1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the primary stateless implementation of the
10 // Alias Analysis interface that implements identities (two different
11 // globals cannot alias, etc), but does no stateful analysis.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/BasicAliasAnalysis.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/PhiValues.h"
30 #include "llvm/Analysis/TargetLibraryInfo.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/Argument.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GetElementPtrTypeIterator.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/Metadata.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/User.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/KnownBits.h"
59 #include <cassert>
60 #include <cstdint>
61 #include <cstdlib>
62 #include <utility>
63 
64 #define DEBUG_TYPE "basicaa"
65 
66 using namespace llvm;
67 
68 /// Enable analysis of recursive PHI nodes.
69 static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden,
70                                           cl::init(true));
71 
72 /// By default, even on 32-bit architectures we use 64-bit integers for
73 /// calculations. This will allow us to more-aggressively decompose indexing
74 /// expressions calculated using i64 values (e.g., long long in C) which is
75 /// common enough to worry about.
76 static cl::opt<bool> ForceAtLeast64Bits("basic-aa-force-at-least-64b",
77                                         cl::Hidden, cl::init(true));
78 static cl::opt<bool> DoubleCalcBits("basic-aa-double-calc-bits",
79                                     cl::Hidden, cl::init(false));
80 
81 /// SearchLimitReached / SearchTimes shows how often the limit of
82 /// to decompose GEPs is reached. It will affect the precision
83 /// of basic alias analysis.
84 STATISTIC(SearchLimitReached, "Number of times the limit to "
85                               "decompose GEPs is reached");
86 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
87 
88 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
89 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
90 /// careful with value equivalence. We use reachability to make sure a value
91 /// cannot be involved in a cycle.
92 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
93 
94 // The max limit of the search depth in DecomposeGEPExpression() and
95 // getUnderlyingObject(), both functions need to use the same search
96 // depth otherwise the algorithm in aliasGEP will assert.
97 static const unsigned MaxLookupSearchDepth = 6;
98 
99 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
100                                FunctionAnalysisManager::Invalidator &Inv) {
101   // We don't care if this analysis itself is preserved, it has no state. But
102   // we need to check that the analyses it depends on have been. Note that we
103   // may be created without handles to some analyses and in that case don't
104   // depend on them.
105   if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
106       (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) ||
107       (LI && Inv.invalidate<LoopAnalysis>(Fn, PA)) ||
108       (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA)))
109     return true;
110 
111   // Otherwise this analysis result remains valid.
112   return false;
113 }
114 
115 //===----------------------------------------------------------------------===//
116 // Useful predicates
117 //===----------------------------------------------------------------------===//
118 
119 /// Returns true if the pointer is one which would have been considered an
120 /// escape by isNonEscapingLocalObject.
121 static bool isEscapeSource(const Value *V) {
122   if (isa<CallBase>(V))
123     return true;
124 
125   if (isa<Argument>(V))
126     return true;
127 
128   // The load case works because isNonEscapingLocalObject considers all
129   // stores to be escapes (it passes true for the StoreCaptures argument
130   // to PointerMayBeCaptured).
131   if (isa<LoadInst>(V))
132     return true;
133 
134   return false;
135 }
136 
137 /// Returns the size of the object specified by V or UnknownSize if unknown.
138 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
139                               const TargetLibraryInfo &TLI,
140                               bool NullIsValidLoc,
141                               bool RoundToAlign = false) {
142   uint64_t Size;
143   ObjectSizeOpts Opts;
144   Opts.RoundToAlign = RoundToAlign;
145   Opts.NullIsUnknownSize = NullIsValidLoc;
146   if (getObjectSize(V, Size, DL, &TLI, Opts))
147     return Size;
148   return MemoryLocation::UnknownSize;
149 }
150 
151 /// Returns true if we can prove that the object specified by V is smaller than
152 /// Size.
153 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
154                                 const DataLayout &DL,
155                                 const TargetLibraryInfo &TLI,
156                                 bool NullIsValidLoc) {
157   // Note that the meanings of the "object" are slightly different in the
158   // following contexts:
159   //    c1: llvm::getObjectSize()
160   //    c2: llvm.objectsize() intrinsic
161   //    c3: isObjectSmallerThan()
162   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
163   // refers to the "entire object".
164   //
165   //  Consider this example:
166   //     char *p = (char*)malloc(100)
167   //     char *q = p+80;
168   //
169   //  In the context of c1 and c2, the "object" pointed by q refers to the
170   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
171   //
172   //  However, in the context of c3, the "object" refers to the chunk of memory
173   // being allocated. So, the "object" has 100 bytes, and q points to the middle
174   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
175   // parameter, before the llvm::getObjectSize() is called to get the size of
176   // entire object, we should:
177   //    - either rewind the pointer q to the base-address of the object in
178   //      question (in this case rewind to p), or
179   //    - just give up. It is up to caller to make sure the pointer is pointing
180   //      to the base address the object.
181   //
182   // We go for 2nd option for simplicity.
183   if (!isIdentifiedObject(V))
184     return false;
185 
186   // This function needs to use the aligned object size because we allow
187   // reads a bit past the end given sufficient alignment.
188   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
189                                       /*RoundToAlign*/ true);
190 
191   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
192 }
193 
194 /// Return the minimal extent from \p V to the end of the underlying object,
195 /// assuming the result is used in an aliasing query. E.g., we do use the query
196 /// location size and the fact that null pointers cannot alias here.
197 static uint64_t getMinimalExtentFrom(const Value &V,
198                                      const LocationSize &LocSize,
199                                      const DataLayout &DL,
200                                      bool NullIsValidLoc) {
201   // If we have dereferenceability information we know a lower bound for the
202   // extent as accesses for a lower offset would be valid. We need to exclude
203   // the "or null" part if null is a valid pointer.
204   bool CanBeNull;
205   uint64_t DerefBytes = V.getPointerDereferenceableBytes(DL, CanBeNull);
206   DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes;
207   // If queried with a precise location size, we assume that location size to be
208   // accessed, thus valid.
209   if (LocSize.isPrecise())
210     DerefBytes = std::max(DerefBytes, LocSize.getValue());
211   return DerefBytes;
212 }
213 
214 /// Returns true if we can prove that the object specified by V has size Size.
215 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
216                          const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
217   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc);
218   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
219 }
220 
221 //===----------------------------------------------------------------------===//
222 // GetElementPtr Instruction Decomposition and Analysis
223 //===----------------------------------------------------------------------===//
224 
225 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
226 /// B are constant integers.
227 ///
228 /// Returns the scale and offset values as APInts and return V as a Value*, and
229 /// return whether we looked through any sign or zero extends.  The incoming
230 /// Value is known to have IntegerType, and it may already be sign or zero
231 /// extended.
232 ///
233 /// Note that this looks through extends, so the high bits may not be
234 /// represented in the result.
235 /*static*/ const Value *BasicAAResult::GetLinearExpression(
236     const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
237     unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
238     AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
239   assert(V->getType()->isIntegerTy() && "Not an integer value");
240 
241   // Limit our recursion depth.
242   if (Depth == 6) {
243     Scale = 1;
244     Offset = 0;
245     return V;
246   }
247 
248   if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
249     // If it's a constant, just convert it to an offset and remove the variable.
250     // If we've been called recursively, the Offset bit width will be greater
251     // than the constant's (the Offset's always as wide as the outermost call),
252     // so we'll zext here and process any extension in the isa<SExtInst> &
253     // isa<ZExtInst> cases below.
254     Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
255     assert(Scale == 0 && "Constant values don't have a scale");
256     return V;
257   }
258 
259   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
260     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
261       // If we've been called recursively, then Offset and Scale will be wider
262       // than the BOp operands. We'll always zext it here as we'll process sign
263       // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
264       APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
265 
266       switch (BOp->getOpcode()) {
267       default:
268         // We don't understand this instruction, so we can't decompose it any
269         // further.
270         Scale = 1;
271         Offset = 0;
272         return V;
273       case Instruction::Or:
274         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
275         // analyze it.
276         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
277                                BOp, DT)) {
278           Scale = 1;
279           Offset = 0;
280           return V;
281         }
282         LLVM_FALLTHROUGH;
283       case Instruction::Add:
284         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
285                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
286         Offset += RHS;
287         break;
288       case Instruction::Sub:
289         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
290                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
291         Offset -= RHS;
292         break;
293       case Instruction::Mul:
294         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
295                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
296         Offset *= RHS;
297         Scale *= RHS;
298         break;
299       case Instruction::Shl:
300         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
301                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
302 
303         // We're trying to linearize an expression of the kind:
304         //   shl i8 -128, 36
305         // where the shift count exceeds the bitwidth of the type.
306         // We can't decompose this further (the expression would return
307         // a poison value).
308         if (Offset.getBitWidth() < RHS.getLimitedValue() ||
309             Scale.getBitWidth() < RHS.getLimitedValue()) {
310           Scale = 1;
311           Offset = 0;
312           return V;
313         }
314 
315         Offset <<= RHS.getLimitedValue();
316         Scale <<= RHS.getLimitedValue();
317         // the semantics of nsw and nuw for left shifts don't match those of
318         // multiplications, so we won't propagate them.
