1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the primary stateless implementation of the 10 // Alias Analysis interface that implements identities (two different 11 // globals cannot alias, etc), but does no stateful analysis. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/BasicAliasAnalysis.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/CFG.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/PhiValues.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/Argument.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/GetElementPtrTypeIterator.h" 40 #include "llvm/IR/GlobalAlias.h" 41 #include "llvm/IR/GlobalVariable.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/Operator.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/User.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/InitializePasses.h" 53 #include "llvm/Pass.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Compiler.h" 57 #include "llvm/Support/KnownBits.h" 58 #include <cassert> 59 #include <cstdint> 60 #include <cstdlib> 61 #include <utility> 62 63 #define DEBUG_TYPE "basicaa" 64 65 using namespace llvm; 66 67 /// Enable analysis of recursive PHI nodes. 68 static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden, 69 cl::init(true)); 70 71 /// By default, even on 32-bit architectures we use 64-bit integers for 72 /// calculations. This will allow us to more-aggressively decompose indexing 73 /// expressions calculated using i64 values (e.g., long long in C) which is 74 /// common enough to worry about. 75 static cl::opt<bool> ForceAtLeast64Bits("basic-aa-force-at-least-64b", 76 cl::Hidden, cl::init(true)); 77 static cl::opt<bool> DoubleCalcBits("basic-aa-double-calc-bits", 78 cl::Hidden, cl::init(false)); 79 80 /// SearchLimitReached / SearchTimes shows how often the limit of 81 /// to decompose GEPs is reached. It will affect the precision 82 /// of basic alias analysis. 83 STATISTIC(SearchLimitReached, "Number of times the limit to " 84 "decompose GEPs is reached"); 85 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 86 87 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 88 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be 89 /// careful with value equivalence. We use reachability to make sure a value 90 /// cannot be involved in a cycle. 91 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 92 93 // The max limit of the search depth in DecomposeGEPExpression() and 94 // getUnderlyingObject(), both functions need to use the same search 95 // depth otherwise the algorithm in aliasGEP will assert. 96 static const unsigned MaxLookupSearchDepth = 6; 97 98 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA, 99 FunctionAnalysisManager::Invalidator &Inv) { 100 // We don't care if this analysis itself is preserved, it has no state. But 101 // we need to check that the analyses it depends on have been. Note that we 102 // may be created without handles to some analyses and in that case don't 103 // depend on them. 104 if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) || 105 (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) || 106 (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA))) 107 return true; 108 109 // Otherwise this analysis result remains valid. 110 return false; 111 } 112 113 //===----------------------------------------------------------------------===// 114 // Useful predicates 115 //===----------------------------------------------------------------------===// 116 117 /// Returns true if the pointer is one which would have been considered an 118 /// escape by isNonEscapingLocalObject. 119 static bool isEscapeSource(const Value *V) { 120 if (isa<CallBase>(V)) 121 return true; 122 123 if (isa<Argument>(V)) 124 return true; 125 126 // The load case works because isNonEscapingLocalObject considers all 127 // stores to be escapes (it passes true for the StoreCaptures argument 128 // to PointerMayBeCaptured). 129 if (isa<LoadInst>(V)) 130 return true; 131 132 // The inttoptr case works because isNonEscapingLocalObject considers all 133 // means of converting or equating a pointer to an int (ptrtoint, ptr store 134 // which could be followed by an integer load, ptr<->int compare) as 135 // escaping, and objects located at well-known addresses via platform-specific 136 // means cannot be considered non-escaping local objects. 137 if (isa<IntToPtrInst>(V)) 138 return true; 139 140 return false; 141 } 142 143 /// Returns the size of the object specified by V or UnknownSize if unknown. 144 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 145 const TargetLibraryInfo &TLI, 146 bool NullIsValidLoc, 147 bool RoundToAlign = false) { 148 uint64_t Size; 149 ObjectSizeOpts Opts; 150 Opts.RoundToAlign = RoundToAlign; 151 Opts.NullIsUnknownSize = NullIsValidLoc; 152 if (getObjectSize(V, Size, DL, &TLI, Opts)) 153 return Size; 154 return MemoryLocation::UnknownSize; 155 } 156 157 /// Returns true if we can prove that the object specified by V is smaller than 158 /// Size. 159 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 160 const DataLayout &DL, 161 const TargetLibraryInfo &TLI, 162 bool NullIsValidLoc) { 163 // Note that the meanings of the "object" are slightly different in the 164 // following contexts: 165 // c1: llvm::getObjectSize() 166 // c2: llvm.objectsize() intrinsic 167 // c3: isObjectSmallerThan() 168 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 169 // refers to the "entire object". 170 // 171 // Consider this example: 172 // char *p = (char*)malloc(100) 173 // char *q = p+80; 174 // 175 // In the context of c1 and c2, the "object" pointed by q refers to the 176 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 177 // 178 // However, in the context of c3, the "object" refers to the chunk of memory 179 // being allocated. So, the "object" has 100 bytes, and q points to the middle 180 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 181 // parameter, before the llvm::getObjectSize() is called to get the size of 182 // entire object, we should: 183 // - either rewind the pointer q to the base-address of the object in 184 // question (in this case rewind to p), or 185 // - just give up. It is up to caller to make sure the pointer is pointing 186 // to the base address the object. 187 // 188 // We go for 2nd option for simplicity. 189 if (!isIdentifiedObject(V)) 190 return false; 191 192 // This function needs to use the aligned object size because we allow 193 // reads a bit past the end given sufficient alignment. 194 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc, 195 /*RoundToAlign*/ true); 196 197 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; 198 } 199 200 /// Return the minimal extent from \p V to the end of the underlying object, 201 /// assuming the result is used in an aliasing query. E.g., we do use the query 202 /// location size and the fact that null pointers cannot alias here. 203 static uint64_t getMinimalExtentFrom(const Value &V, 204 const LocationSize &LocSize, 205 const DataLayout &DL, 206 bool NullIsValidLoc) { 207 // If we have dereferenceability information we know a lower bound for the 208 // extent as accesses for a lower offset would be valid. We need to exclude 209 // the "or null" part if null is a valid pointer. 210 bool CanBeNull, CanBeFreed; 211 uint64_t DerefBytes = 212 V.getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed); 213 DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes; 214 DerefBytes = CanBeFreed ? 0 : DerefBytes; 215 // If queried with a precise location size, we assume that location size to be 216 // accessed, thus valid. 217 if (LocSize.isPrecise()) 218 DerefBytes = std::max(DerefBytes, LocSize.getValue()); 219 return DerefBytes; 220 } 221 222 /// Returns true if we can prove that the object specified by V has size Size. 223 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, 224 const TargetLibraryInfo &TLI, bool NullIsValidLoc) { 225 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc); 226 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; 227 } 228 229 //===----------------------------------------------------------------------===// 230 // GetElementPtr Instruction Decomposition and Analysis 231 //===----------------------------------------------------------------------===// 232 233 namespace { 234 /// Represents zext(sext(V)). 