1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the primary stateless implementation of the
10 // Alias Analysis interface that implements identities (two different
11 // globals cannot alias, etc), but does no stateful analysis.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/BasicAliasAnalysis.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/PhiValues.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/ConstantRange.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GetElementPtrTypeIterator.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/Metadata.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/User.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/KnownBits.h"
59 #include <cassert>
60 #include <cstdint>
61 #include <cstdlib>
62 #include <utility>
63 
64 #define DEBUG_TYPE "basicaa"
65 
66 using namespace llvm;
67 
68 /// Enable analysis of recursive PHI nodes.
69 static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden,
70                                           cl::init(true));
71 
72 /// SearchLimitReached / SearchTimes shows how often the limit of
73 /// to decompose GEPs is reached. It will affect the precision
74 /// of basic alias analysis.
75 STATISTIC(SearchLimitReached, "Number of times the limit to "
76                               "decompose GEPs is reached");
77 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
78 
79 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
80 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
81 /// careful with value equivalence. We use reachability to make sure a value
82 /// cannot be involved in a cycle.
83 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
84 
85 // The max limit of the search depth in DecomposeGEPExpression() and
86 // getUnderlyingObject().
87 static const unsigned MaxLookupSearchDepth = 6;
88 
89 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
90                                FunctionAnalysisManager::Invalidator &Inv) {
91   // We don't care if this analysis itself is preserved, it has no state. But
92   // we need to check that the analyses it depends on have been. Note that we
93   // may be created without handles to some analyses and in that case don't
94   // depend on them.
95   if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
96       (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) ||
97       (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA)))
98     return true;
99 
100   // Otherwise this analysis result remains valid.
101   return false;
102 }
103 
104 //===----------------------------------------------------------------------===//
105 // Useful predicates
106 //===----------------------------------------------------------------------===//
107 
108 /// Returns true if the pointer is one which would have been considered an
109 /// escape by isNonEscapingLocalObject.
110 static bool isEscapeSource(const Value *V) {
111   if (isa<CallBase>(V))
112     return true;
113 
114   // The load case works because isNonEscapingLocalObject considers all
115   // stores to be escapes (it passes true for the StoreCaptures argument
116   // to PointerMayBeCaptured).
117   if (isa<LoadInst>(V))
118     return true;
119 
120   // The inttoptr case works because isNonEscapingLocalObject considers all
121   // means of converting or equating a pointer to an int (ptrtoint, ptr store
122   // which could be followed by an integer load, ptr<->int compare) as
123   // escaping, and objects located at well-known addresses via platform-specific
124   // means cannot be considered non-escaping local objects.
125   if (isa<IntToPtrInst>(V))
126     return true;
127 
128   return false;
129 }
130 
131 /// Returns the size of the object specified by V or UnknownSize if unknown.
132 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
133                               const TargetLibraryInfo &TLI,
134                               bool NullIsValidLoc,
135                               bool RoundToAlign = false) {
136   uint64_t Size;
137   ObjectSizeOpts Opts;
138   Opts.RoundToAlign = RoundToAlign;
139   Opts.NullIsUnknownSize = NullIsValidLoc;
140   if (getObjectSize(V, Size, DL, &TLI, Opts))
141     return Size;
142   return MemoryLocation::UnknownSize;
143 }
144 
145 /// Returns true if we can prove that the object specified by V is smaller than
146 /// Size.
147 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
148                                 const DataLayout &DL,
149                                 const TargetLibraryInfo &TLI,
150                                 bool NullIsValidLoc) {
151   // Note that the meanings of the "object" are slightly different in the
152   // following contexts:
153   //    c1: llvm::getObjectSize()
154   //    c2: llvm.objectsize() intrinsic
155   //    c3: isObjectSmallerThan()
156   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
157   // refers to the "entire object".
158   //
159   //  Consider this example:
160   //     char *p = (char*)malloc(100)
161   //     char *q = p+80;
162   //
163   //  In the context of c1 and c2, the "object" pointed by q refers to the
164   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
165   //
166   //  However, in the context of c3, the "object" refers to the chunk of memory
167   // being allocated. So, the "object" has 100 bytes, and q points to the middle
168   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
169   // parameter, before the llvm::getObjectSize() is called to get the size of
170   // entire object, we should:
171   //    - either rewind the pointer q to the base-address of the object in
172   //      question (in this case rewind to p), or
173   //    - just give up. It is up to caller to make sure the pointer is pointing
174   //      to the base address the object.
175   //
176   // We go for 2nd option for simplicity.
177   if (!isIdentifiedObject(V))
178     return false;
179 
180   // This function needs to use the aligned object size because we allow
181   // reads a bit past the end given sufficient alignment.
182   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
183                                       /*RoundToAlign*/ true);
184 
185   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
186 }
187 
188 /// Return the minimal extent from \p V to the end of the underlying object,
189 /// assuming the result is used in an aliasing query. E.g., we do use the query
190 /// location size and the fact that null pointers cannot alias here.
191 static uint64_t getMinimalExtentFrom(const Value &V,
192                                      const LocationSize &LocSize,
193                                      const DataLayout &DL,
194                                      bool NullIsValidLoc) {
195   // If we have dereferenceability information we know a lower bound for the
196   // extent as accesses for a lower offset would be valid. We need to exclude
197   // the "or null" part if null is a valid pointer. We can ignore frees, as an
198   // access after free would be undefined behavior.
199   bool CanBeNull, CanBeFreed;
200   uint64_t DerefBytes =
201     V.getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
202   DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes;
203   // If queried with a precise location size, we assume that location size to be
204   // accessed, thus valid.
205   if (LocSize.isPrecise())
206     DerefBytes = std::max(DerefBytes, LocSize.getValue());
207   return DerefBytes;
208 }
209 
210 /// Returns true if we can prove that the object specified by V has size Size.
211 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
212                          const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
213   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc);
214   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
215 }
216 
217 //===----------------------------------------------------------------------===//
218 // CaptureInfo implementations
219 //===----------------------------------------------------------------------===//
220 
221 CaptureInfo::~CaptureInfo() = default;
222 
223 bool SimpleCaptureInfo::isNotCapturedBeforeOrAt(const Value *Object,
224                                                 const Instruction *I) {
225   return isNonEscapingLocalObject(Object, &IsCapturedCache);
226 }
227 
228 bool EarliestEscapeInfo::isNotCapturedBeforeOrAt(const Value *Object,
229                                                  const Instruction *I) {
230   if (!isIdentifiedFunctionLocal(Object))
231     return false;
232 
233   auto Iter = EarliestEscapes.insert({Object, nullptr});
234   if (Iter.second) {
235     Instruction *EarliestCapture = FindEarliestCapture(
236         Object, *const_cast<Function *>(I->getFunction()),
237         /*ReturnCaptures=*/false, /*StoreCaptures=*/true, DT);
238     if (EarliestCapture) {
239       auto Ins = Inst2Obj.insert({EarliestCapture, {}});
240       Ins.first->second.push_back(Object);
241     }
242     Iter.first->second = EarliestCapture;
243   }
244 
245   // No capturing instruction.
246   if (!Iter.first->second)
247     return true;
248 
249   return I != Iter.first->second &&
250          !isPotentiallyReachable(Iter.first->second, I, nullptr, &DT, &LI);
251 }
252 
253 void EarliestEscapeInfo::removeInstruction(Instruction *I) {
254   auto Iter = Inst2Obj.find(I);
255   if (Iter != Inst2Obj.end()) {
256     for (const Value *Obj : Iter->second)
257       EarliestEscapes.erase(Obj);
258     Inst2Obj.erase(I);
259   }
260 }
261 
262 //===----------------------------------------------------------------------===//
263 // GetElementPtr Instruction Decomposition and Analysis
264 //===----------------------------------------------------------------------===//
265 
266 namespace {
267 /// Represents zext(sext(trunc(V))).
