 auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size, 1136 uint64_t V2Off, uint64_t V2Size) { 1137 return V1Off < V2Off && V1Off + V1Size <= V2Off && 1138 ((V2Off + V2Size <= StructSize) || 1139 (V2Off + V2Size - StructSize <= V1Off)); 1140 }; 1141 1142 if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) || 1143 EltsDontOverlap(V2Off, V2Size, V1Off, V1Size)) 1144 return NoAlias; 1145 1146 return MayAlias; 1147 } 1148 1149 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the 1150 // beginning of the object the GEP points would have a negative offset with 1151 // repsect to the alloca, that means the GEP can not alias pointer (b). 1152 // Note that the pointer based on the alloca may not be a GEP. For 1153 // example, it may be the alloca itself. 1154 // The same applies if (b) is based on a GlobalVariable. Note that just being 1155 // based on isIdentifiedObject() is not enough - we need an identified object 1156 // that does not permit access to negative offsets. For example, a negative 1157 // offset from a noalias argument or call can be inbounds w.r.t the actual 1158 // underlying object. 1159 // 1160 // For example, consider: 1161 // 1162 // struct { int f0, int f1, ...} foo; 1163 // foo alloca; 1164 // foo* random = bar(alloca); 1165 // int *f0 = &alloca.f0 1166 // int *f1 = &random->f1; 1167 // 1168 // Which is lowered, approximately, to: 1169 // 1170 // %alloca = alloca %struct.foo 1171 // %random = call %struct.foo* @random(%struct.foo* %alloca) 1172 // %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0 1173 // %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1 1174 // 1175 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated 1176 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also 1177 // point into the same object. But since %f0 points to the beginning of %alloca, 1178 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher 1179 // than (%alloca - 1), and so is not inbounds, a contradiction. 1180 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp, 1181 const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject, 1182 LocationSize ObjectAccessSize) { 1183 // If the object access size is unknown, or the GEP isn't inbounds, bail. 1184 if (ObjectAccessSize == MemoryLocation::UnknownSize || !GEPOp->isInBounds()) 1185 return false; 1186 1187 // We need the object to be an alloca or a globalvariable, and want to know 1188 // the offset of the pointer from the object precisely, so no variable 1189 // indices are allowed. 1190 if (!(isa<AllocaInst>(DecompObject.Base) || 1191 isa<GlobalVariable>(DecompObject.Base)) || 1192 !DecompObject.VarIndices.empty()) 1193 return false; 1194 1195 int64_t ObjectBaseOffset = DecompObject.StructOffset + 1196 DecompObject.OtherOffset; 1197 1198 // If the GEP has no variable indices, we know the precise offset 1199 // from the base, then use it. If the GEP has variable indices, 1200 // we can't get exact GEP offset to identify pointer alias. So return 1201 // false in that case. 1202 if (!DecompGEP.VarIndices.empty()) 1203 return false; 1204 int64_t GEPBaseOffset = DecompGEP.StructOffset; 1205 GEPBaseOffset += DecompGEP.OtherOffset; 1206 1207 return (GEPBaseOffset >= ObjectBaseOffset + (int64_t)ObjectAccessSize); 1208 } 1209 1210 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 1211 /// another pointer. 1212 /// 1213 /// We know that V1 is a GEP, but we don't know anything about V2. 1214 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for 1215 /// V2. 1216 AliasResult 1217 BasicAAResult::aliasGEP(const GEPOperator *GEP1, LocationSize V1Size, 1218 const AAMDNodes &V1AAInfo, const Value *V2, 1219 LocationSize V2Size, const AAMDNodes &V2AAInfo, 1220 const Value *UnderlyingV1, const Value *UnderlyingV2) { 1221 DecomposedGEP DecompGEP1, DecompGEP2; 1222 bool GEP1MaxLookupReached = 1223 DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT); 1224 bool GEP2MaxLookupReached = 1225 DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT); 1226 1227 int64_t GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset; 1228 int64_t GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset; 1229 1230 assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 && 1231 "DecomposeGEPExpression returned a result different from " 1232 "GetUnderlyingObject"); 1233 1234 // If the GEP's offset relative to its base is such that the base would 1235 // fall below the start of the object underlying V2, then the GEP and V2 1236 // cannot alias. 