235 struct ExtendedValue { 236 const Value *V; 237 unsigned ZExtBits; 238 unsigned SExtBits; 239 240 explicit ExtendedValue(const Value *V, unsigned ZExtBits = 0, 241 unsigned SExtBits = 0) 242 : V(V), ZExtBits(ZExtBits), SExtBits(SExtBits) {} 243 244 unsigned getBitWidth() const { 245 return V->getType()->getPrimitiveSizeInBits() + ZExtBits + SExtBits; 246 } 247 248 ExtendedValue withValue(const Value *NewV) const { 249 return ExtendedValue(NewV, ZExtBits, SExtBits); 250 } 251 252 ExtendedValue withZExtOfValue(const Value *NewV) const { 253 unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() - 254 NewV->getType()->getPrimitiveSizeInBits(); 255 // zext(sext(zext(NewV))) == zext(zext(zext(NewV))) 256 return ExtendedValue(NewV, ZExtBits + SExtBits + ExtendBy, 0); 257 } 258 259 ExtendedValue withSExtOfValue(const Value *NewV) const { 260 unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() - 261 NewV->getType()->getPrimitiveSizeInBits(); 262 // zext(sext(sext(NewV))) 263 return ExtendedValue(NewV, ZExtBits, SExtBits + ExtendBy); 264 } 265 266 APInt evaluateWith(APInt N) const { 267 assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() && 268 "Incompatible bit width"); 269 if (SExtBits) N = N.sext(N.getBitWidth() + SExtBits); 270 if (ZExtBits) N = N.zext(N.getBitWidth() + ZExtBits); 271 return N; 272 } 273 274 bool canDistributeOver(bool NUW, bool NSW) const { 275 // zext(x op<nuw> y) == zext(x) op<nuw> zext(y) 276 // sext(x op<nsw> y) == sext(x) op<nsw> sext(y) 277 return (!ZExtBits || NUW) && (!SExtBits || NSW); 278 } 279 }; 280 281 /// Represents zext(sext(V)) * Scale + Offset. 282 struct LinearExpression { 283 ExtendedValue Val; 284 APInt Scale; 285 APInt Offset; 286 287 LinearExpression(const ExtendedValue &Val, const APInt &Scale, 288 const APInt &Offset) 289 : Val(Val), Scale(Scale), Offset(Offset) {} 290 291 LinearExpression(const ExtendedValue &Val) : Val(Val) { 292 unsigned BitWidth = Val.getBitWidth(); 293 Scale = APInt(BitWidth, 1); 294 Offset = APInt(BitWidth, 0); 295 } 296 }; 297 } 298 299 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 300 /// B are constant integers. 301 static LinearExpression GetLinearExpression( 302 const ExtendedValue &Val, const DataLayout &DL, unsigned Depth, 303 AssumptionCache *AC, DominatorTree *DT) { 304 // Limit our recursion depth. 305 if (Depth == 6) 306 return Val; 307 308 if (const ConstantInt *Const = dyn_cast<ConstantInt>(Val.V)) 309 return LinearExpression(Val, APInt(Val.getBitWidth(), 0), 310 Val.evaluateWith(Const->getValue())); 311 312 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val.V)) { 313 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 314 APInt RHS = Val.evaluateWith(RHSC->getValue()); 315 // The only non-OBO case we deal with is or, and only limited to the 316 // case where it is both nuw and nsw. 317 bool NUW = true, NSW = true; 318 if (isa<OverflowingBinaryOperator>(BOp)) { 319 NUW &= BOp->hasNoUnsignedWrap(); 320 NSW &= BOp->hasNoSignedWrap(); 321 } 322 if (!Val.canDistributeOver(NUW, NSW)) 323 return Val; 324 325 switch (BOp->getOpcode()) { 326 default: 327 // We don't understand this instruction, so we can't decompose it any 328 // further. 329 return Val; 330 case Instruction::Or: 331 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 332 // analyze it. 333 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, 334 BOp, DT)) 335 return Val; 336 337 LLVM_FALLTHROUGH; 338 case Instruction::Add: { 339 LinearExpression E = GetLinearExpression( 340 Val.withValue(BOp->getOperand(0)), DL, Depth + 1, AC, DT); 341 E.Offset += RHS; 342 return E; 343 } 344 case Instruction::Sub: { 345 LinearExpression E = GetLinearExpression( 346 Val.withValue(BOp->getOperand(0)), DL, Depth + 1, AC, DT); 347 E.Offset -= RHS; 348 return E; 349 } 350 case Instruction::Mul: { 351 LinearExpression E = GetLinearExpression( 352 Val.withValue(BOp->getOperand(0)), DL, Depth + 1, AC, DT); 353 E.Offset *= RHS; 354 E.Scale *= RHS; 355 return E; 356 } 357 case Instruction::Shl: 358 // We're trying to linearize an expression of the kind: 359 // shl i8 -128, 36 360 // where the shift count exceeds the bitwidth of the type. 361 // We can't decompose this further (the expression would return 362 // a poison value). 363 if (RHS.getLimitedValue() > Val.getBitWidth()) 364 return Val; 365 366 LinearExpression E = GetLinearExpression( 367 Val.withValue(BOp->getOperand(0)), DL, Depth + 1, AC, DT); 368 E.Offset <<= RHS.getLimitedValue(); 369 E.Scale <<= RHS.getLimitedValue(); 370 return E; 371 } 372 } 373 } 374 375 if (isa<ZExtInst>(Val.V)) 376 return GetLinearExpression( 377 Val.withZExtOfValue(cast<CastInst>(Val.V)->getOperand(0)), 378 DL, Depth + 1, AC, DT); 379 380 if (isa<SExtInst>(Val.V)) 381 return GetLinearExpression( 382 Val.withSExtOfValue(cast<CastInst>(Val.V)->getOperand(0)), 383 DL, Depth + 1, AC, DT); 384 385 return Val; 386 } 387 388 /// To ensure a pointer offset fits in an integer of size PointerSize 389 /// (in bits) when that size is smaller than the maximum pointer size. This is 390 /// an issue, for example, in particular for 32b pointers with negative indices 391 /// that rely on two's complement wrap-arounds for precise alias information 392 /// where the maximum pointer size is 64b. 393 static APInt adjustToPointerSize(const APInt &Offset, unsigned PointerSize) { 394 assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!"); 395 unsigned ShiftBits = Offset.getBitWidth() - PointerSize; 396 return (Offset << ShiftBits).ashr(ShiftBits); 397 } 398 399 static unsigned getMaxPointerSize(const DataLayout &DL) { 400 unsigned MaxPointerSize = DL.getMaxPointerSizeInBits(); 401 if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64; 402 if (DoubleCalcBits) MaxPointerSize *= 2; 403 404 return MaxPointerSize; 405 } 406 407 /// If V is a symbolic pointer expression, decompose it into a base pointer 408 /// with a constant offset and a number of scaled symbolic offsets. 409 /// 410 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 411 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 412 /// specified amount, but which may have other unrepresented high bits. As 413 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 414 /// 415 /// This function is capable of analyzing everything that getUnderlyingObject 416 /// can look through. To be able to do that getUnderlyingObject and 417 /// DecomposeGEPExpression must use the same search depth 418 /// (MaxLookupSearchDepth). 419 BasicAAResult::DecomposedGEP 420 BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL, 421 AssumptionCache *AC, DominatorTree *DT) { 422 // Limit recursion depth to limit compile time in crazy cases. 423 unsigned MaxLookup = MaxLookupSearchDepth; 424 SearchTimes++; 425 const Instruction *CxtI = dyn_cast<Instruction>(V); 426 427 unsigned MaxPointerSize = getMaxPointerSize(DL); 428 DecomposedGEP Decomposed; 429 Decomposed.Offset = APInt(MaxPointerSize, 0); 430 Decomposed.HasCompileTimeConstantScale = true; 431 do { 432 // See if this is a bitcast or GEP. 433 const Operator *Op = dyn_cast<Operator>(V); 434 if (!Op) { 435 // The only non-operator case we can handle are GlobalAliases. 436 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 437 if (!GA->isInterposable()) { 438 V = GA->getAliasee(); 439 continue; 440 } 441 } 442 Decomposed.Base = V; 443 return Decomposed; 444 } 445 446 if (Op->getOpcode() == Instruction::BitCast || 447 Op->getOpcode() == Instruction::AddrSpaceCast) { 448 V = Op->getOperand(0); 449 continue; 450 } 451 452 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 453 if (!GEPOp) { 454 if (const auto *PHI = dyn_cast<PHINode>(V)) { 455 // Look through single-arg phi nodes created by LCSSA. 456 if (PHI->getNumIncomingValues() == 1) { 457 V = PHI->getIncomingValue(0); 458 continue; 459 } 460 } else if (const auto *Call = dyn_cast<CallBase>(V)) { 461 // CaptureTracking can know about special capturing properties of some 462 // intrinsics like launder.invariant.group, that can't be expressed with 463 // the attributes, but have properties like returning aliasing pointer. 464 // Because some analysis may assume that nocaptured pointer is not 465 // returned from some special intrinsic (because function would have to 466 // be marked with returns attribute), it is crucial to use this function 467 // because it should be in sync with CaptureTracking. Not using it may 468 // cause weird miscompilations where 2 aliasing pointers are assumed to 469 // noalias. 470 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 471 V = RP; 472 continue; 473 } 474 } 475 476 Decomposed.Base = V; 477 return Decomposed; 478 } 479 480 // Track whether we've seen at least one in bounds gep, and if so, whether 481 // all geps parsed were in bounds. 482 if (Decomposed.InBounds == None) 483 Decomposed.InBounds = GEPOp->isInBounds(); 484 else if (!GEPOp->isInBounds()) 485 Decomposed.InBounds = false; 486 487 // Don't attempt to analyze GEPs over unsized objects. 488 if (!GEPOp->getSourceElementType()->isSized()) { 489 Decomposed.Base = V; 490 return Decomposed; 491 } 492 493 // Don't attempt to analyze GEPs if index scale is not a compile-time 494 // constant. 495 if (isa<ScalableVectorType>(GEPOp->getSourceElementType())) { 496 Decomposed.Base = V; 497 Decomposed.HasCompileTimeConstantScale = false; 498 return Decomposed; 499 } 500 501 unsigned AS = GEPOp->getPointerAddressSpace(); 502 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 503 gep_type_iterator GTI = gep_type_begin(GEPOp); 504 unsigned PointerSize = DL.getPointerSizeInBits(AS); 505 // Assume all GEP operands are constants until proven otherwise. 