268 struct CastedValue {
269   const Value *V;
270   unsigned ZExtBits = 0;
271   unsigned SExtBits = 0;
272   unsigned TruncBits = 0;
273 
274   explicit CastedValue(const Value *V) : V(V) {}
275   explicit CastedValue(const Value *V, unsigned ZExtBits, unsigned SExtBits,
276                        unsigned TruncBits)
277       : V(V), ZExtBits(ZExtBits), SExtBits(SExtBits), TruncBits(TruncBits) {}
278 
279   unsigned getBitWidth() const {
280     return V->getType()->getPrimitiveSizeInBits() - TruncBits + ZExtBits +
281            SExtBits;
282   }
283 
284   CastedValue withValue(const Value *NewV) const {
285     return CastedValue(NewV, ZExtBits, SExtBits, TruncBits);
286   }
287 
288   /// Replace V with zext(NewV)
289   CastedValue withZExtOfValue(const Value *NewV) const {
290     unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() -
291                         NewV->getType()->getPrimitiveSizeInBits();
292     if (ExtendBy <= TruncBits)
293       return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy);
294 
295     // zext(sext(zext(NewV))) == zext(zext(zext(NewV)))
296     ExtendBy -= TruncBits;
297     return CastedValue(NewV, ZExtBits + SExtBits + ExtendBy, 0, 0);
298   }
299 
300   /// Replace V with sext(NewV)
301   CastedValue withSExtOfValue(const Value *NewV) const {
302     unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() -
303                         NewV->getType()->getPrimitiveSizeInBits();
304     if (ExtendBy <= TruncBits)
305       return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy);
306 
307     // zext(sext(sext(NewV)))
308     ExtendBy -= TruncBits;
309     return CastedValue(NewV, ZExtBits, SExtBits + ExtendBy, 0);
310   }
311 
312   APInt evaluateWith(APInt N) const {
313     assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() &&
314            "Incompatible bit width");
315     if (TruncBits) N = N.trunc(N.getBitWidth() - TruncBits);
316     if (SExtBits) N = N.sext(N.getBitWidth() + SExtBits);
317     if (ZExtBits) N = N.zext(N.getBitWidth() + ZExtBits);
318     return N;
319   }
320 
321   ConstantRange evaluateWith(ConstantRange N) const {
322     assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() &&
323            "Incompatible bit width");
324     if (TruncBits) N = N.truncate(N.getBitWidth() - TruncBits);
325     if (SExtBits) N = N.signExtend(N.getBitWidth() + SExtBits);
326     if (ZExtBits) N = N.zeroExtend(N.getBitWidth() + ZExtBits);
327     return N;
328   }
329 
330   bool canDistributeOver(bool NUW, bool NSW) const {
331     // zext(x op<nuw> y) == zext(x) op<nuw> zext(y)
332     // sext(x op<nsw> y) == sext(x) op<nsw> sext(y)
333     // trunc(x op y) == trunc(x) op trunc(y)
334     return (!ZExtBits || NUW) && (!SExtBits || NSW);
335   }
336 
337   bool hasSameCastsAs(const CastedValue &Other) const {
338     return ZExtBits == Other.ZExtBits && SExtBits == Other.SExtBits &&
339            TruncBits == Other.TruncBits;
340   }
341 };
342 
343 /// Represents zext(sext(trunc(V))) * Scale + Offset.
344 struct LinearExpression {
345   CastedValue Val;
346   APInt Scale;
347   APInt Offset;
348 
349   /// True if all operations in this expression are NSW.
350   bool IsNSW;
351 
352   LinearExpression(const CastedValue &Val, const APInt &Scale,
353                    const APInt &Offset, bool IsNSW)
354       : Val(Val), Scale(Scale), Offset(Offset), IsNSW(IsNSW) {}
355 
356   LinearExpression(const CastedValue &Val) : Val(Val), IsNSW(true) {
357     unsigned BitWidth = Val.getBitWidth();
358     Scale = APInt(BitWidth, 1);
359     Offset = APInt(BitWidth, 0);
360   }
361 
362   LinearExpression mul(const APInt &Other, bool MulIsNSW) const {
363     return LinearExpression(Val, Scale * Other, Offset * Other,
364                             IsNSW && (Other.isOne() || MulIsNSW));
365   }
366 };
367 }
368 
369 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
370 /// B are constant integers.
371 static LinearExpression GetLinearExpression(
372     const CastedValue &Val,  const DataLayout &DL, unsigned Depth,
373     AssumptionCache *AC, DominatorTree *DT) {
374   // Limit our recursion depth.
375   if (Depth == 6)
376     return Val;
377 
378   if (const ConstantInt *Const = dyn_cast<ConstantInt>(Val.V))
379     return LinearExpression(Val, APInt(Val.getBitWidth(), 0),
380                             Val.evaluateWith(Const->getValue()), true);
381 
382   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val.V)) {
383     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
384       APInt RHS = Val.evaluateWith(RHSC->getValue());
385       // The only non-OBO case we deal with is or, and only limited to the
386       // case where it is both nuw and nsw.
387       bool NUW = true, NSW = true;
388       if (isa<OverflowingBinaryOperator>(BOp)) {
389         NUW &= BOp->hasNoUnsignedWrap();
390         NSW &= BOp->hasNoSignedWrap();
391       }
392       if (!Val.canDistributeOver(NUW, NSW))
393         return Val;
394 
395       // While we can distribute over trunc, we cannot preserve nowrap flags
396       // in that case.
397       if (Val.TruncBits)
398         NUW = NSW = false;
399 
400       LinearExpression E(Val);
401       switch (BOp->getOpcode()) {
402       default:
403         // We don't understand this instruction, so we can't decompose it any
404         // further.
405         return Val;
406       case Instruction::Or:
407         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
408         // analyze it.
409         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
410                                BOp, DT))
411           return Val;
412 
413         LLVM_FALLTHROUGH;
414       case Instruction::Add: {
415         E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
416                                 Depth + 1, AC, DT);
417         E.Offset += RHS;
418         E.IsNSW &= NSW;
419         break;
420       }
421       case Instruction::Sub: {
422         E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
423                                 Depth + 1, AC, DT);
424         E.Offset -= RHS;
425         E.IsNSW &= NSW;
426         break;
427       }
428       case Instruction::Mul:
429         E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
430                                 Depth + 1, AC, DT)
431                 .mul(RHS, NSW);
432         break;
433       case Instruction::Shl:
434         // We're trying to linearize an expression of the kind:
435         //   shl i8 -128, 36
436         // where the shift count exceeds the bitwidth of the type.
437         // We can't decompose this further (the expression would return
438         // a poison value).
439         if (RHS.getLimitedValue() > Val.getBitWidth())
440           return Val;
441 
442         E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
443                                 Depth + 1, AC, DT);
444         E.Offset <<= RHS.getLimitedValue();
445         E.Scale <<= RHS.getLimitedValue();
446         E.IsNSW &= NSW;
447         break;
448       }
449       return E;
450     }
451   }
452 
453   if (isa<ZExtInst>(Val.V))
454     return GetLinearExpression(
455         Val.withZExtOfValue(cast<CastInst>(Val.V)->getOperand(0)),
456         DL, Depth + 1, AC, DT);
457 
458   if (isa<SExtInst>(Val.V))
459     return GetLinearExpression(
460         Val.withSExtOfValue(cast<CastInst>(Val.V)->getOperand(0)),
461         DL, Depth + 1, AC, DT);
462 
463   return Val;
464 }
465 
466 /// To ensure a pointer offset fits in an integer of size PointerSize
467 /// (in bits) when that size is smaller than the maximum pointer size. This is
468 /// an issue, for example, in particular for 32b pointers with negative indices
469 /// that rely on two's complement wrap-arounds for precise alias information
470 /// where the maximum pointer size is 64b.
471 static APInt adjustToPointerSize(const APInt &Offset, unsigned PointerSize) {
472   assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!");
473   unsigned ShiftBits = Offset.getBitWidth() - PointerSize;
474   return (Offset << ShiftBits).ashr(ShiftBits);
475 }
476 
477 namespace {
478 // A linear transformation of a Value; this class represents
479 // ZExt(SExt(Trunc(V, TruncBits), SExtBits), ZExtBits) * Scale.
480 struct VariableGEPIndex {
481   CastedValue Val;
482   APInt Scale;
483 
484   // Context instruction to use when querying information about this index.
485   const Instruction *CxtI;
486 
487   /// True if all operations in this expression are NSW.
488   bool IsNSW;
489 
490   void dump() const {
491     print(dbgs());
492     dbgs() << "\n";
493   }
494   void print(raw_ostream &OS) const {
495     OS << "(V=" << Val.V->getName()
496        << ", zextbits=" << Val.ZExtBits
497        << ", sextbits=" << Val.SExtBits
498        << ", truncbits=" << Val.TruncBits
499        << ", scale=" << Scale << ")";
500   }
501 };
502 }
503 
504 // Represents the internal structure of a GEP, decomposed into a base pointer,
505 // constant offsets, and variable scaled indices.
506 struct BasicAAResult::DecomposedGEP {
507   // Base pointer of the GEP
508   const Value *Base;
509   // Total constant offset from base.
510   APInt Offset;
511   // Scaled variable (non-constant) indices.
512   SmallVector<VariableGEPIndex, 4> VarIndices;
513   // Are all operations inbounds GEPs or non-indexing operations?
514   // (None iff expression doesn't involve any geps)
515   Optional<bool> InBounds;
516 
517   void dump() const {
518     print(dbgs());
519     dbgs() << "\n";
520   }
521   void print(raw_ostream &OS) const {
522     OS << "(DecomposedGEP Base=" << Base->getName()
523        << ", Offset=" << Offset
524        << ", VarIndices=[";
525     for (size_t i = 0; i < VarIndices.size(); i++) {
526       if (i != 0)
527         OS << ", ";
528       VarIndices[i].print(OS);
529     }
530     OS << "])";
531   }
532 };
533 
534 
535 /// If V is a symbolic pointer expression, decompose it into a base pointer
536 /// with a constant offset and a number of scaled symbolic offsets.
537 ///
538 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
539 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
540 /// specified amount, but which may have other unrepresented high bits. As
541 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
542 BasicAAResult::DecomposedGEP
543 BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL,
544                                       AssumptionCache *AC, DominatorTree *DT) {
545   // Limit recursion depth to limit compile time in crazy cases.
546   unsigned MaxLookup = MaxLookupSearchDepth;
547   SearchTimes++;
548   const Instruction *CxtI = dyn_cast<Instruction>(V);
549 
550   unsigned MaxPointerSize = DL.getMaxPointerSizeInBits();
551   DecomposedGEP Decomposed;
552   Decomposed.Offset = APInt(MaxPointerSize, 0);
553   do {
554     // See if this is a bitcast or GEP.