1237 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1238 isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size)) 1239 return NoAlias; 1240 // If we have two gep instructions with must-alias or not-alias'ing base 1241 // pointers, figure out if the indexes to the GEP tell us anything about the 1242 // derived pointer. 1243 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 1244 // Check for the GEP base being at a negative offset, this time in the other 1245 // direction. 1246 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1247 isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size)) 1248 return NoAlias; 1249 // Do the base pointers alias? 1250 AliasResult BaseAlias = 1251 aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(), 1252 UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes()); 1253 1254 // Check for geps of non-aliasing underlying pointers where the offsets are 1255 // identical. 1256 if ((BaseAlias == MayAlias) && V1Size == V2Size) { 1257 // Do the base pointers alias assuming type and size. 1258 AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo, 1259 UnderlyingV2, V2Size, V2AAInfo); 1260 if (PreciseBaseAlias == NoAlias) { 1261 // See if the computed offset from the common pointer tells us about the 1262 // relation of the resulting pointer. 1263 // If the max search depth is reached the result is undefined 1264 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1265 return MayAlias; 1266 1267 // Same offsets. 1268 if (GEP1BaseOffset == GEP2BaseOffset && 1269 DecompGEP1.VarIndices == DecompGEP2.VarIndices) 1270 return NoAlias; 1271 } 1272 } 1273 1274 // If we get a No or May, then return it immediately, no amount of analysis 1275 // will improve this situation. 1276 if (BaseAlias != MustAlias) { 1277 assert(BaseAlias == NoAlias || BaseAlias == MayAlias); 1278 return BaseAlias; 1279 } 1280 1281 // Otherwise, we have a MustAlias. Since the base pointers alias each other 1282 // exactly, see if the computed offset from the common pointer tells us 1283 // about the relation of the resulting pointer. 1284 // If we know the two GEPs are based off of the exact same pointer (and not 1285 // just the same underlying object), see if that tells us anything about 1286 // the resulting pointers. 1287 if (GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() == 1288 GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() && 1289 GEP1->getPointerOperandType() == GEP2->getPointerOperandType()) { 1290 AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL); 1291 // If we couldn't find anything interesting, don't abandon just yet. 1292 if (R != MayAlias) 1293 return R; 1294 } 1295 1296 // If the max search depth is reached, the result is undefined 1297 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1298 return MayAlias; 1299 1300 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1301 // symbolic difference. 1302 GEP1BaseOffset -= GEP2BaseOffset; 1303 GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices); 1304 1305 } else { 1306 // Check to see if these two pointers are related by the getelementptr 1307 // instruction. If one pointer is a GEP with a non-zero index of the other 1308 // pointer, we know they cannot alias. 1309 1310 // If both accesses are unknown size, we can't do anything useful here. 1311 if (V1Size == MemoryLocation::UnknownSize && 1312 V2Size == MemoryLocation::UnknownSize) 1313 return MayAlias; 1314 1315 AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, 1316 AAMDNodes(), V2, MemoryLocation::UnknownSize, 1317 V2AAInfo, nullptr, UnderlyingV2); 1318 if (R != MustAlias) { 1319 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 1320 // If V2 is known not to alias GEP base pointer, then the two values 1321 // cannot alias per GEP semantics: "Any memory access must be done through 1322 // a pointer value associated with an address range of the memory access, 1323 // otherwise the behavior is undefined.". 