506 bool GepHasConstantOffset = true; 507 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 508 I != E; ++I, ++GTI) { 509 const Value *Index = *I; 510 // Compute the (potentially symbolic) offset in bytes for this index. 511 if (StructType *STy = GTI.getStructTypeOrNull()) { 512 // For a struct, add the member offset. 513 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 514 if (FieldNo == 0) 515 continue; 516 517 Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo); 518 continue; 519 } 520 521 // For an array/pointer, add the element offset, explicitly scaled. 522 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 523 if (CIdx->isZero()) 524 continue; 525 Decomposed.Offset += 526 DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize() * 527 CIdx->getValue().sextOrTrunc(MaxPointerSize); 528 continue; 529 } 530 531 GepHasConstantOffset = false; 532 533 APInt Scale(MaxPointerSize, 534 DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize()); 535 // If the integer type is smaller than the pointer size, it is implicitly 536 // sign extended to pointer size. 537 unsigned Width = Index->getType()->getIntegerBitWidth(); 538 unsigned SExtBits = PointerSize > Width ? PointerSize - Width : 0; 539 LinearExpression LE = GetLinearExpression( 540 ExtendedValue(Index, 0, SExtBits), DL, 0, AC, DT); 541 542 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 543 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 544 545 // It can be the case that, even through C1*V+C2 does not overflow for 546 // relevant values of V, (C2*Scale) can overflow. In that case, we cannot 547 // decompose the expression in this way. 548 // 549 // FIXME: C1*Scale and the other operations in the decomposed 550 // (C1*Scale)*V+C2*Scale can also overflow. We should check for this 551 // possibility. 552 bool Overflow; 553 APInt ScaledOffset = LE.Offset.sextOrTrunc(MaxPointerSize) 554 .smul_ov(Scale, Overflow); 555 if (Overflow) { 556 LE = LinearExpression(ExtendedValue(Index, 0, SExtBits)); 557 } else { 558 Decomposed.Offset += ScaledOffset; 559 Scale *= LE.Scale.sextOrTrunc(MaxPointerSize); 560 } 561 562 // If we already had an occurrence of this index variable, merge this 563 // scale into it. For example, we want to handle: 564 // A[x][x] -> x*16 + x*4 -> x*20 565 // This also ensures that 'x' only appears in the index list once. 566 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { 567 if (Decomposed.VarIndices[i].V == LE.Val.V && 568 Decomposed.VarIndices[i].ZExtBits == LE.Val.ZExtBits && 569 Decomposed.VarIndices[i].SExtBits == LE.Val.SExtBits) { 570 Scale += Decomposed.VarIndices[i].Scale; 571 Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i); 572 break; 573 } 574 } 575 576 // Make sure that we have a scale that makes sense for this target's 577 // pointer size. 578 Scale = adjustToPointerSize(Scale, PointerSize); 579 580 if (!!Scale) { 581 VariableGEPIndex Entry = {LE.Val.V, LE.Val.ZExtBits, LE.Val.SExtBits, 582 Scale, CxtI}; 583 Decomposed.VarIndices.push_back(Entry); 584 } 585 } 586 587 // Take care of wrap-arounds 588 if (GepHasConstantOffset) 589 Decomposed.Offset = adjustToPointerSize(Decomposed.Offset, PointerSize); 590 591 // Analyze the base pointer next. 592 V = GEPOp->getOperand(0); 593 } while (--MaxLookup); 594 595 // If the chain of expressions is too deep, just return early. 596 Decomposed.Base = V; 597 SearchLimitReached++; 598 return Decomposed; 599 } 600 601 /// Returns whether the given pointer value points to memory that is local to 602 /// the function, with global constants being considered local to all 603 /// functions. 604 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc, 605 AAQueryInfo &AAQI, bool OrLocal) { 606 assert(Visited.empty() && "Visited must be cleared after use!"); 607 608 unsigned MaxLookup = 8; 609 SmallVector<const Value *, 16> Worklist; 610 Worklist.push_back(Loc.Ptr); 611 do { 612 const Value *V = getUnderlyingObject(Worklist.pop_back_val()); 613 if (!Visited.insert(V).second) { 614 Visited.clear(); 615 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 616 } 617 618 // An alloca instruction defines local memory. 619 if (OrLocal && isa<AllocaInst>(V)) 620 continue; 621 622 // A global constant counts as local memory for our purposes. 623 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 624 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 625 // global to be marked constant in some modules and non-constant in 626 // others. GV may even be a declaration, not a definition. 627 if (!GV->isConstant()) { 628 Visited.clear(); 629 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 630 } 631 continue; 632 } 633 634 // If both select values point to local memory, then so does the select. 635 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 636 Worklist.push_back(SI->getTrueValue()); 637 Worklist.push_back(SI->getFalseValue()); 638 continue; 639 } 640 641 // If all values incoming to a phi node point to local memory, then so does 642 // the phi. 643 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 644 // Don't bother inspecting phi nodes with many operands. 645 if (PN->getNumIncomingValues() > MaxLookup) { 646 Visited.clear(); 647 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 648 } 649 append_range(Worklist, PN->incoming_values()); 650 continue; 651 } 652 653 // Otherwise be conservative. 654 Visited.clear(); 655 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 656 } while (!Worklist.empty() && --MaxLookup); 657 658 Visited.clear(); 659 return Worklist.empty(); 660 } 661 662 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) { 663 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call); 664 return II && II->getIntrinsicID() == IID; 665 } 666 667 /// Returns the behavior when calling the given call site. 668 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) { 669 if (Call->doesNotAccessMemory()) 670 // Can't do better than this. 671 return FMRB_DoesNotAccessMemory; 672 673 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 674 675 // If the callsite knows it only reads memory, don't return worse 676 // than that. 677 if (Call->onlyReadsMemory()) 678 Min = FMRB_OnlyReadsMemory; 679 else if (Call->doesNotReadMemory()) 680 Min = FMRB_OnlyWritesMemory; 681 682 if (Call->onlyAccessesArgMemory()) 683 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 684 else if (Call->onlyAccessesInaccessibleMemory()) 685 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 686 else if (Call->onlyAccessesInaccessibleMemOrArgMem()) 687 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 688 689 // If the call has operand bundles then aliasing attributes from the function 690 // it calls do not directly apply to the call. This can be made more precise 691 // in the future. 692 if (!Call->hasOperandBundles()) 693 if (const Function *F = Call->getCalledFunction()) 694 Min = 695 FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F)); 696 697 return Min; 698 } 699 700 /// Returns the behavior when calling the given function. For use when the call 701 /// site is not known. 702 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) { 703 // If the function declares it doesn't access memory, we can't do better. 704 if (F->doesNotAccessMemory()) 705 return FMRB_DoesNotAccessMemory; 706 707 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 708 709 // If the function declares it only reads memory, go with that. 710 if (F->onlyReadsMemory()) 711 Min = FMRB_OnlyReadsMemory; 712 else if (F->doesNotReadMemory()) 713 Min = FMRB_OnlyWritesMemory; 714 715 if (F->onlyAccessesArgMemory()) 716 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 717 else if (F->onlyAccessesInaccessibleMemory()) 718 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 719 else if (F->onlyAccessesInaccessibleMemOrArgMem()) 720 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 721 722 return Min; 723 } 724 725 /// Returns true if this is a writeonly (i.e Mod only) parameter. 726 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx, 727 const TargetLibraryInfo &TLI) { 728 if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly)) 729 return true; 730 731 // We can bound the aliasing properties of memset_pattern16 just as we can 732 // for memcpy/memset. This is particularly important because the 733 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 734 // whenever possible. 735 // FIXME Consider handling this in InferFunctionAttr.cpp together with other 736 // attributes. 737 LibFunc F; 738 if (Call->getCalledFunction() && 739 TLI.getLibFunc(*Call->getCalledFunction(), F) && 740 F == LibFunc_memset_pattern16 && TLI.has(F)) 741 if (ArgIdx == 0) 742 return true; 743 744 // TODO: memset_pattern4, memset_pattern8 745 // TODO: _chk variants 746 // TODO: strcmp, strcpy 747 748 return false; 749 } 750 751 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call, 752 unsigned ArgIdx) { 753 // Checking for known builtin intrinsics and target library functions. 