319         NSW = NUW = false;
320         return V;
321       }
322 
323       if (isa<OverflowingBinaryOperator>(BOp)) {
324         NUW &= BOp->hasNoUnsignedWrap();
325         NSW &= BOp->hasNoSignedWrap();
326       }
327       return V;
328     }
329   }
330 
331   // Since GEP indices are sign extended anyway, we don't care about the high
332   // bits of a sign or zero extended value - just scales and offsets.  The
333   // extensions have to be consistent though.
334   if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
335     Value *CastOp = cast<CastInst>(V)->getOperand(0);
336     unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
337     unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
338     unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
339     const Value *Result =
340         GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
341                             Depth + 1, AC, DT, NSW, NUW);
342 
343     // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this
344     // by just incrementing the number of bits we've extended by.
345     unsigned ExtendedBy = NewWidth - SmallWidth;
346 
347     if (isa<SExtInst>(V) && ZExtBits == 0) {
348       // sext(sext(%x, a), b) == sext(%x, a + b)
349 
350       if (NSW) {
351         // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
352         // into sext(%x) + sext(c). We'll sext the Offset ourselves:
353         unsigned OldWidth = Offset.getBitWidth();
354         Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
355       } else {
356         // We may have signed-wrapped, so don't decompose sext(%x + c) into
357         // sext(%x) + sext(c)
358         Scale = 1;
359         Offset = 0;
360         Result = CastOp;
361         ZExtBits = OldZExtBits;
362         SExtBits = OldSExtBits;
363       }
364       SExtBits += ExtendedBy;
365     } else {
366       // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
367 
368       if (!NUW) {
369         // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
370         // zext(%x) + zext(c)
371         Scale = 1;
372         Offset = 0;
373         Result = CastOp;
374         ZExtBits = OldZExtBits;
375         SExtBits = OldSExtBits;
376       }
377       ZExtBits += ExtendedBy;
378     }
379 
380     return Result;
381   }
382 
383   Scale = 1;
384   Offset = 0;
385   return V;
386 }
387 
388 /// To ensure a pointer offset fits in an integer of size PointerSize
389 /// (in bits) when that size is smaller than the maximum pointer size. This is
390 /// an issue, for example, in particular for 32b pointers with negative indices
391 /// that rely on two's complement wrap-arounds for precise alias information
392 /// where the maximum pointer size is 64b.
393 static APInt adjustToPointerSize(const APInt &Offset, unsigned PointerSize) {
394   assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!");
395   unsigned ShiftBits = Offset.getBitWidth() - PointerSize;
396   return (Offset << ShiftBits).ashr(ShiftBits);
397 }
398 
399 static unsigned getMaxPointerSize(const DataLayout &DL) {
400   unsigned MaxPointerSize = DL.getMaxPointerSizeInBits();
401   if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64;
402   if (DoubleCalcBits) MaxPointerSize *= 2;
403 
404   return MaxPointerSize;
405 }
406 
407 /// If V is a symbolic pointer expression, decompose it into a base pointer
408 /// with a constant offset and a number of scaled symbolic offsets.
409 ///
410 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
411 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
412 /// specified amount, but which may have other unrepresented high bits. As
413 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
414 ///
415 /// This function is capable of analyzing everything that getUnderlyingObject
416 /// can look through. To be able to do that getUnderlyingObject and
417 /// DecomposeGEPExpression must use the same search depth
418 /// (MaxLookupSearchDepth).
419 BasicAAResult::DecomposedGEP
420 BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL,
421                                       AssumptionCache *AC, DominatorTree *DT) {
422   // Limit recursion depth to limit compile time in crazy cases.
423   unsigned MaxLookup = MaxLookupSearchDepth;
424   SearchTimes++;
425 
426   unsigned MaxPointerSize = getMaxPointerSize(DL);
427   DecomposedGEP Decomposed;
428   Decomposed.Offset = APInt(MaxPointerSize, 0);
429   Decomposed.HasCompileTimeConstantScale = true;
430   do {
431     // See if this is a bitcast or GEP.
432     const Operator *Op = dyn_cast<Operator>(V);
433     if (!Op) {
434       // The only non-operator case we can handle are GlobalAliases.
435       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
436         if (!GA->isInterposable()) {
437           V = GA->getAliasee();
438           continue;
439         }
440       }
441       Decomposed.Base = V;
442       return Decomposed;
443     }
444 
445     if (Op->getOpcode() == Instruction::BitCast ||
446         Op->getOpcode() == Instruction::AddrSpaceCast) {
447       V = Op->getOperand(0);
448       continue;
449     }
450 
451     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
452     if (!GEPOp) {
453       if (const auto *PHI = dyn_cast<PHINode>(V)) {
454         // Look through single-arg phi nodes created by LCSSA.
455         if (PHI->getNumIncomingValues() == 1) {
456           V = PHI->getIncomingValue(0);
457           continue;
458         }
459       } else if (const auto *Call = dyn_cast<CallBase>(V)) {
460         // CaptureTracking can know about special capturing properties of some
461         // intrinsics like launder.invariant.group, that can't be expressed with
462         // the attributes, but have properties like returning aliasing pointer.
463         // Because some analysis may assume that nocaptured pointer is not
464         // returned from some special intrinsic (because function would have to
465         // be marked with returns attribute), it is crucial to use this function
466         // because it should be in sync with CaptureTracking. Not using it may
467         // cause weird miscompilations where 2 aliasing pointers are assumed to
468         // noalias.
469         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
470           V = RP;
471           continue;
472         }
473       }
474 
475       Decomposed.Base = V;
476       return Decomposed;
477     }
478 
479     // Don't attempt to analyze GEPs over unsized objects.
480     if (!GEPOp->getSourceElementType()->isSized()) {
481       Decomposed.Base = V;
482       return Decomposed;
483     }
484 
485     // Don't attempt to analyze GEPs if index scale is not a compile-time
486     // constant.
487     if (isa<ScalableVectorType>(GEPOp->getSourceElementType())) {
488       Decomposed.Base = V;
489       Decomposed.HasCompileTimeConstantScale = false;
490       return Decomposed;
491     }
492 
493     unsigned AS = GEPOp->getPointerAddressSpace();
494     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
495     gep_type_iterator GTI = gep_type_begin(GEPOp);
496     unsigned PointerSize = DL.getPointerSizeInBits(AS);
497     // Assume all GEP operands are constants until proven otherwise.
498     bool GepHasConstantOffset = true;
499     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
500          I != E; ++I, ++GTI) {
501       const Value *Index = *I;
502       // Compute the (potentially symbolic) offset in bytes for this index.
503       if (StructType *STy = GTI.getStructTypeOrNull()) {
504         // For a struct, add the member offset.
505         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
506         if (FieldNo == 0)
507           continue;
508 
509         Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo);
510         continue;
511       }
512 
513       // For an array/pointer, add the element offset, explicitly scaled.
514       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
515         if (CIdx->isZero())
516           continue;
517         Decomposed.Offset +=
518             DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize() *
519             CIdx->getValue().sextOrTrunc(MaxPointerSize);
520         continue;
521       }
522 
523       GepHasConstantOffset = false;
524 
525       APInt Scale(MaxPointerSize,
526                   DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize());
527       unsigned ZExtBits = 0, SExtBits = 0;
528 
529       // If the integer type is smaller than the pointer size, it is implicitly
530       // sign extended to pointer size.
531       unsigned Width = Index->getType()->getIntegerBitWidth();
532       if (PointerSize > Width)
533         SExtBits += PointerSize - Width;
534 
535       // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
536       APInt IndexScale(Width, 0), IndexOffset(Width, 0);
537       bool NSW = true, NUW = true;
538       const Value *OrigIndex = Index;
539       Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
540                                   SExtBits, DL, 0, AC, DT, NSW, NUW);
541 
542       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
543       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
544 
545       // It can be the case that, even through C1*V+C2 does not overflow for
546       // relevant values of V, (C2*Scale) can overflow. In that case, we cannot
547       // decompose the expression in this way.
548       //
549       // FIXME: C1*Scale and the other operations in the decomposed
550       // (C1*Scale)*V+C2*Scale can also overflow. We should check for this
551       // possibility.
552       bool Overflow;
553       APInt ScaledOffset = IndexOffset.sextOrTrunc(MaxPointerSize)
554                            .smul_ov(Scale, Overflow);
555       if (Overflow) {
556         Index = OrigIndex;
557         IndexScale = 1;
558         IndexOffset = 0;
559 
560         ZExtBits = SExtBits = 0;
561         if (PointerSize > Width)
562           SExtBits += PointerSize - Width;
563       } else {
564         Decomposed.Offset += ScaledOffset;
565         Scale *= IndexScale.sextOrTrunc(MaxPointerSize);
566       }
567 
568       // If we already had an occurrence of this index variable, merge this
569       // scale into it.  For example, we want to handle:
570       //   A[x][x] -> x*16 + x*4 -> x*20
571       // This also ensures that 'x' only appears in the index list once.
572       for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
573         if (Decomposed.VarIndices[i].V == Index &&
574             Decomposed.VarIndices[i].ZExtBits == ZExtBits &&
575             Decomposed.VarIndices[i].SExtBits == SExtBits) {
576           Scale += Decomposed.VarIndices[i].Scale;
577           Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
578           break;
579         }
580       }
581 
582       // Make sure that we have a scale that makes sense for this target's
583       // pointer size.