555     const Operator *Op = dyn_cast<Operator>(V);
556     if (!Op) {
557       // The only non-operator case we can handle are GlobalAliases.
558       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
559         if (!GA->isInterposable()) {
560           V = GA->getAliasee();
561           continue;
562         }
563       }
564       Decomposed.Base = V;
565       return Decomposed;
566     }
567 
568     if (Op->getOpcode() == Instruction::BitCast ||
569         Op->getOpcode() == Instruction::AddrSpaceCast) {
570       V = Op->getOperand(0);
571       continue;
572     }
573 
574     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
575     if (!GEPOp) {
576       if (const auto *PHI = dyn_cast<PHINode>(V)) {
577         // Look through single-arg phi nodes created by LCSSA.
578         if (PHI->getNumIncomingValues() == 1) {
579           V = PHI->getIncomingValue(0);
580           continue;
581         }
582       } else if (const auto *Call = dyn_cast<CallBase>(V)) {
583         // CaptureTracking can know about special capturing properties of some
584         // intrinsics like launder.invariant.group, that can't be expressed with
585         // the attributes, but have properties like returning aliasing pointer.
586         // Because some analysis may assume that nocaptured pointer is not
587         // returned from some special intrinsic (because function would have to
588         // be marked with returns attribute), it is crucial to use this function
589         // because it should be in sync with CaptureTracking. Not using it may
590         // cause weird miscompilations where 2 aliasing pointers are assumed to
591         // noalias.
592         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
593           V = RP;
594           continue;
595         }
596       }
597 
598       Decomposed.Base = V;
599       return Decomposed;
600     }
601 
602     // Track whether we've seen at least one in bounds gep, and if so, whether
603     // all geps parsed were in bounds.
604     if (Decomposed.InBounds == None)
605       Decomposed.InBounds = GEPOp->isInBounds();
606     else if (!GEPOp->isInBounds())
607       Decomposed.InBounds = false;
608 
609     assert(GEPOp->getSourceElementType()->isSized() && "GEP must be sized");
610 
611     // Don't attempt to analyze GEPs if index scale is not a compile-time
612     // constant.
613     if (isa<ScalableVectorType>(GEPOp->getSourceElementType())) {
614       Decomposed.Base = V;
615       return Decomposed;
616     }
617 
618     unsigned AS = GEPOp->getPointerAddressSpace();
619     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
620     gep_type_iterator GTI = gep_type_begin(GEPOp);
621     unsigned PointerSize = DL.getPointerSizeInBits(AS);
622     // Assume all GEP operands are constants until proven otherwise.
623     bool GepHasConstantOffset = true;
624     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
625          I != E; ++I, ++GTI) {
626       const Value *Index = *I;
627       // Compute the (potentially symbolic) offset in bytes for this index.
628       if (StructType *STy = GTI.getStructTypeOrNull()) {
629         // For a struct, add the member offset.
630         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
631         if (FieldNo == 0)
632           continue;
633 
634         Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo);
635         continue;
636       }
637 
638       // For an array/pointer, add the element offset, explicitly scaled.
639       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
640         if (CIdx->isZero())
641           continue;
642         Decomposed.Offset +=
643             DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize() *
644             CIdx->getValue().sextOrTrunc(MaxPointerSize);
645         continue;
646       }
647 
648       GepHasConstantOffset = false;
649 
650       // If the integer type is smaller than the pointer size, it is implicitly
651       // sign extended to pointer size.
652       unsigned Width = Index->getType()->getIntegerBitWidth();
653       unsigned SExtBits = PointerSize > Width ? PointerSize - Width : 0;
654       unsigned TruncBits = PointerSize < Width ? Width - PointerSize : 0;
655       LinearExpression LE = GetLinearExpression(
656           CastedValue(Index, 0, SExtBits, TruncBits), DL, 0, AC, DT);
657 
658       // Scale by the type size.
659       unsigned TypeSize =
660           DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize();
661       LE = LE.mul(APInt(PointerSize, TypeSize), GEPOp->isInBounds());
662       Decomposed.Offset += LE.Offset.sextOrSelf(MaxPointerSize);
663       APInt Scale = LE.Scale.sextOrSelf(MaxPointerSize);
664 
665       // If we already had an occurrence of this index variable, merge this
666       // scale into it.  For example, we want to handle:
667       //   A[x][x] -> x*16 + x*4 -> x*20
668       // This also ensures that 'x' only appears in the index list once.
669       for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
670         if (Decomposed.VarIndices[i].Val.V == LE.Val.V &&
671             Decomposed.VarIndices[i].Val.hasSameCastsAs(LE.Val)) {
672           Scale += Decomposed.VarIndices[i].Scale;
673           Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
674           break;
675         }
676       }
677 
678       // Make sure that we have a scale that makes sense for this target's
679       // pointer size.
680       Scale = adjustToPointerSize(Scale, PointerSize);
681 
682       if (!!Scale) {
683         VariableGEPIndex Entry = {LE.Val, Scale, CxtI, LE.IsNSW};
684         Decomposed.VarIndices.push_back(Entry);
685       }
686     }
687 
688     // Take care of wrap-arounds
689     if (GepHasConstantOffset)
690       Decomposed.Offset = adjustToPointerSize(Decomposed.Offset, PointerSize);
691 
692     // Analyze the base pointer next.
693     V = GEPOp->getOperand(0);
694   } while (--MaxLookup);
695 
696   // If the chain of expressions is too deep, just return early.
697   Decomposed.Base = V;
698   SearchLimitReached++;
699   return Decomposed;
700 }
701 
702 /// Returns whether the given pointer value points to memory that is local to
703 /// the function, with global constants being considered local to all
704 /// functions.
705 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
706                                            AAQueryInfo &AAQI, bool OrLocal) {
707   assert(Visited.empty() && "Visited must be cleared after use!");
708 
709   unsigned MaxLookup = 8;
710   SmallVector<const Value *, 16> Worklist;
711   Worklist.push_back(Loc.Ptr);
712   do {
713     const Value *V = getUnderlyingObject(Worklist.pop_back_val());
714     if (!Visited.insert(V).second) {
715       Visited.clear();
716       return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
717     }
718 
719     // An alloca instruction defines local memory.
720     if (OrLocal && isa<AllocaInst>(V))
721       continue;
722 
723     // A global constant counts as local memory for our purposes.
724     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
725       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
726       // global to be marked constant in some modules and non-constant in
727       // others.  GV may even be a declaration, not a definition.
728       if (!GV->isConstant()) {
729         Visited.clear();
730         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
731       }
732       continue;
733     }
734 
735     // If both select values point to local memory, then so does the select.
736     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
737       Worklist.push_back(SI->getTrueValue());
738       Worklist.push_back(SI->getFalseValue());
739       continue;
740     }
741 
742     // If all values incoming to a phi node point to local memory, then so does
743     // the phi.
744     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
745       // Don't bother inspecting phi nodes with many operands.
746       if (PN->getNumIncomingValues() > MaxLookup) {
747         Visited.clear();
748         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
749       }
750       append_range(Worklist, PN->incoming_values());
751       continue;
752     }
753 
754     // Otherwise be conservative.
755     Visited.clear();
756     return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
757   } while (!Worklist.empty() && --MaxLookup);
758 
759   Visited.clear();
760   return Worklist.empty();
761 }
762 
763 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
764   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
765   return II && II->getIntrinsicID() == IID;
766 }
767 
768 /// Returns the behavior when calling the given call site.
769 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) {
770   if (Call->doesNotAccessMemory())
771     // Can't do better than this.
772     return FMRB_DoesNotAccessMemory;
773 
774   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
775 
776   // If the callsite knows it only reads memory, don't return worse
777   // than that.
778   if (Call->onlyReadsMemory())
779     Min = FMRB_OnlyReadsMemory;
780   else if (Call->doesNotReadMemory())
781     Min = FMRB_OnlyWritesMemory;
782 
783   if (Call->onlyAccessesArgMemory())
784     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
785   else if (Call->onlyAccessesInaccessibleMemory())
786     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
787   else if (Call->onlyAccessesInaccessibleMemOrArgMem())
788     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
789 
790   // If the call has operand bundles then aliasing attributes from the function
791   // it calls do not directly apply to the call.  This can be made more precise
792   // in the future.
793   if (!Call->hasOperandBundles())
794     if (const Function *F = Call->getCalledFunction())
795       Min =
796           FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
797 
798   return Min;
799 }
800 
801 /// Returns the behavior when calling the given function. For use when the call
802 /// site is not known.
803 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
804   // If the function declares it doesn't access memory, we can't do better.
805   if (F->doesNotAccessMemory())
806     return FMRB_DoesNotAccessMemory;
807 
808   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
809 
810   // If the function declares it only reads memory, go with that.
811   if (F->onlyReadsMemory())
812     Min = FMRB_OnlyReadsMemory;
813   else if (F->doesNotReadMemory())
814     Min = FMRB_OnlyWritesMemory;
815 
816   if (F->onlyAccessesArgMemory())
817     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
818   else if (F->onlyAccessesInaccessibleMemory())
819     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
820   else if (F->onlyAccessesInaccessibleMemOrArgMem())
821     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
822 
823   return Min;
824 }
825 
826 /// Returns true if this is a writeonly (i.e Mod only) parameter.
