1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the primary stateless implementation of the
10 // Alias Analysis interface that implements identities (two different
11 // globals cannot alias, etc), but does no stateful analysis.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/BasicAliasAnalysis.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/PhiValues.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GetElementPtrTypeIterator.h"
40 #include "llvm/IR/GlobalAlias.h"
41 #include "llvm/IR/GlobalVariable.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/Operator.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/KnownBits.h"
58 #include <cassert>
59 #include <cstdint>
60 #include <cstdlib>
61 #include <utility>
62 
63 #define DEBUG_TYPE "basicaa"
64 
65 using namespace llvm;
66 
67 /// Enable analysis of recursive PHI nodes.
68 static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden,
69                                           cl::init(true));
70 
71 /// By default, even on 32-bit architectures we use 64-bit integers for
72 /// calculations. This will allow us to more-aggressively decompose indexing
73 /// expressions calculated using i64 values (e.g., long long in C) which is
74 /// common enough to worry about.
75 static cl::opt<bool> ForceAtLeast64Bits("basic-aa-force-at-least-64b",
76                                         cl::Hidden, cl::init(true));
77 static cl::opt<bool> DoubleCalcBits("basic-aa-double-calc-bits",
78                                     cl::Hidden, cl::init(false));
79 
80 /// SearchLimitReached / SearchTimes shows how often the limit of
81 /// to decompose GEPs is reached. It will affect the precision
82 /// of basic alias analysis.
83 STATISTIC(SearchLimitReached, "Number of times the limit to "
84                               "decompose GEPs is reached");
85 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
86 
87 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
88 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
89 /// careful with value equivalence. We use reachability to make sure a value
90 /// cannot be involved in a cycle.
91 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
92 
93 // The max limit of the search depth in DecomposeGEPExpression() and
94 // getUnderlyingObject(), both functions need to use the same search
95 // depth otherwise the algorithm in aliasGEP will assert.
96 static const unsigned MaxLookupSearchDepth = 6;
97 
98 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
99                                FunctionAnalysisManager::Invalidator &Inv) {
100   // We don't care if this analysis itself is preserved, it has no state. But
101   // we need to check that the analyses it depends on have been. Note that we
102   // may be created without handles to some analyses and in that case don't
103   // depend on them.
104   if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
105       (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) ||
106       (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA)))
107     return true;
108 
109   // Otherwise this analysis result remains valid.
110   return false;
111 }
112 
113 //===----------------------------------------------------------------------===//
114 // Useful predicates
115 //===----------------------------------------------------------------------===//
116 
117 /// Returns true if the pointer is one which would have been considered an
118 /// escape by isNonEscapingLocalObject.
119 static bool isEscapeSource(const Value *V) {
120   if (isa<CallBase>(V))
121     return true;
122 
123   if (isa<Argument>(V))
124     return true;
125 
126   // The load case works because isNonEscapingLocalObject considers all
127   // stores to be escapes (it passes true for the StoreCaptures argument
128   // to PointerMayBeCaptured).
129   if (isa<LoadInst>(V))
130     return true;
131 
132   return false;
133 }
134 
135 /// Returns the size of the object specified by V or UnknownSize if unknown.
136 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
137                               const TargetLibraryInfo &TLI,
138                               bool NullIsValidLoc,
139                               bool RoundToAlign = false) {
140   uint64_t Size;
141   ObjectSizeOpts Opts;
142   Opts.RoundToAlign = RoundToAlign;
143   Opts.NullIsUnknownSize = NullIsValidLoc;
144   if (getObjectSize(V, Size, DL, &TLI, Opts))
145     return Size;
146   return MemoryLocation::UnknownSize;
147 }
148 
149 /// Returns true if we can prove that the object specified by V is smaller than
150 /// Size.
151 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
152                                 const DataLayout &DL,
153                                 const TargetLibraryInfo &TLI,
154                                 bool NullIsValidLoc) {
155   // Note that the meanings of the "object" are slightly different in the
156   // following contexts:
157   //    c1: llvm::getObjectSize()
158   //    c2: llvm.objectsize() intrinsic
159   //    c3: isObjectSmallerThan()
160   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
161   // refers to the "entire object".
162   //
163   //  Consider this example:
164   //     char *p = (char*)malloc(100)
165   //     char *q = p+80;
166   //
167   //  In the context of c1 and c2, the "object" pointed by q refers to the
168   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
169   //
170   //  However, in the context of c3, the "object" refers to the chunk of memory
171   // being allocated. So, the "object" has 100 bytes, and q points to the middle
172   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
173   // parameter, before the llvm::getObjectSize() is called to get the size of
174   // entire object, we should:
175   //    - either rewind the pointer q to the base-address of the object in
176   //      question (in this case rewind to p), or
177   //    - just give up. It is up to caller to make sure the pointer is pointing
178   //      to the base address the object.
179   //
180   // We go for 2nd option for simplicity.
181   if (!isIdentifiedObject(V))
182     return false;
183 
184   // This function needs to use the aligned object size because we allow
185   // reads a bit past the end given sufficient alignment.
186   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
187                                       /*RoundToAlign*/ true);
188 
189   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
190 }
191 
192 /// Return the minimal extent from \p V to the end of the underlying object,
193 /// assuming the result is used in an aliasing query. E.g., we do use the query
194 /// location size and the fact that null pointers cannot alias here.
195 static uint64_t getMinimalExtentFrom(const Value &V,
196                                      const LocationSize &LocSize,
197                                      const DataLayout &DL,
198                                      bool NullIsValidLoc) {
199   // If we have dereferenceability information we know a lower bound for the
200   // extent as accesses for a lower offset would be valid. We need to exclude
201   // the "or null" part if null is a valid pointer.
202   bool CanBeNull;
203   uint64_t DerefBytes = V.getPointerDereferenceableBytes(DL, CanBeNull);
204   DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes;
205   // If queried with a precise location size, we assume that location size to be
206   // accessed, thus valid.
207   if (LocSize.isPrecise())
208     DerefBytes = std::max(DerefBytes, LocSize.getValue());
209   return DerefBytes;
210 }
211 
212 /// Returns true if we can prove that the object specified by V has size Size.
213 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
214                          const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
215   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc);
216   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
217 }
218 
219 //===----------------------------------------------------------------------===//
220 // GetElementPtr Instruction Decomposition and Analysis
221 //===----------------------------------------------------------------------===//
222 
223 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
224 /// B are constant integers.
225 ///
226 /// Returns the scale and offset values as APInts and return V as a Value*, and
227 /// return whether we looked through any sign or zero extends.  The incoming
228 /// Value is known to have IntegerType, and it may already be sign or zero
229 /// extended.
230 ///
231 /// Note that this looks through extends, so the high bits may not be
232 /// represented in the result.
233 /*static*/ const Value *BasicAAResult::GetLinearExpression(
234     const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
235     unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
236     AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
237   assert(V->getType()->isIntegerTy() && "Not an integer value");
238 
239   // Limit our recursion depth.
240   if (Depth == 6) {
241     Scale = 1;
242     Offset = 0;
243     return V;
244   }
245 
246   if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
247     // If it's a constant, just convert it to an offset and remove the variable.