584       Scale = adjustToPointerSize(Scale, PointerSize);
585 
586       if (!!Scale) {
587         VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, Scale};
588         Decomposed.VarIndices.push_back(Entry);
589       }
590     }
591 
592     // Take care of wrap-arounds
593     if (GepHasConstantOffset)
594       Decomposed.Offset = adjustToPointerSize(Decomposed.Offset, PointerSize);
595 
596     // Analyze the base pointer next.
597     V = GEPOp->getOperand(0);
598   } while (--MaxLookup);
599 
600   // If the chain of expressions is too deep, just return early.
601   Decomposed.Base = V;
602   SearchLimitReached++;
603   return Decomposed;
604 }
605 
606 /// Returns whether the given pointer value points to memory that is local to
607 /// the function, with global constants being considered local to all
608 /// functions.
609 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
610                                            AAQueryInfo &AAQI, bool OrLocal) {
611   assert(Visited.empty() && "Visited must be cleared after use!");
612 
613   unsigned MaxLookup = 8;
614   SmallVector<const Value *, 16> Worklist;
615   Worklist.push_back(Loc.Ptr);
616   do {
617     const Value *V = getUnderlyingObject(Worklist.pop_back_val());
618     if (!Visited.insert(V).second) {
619       Visited.clear();
620       return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
621     }
622 
623     // An alloca instruction defines local memory.
624     if (OrLocal && isa<AllocaInst>(V))
625       continue;
626 
627     // A global constant counts as local memory for our purposes.
628     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
629       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
630       // global to be marked constant in some modules and non-constant in
631       // others.  GV may even be a declaration, not a definition.
632       if (!GV->isConstant()) {
633         Visited.clear();
634         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
635       }
636       continue;
637     }
638 
639     // If both select values point to local memory, then so does the select.
640     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
641       Worklist.push_back(SI->getTrueValue());
642       Worklist.push_back(SI->getFalseValue());
643       continue;
644     }
645 
646     // If all values incoming to a phi node point to local memory, then so does
647     // the phi.
648     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
649       // Don't bother inspecting phi nodes with many operands.
650       if (PN->getNumIncomingValues() > MaxLookup) {
651         Visited.clear();
652         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
653       }
654       for (Value *IncValue : PN->incoming_values())
655         Worklist.push_back(IncValue);
656       continue;
657     }
658 
659     // Otherwise be conservative.
660     Visited.clear();
661     return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
662   } while (!Worklist.empty() && --MaxLookup);
663 
664   Visited.clear();
665   return Worklist.empty();
666 }
667 
668 /// Returns the behavior when calling the given call site.
669 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) {
670   if (Call->doesNotAccessMemory())
671     // Can't do better than this.
672     return FMRB_DoesNotAccessMemory;
673 
674   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
675 
676   // If the callsite knows it only reads memory, don't return worse
677   // than that.
678   if (Call->onlyReadsMemory())
679     Min = FMRB_OnlyReadsMemory;
680   else if (Call->doesNotReadMemory())
681     Min = FMRB_OnlyWritesMemory;
682 
683   if (Call->onlyAccessesArgMemory())
684     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
685   else if (Call->onlyAccessesInaccessibleMemory())
686     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
687   else if (Call->onlyAccessesInaccessibleMemOrArgMem())
688     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
689 
690   // If the call has operand bundles then aliasing attributes from the function
691   // it calls do not directly apply to the call.  This can be made more precise
692   // in the future.
693   if (!Call->hasOperandBundles())
694     if (const Function *F = Call->getCalledFunction())
695       Min =
696           FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
697 
698   return Min;
699 }
700 
701 /// Returns the behavior when calling the given function. For use when the call
702 /// site is not known.
703 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
704   // If the function declares it doesn't access memory, we can't do better.
705   if (F->doesNotAccessMemory())
706     return FMRB_DoesNotAccessMemory;
707 
708   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
709 
710   // If the function declares it only reads memory, go with that.
711   if (F->onlyReadsMemory())
712     Min = FMRB_OnlyReadsMemory;
713   else if (F->doesNotReadMemory())
714     Min = FMRB_OnlyWritesMemory;
715 
716   if (F->onlyAccessesArgMemory())
717     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
718   else if (F->onlyAccessesInaccessibleMemory())
719     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
720   else if (F->onlyAccessesInaccessibleMemOrArgMem())
721     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
722 
723   return Min;
724 }
725 
726 /// Returns true if this is a writeonly (i.e Mod only) parameter.
727 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx,
728                              const TargetLibraryInfo &TLI) {
729   if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly))
730     return true;
731 
732   // We can bound the aliasing properties of memset_pattern16 just as we can
733   // for memcpy/memset.  This is particularly important because the
734   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
735   // whenever possible.
736   // FIXME Consider handling this in InferFunctionAttr.cpp together with other
737   // attributes.
738   LibFunc F;
739   if (Call->getCalledFunction() &&
740       TLI.getLibFunc(*Call->getCalledFunction(), F) &&
741       F == LibFunc_memset_pattern16 && TLI.has(F))
742     if (ArgIdx == 0)
743       return true;
744 
745   // TODO: memset_pattern4, memset_pattern8
746   // TODO: _chk variants
747   // TODO: strcmp, strcpy
748 
749   return false;
750 }
751 
752 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
753                                            unsigned ArgIdx) {
754   // Checking for known builtin intrinsics and target library functions.
755   if (isWriteOnlyParam(Call, ArgIdx, TLI))
756     return ModRefInfo::Mod;
757 
758   if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly))
759     return ModRefInfo::Ref;
760 
761   if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone))
762     return ModRefInfo::NoModRef;
763 
764   return AAResultBase::getArgModRefInfo(Call, ArgIdx);
765 }
766 
767 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
768   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
769   return II && II->getIntrinsicID() == IID;
770 }
771 
772 #ifndef NDEBUG
773 static const Function *getParent(const Value *V) {
774   if (const Instruction *inst = dyn_cast<Instruction>(V)) {
775     if (!inst->getParent())
776       return nullptr;
777     return inst->getParent()->getParent();
778   }
779 
780   if (const Argument *arg = dyn_cast<Argument>(V))
781     return arg->getParent();
782 
783   return nullptr;
784 }
785 
786 static bool notDifferentParent(const Value *O1, const Value *O2) {
787 
788   const Function *F1 = getParent(O1);
789   const Function *F2 = getParent(O2);
790 
791   return !F1 || !F2 || F1 == F2;
792 }
793 #endif
794 
795 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
796                                  const MemoryLocation &LocB,
797                                  AAQueryInfo &AAQI) {
798   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
799          "BasicAliasAnalysis doesn't support interprocedural queries.");
800 
801   // If we have a directly cached entry for these locations, we have recursed
802   // through this once, so just return the cached results. Notably, when this
803   // happens, we don't clear the cache.
804   AAQueryInfo::LocPair Locs(LocA, LocB);
805   if (Locs.first.Ptr > Locs.second.Ptr)
806     std::swap(Locs.first, Locs.second);
807   auto CacheIt = AAQI.AliasCache.find(Locs);
808   if (CacheIt != AAQI.AliasCache.end())
809     return CacheIt->second;
810 
811   AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
812                                  LocB.Size, LocB.AATags, AAQI);
813 
814   assert(VisitedPhiBBs.empty());
815   return Alias;
816 }
817 
818 /// Checks to see if the specified callsite can clobber the specified memory
819 /// object.
820 ///
821 /// Since we only look at local properties of this function, we really can't
822 /// say much about this query.  We do, however, use simple "address taken"
823 /// analysis on local objects.
824 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
825                                         const MemoryLocation &Loc,
826                                         AAQueryInfo &AAQI) {
827   assert(notDifferentParent(Call, Loc.Ptr) &&
828          "AliasAnalysis query involving multiple functions!");
829 
830   const Value *Object = getUnderlyingObject(Loc.Ptr);
831 
832   // Calls marked 'tail' cannot read or write allocas from the current frame
833   // because the current frame might be destroyed by the time they run. However,
834   // a tail call may use an alloca with byval. Calling with byval copies the
835   // contents of the alloca into argument registers or stack slots, so there is
836   // no lifetime issue.
837   if (isa<AllocaInst>(Object))
838     if (const CallInst *CI = dyn_cast<CallInst>(Call))
839       if (CI->isTailCall() &&
840           !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal))
841         return ModRefInfo::NoModRef;
842 
843   // Stack restore is able to modify unescaped dynamic allocas. Assume it may
844   // modify them even though the alloca is not escaped.
845   if (auto *AI = dyn_cast<AllocaInst>(Object))
846     if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore))
847       return ModRefInfo::Mod;
848 
849   // If the pointer is to a locally allocated object that does not escape,
850   // then the call can not mod/ref the pointer unless the call takes the pointer
851   // as an argument, and itself doesn't capture it.
852   if (!isa<Constant>(Object) && Call != Object &&
853       isNonEscapingLocalObject(Object, &AAQI.IsCapturedCache)) {
854 
855     // Optimistically assume that call doesn't touch Object and check this
856     // assumption in the following loop.