827 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx,
828                              const TargetLibraryInfo &TLI) {
829   if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly))
830     return true;
831 
832   // We can bound the aliasing properties of memset_pattern16 just as we can
833   // for memcpy/memset.  This is particularly important because the
834   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
835   // whenever possible.
836   // FIXME Consider handling this in InferFunctionAttr.cpp together with other
837   // attributes.
838   LibFunc F;
839   if (Call->getCalledFunction() &&
840       TLI.getLibFunc(*Call->getCalledFunction(), F) &&
841       F == LibFunc_memset_pattern16 && TLI.has(F))
842     if (ArgIdx == 0)
843       return true;
844 
845   // TODO: memset_pattern4, memset_pattern8
846   // TODO: _chk variants
847   // TODO: strcmp, strcpy
848 
849   return false;
850 }
851 
852 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
853                                            unsigned ArgIdx) {
854   // Checking for known builtin intrinsics and target library functions.
855   if (isWriteOnlyParam(Call, ArgIdx, TLI))
856     return ModRefInfo::Mod;
857 
858   if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly))
859     return ModRefInfo::Ref;
860 
861   if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone))
862     return ModRefInfo::NoModRef;
863 
864   return AAResultBase::getArgModRefInfo(Call, ArgIdx);
865 }
866 
867 #ifndef NDEBUG
868 static const Function *getParent(const Value *V) {
869   if (const Instruction *inst = dyn_cast<Instruction>(V)) {
870     if (!inst->getParent())
871       return nullptr;
872     return inst->getParent()->getParent();
873   }
874 
875   if (const Argument *arg = dyn_cast<Argument>(V))
876     return arg->getParent();
877 
878   return nullptr;
879 }
880 
881 static bool notDifferentParent(const Value *O1, const Value *O2) {
882 
883   const Function *F1 = getParent(O1);
884   const Function *F2 = getParent(O2);
885 
886   return !F1 || !F2 || F1 == F2;
887 }
888 #endif
889 
890 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
891                                  const MemoryLocation &LocB,
892                                  AAQueryInfo &AAQI) {
893   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
894          "BasicAliasAnalysis doesn't support interprocedural queries.");
895   return aliasCheck(LocA.Ptr, LocA.Size, LocB.Ptr, LocB.Size, AAQI);
896 }
897 
898 /// Checks to see if the specified callsite can clobber the specified memory
899 /// object.
900 ///
901 /// Since we only look at local properties of this function, we really can't
902 /// say much about this query.  We do, however, use simple "address taken"
903 /// analysis on local objects.
904 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
905                                         const MemoryLocation &Loc,
906                                         AAQueryInfo &AAQI) {
907   assert(notDifferentParent(Call, Loc.Ptr) &&
908          "AliasAnalysis query involving multiple functions!");
909 
910   const Value *Object = getUnderlyingObject(Loc.Ptr);
911 
912   // Calls marked 'tail' cannot read or write allocas from the current frame
913   // because the current frame might be destroyed by the time they run. However,
914   // a tail call may use an alloca with byval. Calling with byval copies the
915   // contents of the alloca into argument registers or stack slots, so there is
916   // no lifetime issue.
917   if (isa<AllocaInst>(Object))
918     if (const CallInst *CI = dyn_cast<CallInst>(Call))
919       if (CI->isTailCall() &&
920           !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal))
921         return ModRefInfo::NoModRef;
922 
923   // Stack restore is able to modify unescaped dynamic allocas. Assume it may
924   // modify them even though the alloca is not escaped.
925   if (auto *AI = dyn_cast<AllocaInst>(Object))
926     if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore))
927       return ModRefInfo::Mod;
928 
929   // If the pointer is to a locally allocated object that does not escape,
930   // then the call can not mod/ref the pointer unless the call takes the pointer
931   // as an argument, and itself doesn't capture it.
932   if (!isa<Constant>(Object) && Call != Object &&
933       AAQI.CI->isNotCapturedBeforeOrAt(Object, Call)) {
934 
935     // Optimistically assume that call doesn't touch Object and check this
936     // assumption in the following loop.
937     ModRefInfo Result = ModRefInfo::NoModRef;
938     bool IsMustAlias = true;
939 
940     unsigned OperandNo = 0;
941     for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
942          CI != CE; ++CI, ++OperandNo) {
943       // Only look at the no-capture or byval pointer arguments.  If this
944       // pointer were passed to arguments that were neither of these, then it
945       // couldn't be no-capture.
946       if (!(*CI)->getType()->isPointerTy() ||
947           (!Call->doesNotCapture(OperandNo) && OperandNo < Call->arg_size() &&
948            !Call->isByValArgument(OperandNo)))
949         continue;
950 
951       // Call doesn't access memory through this operand, so we don't care
952       // if it aliases with Object.
953       if (Call->doesNotAccessMemory(OperandNo))
954         continue;
955 
956       // If this is a no-capture pointer argument, see if we can tell that it
957       // is impossible to alias the pointer we're checking.
958       AliasResult AR = getBestAAResults().alias(
959           MemoryLocation::getBeforeOrAfter(*CI),
960           MemoryLocation::getBeforeOrAfter(Object), AAQI);
961       if (AR != AliasResult::MustAlias)
962         IsMustAlias = false;
963       // Operand doesn't alias 'Object', continue looking for other aliases
964       if (AR == AliasResult::NoAlias)
965         continue;
966       // Operand aliases 'Object', but call doesn't modify it. Strengthen
967       // initial assumption and keep looking in case if there are more aliases.
968       if (Call->onlyReadsMemory(OperandNo)) {
969         Result = setRef(Result);
970         continue;
971       }
972       // Operand aliases 'Object' but call only writes into it.
973       if (Call->doesNotReadMemory(OperandNo)) {
974         Result = setMod(Result);
975         continue;
976       }
977       // This operand aliases 'Object' and call reads and writes into it.
978       // Setting ModRef will not yield an early return below, MustAlias is not
979       // used further.
980       Result = ModRefInfo::ModRef;
981       break;
982     }
983 
984     // No operand aliases, reset Must bit. Add below if at least one aliases
985     // and all aliases found are MustAlias.
986     if (isNoModRef(Result))
987       IsMustAlias = false;
988 
989     // Early return if we improved mod ref information
990     if (!isModAndRefSet(Result)) {
991       if (isNoModRef(Result))
992         return ModRefInfo::NoModRef;
993       return IsMustAlias ? setMust(Result) : clearMust(Result);
994     }
995   }
996 
997   // If the call is malloc/calloc like, we can assume that it doesn't
998   // modify any IR visible value.  This is only valid because we assume these
999   // routines do not read values visible in the IR.  TODO: Consider special
1000   // casing realloc and strdup routines which access only their arguments as
1001   // well.  Or alternatively, replace all of this with inaccessiblememonly once
1002   // that's implemented fully.
1003   if (isMallocOrCallocLikeFn(Call, &TLI)) {
1004     // Be conservative if the accessed pointer may alias the allocation -
1005     // fallback to the generic handling below.
1006     if (getBestAAResults().alias(MemoryLocation::getBeforeOrAfter(Call), Loc,
1007                                  AAQI) == AliasResult::NoAlias)
1008       return ModRefInfo::NoModRef;
1009   }
1010 
1011   // The semantics of memcpy intrinsics either exactly overlap or do not
1012   // overlap, i.e., source and destination of any given memcpy are either
1013   // no-alias or must-alias.
1014   if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) {
1015     AliasResult SrcAA =
1016         getBestAAResults().alias(MemoryLocation::getForSource(Inst), Loc, AAQI);
1017     AliasResult DestAA =
1018         getBestAAResults().alias(MemoryLocation::getForDest(Inst), Loc, AAQI);
1019     // It's also possible for Loc to alias both src and dest, or neither.
1020     ModRefInfo rv = ModRefInfo::NoModRef;
1021     if (SrcAA != AliasResult::NoAlias)
1022       rv = setRef(rv);
1023     if (DestAA != AliasResult::NoAlias)
1024       rv = setMod(rv);
1025     return rv;
1026   }
1027 
1028   // Guard intrinsics are marked as arbitrarily writing so that proper control
1029   // dependencies are maintained but they never mods any particular memory
1030   // location.
1031   //
1032   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1033   // heap state at the point the guard is issued needs to be consistent in case
1034   // the guard invokes the "deopt" continuation.
1035   if (isIntrinsicCall(Call, Intrinsic::experimental_guard))
1036     return ModRefInfo::Ref;
1037   // The same applies to deoptimize which is essentially a guard(false).
1038   if (isIntrinsicCall(Call, Intrinsic::experimental_deoptimize))
1039     return ModRefInfo::Ref;
1040 
1041   // Like assumes, invariant.start intrinsics were also marked as arbitrarily
1042   // writing so that proper control dependencies are maintained but they never
1043   // mod any particular memory location visible to the IR.
1044   // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
1045   // intrinsic is now modeled as reading memory. This prevents hoisting the
1046   // invariant.start intrinsic over stores. Consider:
1047   // *ptr = 40;
1048   // *ptr = 50;
1049   // invariant_start(ptr)
1050   // int val = *ptr;
1051   // print(val);
1052   //
1053   // This cannot be transformed to:
1054   //
1055   // *ptr = 40;
1056   // invariant_start(ptr)
1057   // *ptr = 50;
1058   // int val = *ptr;
1059   // print(val);
1060   //
1061   // The transformation will cause the second store to be ignored (based on
1062   // rules of invariant.start)  and print 40, while the first program always
1063   // prints 50.