248     // If we've been called recursively, the Offset bit width will be greater
249     // than the constant's (the Offset's always as wide as the outermost call),
250     // so we'll zext here and process any extension in the isa<SExtInst> &
251     // isa<ZExtInst> cases below.
252     Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
253     assert(Scale == 0 && "Constant values don't have a scale");
254     return V;
255   }
256 
257   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
258     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
259       // If we've been called recursively, then Offset and Scale will be wider
260       // than the BOp operands. We'll always zext it here as we'll process sign
261       // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
262       APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
263 
264       switch (BOp->getOpcode()) {
265       default:
266         // We don't understand this instruction, so we can't decompose it any
267         // further.
268         Scale = 1;
269         Offset = 0;
270         return V;
271       case Instruction::Or:
272         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
273         // analyze it.
274         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
275                                BOp, DT)) {
276           Scale = 1;
277           Offset = 0;
278           return V;
279         }
280         LLVM_FALLTHROUGH;
281       case Instruction::Add:
282         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
283                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
284         Offset += RHS;
285         break;
286       case Instruction::Sub:
287         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
288                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
289         Offset -= RHS;
290         break;
291       case Instruction::Mul:
292         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
293                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
294         Offset *= RHS;
295         Scale *= RHS;
296         break;
297       case Instruction::Shl:
298         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
299                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
300 
301         // We're trying to linearize an expression of the kind:
302         //   shl i8 -128, 36
303         // where the shift count exceeds the bitwidth of the type.
304         // We can't decompose this further (the expression would return
305         // a poison value).
306         if (Offset.getBitWidth() < RHS.getLimitedValue() ||
307             Scale.getBitWidth() < RHS.getLimitedValue()) {
308           Scale = 1;
309           Offset = 0;
310           return V;
311         }
312 
313         Offset <<= RHS.getLimitedValue();
314         Scale <<= RHS.getLimitedValue();
315         // the semantics of nsw and nuw for left shifts don't match those of
316         // multiplications, so we won't propagate them.
317         NSW = NUW = false;
318         return V;
319       }
320 
321       if (isa<OverflowingBinaryOperator>(BOp)) {
322         NUW &= BOp->hasNoUnsignedWrap();
323         NSW &= BOp->hasNoSignedWrap();
324       }
325       return V;
326     }
327   }
328 
329   // Since GEP indices are sign extended anyway, we don't care about the high
330   // bits of a sign or zero extended value - just scales and offsets.  The
331   // extensions have to be consistent though.
332   if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
333     Value *CastOp = cast<CastInst>(V)->getOperand(0);
334     unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
335     unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
336     unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
337     const Value *Result =
338         GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
339                             Depth + 1, AC, DT, NSW, NUW);
340 
341     // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this
342     // by just incrementing the number of bits we've extended by.
343     unsigned ExtendedBy = NewWidth - SmallWidth;
344 
345     if (isa<SExtInst>(V) && ZExtBits == 0) {
346       // sext(sext(%x, a), b) == sext(%x, a + b)
347 
348       if (NSW) {
349         // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
350         // into sext(%x) + sext(c). We'll sext the Offset ourselves:
351         unsigned OldWidth = Offset.getBitWidth();
352         Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
353       } else {
354         // We may have signed-wrapped, so don't decompose sext(%x + c) into
355         // sext(%x) + sext(c)
356         Scale = 1;
357         Offset = 0;
358         Result = CastOp;
359         ZExtBits = OldZExtBits;
360         SExtBits = OldSExtBits;
361       }
362       SExtBits += ExtendedBy;
363     } else {
364       // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
365 
366       if (!NUW) {
367         // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
368         // zext(%x) + zext(c)
369         Scale = 1;
370         Offset = 0;
371         Result = CastOp;
372         ZExtBits = OldZExtBits;
373         SExtBits = OldSExtBits;
374       }
375       ZExtBits += ExtendedBy;
376     }
377 
378     return Result;
379   }
380 
381   Scale = 1;
382   Offset = 0;
383   return V;
384 }
385 
386 /// To ensure a pointer offset fits in an integer of size PointerSize
387 /// (in bits) when that size is smaller than the maximum pointer size. This is
388 /// an issue, for example, in particular for 32b pointers with negative indices
389 /// that rely on two's complement wrap-arounds for precise alias information
390 /// where the maximum pointer size is 64b.
391 static APInt adjustToPointerSize(const APInt &Offset, unsigned PointerSize) {
392   assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!");
393   unsigned ShiftBits = Offset.getBitWidth() - PointerSize;
394   return (Offset << ShiftBits).ashr(ShiftBits);
395 }
396 
397 static unsigned getMaxPointerSize(const DataLayout &DL) {
398   unsigned MaxPointerSize = DL.getMaxPointerSizeInBits();
399   if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64;
400   if (DoubleCalcBits) MaxPointerSize *= 2;
401 
402   return MaxPointerSize;
403 }
404 
405 /// If V is a symbolic pointer expression, decompose it into a base pointer
406 /// with a constant offset and a number of scaled symbolic offsets.
407 ///
408 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
409 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
410 /// specified amount, but which may have other unrepresented high bits. As
411 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
412 ///
413 /// This function is capable of analyzing everything that getUnderlyingObject
414 /// can look through. To be able to do that getUnderlyingObject and
415 /// DecomposeGEPExpression must use the same search depth
416 /// (MaxLookupSearchDepth).
417 BasicAAResult::DecomposedGEP
418 BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL,
419                                       AssumptionCache *AC, DominatorTree *DT) {
420   // Limit recursion depth to limit compile time in crazy cases.
421   unsigned MaxLookup = MaxLookupSearchDepth;
422   SearchTimes++;
423   const Instruction *CxtI = dyn_cast<Instruction>(V);
424 
425   unsigned MaxPointerSize = getMaxPointerSize(DL);
426   DecomposedGEP Decomposed;
427   Decomposed.Offset = APInt(MaxPointerSize, 0);
428   Decomposed.HasCompileTimeConstantScale = true;
429   do {
430     // See if this is a bitcast or GEP.
431     const Operator *Op = dyn_cast<Operator>(V);
432     if (!Op) {
433       // The only non-operator case we can handle are GlobalAliases.
434       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
435         if (!GA->isInterposable()) {
436           V = GA->getAliasee();
437           continue;
438         }
439       }
440       Decomposed.Base = V;
441       return Decomposed;
442     }
443 
444     if (Op->getOpcode() == Instruction::BitCast ||
445         Op->getOpcode() == Instruction::AddrSpaceCast) {
446       V = Op->getOperand(0);
447       continue;
448     }
449 
450     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
451     if (!GEPOp) {
452       if (const auto *PHI = dyn_cast<PHINode>(V)) {
453         // Look through single-arg phi nodes created by LCSSA.
454         if (PHI->getNumIncomingValues() == 1) {
455           V = PHI->getIncomingValue(0);
456           continue;
457         }
458       } else if (const auto *Call = dyn_cast<CallBase>(V)) {
459         // CaptureTracking can know about special capturing properties of some
460         // intrinsics like launder.invariant.group, that can't be expressed with
461         // the attributes, but have properties like returning aliasing pointer.