754 if (isWriteOnlyParam(Call, ArgIdx, TLI)) 755 return ModRefInfo::Mod; 756 757 if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly)) 758 return ModRefInfo::Ref; 759 760 if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone)) 761 return ModRefInfo::NoModRef; 762 763 return AAResultBase::getArgModRefInfo(Call, ArgIdx); 764 } 765 766 #ifndef NDEBUG 767 static const Function *getParent(const Value *V) { 768 if (const Instruction *inst = dyn_cast<Instruction>(V)) { 769 if (!inst->getParent()) 770 return nullptr; 771 return inst->getParent()->getParent(); 772 } 773 774 if (const Argument *arg = dyn_cast<Argument>(V)) 775 return arg->getParent(); 776 777 return nullptr; 778 } 779 780 static bool notDifferentParent(const Value *O1, const Value *O2) { 781 782 const Function *F1 = getParent(O1); 783 const Function *F2 = getParent(O2); 784 785 return !F1 || !F2 || F1 == F2; 786 } 787 #endif 788 789 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 790 const MemoryLocation &LocB, 791 AAQueryInfo &AAQI) { 792 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 793 "BasicAliasAnalysis doesn't support interprocedural queries."); 794 return aliasCheck(LocA.Ptr, LocA.Size, LocB.Ptr, LocB.Size, AAQI); 795 } 796 797 /// Checks to see if the specified callsite can clobber the specified memory 798 /// object. 799 /// 800 /// Since we only look at local properties of this function, we really can't 801 /// say much about this query. We do, however, use simple "address taken" 802 /// analysis on local objects. 803 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call, 804 const MemoryLocation &Loc, 805 AAQueryInfo &AAQI) { 806 assert(notDifferentParent(Call, Loc.Ptr) && 807 "AliasAnalysis query involving multiple functions!"); 808 809 const Value *Object = getUnderlyingObject(Loc.Ptr); 810 811 // Calls marked 'tail' cannot read or write allocas from the current frame 812 // because the current frame might be destroyed by the time they run. However, 813 // a tail call may use an alloca with byval. Calling with byval copies the 814 // contents of the alloca into argument registers or stack slots, so there is 815 // no lifetime issue. 816 if (isa<AllocaInst>(Object)) 817 if (const CallInst *CI = dyn_cast<CallInst>(Call)) 818 if (CI->isTailCall() && 819 !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal)) 820 return ModRefInfo::NoModRef; 821 822 // Stack restore is able to modify unescaped dynamic allocas. Assume it may 823 // modify them even though the alloca is not escaped. 824 if (auto *AI = dyn_cast<AllocaInst>(Object)) 825 if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore)) 826 return ModRefInfo::Mod; 827 828 // If the pointer is to a locally allocated object that does not escape, 829 // then the call can not mod/ref the pointer unless the call takes the pointer 830 // as an argument, and itself doesn't capture it. 831 if (!isa<Constant>(Object) && Call != Object && 832 isNonEscapingLocalObject(Object, &AAQI.IsCapturedCache)) { 833 834 // Optimistically assume that call doesn't touch Object and check this 835 // assumption in the following loop. 836 ModRefInfo Result = ModRefInfo::NoModRef; 837 bool IsMustAlias = true; 838 839 unsigned OperandNo = 0; 840 for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end(); 841 CI != CE; ++CI, ++OperandNo) { 842 // Only look at the no-capture or byval pointer arguments. If this 843 // pointer were passed to arguments that were neither of these, then it 844 // couldn't be no-capture. 845 if (!(*CI)->getType()->isPointerTy() || 846 (!Call->doesNotCapture(OperandNo) && 847 OperandNo < Call->getNumArgOperands() && 848 !Call->isByValArgument(OperandNo))) 849 continue; 850 851 // Call doesn't access memory through this operand, so we don't care 852 // if it aliases with Object. 853 if (Call->doesNotAccessMemory(OperandNo)) 854 continue; 855 856 // If this is a no-capture pointer argument, see if we can tell that it 857 // is impossible to alias the pointer we're checking. 858 AliasResult AR = getBestAAResults().alias( 859 MemoryLocation::getBeforeOrAfter(*CI), 860 MemoryLocation::getBeforeOrAfter(Object), AAQI); 861 if (AR != AliasResult::MustAlias) 862 IsMustAlias = false; 863 // Operand doesn't alias 'Object', continue looking for other aliases 864 if (AR == AliasResult::NoAlias) 865 continue; 866 // Operand aliases 'Object', but call doesn't modify it. Strengthen 867 // initial assumption and keep looking in case if there are more aliases. 868 if (Call->onlyReadsMemory(OperandNo)) { 869 Result = setRef(Result); 870 continue; 871 } 872 // Operand aliases 'Object' but call only writes into it. 873 if (Call->doesNotReadMemory(OperandNo)) { 874 Result = setMod(Result); 875 continue; 876 } 877 // This operand aliases 'Object' and call reads and writes into it. 878 // Setting ModRef will not yield an early return below, MustAlias is not 879 // used further. 880 Result = ModRefInfo::ModRef; 881 break; 882 } 883 884 // No operand aliases, reset Must bit. Add below if at least one aliases 885 // and all aliases found are MustAlias. 886 if (isNoModRef(Result)) 887 IsMustAlias = false; 888 889 // Early return if we improved mod ref information 890 if (!isModAndRefSet(Result)) { 891 if (isNoModRef(Result)) 892 return ModRefInfo::NoModRef; 893 return IsMustAlias ? setMust(Result) : clearMust(Result); 894 } 895 } 896 897 // If the call is malloc/calloc like, we can assume that it doesn't 898 // modify any IR visible value. This is only valid because we assume these 899 // routines do not read values visible in the IR. TODO: Consider special 900 // casing realloc and strdup routines which access only their arguments as 901 // well. Or alternatively, replace all of this with inaccessiblememonly once 902 // that's implemented fully. 903 if (isMallocOrCallocLikeFn(Call, &TLI)) { 904 // Be conservative if the accessed pointer may alias the allocation - 905 // fallback to the generic handling below. 906 if (getBestAAResults().alias(MemoryLocation::getBeforeOrAfter(Call), Loc, 907 AAQI) == AliasResult::NoAlias) 908 return ModRefInfo::NoModRef; 909 } 910 911 // The semantics of memcpy intrinsics either exactly overlap or do not 912 // overlap, i.e., source and destination of any given memcpy are either 913 // no-alias or must-alias. 914 if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) { 915 AliasResult SrcAA = 916 getBestAAResults().alias(MemoryLocation::getForSource(Inst), Loc, AAQI); 917 AliasResult DestAA = 918 getBestAAResults().alias(MemoryLocation::getForDest(Inst), Loc, AAQI); 919 // It's also possible for Loc to alias both src and dest, or neither. 920 ModRefInfo rv = ModRefInfo::NoModRef; 921 if (SrcAA != AliasResult::NoAlias) 922 rv = setRef(rv); 923 if (DestAA != AliasResult::NoAlias) 924 rv = setMod(rv); 925 return rv; 926 } 927 928 // Guard intrinsics are marked as arbitrarily writing so that proper control 929 // dependencies are maintained but they never mods any particular memory 930 // location. 931 // 932 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 933 // heap state at the point the guard is issued needs to be consistent in case 934 // the guard invokes the "deopt" continuation. 935 if (isIntrinsicCall(Call, Intrinsic::experimental_guard)) 936 return ModRefInfo::Ref; 937 // The same applies to deoptimize which is essentially a guard(false). 938 if (isIntrinsicCall(Call, Intrinsic::experimental_deoptimize)) 939 return ModRefInfo::Ref; 940 941 // Like assumes, invariant.start intrinsics were also marked as arbitrarily 942 // writing so that proper control dependencies are maintained but they never 943 // mod any particular memory location visible to the IR. 944 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start 945 // intrinsic is now modeled as reading memory. This prevents hoisting the 946 // invariant.start intrinsic over stores. Consider: 947 // *ptr = 40; 948 // *ptr = 50; 949 // invariant_start(ptr) 950 // int val = *ptr; 951 // print(val); 952 // 953 // This cannot be transformed to: 954 // 955 // *ptr = 40; 956 // invariant_start(ptr) 957 // *ptr = 50; 958 // int val = *ptr; 959 // print(val); 960 // 961 // The transformation will cause the second store to be ignored (based on 962 // rules of invariant.start) and print 40, while the first program always 963 // prints 50. 964 if (isIntrinsicCall(Call, Intrinsic::invariant_start)) 965 return ModRefInfo::Ref; 966 967 // The AAResultBase base class has some smarts, lets use them. 968 return AAResultBase::getModRefInfo(Call, Loc, AAQI); 969 } 970 971 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1, 972 const CallBase *Call2, 973 AAQueryInfo &AAQI) { 974 // Guard intrinsics are marked as arbitrarily writing so that proper control 975 // dependencies are maintained but they never mods any particular memory 976 // location. 