1324 assert(R == NoAlias || R == MayAlias); 1325 return R; 1326 } 1327 1328 // If the max search depth is reached the result is undefined 1329 if (GEP1MaxLookupReached) 1330 return MayAlias; 1331 } 1332 1333 // In the two GEP Case, if there is no difference in the offsets of the 1334 // computed pointers, the resultant pointers are a must alias. This 1335 // happens when we have two lexically identical GEP's (for example). 1336 // 1337 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 1338 // must aliases the GEP, the end result is a must alias also. 1339 if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty()) 1340 return MustAlias; 1341 1342 // If there is a constant difference between the pointers, but the difference 1343 // is less than the size of the associated memory object, then we know 1344 // that the objects are partially overlapping. If the difference is 1345 // greater, we know they do not overlap. 1346 if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) { 1347 if (GEP1BaseOffset >= 0) { 1348 if (V2Size != MemoryLocation::UnknownSize) { 1349 if ((uint64_t)GEP1BaseOffset < V2Size) 1350 return PartialAlias; 1351 return NoAlias; 1352 } 1353 } else { 1354 // We have the situation where: 1355 // + + 1356 // | BaseOffset | 1357 // ---------------->| 1358 // |-->V1Size |-------> V2Size 1359 // GEP1 V2 1360 // We need to know that V2Size is not unknown, otherwise we might have 1361 // stripped a gep with negative index ('gep <ptr>, -1, ...). 1362 if (V1Size != MemoryLocation::UnknownSize && 1363 V2Size != MemoryLocation::UnknownSize) { 1364 if (-(uint64_t)GEP1BaseOffset < V1Size) 1365 return PartialAlias; 1366 return NoAlias; 1367 } 1368 } 1369 } 1370 1371 if (!DecompGEP1.VarIndices.empty()) { 1372 uint64_t Modulo = 0; 1373 bool AllPositive = true; 1374 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { 1375 1376 // Try to distinguish something like &A[i][1] against &A[42][0]. 1377 // Grab the least significant bit set in any of the scales. We 1378 // don't need std::abs here (even if the scale's negative) as we'll 1379 // be ^'ing Modulo with itself later. 1380 Modulo |= (uint64_t)DecompGEP1.VarIndices[i].Scale; 1381 1382 if (AllPositive) { 1383 // If the Value could change between cycles, then any reasoning about 1384 // the Value this cycle may not hold in the next cycle. We'll just 1385 // give up if we can't determine conditions that hold for every cycle: 1386 const Value *V = DecompGEP1.VarIndices[i].V; 1387 1388 KnownBits Known = computeKnownBits(V, DL, 0, &AC, nullptr, DT); 1389 bool SignKnownZero = Known.isNonNegative(); 1390 bool SignKnownOne = Known.isNegative(); 1391 1392 // Zero-extension widens the variable, and so forces the sign 1393 // bit to zero. 1394 bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V); 1395 SignKnownZero |= IsZExt; 1396 SignKnownOne &= !IsZExt; 1397 1398 // If the variable begins with a zero then we know it's 1399 // positive, regardless of whether the value is signed or 1400 // unsigned. 1401 int64_t Scale = DecompGEP1.VarIndices[i].Scale; 1402 AllPositive = 1403 (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0); 1404 } 1405 } 1406 1407 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1408 1409 // We can compute the difference between the two addresses 1410 // mod Modulo. Check whether that difference guarantees that the 1411 // two locations do not alias. 1412 uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1); 1413 if (V1Size != MemoryLocation::UnknownSize && 1414 V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size && 1415 V1Size <= Modulo - ModOffset) 1416 return NoAlias; 1417 1418 // If we know all the variables are positive, then GEP1 >= GEP1BasePtr. 1419 // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers 1420 // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr. 1421 if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset) 1422 return NoAlias; 1423 1424 if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size, 1425 GEP1BaseOffset, &AC, DT)) 1426 return NoAlias; 1427 } 1428 1429 // Statically, we can see that the base objects are the same, but the 1430 // pointers have dynamic offsets which we can't resolve. And none of our 1431 // little tricks above worked. 1432 return MayAlias; 1433 } 1434 1435 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1436 // If the results agree, take it. 1437 if (A == B) 1438 return A; 1439 // A mix of PartialAlias and MustAlias is PartialAlias. 