857     ModRefInfo Result = ModRefInfo::NoModRef;
858     bool IsMustAlias = true;
859 
860     unsigned OperandNo = 0;
861     for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
862          CI != CE; ++CI, ++OperandNo) {
863       // Only look at the no-capture or byval pointer arguments.  If this
864       // pointer were passed to arguments that were neither of these, then it
865       // couldn't be no-capture.
866       if (!(*CI)->getType()->isPointerTy() ||
867           (!Call->doesNotCapture(OperandNo) &&
868            OperandNo < Call->getNumArgOperands() &&
869            !Call->isByValArgument(OperandNo)))
870         continue;
871 
872       // Call doesn't access memory through this operand, so we don't care
873       // if it aliases with Object.
874       if (Call->doesNotAccessMemory(OperandNo))
875         continue;
876 
877       // If this is a no-capture pointer argument, see if we can tell that it
878       // is impossible to alias the pointer we're checking.
879       AliasResult AR = getBestAAResults().alias(
880           MemoryLocation::getBeforeOrAfter(*CI),
881           MemoryLocation::getBeforeOrAfter(Object), AAQI);
882       if (AR != MustAlias)
883         IsMustAlias = false;
884       // Operand doesn't alias 'Object', continue looking for other aliases
885       if (AR == NoAlias)
886         continue;
887       // Operand aliases 'Object', but call doesn't modify it. Strengthen
888       // initial assumption and keep looking in case if there are more aliases.
889       if (Call->onlyReadsMemory(OperandNo)) {
890         Result = setRef(Result);
891         continue;
892       }
893       // Operand aliases 'Object' but call only writes into it.
894       if (Call->doesNotReadMemory(OperandNo)) {
895         Result = setMod(Result);
896         continue;
897       }
898       // This operand aliases 'Object' and call reads and writes into it.
899       // Setting ModRef will not yield an early return below, MustAlias is not
900       // used further.
901       Result = ModRefInfo::ModRef;
902       break;
903     }
904 
905     // No operand aliases, reset Must bit. Add below if at least one aliases
906     // and all aliases found are MustAlias.
907     if (isNoModRef(Result))
908       IsMustAlias = false;
909 
910     // Early return if we improved mod ref information
911     if (!isModAndRefSet(Result)) {
912       if (isNoModRef(Result))
913         return ModRefInfo::NoModRef;
914       return IsMustAlias ? setMust(Result) : clearMust(Result);
915     }
916   }
917 
918   // If the call is malloc/calloc like, we can assume that it doesn't
919   // modify any IR visible value.  This is only valid because we assume these
920   // routines do not read values visible in the IR.  TODO: Consider special
921   // casing realloc and strdup routines which access only their arguments as
922   // well.  Or alternatively, replace all of this with inaccessiblememonly once
923   // that's implemented fully.
924   if (isMallocOrCallocLikeFn(Call, &TLI)) {
925     // Be conservative if the accessed pointer may alias the allocation -
926     // fallback to the generic handling below.
927     if (getBestAAResults().alias(MemoryLocation::getBeforeOrAfter(Call),
928                                  Loc, AAQI) == NoAlias)
929       return ModRefInfo::NoModRef;
930   }
931 
932   // The semantics of memcpy intrinsics either exactly overlap or do not
933   // overlap, i.e., source and destination of any given memcpy are either
934   // no-alias or must-alias.
935   if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) {
936     AliasResult SrcAA =
937         getBestAAResults().alias(MemoryLocation::getForSource(Inst), Loc, AAQI);
938     AliasResult DestAA =
939         getBestAAResults().alias(MemoryLocation::getForDest(Inst), Loc, AAQI);
940     // It's also possible for Loc to alias both src and dest, or neither.
941     ModRefInfo rv = ModRefInfo::NoModRef;
942     if (SrcAA != NoAlias)
943       rv = setRef(rv);
944     if (DestAA != NoAlias)
945       rv = setMod(rv);
946     return rv;
947   }
948 
949   // While the assume intrinsic is marked as arbitrarily writing so that
950   // proper control dependencies will be maintained, it never aliases any
951   // particular memory location.
952   if (isIntrinsicCall(Call, Intrinsic::assume))
953     return ModRefInfo::NoModRef;
954 
955   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
956   // that proper control dependencies are maintained but they never mods any
957   // particular memory location.
958   //
959   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
960   // heap state at the point the guard is issued needs to be consistent in case
961   // the guard invokes the "deopt" continuation.
962   if (isIntrinsicCall(Call, Intrinsic::experimental_guard))
963     return ModRefInfo::Ref;
964   // The same applies to deoptimize which is essentially a guard(false).
965   if (isIntrinsicCall(Call, Intrinsic::experimental_deoptimize))
966     return ModRefInfo::Ref;
967 
968   // Like assumes, invariant.start intrinsics were also marked as arbitrarily
969   // writing so that proper control dependencies are maintained but they never
970   // mod any particular memory location visible to the IR.
971   // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
972   // intrinsic is now modeled as reading memory. This prevents hoisting the
973   // invariant.start intrinsic over stores. Consider:
974   // *ptr = 40;
975   // *ptr = 50;
976   // invariant_start(ptr)
977   // int val = *ptr;
978   // print(val);
979   //
980   // This cannot be transformed to:
981   //
982   // *ptr = 40;
983   // invariant_start(ptr)
984   // *ptr = 50;
985   // int val = *ptr;
986   // print(val);
987   //
988   // The transformation will cause the second store to be ignored (based on
989   // rules of invariant.start)  and print 40, while the first program always
990   // prints 50.
991   if (isIntrinsicCall(Call, Intrinsic::invariant_start))
992     return ModRefInfo::Ref;
993 
994   // The AAResultBase base class has some smarts, lets use them.
995   return AAResultBase::getModRefInfo(Call, Loc, AAQI);
996 }
997 
998 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
999                                         const CallBase *Call2,
1000                                         AAQueryInfo &AAQI) {
1001   // While the assume intrinsic is marked as arbitrarily writing so that
1002   // proper control dependencies will be maintained, it never aliases any
1003   // particular memory location.
1004   if (isIntrinsicCall(Call1, Intrinsic::assume) ||
1005       isIntrinsicCall(Call2, Intrinsic::assume))
1006     return ModRefInfo::NoModRef;
1007 
1008   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
1009   // that proper control dependencies are maintained but they never mod any
1010   // particular memory location.
1011   //
1012   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1013   // heap state at the point the guard is issued needs to be consistent in case
1014   // the guard invokes the "deopt" continuation.
1015 
1016   // NB! This function is *not* commutative, so we special case two
1017   // possibilities for guard intrinsics.
1018 
1019   if (isIntrinsicCall(Call1, Intrinsic::experimental_guard))
1020     return isModSet(createModRefInfo(getModRefBehavior(Call2)))
1021                ? ModRefInfo::Ref
1022                : ModRefInfo::NoModRef;
1023 
1024   if (isIntrinsicCall(Call2, Intrinsic::experimental_guard))
1025     return isModSet(createModRefInfo(getModRefBehavior(Call1)))
1026                ? ModRefInfo::Mod
1027                : ModRefInfo::NoModRef;
1028 
1029   // The AAResultBase base class has some smarts, lets use them.
1030   return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
1031 }
1032 
1033 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
1034 /// both having the exact same pointer operand.
1035 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
1036                                             LocationSize MaybeV1Size,
1037                                             const GEPOperator *GEP2,
1038                                             LocationSize MaybeV2Size,
1039                                             const DataLayout &DL) {
1040   assert(GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
1041              GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
1042          GEP1->getPointerOperandType() == GEP2->getPointerOperandType() &&
1043          "Expected GEPs with the same pointer operand");
1044 
1045   // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
1046   // such that the struct field accesses provably cannot alias.
1047   // We also need at least two indices (the pointer, and the struct field).
1048   if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
1049       GEP1->getNumIndices() < 2)
1050     return MayAlias;
1051 
1052   // If we don't know the size of the accesses through both GEPs, we can't
1053   // determine whether the struct fields accessed can't alias.
1054   if (!MaybeV1Size.hasValue() || !MaybeV2Size.hasValue())
1055     return MayAlias;
1056 
1057   const uint64_t V1Size = MaybeV1Size.getValue();
1058   const uint64_t V2Size = MaybeV2Size.getValue();
1059 
1060   ConstantInt *C1 =
1061       dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
1062   ConstantInt *C2 =
1063       dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
1064 
1065   // If the last (struct) indices are constants and are equal, the other indices
1066   // might be also be dynamically equal, so the GEPs can alias.
1067   if (C1 && C2) {
1068     unsigned BitWidth = std::max(C1->getBitWidth(), C2->getBitWidth());
1069     if (C1->getValue().sextOrSelf(BitWidth) ==
1070         C2->getValue().sextOrSelf(BitWidth))
1071       return MayAlias;
1072   }
1073 
1074   // Find the last-indexed type of the GEP, i.e., the type you'd get if
1075   // you stripped the last index.
1076   // On the way, look at each indexed type.  If there's something other
1077   // than an array, different indices can lead to different final types.
1078   SmallVector<Value *, 8> IntermediateIndices;
1079 
1080   // Insert the first index; we don't need to check the type indexed
1081   // through it as it only drops the pointer indirection.