977 // 978 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 979 // heap state at the point the guard is issued needs to be consistent in case 980 // the guard invokes the "deopt" continuation. 981 982 // NB! This function is *not* commutative, so we special case two 983 // possibilities for guard intrinsics. 984 985 if (isIntrinsicCall(Call1, Intrinsic::experimental_guard)) 986 return isModSet(createModRefInfo(getModRefBehavior(Call2))) 987 ? ModRefInfo::Ref 988 : ModRefInfo::NoModRef; 989 990 if (isIntrinsicCall(Call2, Intrinsic::experimental_guard)) 991 return isModSet(createModRefInfo(getModRefBehavior(Call1))) 992 ? ModRefInfo::Mod 993 : ModRefInfo::NoModRef; 994 995 // The AAResultBase base class has some smarts, lets use them. 996 return AAResultBase::getModRefInfo(Call1, Call2, AAQI); 997 } 998 999 /// Return true if we know V to the base address of the corresponding memory 1000 /// object. This implies that any address less than V must be out of bounds 1001 /// for the underlying object. Note that just being isIdentifiedObject() is 1002 /// not enough - For example, a negative offset from a noalias argument or call 1003 /// can be inbounds w.r.t the actual underlying object. 1004 static bool isBaseOfObject(const Value *V) { 1005 // TODO: We can handle other cases here 1006 // 1) For GC languages, arguments to functions are often required to be 1007 // base pointers. 1008 // 2) Result of allocation routines are often base pointers. Leverage TLI. 1009 return (isa<AllocaInst>(V) || isa<GlobalVariable>(V)); 1010 } 1011 1012 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 1013 /// another pointer. 1014 /// 1015 /// We know that V1 is a GEP, but we don't know anything about V2. 1016 /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for 1017 /// V2. 1018 AliasResult BasicAAResult::aliasGEP( 1019 const GEPOperator *GEP1, LocationSize V1Size, 1020 const Value *V2, LocationSize V2Size, 1021 const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) { 1022 if (!V1Size.hasValue() && !V2Size.hasValue()) { 1023 // TODO: This limitation exists for compile-time reasons. Relax it if we 1024 // can avoid exponential pathological cases. 1025 if (!isa<GEPOperator>(V2)) 1026 return AliasResult::MayAlias; 1027 1028 // If both accesses have unknown size, we can only check whether the base 1029 // objects don't alias. 1030 AliasResult BaseAlias = getBestAAResults().alias( 1031 MemoryLocation::getBeforeOrAfter(UnderlyingV1), 1032 MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI); 1033 return BaseAlias == AliasResult::NoAlias ? AliasResult::NoAlias 1034 : AliasResult::MayAlias; 1035 } 1036 1037 DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT); 1038 DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT); 1039 1040 // Don't attempt to analyze the decomposed GEP if index scale is not a 1041 // compile-time constant. 1042 if (!DecompGEP1.HasCompileTimeConstantScale || 1043 !DecompGEP2.HasCompileTimeConstantScale) 1044 return AliasResult::MayAlias; 1045 1046 assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 && 1047 "DecomposeGEPExpression returned a result different from " 1048 "getUnderlyingObject"); 1049 1050 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1051 // symbolic difference. 1052 DecompGEP1.Offset -= DecompGEP2.Offset; 1053 GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices); 1054 1055 // If an inbounds GEP would have to start from an out of bounds address 1056 // for the two to alias, then we can assume noalias. 1057 if (*DecompGEP1.InBounds && DecompGEP1.VarIndices.empty() && 1058 V2Size.hasValue() && DecompGEP1.Offset.sge(V2Size.getValue()) && 1059 isBaseOfObject(DecompGEP2.Base)) 1060 return AliasResult::NoAlias; 1061 1062 if (isa<GEPOperator>(V2)) { 1063 // Symmetric case to above. 1064 if (*DecompGEP2.InBounds && DecompGEP1.VarIndices.empty() && 1065 V1Size.hasValue() && DecompGEP1.Offset.sle(-V1Size.getValue()) && 1066 isBaseOfObject(DecompGEP1.Base)) 1067 return AliasResult::NoAlias; 1068 } 1069 1070 // For GEPs with identical offsets, we can preserve the size and AAInfo 1071 // when performing the alias check on the underlying objects. 1072 if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty()) 1073 return getBestAAResults().alias( 1074 MemoryLocation(UnderlyingV1, V1Size), 1075 MemoryLocation(UnderlyingV2, V2Size), AAQI); 1076 1077 // Do the base pointers alias? 1078 AliasResult BaseAlias = getBestAAResults().alias( 1079 MemoryLocation::getBeforeOrAfter(UnderlyingV1), 1080 MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI); 1081 1082 // If we get a No or May, then return it immediately, no amount of analysis 1083 // will improve this situation. 1084 if (BaseAlias != AliasResult::MustAlias) { 1085 assert(BaseAlias == AliasResult::NoAlias || 1086 BaseAlias == AliasResult::MayAlias); 1087 return BaseAlias; 1088 } 1089 1090 // If there is a constant difference between the pointers, but the difference 1091 // is less than the size of the associated memory object, then we know 1092 // that the objects are partially overlapping. If the difference is 1093 // greater, we know they do not overlap. 1094 if (DecompGEP1.Offset != 0 && DecompGEP1.VarIndices.empty()) { 1095 APInt &Off = DecompGEP1.Offset; 1096 1097 // Initialize for Off >= 0 (V2 <= GEP1) case. 1098 const Value *LeftPtr = V2; 1099 const Value *RightPtr = GEP1; 1100 LocationSize VLeftSize = V2Size; 1101 LocationSize VRightSize = V1Size; 1102 const bool Swapped = Off.isNegative(); 1103 1104 if (Swapped) { 1105 // Swap if we have the situation where: 1106 // + + 1107 // | BaseOffset | 1108 // ---------------->| 1109 // |-->V1Size |-------> V2Size 1110 // GEP1 V2 1111 std::swap(LeftPtr, RightPtr); 1112 std::swap(VLeftSize, VRightSize); 1113 Off = -Off; 1114 } 1115 1116 if (VLeftSize.hasValue()) { 1117 const uint64_t LSize = VLeftSize.getValue(); 1118 if (Off.ult(LSize)) { 1119 // Conservatively drop processing if a phi was visited and/or offset is 1120 // too big. 1121 AliasResult AR = AliasResult::PartialAlias; 1122 if (VRightSize.hasValue() && Off.ule(INT32_MAX) && 1123 (Off + VRightSize.getValue()).ule(LSize)) { 1124 // Memory referenced by right pointer is nested. Save the offset in 1125 // cache. Note that originally offset estimated as GEP1-V2, but 1126 // AliasResult contains the shift that represents GEP1+Offset=V2. 1127 AR.setOffset(-Off.getSExtValue()); 1128 AR.swap(Swapped); 1129 } 1130 return AR; 1131 } 1132 return AliasResult::NoAlias; 1133 } 1134 } 1135 1136 if (!DecompGEP1.VarIndices.empty()) { 1137 APInt GCD; 1138 bool AllNonNegative = DecompGEP1.Offset.isNonNegative(); 1139 bool AllNonPositive = DecompGEP1.Offset.isNonPositive(); 1140 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { 1141 const APInt &Scale = DecompGEP1.VarIndices[i].Scale; 1142 if (i == 0) 1143 GCD = Scale.abs(); 1144 else 1145 GCD = APIntOps::GreatestCommonDivisor(GCD, Scale.abs()); 1146 1147 if (AllNonNegative || AllNonPositive) { 1148 // If the Value could change between cycles, then any reasoning about 1149 // the Value this cycle may not hold in the next cycle. We'll just 1150 // give up if we can't determine conditions that hold for every cycle: 1151 const Value *V = DecompGEP1.VarIndices[i].V; 1152 const Instruction *CxtI = DecompGEP1.VarIndices[i].CxtI; 1153 1154 KnownBits Known = computeKnownBits(V, DL, 0, &AC, CxtI, DT); 1155 bool SignKnownZero = Known.isNonNegative(); 1156 bool SignKnownOne = Known.isNegative(); 1157 1158 // Zero-extension widens the variable, and so forces the sign 1159 // bit to zero. 1160 bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V); 1161 SignKnownZero |= IsZExt; 1162 SignKnownOne &= !IsZExt; 1163 1164 AllNonNegative &= (SignKnownZero && Scale.isNonNegative()) || 1165 (SignKnownOne && Scale.isNonPositive()); 1166 AllNonPositive &= (SignKnownZero && Scale.isNonPositive()) || 1167 (SignKnownOne && Scale.isNonNegative()); 1168 } 1169 } 1170 1171 // We now have accesses at two offsets from the same base: 1172 // 1. (...)*GCD + DecompGEP1.Offset with size V1Size 1173 // 2. 0 with size V2Size 1174 // Using arithmetic modulo GCD, the accesses are at 1175 // [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits 1176 // into the range [V2Size..GCD), then we know they cannot overlap. 1177 APInt ModOffset = DecompGEP1.Offset.srem(GCD); 1178 if (ModOffset.isNegative()) 1179 ModOffset += GCD; // We want mod, not rem. 1180 if (V1Size.hasValue() && V2Size.hasValue() && 1181 ModOffset.uge(V2Size.getValue()) && 1182 (GCD - ModOffset).uge(V1Size.getValue())) 1183 return AliasResult::NoAlias; 1184 1185 // If we know all the variables are non-negative, then the total offset is 1186 // also non-negative and >= DecompGEP1.Offset. We have the following layout: 1187 // [0, V2Size) ... [TotalOffset, TotalOffer+V1Size] 1188 // If DecompGEP1.Offset >= V2Size, the accesses don't alias. 