1064   if (isIntrinsicCall(Call, Intrinsic::invariant_start))
1065     return ModRefInfo::Ref;
1066 
1067   // The AAResultBase base class has some smarts, lets use them.
1068   return AAResultBase::getModRefInfo(Call, Loc, AAQI);
1069 }
1070 
1071 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
1072                                         const CallBase *Call2,
1073                                         AAQueryInfo &AAQI) {
1074   // Guard intrinsics are marked as arbitrarily writing so that proper control
1075   // dependencies are maintained but they never mods any particular memory
1076   // location.
1077   //
1078   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1079   // heap state at the point the guard is issued needs to be consistent in case
1080   // the guard invokes the "deopt" continuation.
1081 
1082   // NB! This function is *not* commutative, so we special case two
1083   // possibilities for guard intrinsics.
1084 
1085   if (isIntrinsicCall(Call1, Intrinsic::experimental_guard))
1086     return isModSet(createModRefInfo(getModRefBehavior(Call2)))
1087                ? ModRefInfo::Ref
1088                : ModRefInfo::NoModRef;
1089 
1090   if (isIntrinsicCall(Call2, Intrinsic::experimental_guard))
1091     return isModSet(createModRefInfo(getModRefBehavior(Call1)))
1092                ? ModRefInfo::Mod
1093                : ModRefInfo::NoModRef;
1094 
1095   // The AAResultBase base class has some smarts, lets use them.
1096   return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
1097 }
1098 
1099 /// Return true if we know V to the base address of the corresponding memory
1100 /// object.  This implies that any address less than V must be out of bounds
1101 /// for the underlying object.  Note that just being isIdentifiedObject() is
1102 /// not enough - For example, a negative offset from a noalias argument or call
1103 /// can be inbounds w.r.t the actual underlying object.
1104 static bool isBaseOfObject(const Value *V) {
1105   // TODO: We can handle other cases here
1106   // 1) For GC languages, arguments to functions are often required to be
1107   //    base pointers.
1108   // 2) Result of allocation routines are often base pointers.  Leverage TLI.
1109   return (isa<AllocaInst>(V) || isa<GlobalVariable>(V));
1110 }
1111 
1112 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1113 /// another pointer.
1114 ///
1115 /// We know that V1 is a GEP, but we don't know anything about V2.
1116 /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for
1117 /// V2.
1118 AliasResult BasicAAResult::aliasGEP(
1119     const GEPOperator *GEP1, LocationSize V1Size,
1120     const Value *V2, LocationSize V2Size,
1121     const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) {
1122   if (!V1Size.hasValue() && !V2Size.hasValue()) {
1123     // TODO: This limitation exists for compile-time reasons. Relax it if we
1124     // can avoid exponential pathological cases.
1125     if (!isa<GEPOperator>(V2))
1126       return AliasResult::MayAlias;
1127 
1128     // If both accesses have unknown size, we can only check whether the base
1129     // objects don't alias.
1130     AliasResult BaseAlias = getBestAAResults().alias(
1131         MemoryLocation::getBeforeOrAfter(UnderlyingV1),
1132         MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI);
1133     return BaseAlias == AliasResult::NoAlias ? AliasResult::NoAlias
1134                                              : AliasResult::MayAlias;
1135   }
1136 
1137   DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT);
1138   DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT);
1139 
1140   // Bail if we were not able to decompose anything.
1141   if (DecompGEP1.Base == GEP1 && DecompGEP2.Base == V2)
1142     return AliasResult::MayAlias;
1143 
1144   // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1145   // symbolic difference.
1146   subtractDecomposedGEPs(DecompGEP1, DecompGEP2);
1147 
1148   // If an inbounds GEP would have to start from an out of bounds address
1149   // for the two to alias, then we can assume noalias.
1150   if (*DecompGEP1.InBounds && DecompGEP1.VarIndices.empty() &&
1151       V2Size.hasValue() && DecompGEP1.Offset.sge(V2Size.getValue()) &&
1152       isBaseOfObject(DecompGEP2.Base))
1153     return AliasResult::NoAlias;
1154 
1155   if (isa<GEPOperator>(V2)) {
1156     // Symmetric case to above.
1157     if (*DecompGEP2.InBounds && DecompGEP1.VarIndices.empty() &&
1158         V1Size.hasValue() && DecompGEP1.Offset.sle(-V1Size.getValue()) &&
1159         isBaseOfObject(DecompGEP1.Base))
1160       return AliasResult::NoAlias;
1161   }
1162 
1163   // For GEPs with identical offsets, we can preserve the size and AAInfo
1164   // when performing the alias check on the underlying objects.
1165   if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty())
1166     return getBestAAResults().alias(MemoryLocation(DecompGEP1.Base, V1Size),
1167                                     MemoryLocation(DecompGEP2.Base, V2Size),
1168                                     AAQI);
1169 
1170   // Do the base pointers alias?
1171   AliasResult BaseAlias = getBestAAResults().alias(
1172       MemoryLocation::getBeforeOrAfter(DecompGEP1.Base),
1173       MemoryLocation::getBeforeOrAfter(DecompGEP2.Base), AAQI);
1174 
1175   // If we get a No or May, then return it immediately, no amount of analysis
1176   // will improve this situation.
1177   if (BaseAlias != AliasResult::MustAlias) {
1178     assert(BaseAlias == AliasResult::NoAlias ||
1179            BaseAlias == AliasResult::MayAlias);
1180     return BaseAlias;
1181   }
1182 
1183   // If there is a constant difference between the pointers, but the difference
1184   // is less than the size of the associated memory object, then we know
1185   // that the objects are partially overlapping.  If the difference is
1186   // greater, we know they do not overlap.
1187   if (DecompGEP1.Offset != 0 && DecompGEP1.VarIndices.empty()) {
1188     APInt &Off = DecompGEP1.Offset;
1189 
1190     // Initialize for Off >= 0 (V2 <= GEP1) case.
1191     const Value *LeftPtr = V2;
1192     const Value *RightPtr = GEP1;
1193     LocationSize VLeftSize = V2Size;
1194     LocationSize VRightSize = V1Size;
1195     const bool Swapped = Off.isNegative();
1196 
1197     if (Swapped) {
1198       // Swap if we have the situation where:
1199       // +                +
1200       // | BaseOffset     |
1201       // ---------------->|
1202       // |-->V1Size       |-------> V2Size
1203       // GEP1             V2
1204       std::swap(LeftPtr, RightPtr);
1205       std::swap(VLeftSize, VRightSize);
1206       Off = -Off;
1207     }
1208 
1209     if (VLeftSize.hasValue()) {
1210       const uint64_t LSize = VLeftSize.getValue();
1211       if (Off.ult(LSize)) {
1212         // Conservatively drop processing if a phi was visited and/or offset is
1213         // too big.
1214         AliasResult AR = AliasResult::PartialAlias;
1215         if (VRightSize.hasValue() && Off.ule(INT32_MAX) &&
1216             (Off + VRightSize.getValue()).ule(LSize)) {
1217           // Memory referenced by right pointer is nested. Save the offset in
1218           // cache. Note that originally offset estimated as GEP1-V2, but
1219           // AliasResult contains the shift that represents GEP1+Offset=V2.
1220           AR.setOffset(-Off.getSExtValue());
1221           AR.swap(Swapped);
1222         }
1223         return AR;
1224       }
1225       return AliasResult::NoAlias;
1226     }
1227   }
1228 
1229   if (!DecompGEP1.VarIndices.empty()) {
1230     APInt GCD;
1231     ConstantRange OffsetRange = ConstantRange(DecompGEP1.Offset);
1232     for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1233       const VariableGEPIndex &Index = DecompGEP1.VarIndices[i];
1234       const APInt &Scale = Index.Scale;
1235       APInt ScaleForGCD = Scale;
1236       if (!Index.IsNSW)
1237         ScaleForGCD = APInt::getOneBitSet(Scale.getBitWidth(),
1238                                           Scale.countTrailingZeros());
1239 
1240       if (i == 0)
1241         GCD = ScaleForGCD.abs();
1242       else
1243         GCD = APIntOps::GreatestCommonDivisor(GCD, ScaleForGCD.abs());
1244 
1245       ConstantRange CR =
1246           computeConstantRange(Index.Val.V, true, &AC, Index.CxtI);
1247       KnownBits Known =
1248           computeKnownBits(Index.Val.V, DL, 0, &AC, Index.CxtI, DT);
1249       CR = CR.intersectWith(
1250           ConstantRange::fromKnownBits(Known, /* Signed */ true),
1251           ConstantRange::Signed);
1252 
1253       assert(OffsetRange.getBitWidth() == Scale.getBitWidth() &&
1254              "Bit widths are normalized to MaxPointerSize");
1255       OffsetRange = OffsetRange.add(
1256           Index.Val.evaluateWith(CR).sextOrTrunc(OffsetRange.getBitWidth())
1257                                     .smul_fast(ConstantRange(Scale)));
1258     }
1259 
1260     // We now have accesses at two offsets from the same base:
1261     //  1. (...)*GCD + DecompGEP1.Offset with size V1Size
1262     //  2. 0 with size V2Size
1263     // Using arithmetic modulo GCD, the accesses are at
1264     // [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits
1265     // into the range [V2Size..GCD), then we know they cannot overlap.