462         // Because some analysis may assume that nocaptured pointer is not
463         // returned from some special intrinsic (because function would have to
464         // be marked with returns attribute), it is crucial to use this function
465         // because it should be in sync with CaptureTracking. Not using it may
466         // cause weird miscompilations where 2 aliasing pointers are assumed to
467         // noalias.
468         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
469           V = RP;
470           continue;
471         }
472       }
473 
474       Decomposed.Base = V;
475       return Decomposed;
476     }
477 
478     // Track whether we've seen at least one in bounds gep, and if so, whether
479     // all geps parsed were in bounds.
480     if (Decomposed.InBounds == None)
481       Decomposed.InBounds = GEPOp->isInBounds();
482     else if (!GEPOp->isInBounds())
483       Decomposed.InBounds = false;
484 
485     // Don't attempt to analyze GEPs over unsized objects.
486     if (!GEPOp->getSourceElementType()->isSized()) {
487       Decomposed.Base = V;
488       return Decomposed;
489     }
490 
491     // Don't attempt to analyze GEPs if index scale is not a compile-time
492     // constant.
493     if (isa<ScalableVectorType>(GEPOp->getSourceElementType())) {
494       Decomposed.Base = V;
495       Decomposed.HasCompileTimeConstantScale = false;
496       return Decomposed;
497     }
498 
499     unsigned AS = GEPOp->getPointerAddressSpace();
500     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
501     gep_type_iterator GTI = gep_type_begin(GEPOp);
502     unsigned PointerSize = DL.getPointerSizeInBits(AS);
503     // Assume all GEP operands are constants until proven otherwise.
504     bool GepHasConstantOffset = true;
505     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
506          I != E; ++I, ++GTI) {
507       const Value *Index = *I;
508       // Compute the (potentially symbolic) offset in bytes for this index.
509       if (StructType *STy = GTI.getStructTypeOrNull()) {
510         // For a struct, add the member offset.
511         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
512         if (FieldNo == 0)
513           continue;
514 
515         Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo);
516         continue;
517       }
518 
519       // For an array/pointer, add the element offset, explicitly scaled.
520       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
521         if (CIdx->isZero())
522           continue;
523         Decomposed.Offset +=
524             DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize() *
525             CIdx->getValue().sextOrTrunc(MaxPointerSize);
526         continue;
527       }
528 
529       GepHasConstantOffset = false;
530 
531       APInt Scale(MaxPointerSize,
532                   DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize());
533       unsigned ZExtBits = 0, SExtBits = 0;
534 
535       // If the integer type is smaller than the pointer size, it is implicitly
536       // sign extended to pointer size.
537       unsigned Width = Index->getType()->getIntegerBitWidth();
538       if (PointerSize > Width)
539         SExtBits += PointerSize - Width;
540 
541       // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
542       APInt IndexScale(Width, 0), IndexOffset(Width, 0);
543       bool NSW = true, NUW = true;
544       const Value *OrigIndex = Index;
545       Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
546                                   SExtBits, DL, 0, AC, DT, NSW, NUW);
547 
548       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
549       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
550 
551       // It can be the case that, even through C1*V+C2 does not overflow for
552       // relevant values of V, (C2*Scale) can overflow. In that case, we cannot
553       // decompose the expression in this way.
554       //
555       // FIXME: C1*Scale and the other operations in the decomposed
556       // (C1*Scale)*V+C2*Scale can also overflow. We should check for this
557       // possibility.
558       bool Overflow;
559       APInt ScaledOffset = IndexOffset.sextOrTrunc(MaxPointerSize)
560                            .smul_ov(Scale, Overflow);
561       if (Overflow) {
562         Index = OrigIndex;
563         IndexScale = 1;
564         IndexOffset = 0;
565 
566         ZExtBits = SExtBits = 0;
567         if (PointerSize > Width)
568           SExtBits += PointerSize - Width;
569       } else {
570         Decomposed.Offset += ScaledOffset;
571         Scale *= IndexScale.sextOrTrunc(MaxPointerSize);
572       }
573 
574       // If we already had an occurrence of this index variable, merge this
575       // scale into it.  For example, we want to handle:
576       //   A[x][x] -> x*16 + x*4 -> x*20
577       // This also ensures that 'x' only appears in the index list once.
578       for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
579         if (Decomposed.VarIndices[i].V == Index &&
580             Decomposed.VarIndices[i].ZExtBits == ZExtBits &&
581             Decomposed.VarIndices[i].SExtBits == SExtBits) {
582           Scale += Decomposed.VarIndices[i].Scale;
583           Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
584           break;
585         }
586       }
587 
588       // Make sure that we have a scale that makes sense for this target's
589       // pointer size.
590       Scale = adjustToPointerSize(Scale, PointerSize);
591 
592       if (!!Scale) {
593         VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, Scale, CxtI};
594         Decomposed.VarIndices.push_back(Entry);
595       }
596     }
597 
598     // Take care of wrap-arounds
599     if (GepHasConstantOffset)
600       Decomposed.Offset = adjustToPointerSize(Decomposed.Offset, PointerSize);
601 
602     // Analyze the base pointer next.
603     V = GEPOp->getOperand(0);
604   } while (--MaxLookup);
605 
606   // If the chain of expressions is too deep, just return early.
607   Decomposed.Base = V;
608   SearchLimitReached++;
609   return Decomposed;
610 }
611 
612 /// Returns whether the given pointer value points to memory that is local to
613 /// the function, with global constants being considered local to all
614 /// functions.
615 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
616                                            AAQueryInfo &AAQI, bool OrLocal) {
617   assert(Visited.empty() && "Visited must be cleared after use!");
618 
619   unsigned MaxLookup = 8;
620   SmallVector<const Value *, 16> Worklist;
621   Worklist.push_back(Loc.Ptr);
622   do {
623     const Value *V = getUnderlyingObject(Worklist.pop_back_val());
624     if (!Visited.insert(V).second) {
625       Visited.clear();
626       return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
627     }
628 
629     // An alloca instruction defines local memory.
630     if (OrLocal && isa<AllocaInst>(V))
631       continue;
632 
633     // A global constant counts as local memory for our purposes.
634     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
635       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
636       // global to be marked constant in some modules and non-constant in
637       // others.  GV may even be a declaration, not a definition.
638       if (!GV->isConstant()) {
639         Visited.clear();
640         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
641       }
642       continue;
643     }
644 
645     // If both select values point to local memory, then so does the select.
646     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
647       Worklist.push_back(SI->getTrueValue());
648       Worklist.push_back(SI->getFalseValue());
649       continue;
650     }
651 
652     // If all values incoming to a phi node point to local memory, then so does
653     // the phi.
654     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
655       // Don't bother inspecting phi nodes with many operands.
656       if (PN->getNumIncomingValues() > MaxLookup) {
657         Visited.clear();
658         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
659       }
660       append_range(Worklist, PN->incoming_values());
661       continue;
662     }
663 
664     // Otherwise be conservative.