1189 if (AllNonNegative && V2Size.hasValue() && 1190 DecompGEP1.Offset.uge(V2Size.getValue())) 1191 return AliasResult::NoAlias; 1192 // Similarly, if the variables are non-positive, then the total offset is 1193 // also non-positive and <= DecompGEP1.Offset. We have the following layout: 1194 // [TotalOffset, TotalOffset+V1Size) ... [0, V2Size) 1195 // If -DecompGEP1.Offset >= V1Size, the accesses don't alias. 1196 if (AllNonPositive && V1Size.hasValue() && 1197 (-DecompGEP1.Offset).uge(V1Size.getValue())) 1198 return AliasResult::NoAlias; 1199 1200 if (V1Size.hasValue() && V2Size.hasValue()) { 1201 // Try to determine whether abs(VarIndex) > 0. 1202 Optional<APInt> MinAbsVarIndex; 1203 if (DecompGEP1.VarIndices.size() == 1) { 1204 // VarIndex = Scale*V. If V != 0 then abs(VarIndex) >= abs(Scale). 1205 const VariableGEPIndex &Var = DecompGEP1.VarIndices[0]; 1206 if (isKnownNonZero(Var.V, DL, 0, &AC, Var.CxtI, DT)) 1207 MinAbsVarIndex = Var.Scale.abs(); 1208 } else if (DecompGEP1.VarIndices.size() == 2) { 1209 // VarIndex = Scale*V0 + (-Scale)*V1. 1210 // If V0 != V1 then abs(VarIndex) >= abs(Scale). 1211 // Check that VisitedPhiBBs is empty, to avoid reasoning about 1212 // inequality of values across loop iterations. 1213 const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0]; 1214 const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1]; 1215 if (Var0.Scale == -Var1.Scale && Var0.ZExtBits == Var1.ZExtBits && 1216 Var0.SExtBits == Var1.SExtBits && VisitedPhiBBs.empty() && 1217 isKnownNonEqual(Var0.V, Var1.V, DL, &AC, /* CxtI */ nullptr, DT)) 1218 MinAbsVarIndex = Var0.Scale.abs(); 1219 } 1220 1221 if (MinAbsVarIndex) { 1222 // The constant offset will have added at least +/-MinAbsVarIndex to it. 1223 APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex; 1224 APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex; 1225 // Check that an access at OffsetLo or lower, and an access at OffsetHi 1226 // or higher both do not alias. 1227 if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) && 1228 OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue())) 1229 return AliasResult::NoAlias; 1230 } 1231 } 1232 1233 if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size, 1234 DecompGEP1.Offset, &AC, DT)) 1235 return AliasResult::NoAlias; 1236 } 1237 1238 // Statically, we can see that the base objects are the same, but the 1239 // pointers have dynamic offsets which we can't resolve. And none of our 1240 // little tricks above worked. 1241 return AliasResult::MayAlias; 1242 } 1243 1244 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1245 // If the results agree, take it. 1246 if (A == B) 1247 return A; 1248 // A mix of PartialAlias and MustAlias is PartialAlias. 1249 if ((A == AliasResult::PartialAlias && B == AliasResult::MustAlias) || 1250 (B == AliasResult::PartialAlias && A == AliasResult::MustAlias)) 1251 return AliasResult::PartialAlias; 1252 // Otherwise, we don't know anything. 1253 return AliasResult::MayAlias; 1254 } 1255 1256 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1257 /// against another. 1258 AliasResult 1259 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize, 1260 const Value *V2, LocationSize V2Size, 1261 AAQueryInfo &AAQI) { 1262 // If the values are Selects with the same condition, we can do a more precise 1263 // check: just check for aliases between the values on corresponding arms. 1264 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1265 if (SI->getCondition() == SI2->getCondition()) { 1266 AliasResult Alias = getBestAAResults().alias( 1267 MemoryLocation(SI->getTrueValue(), SISize), 1268 MemoryLocation(SI2->getTrueValue(), V2Size), AAQI); 1269 if (Alias == AliasResult::MayAlias) 1270 return AliasResult::MayAlias; 1271 AliasResult ThisAlias = getBestAAResults().alias( 1272 MemoryLocation(SI->getFalseValue(), SISize), 1273 MemoryLocation(SI2->getFalseValue(), V2Size), AAQI); 1274 return MergeAliasResults(ThisAlias, Alias); 1275 } 1276 1277 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1278 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1279 AliasResult Alias = getBestAAResults().alias( 1280 MemoryLocation(V2, V2Size), 1281 MemoryLocation(SI->getTrueValue(), SISize), AAQI); 1282 if (Alias == AliasResult::MayAlias) 1283 return AliasResult::MayAlias; 1284 1285 AliasResult ThisAlias = getBestAAResults().alias( 1286 MemoryLocation(V2, V2Size), 1287 MemoryLocation(SI->getFalseValue(), SISize), AAQI); 1288 return MergeAliasResults(ThisAlias, Alias); 1289 } 1290 1291 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1292 /// another. 1293 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize, 1294 const Value *V2, LocationSize V2Size, 1295 AAQueryInfo &AAQI) { 1296 if (!PN->getNumIncomingValues()) 1297 return AliasResult::NoAlias; 1298 // If the values are PHIs in the same block, we can do a more precise 1299 // as well as efficient check: just check for aliases between the values 1300 // on corresponding edges. 1301 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1302 if (PN2->getParent() == PN->getParent()) { 1303 Optional<AliasResult> Alias; 1304 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1305 AliasResult ThisAlias = getBestAAResults().alias( 1306 MemoryLocation(PN->getIncomingValue(i), PNSize), 1307 MemoryLocation( 1308 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size), 1309 AAQI); 1310 if (Alias) 1311 *Alias = MergeAliasResults(*Alias, ThisAlias); 1312 else 1313 Alias = ThisAlias; 1314 if (*Alias == AliasResult::MayAlias) 1315 break; 1316 } 1317 return *Alias; 1318 } 1319 1320 SmallVector<Value *, 4> V1Srcs; 1321 // If a phi operand recurses back to the phi, we can still determine NoAlias 1322 // if we don't alias the underlying objects of the other phi operands, as we 1323 // know that the recursive phi needs to be based on them in some way. 1324 bool isRecursive = false; 1325 auto CheckForRecPhi = [&](Value *PV) { 1326 if (!EnableRecPhiAnalysis) 1327 return false; 1328 if (getUnderlyingObject(PV) == PN) { 1329 isRecursive = true; 1330 return true; 1331 } 1332 return false; 1333 }; 1334 1335 if (PV) { 1336 // If we have PhiValues then use it to get the underlying phi values. 1337 const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN); 1338 // If we have more phi values than the search depth then return MayAlias 1339 // conservatively to avoid compile time explosion. The worst possible case 1340 // is if both sides are PHI nodes. In which case, this is O(m x n) time 1341 // where 'm' and 'n' are the number of PHI sources. 1342 if (PhiValueSet.size() > MaxLookupSearchDepth) 1343 return AliasResult::MayAlias; 1344 // Add the values to V1Srcs 1345 for (Value *PV1 : PhiValueSet) { 1346 if (CheckForRecPhi(PV1)) 1347 continue; 1348 V1Srcs.push_back(PV1); 1349 } 1350 } else { 1351 // If we don't have PhiInfo then just look at the operands of the phi itself 1352 // FIXME: Remove this once we can guarantee that we have PhiInfo always 1353 SmallPtrSet<Value *, 4> UniqueSrc; 1354 Value *OnePhi = nullptr; 1355 for (Value *PV1 : PN->incoming_values()) { 1356 if (isa<PHINode>(PV1)) { 1357 if (OnePhi && OnePhi != PV1) { 1358 // To control potential compile time explosion, we choose to be 1359 // conserviate when we have more than one Phi input. It is important 1360 // that we handle the single phi case as that lets us handle LCSSA 1361 // phi nodes and (combined with the recursive phi handling) simple 1362 // pointer induction variable patterns. 1363 return AliasResult::MayAlias; 1364 } 1365 OnePhi = PV1; 1366 } 1367 1368 if (CheckForRecPhi(PV1)) 1369 continue; 1370 1371 if (UniqueSrc.insert(PV1).second) 1372 V1Srcs.push_back(PV1); 1373 } 1374 1375 if (OnePhi && UniqueSrc.size() > 1) 1376 // Out of an abundance of caution, allow only the trivial lcssa and 1377 // recursive phi cases. 1378 return AliasResult::MayAlias; 1379 } 1380 1381 // If V1Srcs is empty then that means that the phi has no underlying non-phi 1382 // value. This should only be possible in blocks unreachable from the entry 1383 // block, but return MayAlias just in case. 1384 if (V1Srcs.empty()) 1385 return AliasResult::MayAlias; 1386 1387 // If this PHI node is recursive, indicate that the pointer may be moved 1388 // across iterations. We can only prove NoAlias if different underlying 1389 // objects are involved. 1390 if (isRecursive) 1391 PNSize = LocationSize::beforeOrAfterPointer(); 1392 1393 // In the recursive alias queries below, we may compare values from two 1394 // different loop iterations. Keep track of visited phi blocks, which will 1395 // be used when determining value equivalence. 1396 bool BlockInserted = VisitedPhiBBs.insert(PN->getParent()).second; 1397 auto _ = make_scope_exit([&]() { 1398 if (BlockInserted) 1399 VisitedPhiBBs.erase(PN->getParent()); 1400 }); 1401 1402 // If we inserted a block into VisitedPhiBBs, alias analysis results that 1403 // have been cached earlier may no longer be valid. Perform recursive queries 1404 // with a new AAQueryInfo. 