1440 if ((A == PartialAlias && B == MustAlias) || 1441 (B == PartialAlias && A == MustAlias)) 1442 return PartialAlias; 1443 // Otherwise, we don't know anything. 1444 return MayAlias; 1445 } 1446 1447 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1448 /// against another. 1449 AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, 1450 LocationSize SISize, 1451 const AAMDNodes &SIAAInfo, 1452 const Value *V2, LocationSize V2Size, 1453 const AAMDNodes &V2AAInfo, 1454 const Value *UnderV2) { 1455 // If the values are Selects with the same condition, we can do a more precise 1456 // check: just check for aliases between the values on corresponding arms. 1457 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1458 if (SI->getCondition() == SI2->getCondition()) { 1459 AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, 1460 SI2->getTrueValue(), V2Size, V2AAInfo); 1461 if (Alias == MayAlias) 1462 return MayAlias; 1463 AliasResult ThisAlias = 1464 aliasCheck(SI->getFalseValue(), SISize, SIAAInfo, 1465 SI2->getFalseValue(), V2Size, V2AAInfo); 1466 return MergeAliasResults(ThisAlias, Alias); 1467 } 1468 1469 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1470 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1471 AliasResult Alias = 1472 aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), 1473 SISize, SIAAInfo, UnderV2); 1474 if (Alias == MayAlias) 1475 return MayAlias; 1476 1477 AliasResult ThisAlias = 1478 aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo, 1479 UnderV2); 1480 return MergeAliasResults(ThisAlias, Alias); 1481 } 1482 1483 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1484 /// another. 1485 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize, 1486 const AAMDNodes &PNAAInfo, const Value *V2, 1487 LocationSize V2Size, 1488 const AAMDNodes &V2AAInfo, 1489 const Value *UnderV2) { 1490 // Track phi nodes we have visited. We use this information when we determine 1491 // value equivalence. 1492 VisitedPhiBBs.insert(PN->getParent()); 1493 1494 // If the values are PHIs in the same block, we can do a more precise 1495 // as well as efficient check: just check for aliases between the values 1496 // on corresponding edges. 1497 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1498 if (PN2->getParent() == PN->getParent()) { 1499 LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo), 1500 MemoryLocation(V2, V2Size, V2AAInfo)); 1501 if (PN > V2) 1502 std::swap(Locs.first, Locs.second); 1503 // Analyse the PHIs' inputs under the assumption that the PHIs are 1504 // NoAlias. 1505 // If the PHIs are May/MustAlias there must be (recursively) an input 1506 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1507 // there must be an operation on the PHIs within the PHIs' value cycle 1508 // that causes a MayAlias. 1509 // Pretend the phis do not alias. 1510 AliasResult Alias = NoAlias; 1511 assert(AliasCache.count(Locs) && 1512 "There must exist an entry for the phi node"); 1513 AliasResult OrigAliasResult = AliasCache[Locs]; 1514 AliasCache[Locs] = NoAlias; 1515 1516 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1517 AliasResult ThisAlias = 1518 aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo, 1519 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1520 V2Size, V2AAInfo); 1521 Alias = MergeAliasResults(ThisAlias, Alias); 1522 if (Alias == MayAlias) 1523 break; 1524 } 1525 1526 // Reset if speculation failed. 1527 if (Alias != NoAlias) 1528 AliasCache[Locs] = OrigAliasResult; 1529 1530 return Alias; 1531 } 1532 1533 SmallVector<Value *, 4> V1Srcs; 1534 bool isRecursive = false; 1535 if (PV) { 1536 // If we have PhiValues then use it to get the underlying phi values. 1537 const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN); 1538 // If we have more phi values than the search depth then return MayAlias 1539 // conservatively to avoid compile time explosion. The worst possible case 1540 // is if both sides are PHI nodes. In which case, this is O(m x n) time 1541 // where 'm' and 'n' are the number of PHI sources. 