665     Visited.clear();
666     return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
667   } while (!Worklist.empty() && --MaxLookup);
668 
669   Visited.clear();
670   return Worklist.empty();
671 }
672 
673 /// Returns the behavior when calling the given call site.
674 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) {
675   if (Call->doesNotAccessMemory())
676     // Can't do better than this.
677     return FMRB_DoesNotAccessMemory;
678 
679   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
680 
681   // If the callsite knows it only reads memory, don't return worse
682   // than that.
683   if (Call->onlyReadsMemory())
684     Min = FMRB_OnlyReadsMemory;
685   else if (Call->doesNotReadMemory())
686     Min = FMRB_OnlyWritesMemory;
687 
688   if (Call->onlyAccessesArgMemory())
689     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
690   else if (Call->onlyAccessesInaccessibleMemory())
691     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
692   else if (Call->onlyAccessesInaccessibleMemOrArgMem())
693     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
694 
695   // If the call has operand bundles then aliasing attributes from the function
696   // it calls do not directly apply to the call.  This can be made more precise
697   // in the future.
698   if (!Call->hasOperandBundles())
699     if (const Function *F = Call->getCalledFunction())
700       Min =
701           FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
702 
703   return Min;
704 }
705 
706 /// Returns the behavior when calling the given function. For use when the call
707 /// site is not known.
708 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
709   // If the function declares it doesn't access memory, we can't do better.
710   if (F->doesNotAccessMemory())
711     return FMRB_DoesNotAccessMemory;
712 
713   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
714 
715   // If the function declares it only reads memory, go with that.
716   if (F->onlyReadsMemory())
717     Min = FMRB_OnlyReadsMemory;
718   else if (F->doesNotReadMemory())
719     Min = FMRB_OnlyWritesMemory;
720 
721   if (F->onlyAccessesArgMemory())
722     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
723   else if (F->onlyAccessesInaccessibleMemory())
724     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
725   else if (F->onlyAccessesInaccessibleMemOrArgMem())
726     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
727 
728   return Min;
729 }
730 
731 /// Returns true if this is a writeonly (i.e Mod only) parameter.
732 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx,
733                              const TargetLibraryInfo &TLI) {
734   if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly))
735     return true;
736 
737   // We can bound the aliasing properties of memset_pattern16 just as we can
738   // for memcpy/memset.  This is particularly important because the
739   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
740   // whenever possible.
741   // FIXME Consider handling this in InferFunctionAttr.cpp together with other
742   // attributes.
743   LibFunc F;
744   if (Call->getCalledFunction() &&
745       TLI.getLibFunc(*Call->getCalledFunction(), F) &&
746       F == LibFunc_memset_pattern16 && TLI.has(F))
747     if (ArgIdx == 0)
748       return true;
749 
750   // TODO: memset_pattern4, memset_pattern8
751   // TODO: _chk variants
752   // TODO: strcmp, strcpy
753 
754   return false;
755 }
756 
757 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
758                                            unsigned ArgIdx) {
759   // Checking for known builtin intrinsics and target library functions.
760   if (isWriteOnlyParam(Call, ArgIdx, TLI))
761     return ModRefInfo::Mod;
762 
763   if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly))
764     return ModRefInfo::Ref;
765 
766   if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone))
767     return ModRefInfo::NoModRef;
768 
769   return AAResultBase::getArgModRefInfo(Call, ArgIdx);
770 }
771 
772 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
773   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
774   return II && II->getIntrinsicID() == IID;
775 }
776 
777 #ifndef NDEBUG
778 static const Function *getParent(const Value *V) {
779   if (const Instruction *inst = dyn_cast<Instruction>(V)) {
780     if (!inst->getParent())
781       return nullptr;
782     return inst->getParent()->getParent();
783   }
784 
785   if (const Argument *arg = dyn_cast<Argument>(V))
786     return arg->getParent();
787 
788   return nullptr;
789 }
790 
791 static bool notDifferentParent(const Value *O1, const Value *O2) {
792 
793   const Function *F1 = getParent(O1);
794   const Function *F2 = getParent(O2);
795 
796   return !F1 || !F2 || F1 == F2;
797 }
798 #endif
799 
800 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
801                                  const MemoryLocation &LocB,
802                                  AAQueryInfo &AAQI) {
803   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
804          "BasicAliasAnalysis doesn't support interprocedural queries.");
805   return aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr, LocB.Size,
806                     LocB.AATags, AAQI);
807 }
808 
809 /// Checks to see if the specified callsite can clobber the specified memory
810 /// object.
811 ///
812 /// Since we only look at local properties of this function, we really can't
813 /// say much about this query.  We do, however, use simple "address taken"
814 /// analysis on local objects.
815 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
816                                         const MemoryLocation &Loc,
817                                         AAQueryInfo &AAQI) {
818   assert(notDifferentParent(Call, Loc.Ptr) &&
819          "AliasAnalysis query involving multiple functions!");
820 
821   const Value *Object = getUnderlyingObject(Loc.Ptr);
822 
823   // Calls marked 'tail' cannot read or write allocas from the current frame
824   // because the current frame might be destroyed by the time they run. However,
825   // a tail call may use an alloca with byval. Calling with byval copies the
826   // contents of the alloca into argument registers or stack slots, so there is
827   // no lifetime issue.
828   if (isa<AllocaInst>(Object))
829     if (const CallInst *CI = dyn_cast<CallInst>(Call))
830       if (CI->isTailCall() &&
831           !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal))
832         return ModRefInfo::NoModRef;
833 
834   // Stack restore is able to modify unescaped dynamic allocas. Assume it may
835   // modify them even though the alloca is not escaped.
836   if (auto *AI = dyn_cast<AllocaInst>(Object))
837     if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore))
838       return ModRefInfo::Mod;
839 
840   // If the pointer is to a locally allocated object that does not escape,
841   // then the call can not mod/ref the pointer unless the call takes the pointer
842   // as an argument, and itself doesn't capture it.
843   if (!isa<Constant>(Object) && Call != Object &&
844       isNonEscapingLocalObject(Object, &AAQI.IsCapturedCache)) {
845 
846     // Optimistically assume that call doesn't touch Object and check this
847     // assumption in the following loop.
848     ModRefInfo Result = ModRefInfo::NoModRef;
849     bool IsMustAlias = true;
850 
851     unsigned OperandNo = 0;
852     for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
853          CI != CE; ++CI, ++OperandNo) {
854       // Only look at the no-capture or byval pointer arguments.  If this
855       // pointer were passed to arguments that were neither of these, then it
856       // couldn't be no-capture.
857       if (!(*CI)->getType()->isPointerTy() ||
858           (!Call->doesNotCapture(OperandNo) &&
859            OperandNo < Call->getNumArgOperands() &&
860            !Call->isByValArgument(OperandNo)))
861         continue;
862 
863       // Call doesn't access memory through this operand, so we don't care
864       // if it aliases with Object.
865       if (Call->doesNotAccessMemory(OperandNo))
866         continue;
867 
868       // If this is a no-capture pointer argument, see if we can tell that it
869       // is impossible to alias the pointer we're checking.