1082   assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
1083   IntermediateIndices.push_back(GEP1->getOperand(1));
1084 
1085   // Insert all the remaining indices but the last one.
1086   // Also, check that they all index through arrays.
1087   for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
1088     if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
1089             GEP1->getSourceElementType(), IntermediateIndices)))
1090       return MayAlias;
1091     IntermediateIndices.push_back(GEP1->getOperand(i + 1));
1092   }
1093 
1094   auto *Ty = GetElementPtrInst::getIndexedType(
1095     GEP1->getSourceElementType(), IntermediateIndices);
1096   if (isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
1097     // We know that:
1098     // - both GEPs begin indexing from the exact same pointer;
1099     // - the last indices in both GEPs are constants, indexing into a sequential
1100     //   type (array or vector);
1101     // - both GEPs only index through arrays prior to that.
1102     //
1103     // Because array indices greater than the number of elements are valid in
1104     // GEPs, unless we know the intermediate indices are identical between
1105     // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
1106     // partially overlap. We also need to check that the loaded size matches
1107     // the element size, otherwise we could still have overlap.
1108     Type *LastElementTy = GetElementPtrInst::getTypeAtIndex(Ty, (uint64_t)0);
1109     const uint64_t ElementSize =
1110         DL.getTypeStoreSize(LastElementTy).getFixedSize();
1111     if (V1Size != ElementSize || V2Size != ElementSize)
1112       return MayAlias;
1113 
1114     for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i)
1115       if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1))
1116         return MayAlias;
1117 
1118     // Now we know that the array/pointer that GEP1 indexes into and that
1119     // that GEP2 indexes into must either precisely overlap or be disjoint.
1120     // Because they cannot partially overlap and because fields in an array
1121     // cannot overlap, if we can prove the final indices are different between
1122     // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
1123 
1124     // If the last indices are constants, we've already checked they don't
1125     // equal each other so we can exit early.
1126     if (C1 && C2)
1127       return NoAlias;
1128     {
1129       Value *GEP1LastIdx = GEP1->getOperand(GEP1->getNumOperands() - 1);
1130       Value *GEP2LastIdx = GEP2->getOperand(GEP2->getNumOperands() - 1);
1131       if (isa<PHINode>(GEP1LastIdx) || isa<PHINode>(GEP2LastIdx)) {
1132         // If one of the indices is a PHI node, be safe and only use
1133         // computeKnownBits so we don't make any assumptions about the
1134         // relationships between the two indices. This is important if we're
1135         // asking about values from different loop iterations. See PR32314.
1136         // TODO: We may be able to change the check so we only do this when
1137         // we definitely looked through a PHINode.
1138         if (GEP1LastIdx != GEP2LastIdx &&
1139             GEP1LastIdx->getType() == GEP2LastIdx->getType()) {
1140           KnownBits Known1 = computeKnownBits(GEP1LastIdx, DL);
1141           KnownBits Known2 = computeKnownBits(GEP2LastIdx, DL);
1142           if (Known1.Zero.intersects(Known2.One) ||
1143               Known1.One.intersects(Known2.Zero))
1144             return NoAlias;
1145         }
1146       } else if (isKnownNonEqual(GEP1LastIdx, GEP2LastIdx, DL))
1147         return NoAlias;
1148     }
1149   }
1150   return MayAlias;
1151 }
1152 
1153 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the
1154 // beginning of the object the GEP points would have a negative offset with
1155 // repsect to the alloca, that means the GEP can not alias pointer (b).
1156 // Note that the pointer based on the alloca may not be a GEP. For
1157 // example, it may be the alloca itself.
1158 // The same applies if (b) is based on a GlobalVariable. Note that just being
1159 // based on isIdentifiedObject() is not enough - we need an identified object
1160 // that does not permit access to negative offsets. For example, a negative
1161 // offset from a noalias argument or call can be inbounds w.r.t the actual
1162 // underlying object.
1163 //
1164 // For example, consider:
1165 //
1166 //   struct { int f0, int f1, ...} foo;
1167 //   foo alloca;
1168 //   foo* random = bar(alloca);
1169 //   int *f0 = &alloca.f0
1170 //   int *f1 = &random->f1;
1171 //
1172 // Which is lowered, approximately, to:
1173 //
1174 //  %alloca = alloca %struct.foo
1175 //  %random = call %struct.foo* @random(%struct.foo* %alloca)
1176 //  %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0
1177 //  %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1
1178 //
1179 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated
1180 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also
1181 // point into the same object. But since %f0 points to the beginning of %alloca,
1182 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher
1183 // than (%alloca - 1), and so is not inbounds, a contradiction.
1184 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp,
1185       const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject,
1186       LocationSize MaybeObjectAccessSize) {
1187   // If the object access size is unknown, or the GEP isn't inbounds, bail.
1188   if (!MaybeObjectAccessSize.hasValue() || !GEPOp->isInBounds())
1189     return false;
1190 
1191   const uint64_t ObjectAccessSize = MaybeObjectAccessSize.getValue();
1192 
1193   // We need the object to be an alloca or a globalvariable, and want to know
1194   // the offset of the pointer from the object precisely, so no variable
1195   // indices are allowed.
1196   if (!(isa<AllocaInst>(DecompObject.Base) ||
1197         isa<GlobalVariable>(DecompObject.Base)) ||
1198       !DecompObject.VarIndices.empty())
1199     return false;
1200 
1201   // If the GEP has no variable indices, we know the precise offset
1202   // from the base, then use it. If the GEP has variable indices,
1203   // we can't get exact GEP offset to identify pointer alias. So return
1204   // false in that case.
1205   if (!DecompGEP.VarIndices.empty())
1206     return false;
1207 
1208   return DecompGEP.Offset.sge(DecompObject.Offset + (int64_t)ObjectAccessSize);
1209 }
1210 
1211 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1212 /// another pointer.
1213 ///
1214 /// We know that V1 is a GEP, but we don't know anything about V2.
1215 /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for
1216 /// V2.
1217 AliasResult BasicAAResult::aliasGEP(
1218     const GEPOperator *GEP1, LocationSize V1Size, const AAMDNodes &V1AAInfo,
1219     const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo,
1220     const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) {
1221   DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT);
1222   DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT);
1223 
1224   // Don't attempt to analyze the decomposed GEP if index scale is not a
1225   // compile-time constant.
1226   if (!DecompGEP1.HasCompileTimeConstantScale ||
1227       !DecompGEP2.HasCompileTimeConstantScale)
1228     return MayAlias;
1229 
1230   assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
1231          "DecomposeGEPExpression returned a result different from "
1232          "getUnderlyingObject");
1233 
1234   // If the GEP's offset relative to its base is such that the base would
1235   // fall below the start of the object underlying V2, then the GEP and V2
1236   // cannot alias.
1237   if (isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size))
1238     return NoAlias;
1239   // If we have two gep instructions with must-alias or not-alias'ing base
1240   // pointers, figure out if the indexes to the GEP tell us anything about the
1241   // derived pointer.
1242   if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
1243     // Check for the GEP base being at a negative offset, this time in the other
1244     // direction.
1245     if (isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size))
1246       return NoAlias;
1247     // Do the base pointers alias?
1248     AliasResult BaseAlias = aliasCheck(
1249         UnderlyingV1, LocationSize::beforeOrAfterPointer(), AAMDNodes(),
1250         UnderlyingV2, LocationSize::beforeOrAfterPointer(), AAMDNodes(), AAQI);
1251 
1252     // For GEPs with identical offsets, we can preserve the size and AAInfo
1253     // when performing the alias check on the underlying objects.
1254     if (BaseAlias == MayAlias && DecompGEP1.Offset == DecompGEP2.Offset &&
1255         DecompGEP1.VarIndices == DecompGEP2.VarIndices) {
1256       AliasResult PreciseBaseAlias = aliasCheck(
1257           UnderlyingV1, V1Size, V1AAInfo, UnderlyingV2, V2Size, V2AAInfo, AAQI);
1258       if (PreciseBaseAlias == NoAlias)
1259         return NoAlias;
1260     }
1261 
1262     // If we get a No or May, then return it immediately, no amount of analysis
1263     // will improve this situation.
1264     if (BaseAlias != MustAlias) {
1265       assert(BaseAlias == NoAlias || BaseAlias == MayAlias);
1266       return BaseAlias;
1267     }
1268 
1269     // Otherwise, we have a MustAlias.  Since the base pointers alias each other
1270     // exactly, see if the computed offset from the common pointer tells us
1271     // about the relation of the resulting pointer.
1272     // If we know the two GEPs are based off of the exact same pointer (and not
1273     // just the same underlying object), see if that tells us anything about
1274     // the resulting pointers.
1275     if (GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
1276             GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
1277         GEP1->getPointerOperandType() == GEP2->getPointerOperandType()) {
1278       AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL);
1279       // If we couldn't find anything interesting, don't abandon just yet.
1280       if (R != MayAlias)
1281         return R;
1282     }
1283 
1284     // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1285     // symbolic difference.