1542 if (PhiValueSet.size() > MaxLookupSearchDepth) 1543 return MayAlias; 1544 // Add the values to V1Srcs 1545 for (Value *PV1 : PhiValueSet) { 1546 if (EnableRecPhiAnalysis) { 1547 if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) { 1548 // Check whether the incoming value is a GEP that advances the pointer 1549 // result of this PHI node (e.g. in a loop). If this is the case, we 1550 // would recurse and always get a MayAlias. Handle this case specially 1551 // below. 1552 if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 && 1553 isa<ConstantInt>(PV1GEP->idx_begin())) { 1554 isRecursive = true; 1555 continue; 1556 } 1557 } 1558 } 1559 V1Srcs.push_back(PV1); 1560 } 1561 } else { 1562 // If we don't have PhiInfo then just look at the operands of the phi itself 1563 // FIXME: Remove this once we can guarantee that we have PhiInfo always 1564 SmallPtrSet<Value *, 4> UniqueSrc; 1565 for (Value *PV1 : PN->incoming_values()) { 1566 if (isa<PHINode>(PV1)) 1567 // If any of the source itself is a PHI, return MayAlias conservatively 1568 // to avoid compile time explosion. The worst possible case is if both 1569 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1570 // and 'n' are the number of PHI sources. 1571 return MayAlias; 1572 1573 if (EnableRecPhiAnalysis) 1574 if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) { 1575 // Check whether the incoming value is a GEP that advances the pointer 1576 // result of this PHI node (e.g. in a loop). If this is the case, we 1577 // would recurse and always get a MayAlias. Handle this case specially 1578 // below. 1579 if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 && 1580 isa<ConstantInt>(PV1GEP->idx_begin())) { 1581 isRecursive = true; 1582 continue; 1583 } 1584 } 1585 1586 if (UniqueSrc.insert(PV1).second) 1587 V1Srcs.push_back(PV1); 1588 } 1589 } 1590 1591 // If V1Srcs is empty then that means that the phi has no underlying non-phi 1592 // value. This should only be possible in blocks unreachable from the entry 1593 // block, but return MayAlias just in case. 1594 if (V1Srcs.empty()) 1595 return MayAlias; 1596 1597 // If this PHI node is recursive, set the size of the accessed memory to 1598 // unknown to represent all the possible values the GEP could advance the 1599 // pointer to. 1600 if (isRecursive) 1601 PNSize = MemoryLocation::UnknownSize; 1602 1603 AliasResult Alias = 1604 aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], 1605 PNSize, PNAAInfo, UnderV2); 1606 1607 // Early exit if the check of the first PHI source against V2 is MayAlias. 1608 // Other results are not possible. 1609 if (Alias == MayAlias) 1610 return MayAlias; 1611 1612 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1613 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1614 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1615 Value *V = V1Srcs[i]; 1616 1617 AliasResult ThisAlias = 1618 aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, UnderV2); 1619 Alias = MergeAliasResults(ThisAlias, Alias); 1620 if (Alias == MayAlias) 1621 break; 1622 } 1623 1624 return Alias; 1625 } 1626 1627 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1628 /// array references. 1629 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size, 1630 AAMDNodes V1AAInfo, const Value *V2, 1631 LocationSize V2Size, AAMDNodes V2AAInfo, 1632 const Value *O1, const Value *O2) { 1633 // If either of the memory references is empty, it doesn't matter what the 1634 // pointer values are. 1635 if (V1Size == 0 || V2Size == 0) 1636 return NoAlias; 1637 1638 // Strip off any casts if they exist. 1639 V1 = V1->stripPointerCastsAndInvariantGroups(); 1640 V2 = V2->stripPointerCastsAndInvariantGroups(); 1641 1642 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1643 // value for undef that aliases nothing in the program. 1644 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1645 return NoAlias; 1646 1647 // Are we checking for alias of the same value? 1648 // Because we look 'through' phi nodes, we could look at "Value" pointers from 1649 // different iterations. We must therefore make sure that this is not the 1650 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1651 // happen by looking at the visited phi nodes and making sure they cannot 1652 // reach the value. 