870       AliasResult AR = getBestAAResults().alias(
871           MemoryLocation::getBeforeOrAfter(*CI),
872           MemoryLocation::getBeforeOrAfter(Object), AAQI);
873       if (AR != MustAlias)
874         IsMustAlias = false;
875       // Operand doesn't alias 'Object', continue looking for other aliases
876       if (AR == NoAlias)
877         continue;
878       // Operand aliases 'Object', but call doesn't modify it. Strengthen
879       // initial assumption and keep looking in case if there are more aliases.
880       if (Call->onlyReadsMemory(OperandNo)) {
881         Result = setRef(Result);
882         continue;
883       }
884       // Operand aliases 'Object' but call only writes into it.
885       if (Call->doesNotReadMemory(OperandNo)) {
886         Result = setMod(Result);
887         continue;
888       }
889       // This operand aliases 'Object' and call reads and writes into it.
890       // Setting ModRef will not yield an early return below, MustAlias is not
891       // used further.
892       Result = ModRefInfo::ModRef;
893       break;
894     }
895 
896     // No operand aliases, reset Must bit. Add below if at least one aliases
897     // and all aliases found are MustAlias.
898     if (isNoModRef(Result))
899       IsMustAlias = false;
900 
901     // Early return if we improved mod ref information
902     if (!isModAndRefSet(Result)) {
903       if (isNoModRef(Result))
904         return ModRefInfo::NoModRef;
905       return IsMustAlias ? setMust(Result) : clearMust(Result);
906     }
907   }
908 
909   // If the call is malloc/calloc like, we can assume that it doesn't
910   // modify any IR visible value.  This is only valid because we assume these
911   // routines do not read values visible in the IR.  TODO: Consider special
912   // casing realloc and strdup routines which access only their arguments as
913   // well.  Or alternatively, replace all of this with inaccessiblememonly once
914   // that's implemented fully.
915   if (isMallocOrCallocLikeFn(Call, &TLI)) {
916     // Be conservative if the accessed pointer may alias the allocation -
917     // fallback to the generic handling below.
918     if (getBestAAResults().alias(MemoryLocation::getBeforeOrAfter(Call),
919                                  Loc, AAQI) == NoAlias)
920       return ModRefInfo::NoModRef;
921   }
922 
923   // The semantics of memcpy intrinsics either exactly overlap or do not
924   // overlap, i.e., source and destination of any given memcpy are either
925   // no-alias or must-alias.
926   if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) {
927     AliasResult SrcAA =
928         getBestAAResults().alias(MemoryLocation::getForSource(Inst), Loc, AAQI);
929     AliasResult DestAA =
930         getBestAAResults().alias(MemoryLocation::getForDest(Inst), Loc, AAQI);
931     // It's also possible for Loc to alias both src and dest, or neither.
932     ModRefInfo rv = ModRefInfo::NoModRef;
933     if (SrcAA != NoAlias)
934       rv = setRef(rv);
935     if (DestAA != NoAlias)
936       rv = setMod(rv);
937     return rv;
938   }
939 
940   // While the assume intrinsic is marked as arbitrarily writing so that
941   // proper control dependencies will be maintained, it never aliases any
942   // particular memory location.
943   if (isIntrinsicCall(Call, Intrinsic::assume))
944     return ModRefInfo::NoModRef;
945 
946   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
947   // that proper control dependencies are maintained but they never mods any
948   // particular memory location.
949   //
950   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
951   // heap state at the point the guard is issued needs to be consistent in case
952   // the guard invokes the "deopt" continuation.
953   if (isIntrinsicCall(Call, Intrinsic::experimental_guard))
954     return ModRefInfo::Ref;
955   // The same applies to deoptimize which is essentially a guard(false).
956   if (isIntrinsicCall(Call, Intrinsic::experimental_deoptimize))
957     return ModRefInfo::Ref;
958 
959   // Like assumes, invariant.start intrinsics were also marked as arbitrarily
960   // writing so that proper control dependencies are maintained but they never
961   // mod any particular memory location visible to the IR.
962   // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
963   // intrinsic is now modeled as reading memory. This prevents hoisting the
964   // invariant.start intrinsic over stores. Consider:
965   // *ptr = 40;
966   // *ptr = 50;
967   // invariant_start(ptr)
968   // int val = *ptr;
969   // print(val);
970   //
971   // This cannot be transformed to:
972   //
973   // *ptr = 40;
974   // invariant_start(ptr)
975   // *ptr = 50;
976   // int val = *ptr;
977   // print(val);
978   //
979   // The transformation will cause the second store to be ignored (based on
980   // rules of invariant.start)  and print 40, while the first program always
981   // prints 50.
982   if (isIntrinsicCall(Call, Intrinsic::invariant_start))
983     return ModRefInfo::Ref;
984 
985   // The AAResultBase base class has some smarts, lets use them.
986   return AAResultBase::getModRefInfo(Call, Loc, AAQI);
987 }
988 
989 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
990                                         const CallBase *Call2,
991                                         AAQueryInfo &AAQI) {
992   // While the assume intrinsic is marked as arbitrarily writing so that
993   // proper control dependencies will be maintained, it never aliases any
994   // particular memory location.
995   if (isIntrinsicCall(Call1, Intrinsic::assume) ||
996       isIntrinsicCall(Call2, Intrinsic::assume))
997     return ModRefInfo::NoModRef;
998 
999   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
1000   // that proper control dependencies are maintained but they never mod any
1001   // particular memory location.
1002   //
1003   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1004   // heap state at the point the guard is issued needs to be consistent in case
1005   // the guard invokes the "deopt" continuation.
1006 
1007   // NB! This function is *not* commutative, so we special case two
1008   // possibilities for guard intrinsics.
1009 
1010   if (isIntrinsicCall(Call1, Intrinsic::experimental_guard))
1011     return isModSet(createModRefInfo(getModRefBehavior(Call2)))
1012                ? ModRefInfo::Ref
1013                : ModRefInfo::NoModRef;
1014 
1015   if (isIntrinsicCall(Call2, Intrinsic::experimental_guard))
1016     return isModSet(createModRefInfo(getModRefBehavior(Call1)))
1017                ? ModRefInfo::Mod
1018                : ModRefInfo::NoModRef;
1019 
1020   // The AAResultBase base class has some smarts, lets use them.
1021   return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
1022 }
1023 
1024 /// Return true if we know V to the base address of the corresponding memory
1025 /// object.  This implies that any address less than V must be out of bounds
1026 /// for the underlying object.  Note that just being isIdentifiedObject() is
1027 /// not enough - For example, a negative offset from a noalias argument or call
1028 /// can be inbounds w.r.t the actual underlying object.
1029 static bool isBaseOfObject(const Value *V) {
1030   // TODO: We can handle other cases here
1031   // 1) For GC languages, arguments to functions are often required to be
1032   //    base pointers.
1033   // 2) Result of allocation routines are often base pointers.  Leverage TLI.
1034   return (isa<AllocaInst>(V) || isa<GlobalVariable>(V));
1035 }
1036 
1037 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1038 /// another pointer.
1039 ///
1040 /// We know that V1 is a GEP, but we don't know anything about V2.
1041 /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for
1042 /// V2.