1405 AAQueryInfo NewAAQI = AAQI.withEmptyCache(); 1406 AAQueryInfo *UseAAQI = BlockInserted ? &NewAAQI : &AAQI; 1407 1408 AliasResult Alias = getBestAAResults().alias( 1409 MemoryLocation(V2, V2Size), 1410 MemoryLocation(V1Srcs[0], PNSize), *UseAAQI); 1411 1412 // Early exit if the check of the first PHI source against V2 is MayAlias. 1413 // Other results are not possible. 1414 if (Alias == AliasResult::MayAlias) 1415 return AliasResult::MayAlias; 1416 // With recursive phis we cannot guarantee that MustAlias/PartialAlias will 1417 // remain valid to all elements and needs to conservatively return MayAlias. 1418 if (isRecursive && Alias != AliasResult::NoAlias) 1419 return AliasResult::MayAlias; 1420 1421 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1422 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1423 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1424 Value *V = V1Srcs[i]; 1425 1426 AliasResult ThisAlias = getBestAAResults().alias( 1427 MemoryLocation(V2, V2Size), MemoryLocation(V, PNSize), *UseAAQI); 1428 Alias = MergeAliasResults(ThisAlias, Alias); 1429 if (Alias == AliasResult::MayAlias) 1430 break; 1431 } 1432 1433 return Alias; 1434 } 1435 1436 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1437 /// array references. 1438 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size, 1439 const Value *V2, LocationSize V2Size, 1440 AAQueryInfo &AAQI) { 1441 // If either of the memory references is empty, it doesn't matter what the 1442 // pointer values are. 1443 if (V1Size.isZero() || V2Size.isZero()) 1444 return AliasResult::NoAlias; 1445 1446 // Strip off any casts if they exist. 1447 V1 = V1->stripPointerCastsForAliasAnalysis(); 1448 V2 = V2->stripPointerCastsForAliasAnalysis(); 1449 1450 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1451 // value for undef that aliases nothing in the program. 1452 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1453 return AliasResult::NoAlias; 1454 1455 // Are we checking for alias of the same value? 1456 // Because we look 'through' phi nodes, we could look at "Value" pointers from 1457 // different iterations. We must therefore make sure that this is not the 1458 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1459 // happen by looking at the visited phi nodes and making sure they cannot 1460 // reach the value. 1461 if (isValueEqualInPotentialCycles(V1, V2)) 1462 return AliasResult::MustAlias; 1463 1464 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1465 return AliasResult::NoAlias; // Scalars cannot alias each other 1466 1467 // Figure out what objects these things are pointing to if we can. 1468 const Value *O1 = getUnderlyingObject(V1, MaxLookupSearchDepth); 1469 const Value *O2 = getUnderlyingObject(V2, MaxLookupSearchDepth); 1470 1471 // Null values in the default address space don't point to any object, so they 1472 // don't alias any other pointer. 1473 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1474 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1475 return AliasResult::NoAlias; 1476 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1477 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1478 return AliasResult::NoAlias; 1479 1480 if (O1 != O2) { 1481 // If V1/V2 point to two different objects, we know that we have no alias. 1482 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1483 return AliasResult::NoAlias; 1484 1485 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1486 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1487 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1488 return AliasResult::NoAlias; 1489 1490 // Function arguments can't alias with things that are known to be 1491 // unambigously identified at the function level. 1492 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1493 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1494 return AliasResult::NoAlias; 1495 1496 // If one pointer is the result of a call/invoke or load and the other is a 1497 // non-escaping local object within the same function, then we know the 1498 // object couldn't escape to a point where the call could return it. 1499 // 1500 // Note that if the pointers are in different functions, there are a 1501 // variety of complications. A call with a nocapture argument may still 1502 // temporary store the nocapture argument's value in a temporary memory 1503 // location if that memory location doesn't escape. Or it may pass a 1504 // nocapture value to other functions as long as they don't capture it. 1505 if (isEscapeSource(O1) && 1506 isNonEscapingLocalObject(O2, &AAQI.IsCapturedCache)) 1507 return AliasResult::NoAlias; 1508 if (isEscapeSource(O2) && 1509 isNonEscapingLocalObject(O1, &AAQI.IsCapturedCache)) 1510 return AliasResult::NoAlias; 1511 } 1512 1513 // If the size of one access is larger than the entire object on the other 1514 // side, then we know such behavior is undefined and can assume no alias. 1515 bool NullIsValidLocation = NullPointerIsDefined(&F); 1516 if ((isObjectSmallerThan( 1517 O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL, 1518 TLI, NullIsValidLocation)) || 1519 (isObjectSmallerThan( 1520 O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL, 1521 TLI, NullIsValidLocation))) 1522 return AliasResult::NoAlias; 1523 1524 // If one the accesses may be before the accessed pointer, canonicalize this 1525 // by using unknown after-pointer sizes for both accesses. This is 1526 // equivalent, because regardless of which pointer is lower, one of them 1527 // will always came after the other, as long as the underlying objects aren't 1528 // disjoint. We do this so that the rest of BasicAA does not have to deal 1529 // with accesses before the base pointer, and to improve cache utilization by 1530 // merging equivalent states. 1531 if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) { 1532 V1Size = LocationSize::afterPointer(); 1533 V2Size = LocationSize::afterPointer(); 1534 } 1535 1536 // FIXME: If this depth limit is hit, then we may cache sub-optimal results 1537 // for recursive queries. For this reason, this limit is chosen to be large 1538 // enough to be very rarely hit, while still being small enough to avoid 1539 // stack overflows. 1540 if (AAQI.Depth >= 512) 1541 return AliasResult::MayAlias; 1542 1543 // Check the cache before climbing up use-def chains. This also terminates 1544 // otherwise infinitely recursive queries. 1545 AAQueryInfo::LocPair Locs({V1, V1Size}, {V2, V2Size}); 1546 const bool Swapped = V1 > V2; 1547 if (Swapped) 1548 std::swap(Locs.first, Locs.second); 1549 const auto &Pair = AAQI.AliasCache.try_emplace( 1550 Locs, AAQueryInfo::CacheEntry{AliasResult::NoAlias, 0}); 1551 if (!Pair.second) { 1552 auto &Entry = Pair.first->second; 1553 if (!Entry.isDefinitive()) { 1554 // Remember that we used an assumption. 1555 ++Entry.NumAssumptionUses; 1556 ++AAQI.NumAssumptionUses; 1557 } 1558 // Cache contains sorted {V1,V2} pairs but we should return original order. 1559 auto Result = Entry.Result; 1560 Result.swap(Swapped); 1561 return Result; 1562 } 1563 1564 int OrigNumAssumptionUses = AAQI.NumAssumptionUses; 1565 unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size(); 1566 AliasResult Result = 1567 aliasCheckRecursive(V1, V1Size, V2, V2Size, AAQI, O1, O2); 1568 1569 auto It = AAQI.AliasCache.find(Locs); 1570 assert(It != AAQI.AliasCache.end() && "Must be in cache"); 1571 auto &Entry = It->second; 1572 1573 // Check whether a NoAlias assumption has been used, but disproven. 1574 bool AssumptionDisproven = 1575 Entry.NumAssumptionUses > 0 && Result != AliasResult::NoAlias; 1576 if (AssumptionDisproven) 1577 Result = AliasResult::MayAlias; 1578 1579 // This is a definitive result now, when considered as a root query. 1580 AAQI.NumAssumptionUses -= Entry.NumAssumptionUses; 1581 Entry.Result = Result; 1582 // Cache contains sorted {V1,V2} pairs. 1583 Entry.Result.swap(Swapped); 1584 Entry.NumAssumptionUses = -1; 1585 1586 // If the assumption has been disproven, remove any results that may have 1587 // been based on this assumption. Do this after the Entry updates above to 1588 // avoid iterator invalidation. 1589 if (AssumptionDisproven) 1590 while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults) 1591 AAQI.AliasCache.erase(AAQI.AssumptionBasedResults.pop_back_val()); 1592 1593 // The result may still be based on assumptions higher up in the chain. 1594 // Remember it, so it can be purged from the cache later. 