1286     DecompGEP1.Offset -= DecompGEP2.Offset;
1287     GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);
1288 
1289   } else {
1290     // Check to see if these two pointers are related by the getelementptr
1291     // instruction.  If one pointer is a GEP with a non-zero index of the other
1292     // pointer, we know they cannot alias.
1293 
1294     // If both accesses are unknown size, we can't do anything useful here.
1295     if (!V1Size.hasValue() && !V2Size.hasValue())
1296       return MayAlias;
1297 
1298     AliasResult R = aliasCheck(
1299         UnderlyingV1, LocationSize::beforeOrAfterPointer(), AAMDNodes(),
1300         V2, V2Size, V2AAInfo, AAQI, nullptr, UnderlyingV2);
1301     if (R != MustAlias) {
1302       // If V2 may alias GEP base pointer, conservatively returns MayAlias.
1303       // If V2 is known not to alias GEP base pointer, then the two values
1304       // cannot alias per GEP semantics: "Any memory access must be done through
1305       // a pointer value associated with an address range of the memory access,
1306       // otherwise the behavior is undefined.".
1307       assert(R == NoAlias || R == MayAlias);
1308       return R;
1309     }
1310   }
1311 
1312   // In the two GEP Case, if there is no difference in the offsets of the
1313   // computed pointers, the resultant pointers are a must alias.  This
1314   // happens when we have two lexically identical GEP's (for example).
1315   //
1316   // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
1317   // must aliases the GEP, the end result is a must alias also.
1318   if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty())
1319     return MustAlias;
1320 
1321   // If there is a constant difference between the pointers, but the difference
1322   // is less than the size of the associated memory object, then we know
1323   // that the objects are partially overlapping.  If the difference is
1324   // greater, we know they do not overlap.
1325   if (DecompGEP1.Offset != 0 && DecompGEP1.VarIndices.empty()) {
1326     if (DecompGEP1.Offset.sge(0)) {
1327       if (V2Size.hasValue()) {
1328         if (DecompGEP1.Offset.ult(V2Size.getValue()))
1329           return PartialAlias;
1330         return NoAlias;
1331       }
1332     } else {
1333       // We have the situation where:
1334       // +                +
1335       // | BaseOffset     |
1336       // ---------------->|
1337       // |-->V1Size       |-------> V2Size
1338       // GEP1             V2
1339       if (V1Size.hasValue()) {
1340         if ((-DecompGEP1.Offset).ult(V1Size.getValue()))
1341           return PartialAlias;
1342         return NoAlias;
1343       }
1344     }
1345   }
1346 
1347   if (!DecompGEP1.VarIndices.empty()) {
1348     APInt GCD;
1349     bool AllNonNegative = DecompGEP1.Offset.isNonNegative();
1350     bool AllNonPositive = DecompGEP1.Offset.isNonPositive();
1351     for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1352       const APInt &Scale = DecompGEP1.VarIndices[i].Scale;
1353       if (i == 0)
1354         GCD = Scale.abs();
1355       else
1356         GCD = APIntOps::GreatestCommonDivisor(GCD, Scale.abs());
1357 
1358       if (AllNonNegative || AllNonPositive) {
1359         // If the Value could change between cycles, then any reasoning about
1360         // the Value this cycle may not hold in the next cycle. We'll just
1361         // give up if we can't determine conditions that hold for every cycle:
1362         const Value *V = DecompGEP1.VarIndices[i].V;
1363 
1364         KnownBits Known =
1365             computeKnownBits(V, DL, 0, &AC, dyn_cast<Instruction>(GEP1), DT);
1366         bool SignKnownZero = Known.isNonNegative();
1367         bool SignKnownOne = Known.isNegative();
1368 
1369         // Zero-extension widens the variable, and so forces the sign
1370         // bit to zero.
1371         bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
1372         SignKnownZero |= IsZExt;
1373         SignKnownOne &= !IsZExt;
1374 
1375         AllNonNegative &= (SignKnownZero && Scale.isNonNegative()) ||
1376                           (SignKnownOne && Scale.isNonPositive());
1377         AllNonPositive &= (SignKnownZero && Scale.isNonPositive()) ||
1378                           (SignKnownOne && Scale.isNonNegative());
1379       }
1380     }
1381 
1382     // We now have accesses at two offsets from the same base:
1383     //  1. (...)*GCD + DecompGEP1.Offset with size V1Size
1384     //  2. 0 with size V2Size
1385     // Using arithmetic modulo GCD, the accesses are at
1386     // [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits
1387     // into the range [V2Size..GCD), then we know they cannot overlap.
1388     APInt ModOffset = DecompGEP1.Offset.srem(GCD);
1389     if (ModOffset.isNegative())
1390       ModOffset += GCD; // We want mod, not rem.
1391     if (V1Size.hasValue() && V2Size.hasValue() &&
1392         ModOffset.uge(V2Size.getValue()) &&
1393         (GCD - ModOffset).uge(V1Size.getValue()))
1394       return NoAlias;
1395 
1396     // If we know all the variables are non-negative, then the total offset is
1397     // also non-negative and >= DecompGEP1.Offset. We have the following layout:
1398     // [0, V2Size) ... [TotalOffset, TotalOffer+V1Size]
1399     // If DecompGEP1.Offset >= V2Size, the accesses don't alias.
1400     if (AllNonNegative && V2Size.hasValue() &&
1401         DecompGEP1.Offset.uge(V2Size.getValue()))
1402       return NoAlias;
1403     // Similarly, if the variables are non-positive, then the total offset is
1404     // also non-positive and <= DecompGEP1.Offset. We have the following layout:
1405     // [TotalOffset, TotalOffset+V1Size) ... [0, V2Size)
1406     // If -DecompGEP1.Offset >= V1Size, the accesses don't alias.
1407     if (AllNonPositive && V1Size.hasValue() &&
1408         (-DecompGEP1.Offset).uge(V1Size.getValue()))
1409       return NoAlias;
1410 
1411     if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
1412                                 DecompGEP1.Offset, &AC, DT))
1413       return NoAlias;
1414   }
1415 
1416   // Statically, we can see that the base objects are the same, but the
1417   // pointers have dynamic offsets which we can't resolve. And none of our
1418   // little tricks above worked.
1419   return MayAlias;
1420 }
1421 
1422 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1423   // If the results agree, take it.
1424   if (A == B)
1425     return A;
1426   // A mix of PartialAlias and MustAlias is PartialAlias.
1427   if ((A == PartialAlias && B == MustAlias) ||
1428       (B == PartialAlias && A == MustAlias))
1429     return PartialAlias;
1430   // Otherwise, we don't know anything.
1431   return MayAlias;
1432 }
1433 
1434 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1435 /// against another.
1436 AliasResult
1437 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize,
1438                            const AAMDNodes &SIAAInfo, const Value *V2,
1439                            LocationSize V2Size, const AAMDNodes &V2AAInfo,
1440                            const Value *UnderV2, AAQueryInfo &AAQI) {
1441   // If the values are Selects with the same condition, we can do a more precise
1442   // check: just check for aliases between the values on corresponding arms.
1443   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1444     if (SI->getCondition() == SI2->getCondition()) {
1445       AliasResult Alias =
1446           aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, SI2->getTrueValue(),
1447                      V2Size, V2AAInfo, AAQI);
1448       if (Alias == MayAlias)
1449         return MayAlias;
1450       AliasResult ThisAlias =
1451           aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
1452                      SI2->getFalseValue(), V2Size, V2AAInfo, AAQI);
1453       return MergeAliasResults(ThisAlias, Alias);
1454     }
1455 
1456   // If both arms of the Select node NoAlias or MustAlias V2, then returns
1457   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1458   AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(),
1459                                  SISize, SIAAInfo, AAQI, UnderV2);
1460   if (Alias == MayAlias)
1461     return MayAlias;
1462 
1463   AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(),
1464                                      SISize, SIAAInfo, AAQI, UnderV2);
1465   return MergeAliasResults(ThisAlias, Alias);
1466 }
1467 
1468 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1469 /// another.
1470 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
1471                                     const AAMDNodes &PNAAInfo, const Value *V2,
1472                                     LocationSize V2Size,
1473                                     const AAMDNodes &V2AAInfo,
1474                                     const Value *UnderV2, AAQueryInfo &AAQI) {
1475   // If the values are PHIs in the same block, we can do a more precise
1476   // as well as efficient check: just check for aliases between the values
1477   // on corresponding edges.
1478   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1479     if (PN2->getParent() == PN->getParent()) {
1480       AAQueryInfo::LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
1481                                 MemoryLocation(V2, V2Size, V2AAInfo));
1482       if (PN > V2)
1483         std::swap(Locs.first, Locs.second);
1484       // Analyse the PHIs' inputs under the assumption that the PHIs are
1485       // NoAlias.
1486       // If the PHIs are May/MustAlias there must be (recursively) an input
1487       // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1488       // there must be an operation on the PHIs within the PHIs' value cycle
1489       // that causes a MayAlias.
1490       // Pretend the phis do not alias.
1491       AliasResult Alias = NoAlias;
1492       AliasResult OrigAliasResult;
1493       {
1494         // Limited lifetime iterator invalidated by the aliasCheck call below.