1043 AliasResult BasicAAResult::aliasGEP(
1044     const GEPOperator *GEP1, LocationSize V1Size, const AAMDNodes &V1AAInfo,
1045     const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo,
1046     const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) {
1047   DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT);
1048   DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT);
1049 
1050   // Don't attempt to analyze the decomposed GEP if index scale is not a
1051   // compile-time constant.
1052   if (!DecompGEP1.HasCompileTimeConstantScale ||
1053       !DecompGEP2.HasCompileTimeConstantScale)
1054     return MayAlias;
1055 
1056   assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
1057          "DecomposeGEPExpression returned a result different from "
1058          "getUnderlyingObject");
1059 
1060   // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1061   // symbolic difference.
1062   DecompGEP1.Offset -= DecompGEP2.Offset;
1063   GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);
1064 
1065   // If an inbounds GEP would have to start from an out of bounds address
1066   // for the two to alias, then we can assume noalias.
1067   if (*DecompGEP1.InBounds && DecompGEP1.VarIndices.empty() &&
1068       V2Size.hasValue() && DecompGEP1.Offset.sge(V2Size.getValue()) &&
1069       isBaseOfObject(DecompGEP2.Base))
1070     return NoAlias;
1071 
1072   if (isa<GEPOperator>(V2)) {
1073     // Symmetric case to above.
1074     if (*DecompGEP2.InBounds && DecompGEP1.VarIndices.empty() &&
1075         V1Size.hasValue() && DecompGEP1.Offset.sle(-V1Size.getValue()) &&
1076         isBaseOfObject(DecompGEP1.Base))
1077     return NoAlias;
1078   } else {
1079     // TODO: This limitation exists for compile-time reasons. Relax it if we
1080     // can avoid exponential pathological cases.
1081     if (!V1Size.hasValue() && !V2Size.hasValue())
1082       return MayAlias;
1083   }
1084 
1085   // For GEPs with identical offsets, we can preserve the size and AAInfo
1086   // when performing the alias check on the underlying objects.
1087   if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty())
1088     return getBestAAResults().alias(
1089         MemoryLocation(UnderlyingV1, V1Size, V1AAInfo),
1090         MemoryLocation(UnderlyingV2, V2Size, V2AAInfo), AAQI);
1091 
1092   // Do the base pointers alias?
1093   AliasResult BaseAlias = getBestAAResults().alias(
1094       MemoryLocation::getBeforeOrAfter(UnderlyingV1),
1095       MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI);
1096 
1097   // If we get a No or May, then return it immediately, no amount of analysis
1098   // will improve this situation.
1099   if (BaseAlias != MustAlias) {
1100     assert(BaseAlias == NoAlias || BaseAlias == MayAlias);
1101     return BaseAlias;
1102   }
1103 
1104   // If there is a constant difference between the pointers, but the difference
1105   // is less than the size of the associated memory object, then we know
1106   // that the objects are partially overlapping.  If the difference is
1107   // greater, we know they do not overlap.
1108   if (DecompGEP1.Offset != 0 && DecompGEP1.VarIndices.empty()) {
1109     APInt &Off = DecompGEP1.Offset;
1110 
1111     // Initialize for Off >= 0 (V2 <= GEP1) case.
1112     const Value *LeftPtr = V2;
1113     const Value *RightPtr = GEP1;
1114     LocationSize VLeftSize = V2Size;
1115     LocationSize VRightSize = V1Size;
1116 
1117     if (Off.isNegative()) {
1118       // Swap if we have the situation where:
1119       // +                +
1120       // | BaseOffset     |
1121       // ---------------->|
1122       // |-->V1Size       |-------> V2Size
1123       // GEP1             V2
1124       std::swap(LeftPtr, RightPtr);
1125       std::swap(VLeftSize, VRightSize);
1126       Off = -Off;
1127     }
1128 
1129     if (VLeftSize.hasValue()) {
1130       const uint64_t LSize = VLeftSize.getValue();
1131       if (Off.ult(LSize)) {
1132         // Conservatively drop processing if a phi was visited and/or offset is
1133         // too big.
1134         if (VisitedPhiBBs.empty() && VRightSize.hasValue() &&
1135             Off.ule(INT64_MAX)) {
1136           // Memory referenced by right pointer is nested. Save the offset in
1137           // cache.
1138           const uint64_t RSize = VRightSize.getValue();
1139           if ((Off + RSize).ule(LSize))
1140             AAQI.setClobberOffset(LeftPtr, RightPtr, LSize, RSize,
1141                                   Off.getSExtValue());
1142         }
1143         return PartialAlias;
1144       }
1145       return NoAlias;
1146     }
1147   }
1148 
1149   if (!DecompGEP1.VarIndices.empty()) {
1150     APInt GCD;
1151     bool AllNonNegative = DecompGEP1.Offset.isNonNegative();
1152     bool AllNonPositive = DecompGEP1.Offset.isNonPositive();
1153     for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1154       const APInt &Scale = DecompGEP1.VarIndices[i].Scale;
1155       if (i == 0)
1156         GCD = Scale.abs();
1157       else
1158         GCD = APIntOps::GreatestCommonDivisor(GCD, Scale.abs());
1159 
1160       if (AllNonNegative || AllNonPositive) {
1161         // If the Value could change between cycles, then any reasoning about
1162         // the Value this cycle may not hold in the next cycle. We'll just
1163         // give up if we can't determine conditions that hold for every cycle:
1164         const Value *V = DecompGEP1.VarIndices[i].V;
1165         const Instruction *CxtI = DecompGEP1.VarIndices[i].CxtI;
1166 
1167         KnownBits Known = computeKnownBits(V, DL, 0, &AC, CxtI, DT);
1168         bool SignKnownZero = Known.isNonNegative();
1169         bool SignKnownOne = Known.isNegative();
1170 
1171         // Zero-extension widens the variable, and so forces the sign
1172         // bit to zero.
1173         bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
1174         SignKnownZero |= IsZExt;
1175         SignKnownOne &= !IsZExt;
1176 
1177         AllNonNegative &= (SignKnownZero && Scale.isNonNegative()) ||
1178                           (SignKnownOne && Scale.isNonPositive());
1179         AllNonPositive &= (SignKnownZero && Scale.isNonPositive()) ||
1180                           (SignKnownOne && Scale.isNonNegative());
1181       }
1182     }
1183 
1184     // We now have accesses at two offsets from the same base:
1185     //  1. (...)*GCD + DecompGEP1.Offset with size V1Size
1186     //  2. 0 with size V2Size
1187     // Using arithmetic modulo GCD, the accesses are at
1188     // [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits
1189     // into the range [V2Size..GCD), then we know they cannot overlap.
1190     APInt ModOffset = DecompGEP1.Offset.srem(GCD);
1191     if (ModOffset.isNegative())
1192       ModOffset += GCD; // We want mod, not rem.
1193     if (V1Size.hasValue() && V2Size.hasValue() &&
1194         ModOffset.uge(V2Size.getValue()) &&
1195         (GCD - ModOffset).uge(V1Size.getValue()))
1196       return NoAlias;
1197 
1198     // If we know all the variables are non-negative, then the total offset is
1199     // also non-negative and >= DecompGEP1.Offset. We have the following layout:
1200     // [0, V2Size) ... [TotalOffset, TotalOffer+V1Size]
1201     // If DecompGEP1.Offset >= V2Size, the accesses don't alias.