1653 if (isValueEqualInPotentialCycles(V1, V2)) 1654 return MustAlias; 1655 1656 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1657 return NoAlias; // Scalars cannot alias each other 1658 1659 // Figure out what objects these things are pointing to if we can. 1660 if (O1 == nullptr) 1661 O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth); 1662 1663 if (O2 == nullptr) 1664 O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth); 1665 1666 // Null values in the default address space don't point to any object, so they 1667 // don't alias any other pointer. 1668 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1669 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1670 return NoAlias; 1671 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1672 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1673 return NoAlias; 1674 1675 if (O1 != O2) { 1676 // If V1/V2 point to two different objects, we know that we have no alias. 1677 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1678 return NoAlias; 1679 1680 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1681 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1682 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1683 return NoAlias; 1684 1685 // Function arguments can't alias with things that are known to be 1686 // unambigously identified at the function level. 1687 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1688 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1689 return NoAlias; 1690 1691 // If one pointer is the result of a call/invoke or load and the other is a 1692 // non-escaping local object within the same function, then we know the 1693 // object couldn't escape to a point where the call could return it. 1694 // 1695 // Note that if the pointers are in different functions, there are a 1696 // variety of complications. A call with a nocapture argument may still 1697 // temporary store the nocapture argument's value in a temporary memory 1698 // location if that memory location doesn't escape. Or it may pass a 1699 // nocapture value to other functions as long as they don't capture it. 1700 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) 1701 return NoAlias; 1702 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) 1703 return NoAlias; 1704 } 1705 1706 // If the size of one access is larger than the entire object on the other 1707 // side, then we know such behavior is undefined and can assume no alias. 1708 bool NullIsValidLocation = NullPointerIsDefined(&F); 1709 if ((V1Size != MemoryLocation::UnknownSize && 1710 isObjectSmallerThan(O2, V1Size, DL, TLI, NullIsValidLocation)) || 1711 (V2Size != MemoryLocation::UnknownSize && 1712 isObjectSmallerThan(O1, V2Size, DL, TLI, NullIsValidLocation))) 1713 return NoAlias; 1714 1715 // Check the cache before climbing up use-def chains. This also terminates 1716 // otherwise infinitely recursive queries. 1717 LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo), 1718 MemoryLocation(V2, V2Size, V2AAInfo)); 1719 if (V1 > V2) 1720 std::swap(Locs.first, Locs.second); 1721 std::pair<AliasCacheTy::iterator, bool> Pair = 1722 AliasCache.insert(std::make_pair(Locs, MayAlias)); 1723 if (!Pair.second) 1724 return Pair.first->second; 1725 1726 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1727 // GEP can't simplify, we don't even look at the PHI cases. 1728 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1729 std::swap(V1, V2); 1730 std::swap(V1Size, V2Size); 1731 std::swap(O1, O2); 1732 std::swap(V1AAInfo, V2AAInfo); 1733 } 1734 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1735 AliasResult Result = 1736 aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2); 1737 if (Result != MayAlias) 1738 return AliasCache[Locs] = Result; 1739 } 1740 1741 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1742 std::swap(V1, V2); 1743 std::swap(O1, O2); 1744 std::swap(V1Size, V2Size); 1745 std::swap(V1AAInfo, V2AAInfo); 1746 } 1747 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1748 AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, 1749 V2, V2Size, V2AAInfo, O2); 1750 if (Result != MayAlias) 1751 return AliasCache[Locs] = Result; 1752 } 1753 1754 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1755 std::swap(V1, V2); 1756 std::swap(O1, O2); 1757 std::swap(V1Size, V2Size); 1758 std::swap(V1AAInfo, V2AAInfo); 