1495         auto CacheIt = AAQI.AliasCache.find(Locs);
1496         assert((CacheIt != AAQI.AliasCache.end()) &&
1497                "There must exist an entry for the phi node");
1498         OrigAliasResult = CacheIt->second;
1499         CacheIt->second = NoAlias;
1500       }
1501 
1502       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1503         AliasResult ThisAlias =
1504             aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
1505                        PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1506                        V2Size, V2AAInfo, AAQI);
1507         Alias = MergeAliasResults(ThisAlias, Alias);
1508         if (Alias == MayAlias)
1509           break;
1510       }
1511 
1512       // Reset if speculation failed.
1513       if (Alias != NoAlias)
1514         AAQI.updateResult(Locs, OrigAliasResult);
1515       return Alias;
1516     }
1517 
1518   SmallVector<Value *, 4> V1Srcs;
1519   // If a phi operand recurses back to the phi, we can still determine NoAlias
1520   // if we don't alias the underlying objects of the other phi operands, as we
1521   // know that the recursive phi needs to be based on them in some way.
1522   bool isRecursive = false;
1523   auto CheckForRecPhi = [&](Value *PV) {
1524     if (!EnableRecPhiAnalysis)
1525       return false;
1526     if (getUnderlyingObject(PV) == PN) {
1527       isRecursive = true;
1528       return true;
1529     }
1530     return false;
1531   };
1532 
1533   if (PV) {
1534     // If we have PhiValues then use it to get the underlying phi values.
1535     const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN);
1536     // If we have more phi values than the search depth then return MayAlias
1537     // conservatively to avoid compile time explosion. The worst possible case
1538     // is if both sides are PHI nodes. In which case, this is O(m x n) time
1539     // where 'm' and 'n' are the number of PHI sources.
1540     if (PhiValueSet.size() > MaxLookupSearchDepth)
1541       return MayAlias;
1542     // Add the values to V1Srcs
1543     for (Value *PV1 : PhiValueSet) {
1544       if (CheckForRecPhi(PV1))
1545         continue;
1546       V1Srcs.push_back(PV1);
1547     }
1548   } else {
1549     // If we don't have PhiInfo then just look at the operands of the phi itself
1550     // FIXME: Remove this once we can guarantee that we have PhiInfo always
1551     SmallPtrSet<Value *, 4> UniqueSrc;
1552     for (Value *PV1 : PN->incoming_values()) {
1553       if (isa<PHINode>(PV1))
1554         // If any of the source itself is a PHI, return MayAlias conservatively
1555         // to avoid compile time explosion. The worst possible case is if both
1556         // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1557         // and 'n' are the number of PHI sources.
1558         return MayAlias;
1559 
1560       if (CheckForRecPhi(PV1))
1561         continue;
1562 
1563       if (UniqueSrc.insert(PV1).second)
1564         V1Srcs.push_back(PV1);
1565     }
1566   }
1567 
1568   // If V1Srcs is empty then that means that the phi has no underlying non-phi
1569   // value. This should only be possible in blocks unreachable from the entry
1570   // block, but return MayAlias just in case.
1571   if (V1Srcs.empty())
1572     return MayAlias;
1573 
1574   // If this PHI node is recursive, indicate that the pointer may be moved
1575   // across iterations. We can only prove NoAlias if different underlying
1576   // objects are involved.
1577   if (isRecursive)
1578     PNSize = LocationSize::beforeOrAfterPointer();
1579 
1580   // In the recursive alias queries below, we may compare values from two
1581   // different loop iterations. Keep track of visited phi blocks, which will
1582   // be used when determining value equivalence.
1583   bool BlockInserted = VisitedPhiBBs.insert(PN->getParent()).second;
1584   auto _ = make_scope_exit([&]() {
1585     if (BlockInserted)
1586       VisitedPhiBBs.erase(PN->getParent());
1587   });
1588 
1589   // If we inserted a block into VisitedPhiBBs, alias analysis results that
1590   // have been cached earlier may no longer be valid. Perform recursive queries
1591   // with a new AAQueryInfo.
1592   AAQueryInfo NewAAQI;
1593   AAQueryInfo *UseAAQI = BlockInserted ? &NewAAQI : &AAQI;
1594 
1595   AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize,
1596                                  PNAAInfo, *UseAAQI, UnderV2);
1597 
1598   // Early exit if the check of the first PHI source against V2 is MayAlias.
1599   // Other results are not possible.
1600   if (Alias == MayAlias)
1601     return MayAlias;
1602   // With recursive phis we cannot guarantee that MustAlias/PartialAlias will
1603   // remain valid to all elements and needs to conservatively return MayAlias.
1604   if (isRecursive && Alias != NoAlias)
1605     return MayAlias;
1606 
1607   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1608   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1609   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1610     Value *V = V1Srcs[i];
1611 
1612     AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo, V, PNSize,
1613                                        PNAAInfo, *UseAAQI, UnderV2);
1614     Alias = MergeAliasResults(ThisAlias, Alias);
1615     if (Alias == MayAlias)
1616       break;
1617   }
1618 
1619   return Alias;
1620 }
1621 
1622 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1623 /// array references.
1624 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
1625                                       const AAMDNodes &V1AAInfo,
1626                                       const Value *V2, LocationSize V2Size,
1627                                       const AAMDNodes &V2AAInfo,
1628                                       AAQueryInfo &AAQI, const Value *O1,
1629                                       const Value *O2) {
1630   // If either of the memory references is empty, it doesn't matter what the
1631   // pointer values are.
1632   if (V1Size.isZero() || V2Size.isZero())
1633     return NoAlias;
1634 
1635   // Strip off any casts if they exist.
1636   V1 = V1->stripPointerCastsAndInvariantGroups();
1637   V2 = V2->stripPointerCastsAndInvariantGroups();
1638 
1639   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1640   // value for undef that aliases nothing in the program.
1641   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1642     return NoAlias;
1643 
1644   // Are we checking for alias of the same value?
1645   // Because we look 'through' phi nodes, we could look at "Value" pointers from
1646   // different iterations. We must therefore make sure that this is not the
1647   // case. The function isValueEqualInPotentialCycles ensures that this cannot
1648   // happen by looking at the visited phi nodes and making sure they cannot
1649   // reach the value.
1650   if (isValueEqualInPotentialCycles(V1, V2))
1651     return MustAlias;
1652 
1653   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1654     return NoAlias; // Scalars cannot alias each other
1655 
1656   // Figure out what objects these things are pointing to if we can.
1657   if (O1 == nullptr)
1658     O1 = getUnderlyingObject(V1, MaxLookupSearchDepth);
1659 
1660   if (O2 == nullptr)
1661     O2 = getUnderlyingObject(V2, MaxLookupSearchDepth);
1662 
1663   // Null values in the default address space don't point to any object, so they
1664   // don't alias any other pointer.
1665   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1666     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1667       return NoAlias;
1668   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1669     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1670       return NoAlias;
1671 
1672   if (O1 != O2) {
1673     // If V1/V2 point to two different objects, we know that we have no alias.
1674     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1675       return NoAlias;
1676 
1677     // Constant pointers can't alias with non-const isIdentifiedObject objects.
1678     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1679         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1680       return NoAlias;
1681 
1682     // Function arguments can't alias with things that are known to be
1683     // unambigously identified at the function level.
1684     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1685         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1686       return NoAlias;
1687 
1688     // If one pointer is the result of a call/invoke or load and the other is a
1689     // non-escaping local object within the same function, then we know the
1690     // object couldn't escape to a point where the call could return it.
1691     //
1692     // Note that if the pointers are in different functions, there are a
1693     // variety of complications. A call with a nocapture argument may still
1694     // temporary store the nocapture argument's value in a temporary memory
1695     // location if that memory location doesn't escape. Or it may pass a
1696     // nocapture value to other functions as long as they don't capture it.
1697     if (isEscapeSource(O1) &&
1698         isNonEscapingLocalObject(O2, &AAQI.IsCapturedCache))
1699       return NoAlias;
1700     if (isEscapeSource(O2) &&
1701         isNonEscapingLocalObject(O1, &AAQI.IsCapturedCache))
1702       return NoAlias;
1703   }
1704 
1705   // If the size of one access is larger than the entire object on the other
1706   // side, then we know such behavior is undefined and can assume no alias.
1707   bool NullIsValidLocation = NullPointerIsDefined(&F);
1708   if ((isObjectSmallerThan(
1709           O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL,
1710           TLI, NullIsValidLocation)) ||
1711       (isObjectSmallerThan(
1712           O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL,
1713           TLI, NullIsValidLocation)))
1714     return NoAlias;
1715 
1716   // If one the accesses may be before the accessed pointer, canonicalize this
1717   // by using unknown after-pointer sizes for both accesses. This is
1718   // equivalent, because regardless of which pointer is lower, one of them
1719   // will always came after the other, as long as the underlying objects aren't
1720   // disjoint. We do this so that the rest of BasicAA does not have to deal
1721   // with accesses before the base pointer, and to improve cache utilization by
1722   // merging equivalent states.
1723   if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) {
1724     V1Size = LocationSize::afterPointer();
1725     V2Size = LocationSize::afterPointer();
1726   }
1727 
1728   // Check the cache before climbing up use-def chains. This also terminates
1729   // otherwise infinitely recursive queries.