1202     if (AllNonNegative && V2Size.hasValue() &&
1203         DecompGEP1.Offset.uge(V2Size.getValue()))
1204       return NoAlias;
1205     // Similarly, if the variables are non-positive, then the total offset is
1206     // also non-positive and <= DecompGEP1.Offset. We have the following layout:
1207     // [TotalOffset, TotalOffset+V1Size) ... [0, V2Size)
1208     // If -DecompGEP1.Offset >= V1Size, the accesses don't alias.
1209     if (AllNonPositive && V1Size.hasValue() &&
1210         (-DecompGEP1.Offset).uge(V1Size.getValue()))
1211       return NoAlias;
1212 
1213     if (V1Size.hasValue() && V2Size.hasValue()) {
1214       // Try to determine whether abs(VarIndex) > 0.
1215       Optional<APInt> MinAbsVarIndex;
1216       if (DecompGEP1.VarIndices.size() == 1) {
1217         // VarIndex = Scale*V. If V != 0 then abs(VarIndex) >= abs(Scale).
1218         const VariableGEPIndex &Var = DecompGEP1.VarIndices[0];
1219         if (isKnownNonZero(Var.V, DL, 0, &AC, Var.CxtI, DT))
1220           MinAbsVarIndex = Var.Scale.abs();
1221       } else if (DecompGEP1.VarIndices.size() == 2) {
1222         // VarIndex = Scale*V0 + (-Scale)*V1.
1223         // If V0 != V1 then abs(VarIndex) >= abs(Scale).
1224         // Check that VisitedPhiBBs is empty, to avoid reasoning about
1225         // inequality of values across loop iterations.
1226         const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0];
1227         const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1];
1228         if (Var0.Scale == -Var1.Scale && Var0.ZExtBits == Var1.ZExtBits &&
1229             Var0.SExtBits == Var1.SExtBits && VisitedPhiBBs.empty() &&
1230             isKnownNonEqual(Var0.V, Var1.V, DL, &AC, /* CxtI */ nullptr, DT))
1231           MinAbsVarIndex = Var0.Scale.abs();
1232       }
1233 
1234       if (MinAbsVarIndex) {
1235         // The constant offset will have added at least +/-MinAbsVarIndex to it.
1236         APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex;
1237         APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex;
1238         // Check that an access at OffsetLo or lower, and an access at OffsetHi
1239         // or higher both do not alias.
1240         if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) &&
1241             OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue()))
1242           return NoAlias;
1243       }
1244     }
1245 
1246     if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
1247                                 DecompGEP1.Offset, &AC, DT))
1248       return NoAlias;
1249   }
1250 
1251   // Statically, we can see that the base objects are the same, but the
1252   // pointers have dynamic offsets which we can't resolve. And none of our
1253   // little tricks above worked.
1254   return MayAlias;
1255 }
1256 
1257 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1258   // If the results agree, take it.
1259   if (A == B)
1260     return A;
1261   // A mix of PartialAlias and MustAlias is PartialAlias.
1262   if ((A == PartialAlias && B == MustAlias) ||
1263       (B == PartialAlias && A == MustAlias))
1264     return PartialAlias;
1265   // Otherwise, we don't know anything.
1266   return MayAlias;
1267 }
1268 
1269 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1270 /// against another.
1271 AliasResult
1272 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize,
1273                            const AAMDNodes &SIAAInfo, const Value *V2,
1274                            LocationSize V2Size, const AAMDNodes &V2AAInfo,
1275                            AAQueryInfo &AAQI) {
1276   // If the values are Selects with the same condition, we can do a more precise
1277   // check: just check for aliases between the values on corresponding arms.
1278   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1279     if (SI->getCondition() == SI2->getCondition()) {
1280       AliasResult Alias = getBestAAResults().alias(
1281           MemoryLocation(SI->getTrueValue(), SISize, SIAAInfo),
1282           MemoryLocation(SI2->getTrueValue(), V2Size, V2AAInfo), AAQI);
1283       if (Alias == MayAlias)
1284         return MayAlias;
1285       AliasResult ThisAlias = getBestAAResults().alias(
1286           MemoryLocation(SI->getFalseValue(), SISize, SIAAInfo),
1287           MemoryLocation(SI2->getFalseValue(), V2Size, V2AAInfo), AAQI);
1288       return MergeAliasResults(ThisAlias, Alias);
1289     }
1290 
1291   // If both arms of the Select node NoAlias or MustAlias V2, then returns
1292   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1293   AliasResult Alias = getBestAAResults().alias(
1294       MemoryLocation(V2, V2Size, V2AAInfo),
1295       MemoryLocation(SI->getTrueValue(), SISize, SIAAInfo), AAQI);
1296   if (Alias == MayAlias)
1297     return MayAlias;
1298 
1299   AliasResult ThisAlias = getBestAAResults().alias(
1300       MemoryLocation(V2, V2Size, V2AAInfo),
1301       MemoryLocation(SI->getFalseValue(), SISize, SIAAInfo), AAQI);
1302   return MergeAliasResults(ThisAlias, Alias);
1303 }
1304 
1305 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1306 /// another.
1307 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
1308                                     const AAMDNodes &PNAAInfo, const Value *V2,
1309                                     LocationSize V2Size,
1310                                     const AAMDNodes &V2AAInfo,
1311                                     AAQueryInfo &AAQI) {
1312   // If the values are PHIs in the same block, we can do a more precise
1313   // as well as efficient check: just check for aliases between the values
1314   // on corresponding edges.
1315   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1316     if (PN2->getParent() == PN->getParent()) {
1317       Optional<AliasResult> Alias;
1318       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1319         AliasResult ThisAlias = getBestAAResults().alias(
1320             MemoryLocation(PN->getIncomingValue(i), PNSize, PNAAInfo),
1321             MemoryLocation(
1322                 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size,
1323                 V2AAInfo),
1324             AAQI);
1325         if (Alias)
1326           *Alias = MergeAliasResults(*Alias, ThisAlias);
1327         else
1328           Alias = ThisAlias;
1329         if (*Alias == MayAlias)
1330           break;
1331       }
1332       return *Alias;
1333     }
1334 
1335   SmallVector<Value *, 4> V1Srcs;
1336   // If a phi operand recurses back to the phi, we can still determine NoAlias
1337   // if we don't alias the underlying objects of the other phi operands, as we
1338   // know that the recursive phi needs to be based on them in some way.
1339   bool isRecursive = false;
1340   auto CheckForRecPhi = [&](Value *PV) {
1341     if (!EnableRecPhiAnalysis)
1342       return false;
1343     if (getUnderlyingObject(PV) == PN) {
1344       isRecursive = true;
1345       return true;
1346     }
1347     return false;
1348   };
1349 
1350   if (PV) {
1351     // If we have PhiValues then use it to get the underlying phi values.