1266     APInt ModOffset = DecompGEP1.Offset.srem(GCD);
1267     if (ModOffset.isNegative())
1268       ModOffset += GCD; // We want mod, not rem.
1269     if (V1Size.hasValue() && V2Size.hasValue() &&
1270         ModOffset.uge(V2Size.getValue()) &&
1271         (GCD - ModOffset).uge(V1Size.getValue()))
1272       return AliasResult::NoAlias;
1273 
1274     if (V1Size.hasValue() && V2Size.hasValue()) {
1275       // Compute ranges of potentially accessed bytes for both accesses. If the
1276       // interseciton is empty, there can be no overlap.
1277       unsigned BW = OffsetRange.getBitWidth();
1278       ConstantRange Range1 = OffsetRange.add(
1279           ConstantRange(APInt(BW, 0), APInt(BW, V1Size.getValue())));
1280       ConstantRange Range2 =
1281           ConstantRange(APInt(BW, 0), APInt(BW, V2Size.getValue()));
1282       if (Range1.intersectWith(Range2).isEmptySet())
1283         return AliasResult::NoAlias;
1284     }
1285 
1286     if (V1Size.hasValue() && V2Size.hasValue()) {
1287       // Try to determine the range of values for VarIndex such that
1288       // VarIndex <= -MinAbsVarIndex || MinAbsVarIndex <= VarIndex.
1289       Optional<APInt> MinAbsVarIndex;
1290       if (DecompGEP1.VarIndices.size() == 1) {
1291         // VarIndex = Scale*V.
1292         const VariableGEPIndex &Var = DecompGEP1.VarIndices[0];
1293         if (Var.Val.TruncBits == 0 &&
1294             isKnownNonZero(Var.Val.V, DL, 0, &AC, Var.CxtI, DT)) {
1295           // If V != 0 then abs(VarIndex) >= abs(Scale).
1296           MinAbsVarIndex = Var.Scale.abs();
1297         }
1298       } else if (DecompGEP1.VarIndices.size() == 2) {
1299         // VarIndex = Scale*V0 + (-Scale)*V1.
1300         // If V0 != V1 then abs(VarIndex) >= abs(Scale).
1301         // Check that VisitedPhiBBs is empty, to avoid reasoning about
1302         // inequality of values across loop iterations.
1303         const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0];
1304         const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1];
1305         if (Var0.Scale == -Var1.Scale && Var0.Val.TruncBits == 0 &&
1306             Var0.Val.hasSameCastsAs(Var1.Val) && VisitedPhiBBs.empty() &&
1307             isKnownNonEqual(Var0.Val.V, Var1.Val.V, DL, &AC, /* CxtI */ nullptr,
1308                             DT))
1309           MinAbsVarIndex = Var0.Scale.abs();
1310       }
1311 
1312       if (MinAbsVarIndex) {
1313         // The constant offset will have added at least +/-MinAbsVarIndex to it.
1314         APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex;
1315         APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex;
1316         // We know that Offset <= OffsetLo || Offset >= OffsetHi
1317         if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) &&
1318             OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue()))
1319           return AliasResult::NoAlias;
1320       }
1321     }
1322 
1323     if (constantOffsetHeuristic(DecompGEP1, V1Size, V2Size, &AC, DT))
1324       return AliasResult::NoAlias;
1325   }
1326 
1327   // Statically, we can see that the base objects are the same, but the
1328   // pointers have dynamic offsets which we can't resolve. And none of our
1329   // little tricks above worked.
1330   return AliasResult::MayAlias;
1331 }
1332 
1333 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1334   // If the results agree, take it.
1335   if (A == B)
1336     return A;
1337   // A mix of PartialAlias and MustAlias is PartialAlias.
1338   if ((A == AliasResult::PartialAlias && B == AliasResult::MustAlias) ||
1339       (B == AliasResult::PartialAlias && A == AliasResult::MustAlias))
1340     return AliasResult::PartialAlias;
1341   // Otherwise, we don't know anything.
1342   return AliasResult::MayAlias;
1343 }
1344 
1345 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1346 /// against another.
1347 AliasResult
1348 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize,
1349                            const Value *V2, LocationSize V2Size,
1350                            AAQueryInfo &AAQI) {
1351   // If the values are Selects with the same condition, we can do a more precise
1352   // check: just check for aliases between the values on corresponding arms.
1353   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1354     if (SI->getCondition() == SI2->getCondition()) {
1355       AliasResult Alias = getBestAAResults().alias(
1356           MemoryLocation(SI->getTrueValue(), SISize),
1357           MemoryLocation(SI2->getTrueValue(), V2Size), AAQI);
1358       if (Alias == AliasResult::MayAlias)
1359         return AliasResult::MayAlias;
1360       AliasResult ThisAlias = getBestAAResults().alias(
1361           MemoryLocation(SI->getFalseValue(), SISize),
1362           MemoryLocation(SI2->getFalseValue(), V2Size), AAQI);
1363       return MergeAliasResults(ThisAlias, Alias);
1364     }
1365 
1366   // If both arms of the Select node NoAlias or MustAlias V2, then returns
1367   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1368   AliasResult Alias = getBestAAResults().alias(
1369       MemoryLocation(V2, V2Size),
1370       MemoryLocation(SI->getTrueValue(), SISize), AAQI);
1371   if (Alias == AliasResult::MayAlias)
1372     return AliasResult::MayAlias;
1373 
1374   AliasResult ThisAlias = getBestAAResults().alias(
1375       MemoryLocation(V2, V2Size),
1376       MemoryLocation(SI->getFalseValue(), SISize), AAQI);
1377   return MergeAliasResults(ThisAlias, Alias);
1378 }
1379 
1380 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1381 /// another.
1382 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
1383                                     const Value *V2, LocationSize V2Size,
1384                                     AAQueryInfo &AAQI) {
1385   if (!PN->getNumIncomingValues())
1386     return AliasResult::NoAlias;
1387   // If the values are PHIs in the same block, we can do a more precise
1388   // as well as efficient check: just check for aliases between the values
1389   // on corresponding edges.
1390   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1391     if (PN2->getParent() == PN->getParent()) {
1392       Optional<AliasResult> Alias;
1393       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1394         AliasResult ThisAlias = getBestAAResults().alias(
1395             MemoryLocation(PN->getIncomingValue(i), PNSize),
1396             MemoryLocation(
1397                 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size),
1398             AAQI);
1399         if (Alias)
1400           *Alias = MergeAliasResults(*Alias, ThisAlias);
1401         else
1402           Alias = ThisAlias;
1403         if (*Alias == AliasResult::MayAlias)
1404           break;
1405       }
1406       return *Alias;
1407     }
1408 
1409   SmallVector<Value *, 4> V1Srcs;
1410   // If a phi operand recurses back to the phi, we can still determine NoAlias
1411   // if we don't alias the underlying objects of the other phi operands, as we
1412   // know that the recursive phi needs to be based on them in some way.
1413   bool isRecursive = false;
1414   auto CheckForRecPhi = [&](Value *PV) {
1415     if (!EnableRecPhiAnalysis)
1416       return false;
1417     if (getUnderlyingObject(PV) == PN) {
1418       isRecursive = true;
1419       return true;
1420     }
1421     return false;
1422   };
1423 
1424   if (PV) {
1425     // If we have PhiValues then use it to get the underlying phi values.
1426     const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN);
1427     // If we have more phi values than the search depth then return MayAlias
1428     // conservatively to avoid compile time explosion. The worst possible case
1429     // is if both sides are PHI nodes. In which case, this is O(m x n) time
1430     // where 'm' and 'n' are the number of PHI sources.
1431     if (PhiValueSet.size() > MaxLookupSearchDepth)
1432       return AliasResult::MayAlias;
1433     // Add the values to V1Srcs
1434     for (Value *PV1 : PhiValueSet) {
1435       if (CheckForRecPhi(PV1))
1436         continue;
1437       V1Srcs.push_back(PV1);
1438     }
1439   } else {
1440     // If we don't have PhiInfo then just look at the operands of the phi itself
1441     // FIXME: Remove this once we can guarantee that we have PhiInfo always
1442     SmallPtrSet<Value *, 4> UniqueSrc;
1443     Value *OnePhi = nullptr;
1444     for (Value *PV1 : PN->incoming_values()) {
1445       if (isa<PHINode>(PV1)) {
1446         if (OnePhi && OnePhi != PV1) {
1447           // To control potential compile time explosion, we choose to be
1448           // conserviate when we have more than one Phi input.  It is important
1449           // that we handle the single phi case as that lets us handle LCSSA
1450           // phi nodes and (combined with the recursive phi handling) simple
1451           // pointer induction variable patterns.
1452           return AliasResult::MayAlias;
1453         }
1454         OnePhi = PV1;
1455       }
1456 
1457       if (CheckForRecPhi(PV1))
1458         continue;
1459 
1460       if (UniqueSrc.insert(PV1).second)
1461         V1Srcs.push_back(PV1);
1462     }
1463 
1464     if (OnePhi && UniqueSrc.size() > 1)
1465       // Out of an abundance of caution, allow only the trivial lcssa and
1466       // recursive phi cases.