1730   AAQueryInfo::LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
1731                             MemoryLocation(V2, V2Size, V2AAInfo));
1732   if (V1 > V2)
1733     std::swap(Locs.first, Locs.second);
1734   std::pair<AAQueryInfo::AliasCacheT::iterator, bool> Pair =
1735       AAQI.AliasCache.try_emplace(Locs, MayAlias);
1736   if (!Pair.second)
1737     return Pair.first->second;
1738 
1739   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1740     AliasResult Result =
1741         aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2, AAQI);
1742     if (Result != MayAlias)
1743       return AAQI.updateResult(Locs, Result);
1744   } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) {
1745     AliasResult Result =
1746         aliasGEP(GV2, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, O2, O1, AAQI);
1747     if (Result != MayAlias)
1748       return AAQI.updateResult(Locs, Result);
1749   }
1750 
1751   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1752     AliasResult Result =
1753         aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI);
1754     if (Result != MayAlias)
1755       return AAQI.updateResult(Locs, Result);
1756   } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) {
1757     AliasResult Result =
1758         aliasPHI(PN, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, O1, AAQI);
1759     if (Result != MayAlias)
1760       return AAQI.updateResult(Locs, Result);
1761   }
1762 
1763   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1764     AliasResult Result =
1765         aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI);
1766     if (Result != MayAlias)
1767       return AAQI.updateResult(Locs, Result);
1768   } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) {
1769     AliasResult Result =
1770         aliasSelect(S2, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, O1, AAQI);
1771     if (Result != MayAlias)
1772       return AAQI.updateResult(Locs, Result);
1773   }
1774 
1775   // If both pointers are pointing into the same object and one of them
1776   // accesses the entire object, then the accesses must overlap in some way.
1777   if (O1 == O2)
1778     if (V1Size.isPrecise() && V2Size.isPrecise() &&
1779         (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
1780          isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation)))
1781       return AAQI.updateResult(Locs, PartialAlias);
1782 
1783   // Recurse back into the best AA results we have, potentially with refined
1784   // memory locations. We have already ensured that BasicAA has a MayAlias
1785   // cache result for these, so any recursion back into BasicAA won't loop.
1786   AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second, AAQI);
1787   if (Result != MayAlias)
1788     return AAQI.updateResult(Locs, Result);
1789 
1790   // MayAlias is already in the cache.
1791   return MayAlias;
1792 }
1793 
1794 /// Check whether two Values can be considered equivalent.
1795 ///
1796 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1797 /// they can not be part of a cycle in the value graph by looking at all
1798 /// visited phi nodes an making sure that the phis cannot reach the value. We
1799 /// have to do this because we are looking through phi nodes (That is we say
1800 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1801 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1802                                                   const Value *V2) {
1803   if (V != V2)
1804     return false;
1805 
1806   const Instruction *Inst = dyn_cast<Instruction>(V);
1807   if (!Inst)
1808     return true;
1809 
1810   if (VisitedPhiBBs.empty())
1811     return true;
1812 
1813   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1814     return false;
1815 
1816   // Make sure that the visited phis cannot reach the Value. This ensures that
1817   // the Values cannot come from different iterations of a potential cycle the
1818   // phi nodes could be involved in.
1819   for (auto *P : VisitedPhiBBs)
1820     if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT, LI))
1821       return false;
1822 
1823   return true;
1824 }
1825 
1826 /// Computes the symbolic difference between two de-composed GEPs.
1827 ///
1828 /// Dest and Src are the variable indices from two decomposed GetElementPtr
1829 /// instructions GEP1 and GEP2 which have common base pointers.
1830 void BasicAAResult::GetIndexDifference(
1831     SmallVectorImpl<VariableGEPIndex> &Dest,
1832     const SmallVectorImpl<VariableGEPIndex> &Src) {
1833   if (Src.empty())
1834     return;
1835 
1836   for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1837     const Value *V = Src[i].V;
1838     unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
1839     APInt Scale = Src[i].Scale;
1840 
1841     // Find V in Dest.  This is N^2, but pointer indices almost never have more
1842     // than a few variable indexes.
1843     for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1844       if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1845           Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
1846         continue;
1847 
1848       // If we found it, subtract off Scale V's from the entry in Dest.  If it
1849       // goes to zero, remove the entry.
1850       if (Dest[j].Scale != Scale)
1851         Dest[j].Scale -= Scale;
1852       else
1853         Dest.erase(Dest.begin() + j);
1854       Scale = 0;
1855       break;
1856     }
1857 
1858     // If we didn't consume this entry, add it to the end of the Dest list.
1859     if (!!Scale) {
1860       VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale};
1861       Dest.push_back(Entry);
1862     }
1863   }
1864 }
1865 
1866 bool BasicAAResult::constantOffsetHeuristic(
1867     const SmallVectorImpl<VariableGEPIndex> &VarIndices,
1868     LocationSize MaybeV1Size, LocationSize MaybeV2Size, const APInt &BaseOffset,
1869     AssumptionCache *AC, DominatorTree *DT) {
1870   if (VarIndices.size() != 2 || !MaybeV1Size.hasValue() ||
1871       !MaybeV2Size.hasValue())
1872     return false;
1873 
1874   const uint64_t V1Size = MaybeV1Size.getValue();
1875   const uint64_t V2Size = MaybeV2Size.getValue();
1876 
1877   const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
1878 
1879   if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
1880       Var0.Scale != -Var1.Scale)
1881     return false;
1882 
1883   unsigned Width = Var1.V->getType()->getIntegerBitWidth();
1884 
1885   // We'll strip off the Extensions of Var0 and Var1 and do another round
1886   // of GetLinearExpression decomposition. In the example above, if Var0
1887   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1888 
1889   APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
1890       V1Offset(Width, 0);
1891   bool NSW = true, NUW = true;
1892   unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
1893   const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
1894                                         V0SExtBits, DL, 0, AC, DT, NSW, NUW);
1895   NSW = true;
1896   NUW = true;
1897   const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
1898                                         V1SExtBits, DL, 0, AC, DT, NSW, NUW);
1899 
1900   if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
1901       V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
1902     return false;
1903 
1904   // We have a hit - Var0 and Var1 only differ by a constant offset!
1905 
1906   // If we've been sext'ed then zext'd the maximum difference between Var0 and
1907   // Var1 is possible to calculate, but we're just interested in the absolute
1908   // minimum difference between the two. The minimum distance may occur due to
1909   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1910   // the minimum distance between %i and %i + 5 is 3.
1911   APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
1912   MinDiff = APIntOps::umin(MinDiff, Wrapped);
1913   APInt MinDiffBytes =
1914     MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs();
1915 
1916   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
1917   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
1918   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
1919   // V2Size can fit in the MinDiffBytes gap.
1920   return MinDiffBytes.uge(V1Size + BaseOffset.abs()) &&
1921          MinDiffBytes.uge(V2Size + BaseOffset.abs());
1922 }
1923 
1924 //===----------------------------------------------------------------------===//
1925 // BasicAliasAnalysis Pass
1926 //===----------------------------------------------------------------------===//
1927 
1928 AnalysisKey BasicAA::Key;
1929 
1930 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
1931   return BasicAAResult(F.getParent()->getDataLayout(),
1932                        F,
1933                        AM.getResult<TargetLibraryAnalysis>(F),
1934                        AM.getResult<AssumptionAnalysis>(F),
1935                        &AM.getResult<DominatorTreeAnalysis>(F),
1936                        AM.getCachedResult<LoopAnalysis>(F),
1937                        AM.getCachedResult<PhiValuesAnalysis>(F));
1938 }
1939 
1940 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
1941   initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
1942 }
1943 
1944 char BasicAAWrapperPass::ID = 0;
1945 
1946 void BasicAAWrapperPass::anchor() {}
1947 
1948 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa",
1949                       "Basic Alias Analysis (stateless AA impl)", true, true)
1950 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1951 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1952 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1953 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
1954 INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa",
1955                     "Basic Alias Analysis (stateless AA impl)", true, true)
1956 
1957 FunctionPass *llvm::createBasicAAWrapperPass() {
1958   return new BasicAAWrapperPass();
1959 }
1960 
1961 bool BasicAAWrapperPass::runOnFunction(Function &F) {
1962   auto &ACT = getAnalysis<AssumptionCacheTracker>();
1963   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
1964   auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
1965   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
1966   auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>();
1967 
1968   Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F,
1969                                  TLIWP.getTLI(F), ACT.getAssumptionCache(F),
1970                                  &DTWP.getDomTree(),
1971                                  LIWP ? &LIWP->getLoopInfo() : nullptr,
1972                                  PVWP ? &PVWP->getResult() : nullptr));
1973 
1974   return false;
1975 }
1976 
1977 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1978   AU.setPreservesAll();
1979   AU.addRequired<AssumptionCacheTracker>();
1980   AU.addRequired<DominatorTreeWrapperPass>();
1981   AU.addRequired<TargetLibraryInfoWrapperPass>();
1982   AU.addUsedIfAvailable<PhiValuesWrapperPass>();
1983 }
1984 
1985 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
1986   return BasicAAResult(
1987       F.getParent()->getDataLayout(), F,
1988       P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
1989       P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
1990 }
1991