1759 } 1760 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1761 AliasResult Result = 1762 aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2); 1763 if (Result != MayAlias) 1764 return AliasCache[Locs] = Result; 1765 } 1766 1767 // If both pointers are pointing into the same object and one of them 1768 // accesses the entire object, then the accesses must overlap in some way. 1769 if (O1 == O2) 1770 if (V1Size != MemoryLocation::UnknownSize && 1771 V2Size != MemoryLocation::UnknownSize && 1772 (isObjectSize(O1, V1Size, DL, TLI, NullIsValidLocation) || 1773 isObjectSize(O2, V2Size, DL, TLI, NullIsValidLocation))) 1774 return AliasCache[Locs] = PartialAlias; 1775 1776 // Recurse back into the best AA results we have, potentially with refined 1777 // memory locations. We have already ensured that BasicAA has a MayAlias 1778 // cache result for these, so any recursion back into BasicAA won't loop. 1779 AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second); 1780 return AliasCache[Locs] = Result; 1781 } 1782 1783 /// Check whether two Values can be considered equivalent. 1784 /// 1785 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether 1786 /// they can not be part of a cycle in the value graph by looking at all 1787 /// visited phi nodes an making sure that the phis cannot reach the value. We 1788 /// have to do this because we are looking through phi nodes (That is we say 1789 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1790 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1791 const Value *V2) { 1792 if (V != V2) 1793 return false; 1794 1795 const Instruction *Inst = dyn_cast<Instruction>(V); 1796 if (!Inst) 1797 return true; 1798 1799 if (VisitedPhiBBs.empty()) 1800 return true; 1801 1802 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1803 return false; 1804 1805 // Make sure that the visited phis cannot reach the Value. This ensures that 1806 // the Values cannot come from different iterations of a potential cycle the 1807 // phi nodes could be involved in. 1808 for (auto *P : VisitedPhiBBs) 1809 if (isPotentiallyReachable(&P->front(), Inst, DT, LI)) 1810 return false; 1811 1812 return true; 1813 } 1814 1815 /// Computes the symbolic difference between two de-composed GEPs. 1816 /// 1817 /// Dest and Src are the variable indices from two decomposed GetElementPtr 1818 /// instructions GEP1 and GEP2 which have common base pointers. 1819 void BasicAAResult::GetIndexDifference( 1820 SmallVectorImpl<VariableGEPIndex> &Dest, 1821 const SmallVectorImpl<VariableGEPIndex> &Src) { 1822 if (Src.empty()) 1823 return; 1824 1825 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1826 const Value *V = Src[i].V; 1827 unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits; 1828 int64_t Scale = Src[i].Scale; 1829 1830 // Find V in Dest. This is N^2, but pointer indices almost never have more 1831 // than a few variable indexes. 1832 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1833 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1834 Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits) 1835 continue; 1836 1837 // If we found it, subtract off Scale V's from the entry in Dest. If it 1838 // goes to zero, remove the entry. 1839 if (Dest[j].Scale != Scale) 1840 Dest[j].Scale -= Scale; 1841 else 1842 Dest.erase(Dest.begin() + j); 1843 Scale = 0; 1844 break; 1845 } 1846 1847 // If we didn't consume this entry, add it to the end of the Dest list. 1848 if (Scale) { 1849 VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale}; 1850 Dest.push_back(Entry); 1851 } 1852 } 1853 } 1854 1855 bool BasicAAResult::constantOffsetHeuristic( 1856 const SmallVectorImpl<VariableGEPIndex> &VarIndices, LocationSize V1Size, 1857 LocationSize V2Size, int64_t BaseOffset, AssumptionCache *AC, 1858 DominatorTree *DT) { 1859 if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize || 1860 V2Size == MemoryLocation::UnknownSize) 1861 return false; 1862 1863 const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1]; 1864 1865 if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits || 1866 Var0.Scale != -Var1.Scale) 1867 return false; 1868 1869 unsigned Width = Var1.V->getType()->getIntegerBitWidth(); 1870 1871 // We'll strip off the Extensions of Var0 and Var1 and do