1467       return AliasResult::MayAlias;
1468   }
1469 
1470   // If V1Srcs is empty then that means that the phi has no underlying non-phi
1471   // value. This should only be possible in blocks unreachable from the entry
1472   // block, but return MayAlias just in case.
1473   if (V1Srcs.empty())
1474     return AliasResult::MayAlias;
1475 
1476   // If this PHI node is recursive, indicate that the pointer may be moved
1477   // across iterations. We can only prove NoAlias if different underlying
1478   // objects are involved.
1479   if (isRecursive)
1480     PNSize = LocationSize::beforeOrAfterPointer();
1481 
1482   // In the recursive alias queries below, we may compare values from two
1483   // different loop iterations. Keep track of visited phi blocks, which will
1484   // be used when determining value equivalence.
1485   bool BlockInserted = VisitedPhiBBs.insert(PN->getParent()).second;
1486   auto _ = make_scope_exit([&]() {
1487     if (BlockInserted)
1488       VisitedPhiBBs.erase(PN->getParent());
1489   });
1490 
1491   // If we inserted a block into VisitedPhiBBs, alias analysis results that
1492   // have been cached earlier may no longer be valid. Perform recursive queries
1493   // with a new AAQueryInfo.
1494   AAQueryInfo NewAAQI = AAQI.withEmptyCache();
1495   AAQueryInfo *UseAAQI = BlockInserted ? &NewAAQI : &AAQI;
1496 
1497   AliasResult Alias = getBestAAResults().alias(
1498       MemoryLocation(V2, V2Size),
1499       MemoryLocation(V1Srcs[0], PNSize), *UseAAQI);
1500 
1501   // Early exit if the check of the first PHI source against V2 is MayAlias.
1502   // Other results are not possible.
1503   if (Alias == AliasResult::MayAlias)
1504     return AliasResult::MayAlias;
1505   // With recursive phis we cannot guarantee that MustAlias/PartialAlias will
1506   // remain valid to all elements and needs to conservatively return MayAlias.
1507   if (isRecursive && Alias != AliasResult::NoAlias)
1508     return AliasResult::MayAlias;
1509 
1510   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1511   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1512   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1513     Value *V = V1Srcs[i];
1514 
1515     AliasResult ThisAlias = getBestAAResults().alias(
1516         MemoryLocation(V2, V2Size), MemoryLocation(V, PNSize), *UseAAQI);
1517     Alias = MergeAliasResults(ThisAlias, Alias);
1518     if (Alias == AliasResult::MayAlias)
1519       break;
1520   }
1521 
1522   return Alias;
1523 }
1524 
1525 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1526 /// array references.
1527 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
1528                                       const Value *V2, LocationSize V2Size,
1529                                       AAQueryInfo &AAQI) {
1530   // If either of the memory references is empty, it doesn't matter what the
1531   // pointer values are.
1532   if (V1Size.isZero() || V2Size.isZero())
1533     return AliasResult::NoAlias;
1534 
1535   // Strip off any casts if they exist.
1536   V1 = V1->stripPointerCastsForAliasAnalysis();
1537   V2 = V2->stripPointerCastsForAliasAnalysis();
1538 
1539   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1540   // value for undef that aliases nothing in the program.
1541   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1542     return AliasResult::NoAlias;
1543 
1544   // Are we checking for alias of the same value?
1545   // Because we look 'through' phi nodes, we could look at "Value" pointers from
1546   // different iterations. We must therefore make sure that this is not the
1547   // case. The function isValueEqualInPotentialCycles ensures that this cannot
1548   // happen by looking at the visited phi nodes and making sure they cannot
1549   // reach the value.
1550   if (isValueEqualInPotentialCycles(V1, V2))
1551     return AliasResult::MustAlias;
1552 
1553   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1554     return AliasResult::NoAlias; // Scalars cannot alias each other
1555 
1556   // Figure out what objects these things are pointing to if we can.
1557   const Value *O1 = getUnderlyingObject(V1, MaxLookupSearchDepth);
1558   const Value *O2 = getUnderlyingObject(V2, MaxLookupSearchDepth);
1559 
1560   // Null values in the default address space don't point to any object, so they
1561   // don't alias any other pointer.
1562   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1563     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1564       return AliasResult::NoAlias;
1565   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1566     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1567       return AliasResult::NoAlias;
1568 
1569   if (O1 != O2) {
1570     // If V1/V2 point to two different objects, we know that we have no alias.
1571     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1572       return AliasResult::NoAlias;
1573 
1574     // Constant pointers can't alias with non-const isIdentifiedObject objects.
1575     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1576         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1577       return AliasResult::NoAlias;
1578 
1579     // Function arguments can't alias with things that are known to be
1580     // unambigously identified at the function level.
1581     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1582         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1583       return AliasResult::NoAlias;
1584 
1585     // If one pointer is the result of a call/invoke or load and the other is a
1586     // non-escaping local object within the same function, then we know the
1587     // object couldn't escape to a point where the call could return it.
1588     //
1589     // Note that if the pointers are in different functions, there are a
1590     // variety of complications. A call with a nocapture argument may still
1591     // temporary store the nocapture argument's value in a temporary memory
1592     // location if that memory location doesn't escape. Or it may pass a
1593     // nocapture value to other functions as long as they don't capture it.
1594     if (isEscapeSource(O1) &&
1595         AAQI.CI->isNotCapturedBeforeOrAt(O2, cast<Instruction>(O1)))
1596       return AliasResult::NoAlias;
1597     if (isEscapeSource(O2) &&
1598         AAQI.CI->isNotCapturedBeforeOrAt(O1, cast<Instruction>(O2)))
1599       return AliasResult::NoAlias;
1600   }
1601 
1602   // If the size of one access is larger than the entire object on the other
1603   // side, then we know such behavior is undefined and can assume no alias.
1604   bool NullIsValidLocation = NullPointerIsDefined(&F);
1605   if ((isObjectSmallerThan(
1606           O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL,
1607           TLI, NullIsValidLocation)) ||
1608       (isObjectSmallerThan(
1609           O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL,
1610           TLI, NullIsValidLocation)))
1611     return AliasResult::NoAlias;
1612 
1613   // If one the accesses may be before the accessed pointer, canonicalize this
1614   // by using unknown after-pointer sizes for both accesses. This is
1615   // equivalent, because regardless of which pointer is lower, one of them
1616   // will always came after the other, as long as the underlying objects aren't
1617   // disjoint. We do this so that the rest of BasicAA does not have to deal
1618   // with accesses before the base pointer, and to improve cache utilization by
1619   // merging equivalent states.
1620   if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) {
1621     V1Size = LocationSize::afterPointer();
1622     V2Size = LocationSize::afterPointer();
1623   }
1624 
1625   // FIXME: If this depth limit is hit, then we may cache sub-optimal results
1626   // for recursive queries. For this reason, this limit is chosen to be large
1627   // enough to be very rarely hit, while still being small enough to avoid
1628   // stack overflows.
1629   if (AAQI.Depth >= 512)
1630     return AliasResult::MayAlias;
1631 
1632   // Check the cache before climbing up use-def chains. This also terminates
1633   // otherwise infinitely recursive queries.
1634   AAQueryInfo::LocPair Locs({V1, V1Size}, {V2, V2Size});
1635   const bool Swapped = V1 > V2;
1636   if (Swapped)
1637     std::swap(Locs.first, Locs.second);
1638   const auto &Pair = AAQI.AliasCache.try_emplace(
1639       Locs, AAQueryInfo::CacheEntry{AliasResult::NoAlias, 0});
1640   if (!Pair.second) {
1641     auto &Entry = Pair.first->second;
1642     if (!Entry.isDefinitive()) {
1643       // Remember that we used an assumption.
1644       ++Entry.NumAssumptionUses;
1645       ++AAQI.NumAssumptionUses;
1646     }
1647     // Cache contains sorted {V1,V2} pairs but we should return original order.
1648     auto Result = Entry.Result;
1649     Result.swap(Swapped);
1650     return Result;
1651   }
1652 
1653   int OrigNumAssumptionUses = AAQI.NumAssumptionUses;
1654   unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size();
1655   AliasResult Result =
1656       aliasCheckRecursive(V1, V1Size, V2, V2Size, AAQI, O1, O2);
1657 
1658   auto It = AAQI.AliasCache.find(Locs);
1659   assert(It != AAQI.AliasCache.end() && "Must be in cache");
1660   auto &Entry = It->second;
1661 
1662   // Check whether a NoAlias assumption has been used, but disproven.
1663   bool AssumptionDisproven =
1664       Entry.NumAssumptionUses > 0 && Result != AliasResult::NoAlias;
1665   if (AssumptionDisproven)
1666     Result = AliasResult::MayAlias;
1667 
1668   // This is a definitive result now, when considered as a root query.
1669   AAQI.NumAssumptionUses -= Entry.NumAssumptionUses;
1670   Entry.Result = Result;
1671   // Cache contains sorted {V1,V2} pairs.
1672   Entry.Result.swap(Swapped);
1673   Entry.NumAssumptionUses = -1;
1674 
1675   // If the assumption has been disproven, remove any results that may have
1676   // been based on this assumption. Do this after the Entry updates above to
1677   // avoid iterator invalidation.