1595 if (OrigNumAssumptionUses != AAQI.NumAssumptionUses && 1596 Result != AliasResult::MayAlias) 1597 AAQI.AssumptionBasedResults.push_back(Locs); 1598 return Result; 1599 } 1600 1601 AliasResult BasicAAResult::aliasCheckRecursive( 1602 const Value *V1, LocationSize V1Size, 1603 const Value *V2, LocationSize V2Size, 1604 AAQueryInfo &AAQI, const Value *O1, const Value *O2) { 1605 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1606 AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, O1, O2, AAQI); 1607 if (Result != AliasResult::MayAlias) 1608 return Result; 1609 } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) { 1610 AliasResult Result = aliasGEP(GV2, V2Size, V1, V1Size, O2, O1, AAQI); 1611 if (Result != AliasResult::MayAlias) 1612 return Result; 1613 } 1614 1615 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1616 AliasResult Result = aliasPHI(PN, V1Size, V2, V2Size, AAQI); 1617 if (Result != AliasResult::MayAlias) 1618 return Result; 1619 } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) { 1620 AliasResult Result = aliasPHI(PN, V2Size, V1, V1Size, AAQI); 1621 if (Result != AliasResult::MayAlias) 1622 return Result; 1623 } 1624 1625 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1626 AliasResult Result = aliasSelect(S1, V1Size, V2, V2Size, AAQI); 1627 if (Result != AliasResult::MayAlias) 1628 return Result; 1629 } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) { 1630 AliasResult Result = aliasSelect(S2, V2Size, V1, V1Size, AAQI); 1631 if (Result != AliasResult::MayAlias) 1632 return Result; 1633 } 1634 1635 // If both pointers are pointing into the same object and one of them 1636 // accesses the entire object, then the accesses must overlap in some way. 1637 if (O1 == O2) { 1638 bool NullIsValidLocation = NullPointerIsDefined(&F); 1639 if (V1Size.isPrecise() && V2Size.isPrecise() && 1640 (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) || 1641 isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation))) 1642 return AliasResult::PartialAlias; 1643 } 1644 1645 return AliasResult::MayAlias; 1646 } 1647 1648 /// Check whether two Values can be considered equivalent. 1649 /// 1650 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether 1651 /// they can not be part of a cycle in the value graph by looking at all 1652 /// visited phi nodes an making sure that the phis cannot reach the value. We 1653 /// have to do this because we are looking through phi nodes (That is we say 1654 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1655 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1656 const Value *V2) { 1657 if (V != V2) 1658 return false; 1659 1660 const Instruction *Inst = dyn_cast<Instruction>(V); 1661 if (!Inst) 1662 return true; 1663 1664 if (VisitedPhiBBs.empty()) 1665 return true; 1666 1667 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1668 return false; 1669 1670 // Make sure that the visited phis cannot reach the Value. This ensures that 1671 // the Values cannot come from different iterations of a potential cycle the 1672 // phi nodes could be involved in. 1673 for (auto *P : VisitedPhiBBs) 1674 if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT)) 1675 return false; 1676 1677 return true; 1678 } 1679 1680 /// Computes the symbolic difference between two de-composed GEPs. 1681 /// 1682 /// Dest and Src are the variable indices from two decomposed GetElementPtr 1683 /// instructions GEP1 and GEP2 which have common base pointers. 1684 void BasicAAResult::GetIndexDifference( 1685 SmallVectorImpl<VariableGEPIndex> &Dest, 1686 const SmallVectorImpl<VariableGEPIndex> &Src) { 1687 if (Src.empty()) 1688 return; 1689 1690 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1691 const Value *V = Src[i].V; 1692 unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits; 1693 APInt Scale = Src[i].Scale; 1694 1695 // Find V in Dest. This is N^2, but pointer indices almost never have more 1696 // than a few variable indexes. 1697 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1698 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1699 Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits) 1700 continue; 1701 1702 // If we found it, subtract off Scale V's from the entry in Dest. If it 1703 // goes to zero, remove the entry. 1704 if (Dest[j].Scale != Scale) 1705 Dest[j].Scale -= Scale; 1706 else 1707 Dest.erase(Dest.begin() + j); 1708 Scale = 0; 1709 break; 1710 } 1711 1712 // If we didn't consume this entry, add it to the end of the Dest list. 1713 if (!!Scale) { 1714 VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale, Src[i].CxtI}; 1715 Dest.push_back(Entry); 1716 } 1717 } 1718 } 1719 1720 bool BasicAAResult::constantOffsetHeuristic( 1721 const SmallVectorImpl<VariableGEPIndex> &VarIndices, 1722 LocationSize MaybeV1Size, LocationSize MaybeV2Size, const APInt &BaseOffset, 1723 AssumptionCache *AC, DominatorTree *DT) { 1724 if (VarIndices.size() != 2 || !MaybeV1Size.hasValue() || 1725 !MaybeV2Size.hasValue()) 1726 return false; 1727 1728 const uint64_t V1Size = MaybeV1Size.getValue(); 1729 const uint64_t V2Size = MaybeV2Size.getValue(); 1730 1731 const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1]; 1732 1733 if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits || 1734 Var0.Scale != -Var1.Scale || Var0.V->getType() != Var1.V->getType()) 1735 return false; 1736 1737 // We'll strip off the Extensions of Var0 and Var1 and do another round 1738 // of GetLinearExpression decomposition. In the example above, if Var0 1739 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 1740 1741 LinearExpression E0 = 1742 GetLinearExpression(ExtendedValue(Var0.V), DL, 0, AC, DT); 1743 LinearExpression E1 = 1744 GetLinearExpression(ExtendedValue(Var1.V), DL, 0, AC, DT); 1745 if (E0.Scale != E1.Scale || E0.Val.ZExtBits != E1.Val.ZExtBits || 1746 E0.Val.SExtBits != E1.Val.SExtBits || 1747 !isValueEqualInPotentialCycles(E0.Val.V, E1.Val.V)) 1748 return false; 1749 1750 // We have a hit - Var0 and Var1 only differ by a constant offset! 1751 1752 // If we've been sext'ed then zext'd the maximum difference between Var0 and 1753 // Var1 is possible to calculate, but we're just interested in the absolute 1754 // minimum difference between the two. The minimum distance may occur due to 1755 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 1756 // the minimum distance between %i and %i + 5 is 3. 1757 APInt MinDiff = E0.Offset - E1.Offset, Wrapped = -MinDiff; 1758 MinDiff = APIntOps::umin(MinDiff, Wrapped); 1759 APInt MinDiffBytes = 1760 MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs(); 1761 1762 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 1763 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 1764 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 1765 // V2Size can fit in the MinDiffBytes gap. 1766 return MinDiffBytes.uge(V1Size + BaseOffset.abs()) && 1767 MinDiffBytes.uge(V2Size + BaseOffset.abs()); 1768 } 1769 1770 //===----------------------------------------------------------------------===// 1771 // BasicAliasAnalysis Pass 1772 //===----------------------------------------------------------------------===// 1773 1774 AnalysisKey BasicAA::Key; 1775 1776 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) { 1777 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1778 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1779 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 1780 auto *PV = AM.getCachedResult<PhiValuesAnalysis>(F); 1781 return BasicAAResult(F.getParent()->getDataLayout(), F, TLI, AC, DT, PV); 1782 } 1783 1784 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 1785 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1786 } 1787 1788 char BasicAAWrapperPass::ID = 0; 1789 1790 void BasicAAWrapperPass::anchor() {} 1791 1792 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa", 1793 "Basic Alias Analysis (stateless AA impl)", true, true) 1794 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1795 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1796 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1797 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass) 1798 INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa", 1799 "Basic Alias Analysis (stateless AA impl)", true, true) 1800 1801 FunctionPass *llvm::createBasicAAWrapperPass() { 1802 return new BasicAAWrapperPass(); 1803 } 1804 1805 bool BasicAAWrapperPass::runOnFunction(Function &F) { 1806 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 1807 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 1808 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); 1809 auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>(); 1810 1811 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F, 1812 TLIWP.getTLI(F), ACT.getAssumptionCache(F), 1813 &DTWP.getDomTree(), 1814 PVWP ? &PVWP->getResult() : nullptr)); 1815 1816 return false; 1817 } 1818 1819 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1820 AU.setPreservesAll(); 1821 AU.addRequiredTransitive<AssumptionCacheTracker>(); 1822 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 1823 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 1824 AU.addUsedIfAvailable<PhiValuesWrapperPass>(); 1825 } 1826 1827 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { 1828 return BasicAAResult( 1829 F.getParent()->getDataLayout(), F, 1830 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 1831 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 1832 } 1833