another round 1872 // of GetLinearExpression decomposition. In the example above, if Var0 1873 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 1874 1875 APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0), 1876 V1Offset(Width, 0); 1877 bool NSW = true, NUW = true; 1878 unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0; 1879 const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits, 1880 V0SExtBits, DL, 0, AC, DT, NSW, NUW); 1881 NSW = true; 1882 NUW = true; 1883 const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits, 1884 V1SExtBits, DL, 0, AC, DT, NSW, NUW); 1885 1886 if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits || 1887 V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1)) 1888 return false; 1889 1890 // We have a hit - Var0 and Var1 only differ by a constant offset! 1891 1892 // If we've been sext'ed then zext'd the maximum difference between Var0 and 1893 // Var1 is possible to calculate, but we're just interested in the absolute 1894 // minimum difference between the two. The minimum distance may occur due to 1895 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 1896 // the minimum distance between %i and %i + 5 is 3. 1897 APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff; 1898 MinDiff = APIntOps::umin(MinDiff, Wrapped); 1899 uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale); 1900 1901 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 1902 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 1903 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 1904 // V2Size can fit in the MinDiffBytes gap. 1905 return V1Size + std::abs(BaseOffset) <= MinDiffBytes && 1906 V2Size + std::abs(BaseOffset) <= MinDiffBytes; 1907 } 1908 1909 //===----------------------------------------------------------------------===// 1910 // BasicAliasAnalysis Pass 1911 //===----------------------------------------------------------------------===// 1912 1913 AnalysisKey BasicAA::Key; 1914 1915 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) { 1916 return BasicAAResult(F.getParent()->getDataLayout(), 1917 F, 1918 AM.getResult<TargetLibraryAnalysis>(F), 1919 AM.getResult<AssumptionAnalysis>(F), 1920 &AM.getResult<DominatorTreeAnalysis>(F), 1921 AM.getCachedResult<LoopAnalysis>(F), 1922 AM.getCachedResult<PhiValuesAnalysis>(F)); 1923 } 1924 1925 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 1926 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1927 } 1928 1929 char BasicAAWrapperPass::ID = 0; 1930 1931 void BasicAAWrapperPass::anchor() {} 1932 1933 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa", 1934 "Basic Alias Analysis (stateless AA impl)", false, true) 1935 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1936 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1937 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1938 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa", 1939 "Basic Alias Analysis (stateless AA impl)", false, true) 1940 1941 FunctionPass *llvm::createBasicAAWrapperPass() { 1942 return new BasicAAWrapperPass(); 1943 } 1944 1945 bool BasicAAWrapperPass::runOnFunction(Function &F) { 1946 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 1947 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 1948 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); 1949 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 1950 auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>(); 1951 1952 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F, TLIWP.getTLI(), 1953 ACT.getAssumptionCache(F), &DTWP.getDomTree(), 1954 LIWP ? &LIWP->getLoopInfo() : nullptr, 1955 PVWP ? &PVWP->getResult() : nullptr)); 1956 1957 return false; 1958 } 1959 1960 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1961 AU.setPreservesAll(); 1962 AU.addRequired<AssumptionCacheTracker>(); 1963 AU.addRequired<DominatorTreeWrapperPass>(); 1964 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1965 AU.addUsedIfAvailable<PhiValuesWrapperPass>(); 1966 } 1967 1968 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { 1969 return BasicAAResult( 1970 F.getParent()->getDataLayout(), 1971 F, 1972 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 1973 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 1974 } 1975