1678   if (AssumptionDisproven)
1679     while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults)
1680       AAQI.AliasCache.erase(AAQI.AssumptionBasedResults.pop_back_val());
1681 
1682   // The result may still be based on assumptions higher up in the chain.
1683   // Remember it, so it can be purged from the cache later.
1684   if (OrigNumAssumptionUses != AAQI.NumAssumptionUses &&
1685       Result != AliasResult::MayAlias)
1686     AAQI.AssumptionBasedResults.push_back(Locs);
1687   return Result;
1688 }
1689 
1690 AliasResult BasicAAResult::aliasCheckRecursive(
1691     const Value *V1, LocationSize V1Size,
1692     const Value *V2, LocationSize V2Size,
1693     AAQueryInfo &AAQI, const Value *O1, const Value *O2) {
1694   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1695     AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, O1, O2, AAQI);
1696     if (Result != AliasResult::MayAlias)
1697       return Result;
1698   } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) {
1699     AliasResult Result = aliasGEP(GV2, V2Size, V1, V1Size, O2, O1, AAQI);
1700     if (Result != AliasResult::MayAlias)
1701       return Result;
1702   }
1703 
1704   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1705     AliasResult Result = aliasPHI(PN, V1Size, V2, V2Size, AAQI);
1706     if (Result != AliasResult::MayAlias)
1707       return Result;
1708   } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) {
1709     AliasResult Result = aliasPHI(PN, V2Size, V1, V1Size, AAQI);
1710     if (Result != AliasResult::MayAlias)
1711       return Result;
1712   }
1713 
1714   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1715     AliasResult Result = aliasSelect(S1, V1Size, V2, V2Size, AAQI);
1716     if (Result != AliasResult::MayAlias)
1717       return Result;
1718   } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) {
1719     AliasResult Result = aliasSelect(S2, V2Size, V1, V1Size, AAQI);
1720     if (Result != AliasResult::MayAlias)
1721       return Result;
1722   }
1723 
1724   // If both pointers are pointing into the same object and one of them
1725   // accesses the entire object, then the accesses must overlap in some way.
1726   if (O1 == O2) {
1727     bool NullIsValidLocation = NullPointerIsDefined(&F);
1728     if (V1Size.isPrecise() && V2Size.isPrecise() &&
1729         (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
1730          isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation)))
1731       return AliasResult::PartialAlias;
1732   }
1733 
1734   return AliasResult::MayAlias;
1735 }
1736 
1737 /// Check whether two Values can be considered equivalent.
1738 ///
1739 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1740 /// they can not be part of a cycle in the value graph by looking at all
1741 /// visited phi nodes an making sure that the phis cannot reach the value. We
1742 /// have to do this because we are looking through phi nodes (That is we say
1743 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1744 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1745                                                   const Value *V2) {
1746   if (V != V2)
1747     return false;
1748 
1749   const Instruction *Inst = dyn_cast<Instruction>(V);
1750   if (!Inst)
1751     return true;
1752 
1753   if (VisitedPhiBBs.empty())
1754     return true;
1755 
1756   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1757     return false;
1758 
1759   // Make sure that the visited phis cannot reach the Value. This ensures that
1760   // the Values cannot come from different iterations of a potential cycle the
1761   // phi nodes could be involved in.
1762   for (auto *P : VisitedPhiBBs)
1763     if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT))
1764       return false;
1765 
1766   return true;
1767 }
1768 
1769 /// Computes the symbolic difference between two de-composed GEPs.
1770 void BasicAAResult::subtractDecomposedGEPs(DecomposedGEP &DestGEP,
1771                                            const DecomposedGEP &SrcGEP) {
1772   DestGEP.Offset -= SrcGEP.Offset;
1773   for (const VariableGEPIndex &Src : SrcGEP.VarIndices) {
1774     // Find V in Dest.  This is N^2, but pointer indices almost never have more
1775     // than a few variable indexes.
1776     bool Found = false;
1777     for (auto I : enumerate(DestGEP.VarIndices)) {
1778       VariableGEPIndex &Dest = I.value();
1779       if (!isValueEqualInPotentialCycles(Dest.Val.V, Src.Val.V) ||
1780           !Dest.Val.hasSameCastsAs(Src.Val))
1781         continue;
1782 
1783       // If we found it, subtract off Scale V's from the entry in Dest.  If it
1784       // goes to zero, remove the entry.
1785       if (Dest.Scale != Src.Scale) {
1786         Dest.Scale -= Src.Scale;
1787         Dest.IsNSW = false;
1788       } else {
1789         DestGEP.VarIndices.erase(DestGEP.VarIndices.begin() + I.index());
1790       }
1791       Found = true;
1792       break;
1793     }
1794 
1795     // If we didn't consume this entry, add it to the end of the Dest list.
1796     if (!Found) {
1797       VariableGEPIndex Entry = {Src.Val, -Src.Scale, Src.CxtI, Src.IsNSW};
1798       DestGEP.VarIndices.push_back(Entry);
1799     }
1800   }
1801 }
1802 
1803 bool BasicAAResult::constantOffsetHeuristic(
1804     const DecomposedGEP &GEP, LocationSize MaybeV1Size,
1805     LocationSize MaybeV2Size, AssumptionCache *AC, DominatorTree *DT) {
1806   if (GEP.VarIndices.size() != 2 || !MaybeV1Size.hasValue() ||
1807       !MaybeV2Size.hasValue())
1808     return false;
1809 
1810   const uint64_t V1Size = MaybeV1Size.getValue();
1811   const uint64_t V2Size = MaybeV2Size.getValue();
1812 
1813   const VariableGEPIndex &Var0 = GEP.VarIndices[0], &Var1 = GEP.VarIndices[1];
1814 
1815   if (Var0.Val.TruncBits != 0 || !Var0.Val.hasSameCastsAs(Var1.Val) ||
1816       Var0.Scale != -Var1.Scale ||
1817       Var0.Val.V->getType() != Var1.Val.V->getType())
1818     return false;
1819 
1820   // We'll strip off the Extensions of Var0 and Var1 and do another round
1821   // of GetLinearExpression decomposition. In the example above, if Var0
1822   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1823 
1824   LinearExpression E0 =
1825       GetLinearExpression(CastedValue(Var0.Val.V), DL, 0, AC, DT);
1826   LinearExpression E1 =
1827       GetLinearExpression(CastedValue(Var1.Val.V), DL, 0, AC, DT);
1828   if (E0.Scale != E1.Scale || !E0.Val.hasSameCastsAs(E1.Val) ||
1829       !isValueEqualInPotentialCycles(E0.Val.V, E1.Val.V))
1830     return false;
1831 
1832   // We have a hit - Var0 and Var1 only differ by a constant offset!
1833 
1834   // If we've been sext'ed then zext'd the maximum difference between Var0 and
1835   // Var1 is possible to calculate, but we're just interested in the absolute
1836   // minimum difference between the two. The minimum distance may occur due to
1837   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1838   // the minimum distance between %i and %i + 5 is 3.
1839   APInt MinDiff = E0.Offset - E1.Offset, Wrapped = -MinDiff;
1840   MinDiff = APIntOps::umin(MinDiff, Wrapped);
1841   APInt MinDiffBytes =
1842     MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs();
1843 
1844   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
1845   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
1846   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
1847   // V2Size can fit in the MinDiffBytes gap.
1848   return MinDiffBytes.uge(V1Size + GEP.Offset.abs()) &&
1849          MinDiffBytes.uge(V2Size + GEP.Offset.abs());
1850 }
1851 
1852 //===----------------------------------------------------------------------===//
1853 // BasicAliasAnalysis Pass
1854 //===----------------------------------------------------------------------===//
1855 
1856 AnalysisKey BasicAA::Key;
1857 
1858 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
1859   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1860   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1861   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1862   auto *PV = AM.getCachedResult<PhiValuesAnalysis>(F);
1863   return BasicAAResult(F.getParent()->getDataLayout(), F, TLI, AC, DT, PV);
1864 }
1865 
1866 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
1867   initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
1868 }
1869 
1870 char BasicAAWrapperPass::ID = 0;
1871 
1872 void BasicAAWrapperPass::anchor() {}
1873 
1874 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa",
1875                       "Basic Alias Analysis (stateless AA impl)", true, true)
1876 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1877 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1878 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1879 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
1880 INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa",
1881                     "Basic Alias Analysis (stateless AA impl)", true, true)
1882 
1883 FunctionPass *llvm::createBasicAAWrapperPass() {
1884   return new BasicAAWrapperPass();
1885 }
1886 
1887 bool BasicAAWrapperPass::runOnFunction(Function &F) {
1888   auto &ACT = getAnalysis<AssumptionCacheTracker>();
1889   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
1890   auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
1891   auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>();
1892 
1893   Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F,
1894                                  TLIWP.getTLI(F), ACT.getAssumptionCache(F),
1895                                  &DTWP.getDomTree(),
1896                                  PVWP ? &PVWP->getResult() : nullptr));
1897 
1898   return false;
1899 }
1900 
1901 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1902   AU.setPreservesAll();
1903   AU.addRequiredTransitive<AssumptionCacheTracker>();
1904   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
1905   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1906   AU.addUsedIfAvailable<PhiValuesWrapperPass>();
1907 }
1908 
1909 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
1910   return BasicAAResult(
1911       F.getParent()->getDataLayout(), F,
1912       P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
1913       P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
1914 }
1915