1352     const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN);
1353     // If we have more phi values than the search depth then return MayAlias
1354     // conservatively to avoid compile time explosion. The worst possible case
1355     // is if both sides are PHI nodes. In which case, this is O(m x n) time
1356     // where 'm' and 'n' are the number of PHI sources.
1357     if (PhiValueSet.size() > MaxLookupSearchDepth)
1358       return MayAlias;
1359     // Add the values to V1Srcs
1360     for (Value *PV1 : PhiValueSet) {
1361       if (CheckForRecPhi(PV1))
1362         continue;
1363       V1Srcs.push_back(PV1);
1364     }
1365   } else {
1366     // If we don't have PhiInfo then just look at the operands of the phi itself
1367     // FIXME: Remove this once we can guarantee that we have PhiInfo always
1368     SmallPtrSet<Value *, 4> UniqueSrc;
1369     Value *OnePhi = nullptr;
1370     for (Value *PV1 : PN->incoming_values()) {
1371       if (isa<PHINode>(PV1)) {
1372         if (OnePhi && OnePhi != PV1) {
1373           // To control potential compile time explosion, we choose to be
1374           // conserviate when we have more than one Phi input.  It is important
1375           // that we handle the single phi case as that lets us handle LCSSA
1376           // phi nodes and (combined with the recursive phi handling) simple
1377           // pointer induction variable patterns.
1378           return MayAlias;
1379         }
1380         OnePhi = PV1;
1381       }
1382 
1383       if (CheckForRecPhi(PV1))
1384         continue;
1385 
1386       if (UniqueSrc.insert(PV1).second)
1387         V1Srcs.push_back(PV1);
1388     }
1389 
1390     if (OnePhi && UniqueSrc.size() > 1)
1391       // Out of an abundance of caution, allow only the trivial lcssa and
1392       // recursive phi cases.
1393       return MayAlias;
1394   }
1395 
1396   // If V1Srcs is empty then that means that the phi has no underlying non-phi
1397   // value. This should only be possible in blocks unreachable from the entry
1398   // block, but return MayAlias just in case.
1399   if (V1Srcs.empty())
1400     return MayAlias;
1401 
1402   // If this PHI node is recursive, indicate that the pointer may be moved
1403   // across iterations. We can only prove NoAlias if different underlying
1404   // objects are involved.
1405   if (isRecursive)
1406     PNSize = LocationSize::beforeOrAfterPointer();
1407 
1408   // In the recursive alias queries below, we may compare values from two
1409   // different loop iterations. Keep track of visited phi blocks, which will
1410   // be used when determining value equivalence.
1411   bool BlockInserted = VisitedPhiBBs.insert(PN->getParent()).second;
1412   auto _ = make_scope_exit([&]() {
1413     if (BlockInserted)
1414       VisitedPhiBBs.erase(PN->getParent());
1415   });
1416 
1417   // If we inserted a block into VisitedPhiBBs, alias analysis results that
1418   // have been cached earlier may no longer be valid. Perform recursive queries
1419   // with a new AAQueryInfo.
1420   AAQueryInfo NewAAQI = AAQI.withEmptyCache();
1421   AAQueryInfo *UseAAQI = BlockInserted ? &NewAAQI : &AAQI;
1422 
1423   AliasResult Alias = getBestAAResults().alias(
1424       MemoryLocation(V2, V2Size, V2AAInfo),
1425       MemoryLocation(V1Srcs[0], PNSize, PNAAInfo), *UseAAQI);
1426 
1427   // Early exit if the check of the first PHI source against V2 is MayAlias.
1428   // Other results are not possible.
1429   if (Alias == MayAlias)
1430     return MayAlias;
1431   // With recursive phis we cannot guarantee that MustAlias/PartialAlias will
1432   // remain valid to all elements and needs to conservatively return MayAlias.
1433   if (isRecursive && Alias != NoAlias)
1434     return MayAlias;
1435 
1436   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1437   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1438   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1439     Value *V = V1Srcs[i];
1440 
1441     AliasResult ThisAlias = getBestAAResults().alias(
1442         MemoryLocation(V2, V2Size, V2AAInfo),
1443         MemoryLocation(V, PNSize, PNAAInfo), *UseAAQI);
1444     Alias = MergeAliasResults(ThisAlias, Alias);
1445     if (Alias == MayAlias)
1446       break;
1447   }
1448 
1449   return Alias;
1450 }
1451 
1452 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1453 /// array references.
1454 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
1455                                       const AAMDNodes &V1AAInfo,
1456                                       const Value *V2, LocationSize V2Size,
1457                                       const AAMDNodes &V2AAInfo,
1458                                       AAQueryInfo &AAQI) {
1459   // If either of the memory references is empty, it doesn't matter what the
1460   // pointer values are.
1461   if (V1Size.isZero() || V2Size.isZero())
1462     return NoAlias;
1463 
1464   // Strip off any casts if they exist.
1465   V1 = V1->stripPointerCastsForAliasAnalysis();
1466   V2 = V2->stripPointerCastsForAliasAnalysis();
1467 
1468   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1469   // value for undef that aliases nothing in the program.
1470   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1471     return NoAlias;
1472 
1473   // Are we checking for alias of the same value?
1474   // Because we look 'through' phi nodes, we could look at "Value" pointers from
1475   // different iterations. We must therefore make sure that this is not the
1476   // case. The function isValueEqualInPotentialCycles ensures that this cannot
1477   // happen by looking at the visited phi nodes and making sure they cannot
1478   // reach the value.
1479   if (isValueEqualInPotentialCycles(V1, V2))
1480     return MustAlias;
1481 
1482   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1483     return NoAlias; // Scalars cannot alias each other
1484 
1485   // Figure out what objects these things are pointing to if we can.
1486   const Value *O1 = getUnderlyingObject(V1, MaxLookupSearchDepth);
1487   const Value *O2 = getUnderlyingObject(V2, MaxLookupSearchDepth);
1488 
1489   // Null values in the default address space don't point to any object, so they
1490   // don't alias any other pointer.
1491   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1492     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1493       return NoAlias;
1494   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1495     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1496       return NoAlias;
1497 
1498   if (O1 != O2) {
1499     // If V1/V2 point to two different objects, we know that we have no alias.
1500     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1501       return NoAlias;
1502 
1503     // Constant pointers can't alias with non-const isIdentifiedObject objects.
1504     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1505         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1506       return NoAlias;
1507 
1508     // Function arguments can't alias with things that are known to be
1509     // unambigously identified at the function level.
1510     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1511         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1512       return NoAlias;
1513 
1514     // If one pointer is the result of a call/invoke or load and the other is a
1515     // non-escaping local object within the same function, then we know the
1516     // object couldn't escape to a point where the call could return it.
1517     //
1518     // Note that if the pointers are in different functions, there are a
1519     // variety of complications. A call with a nocapture argument may still
1520     // temporary store the nocapture argument's value in a temporary memory
1521     // location if that memory location doesn't escape. Or it may pass a
1522     // nocapture value to other functions as long as they don't capture it.
1523     if (isEscapeSource(O1) &&
1524         isNonEscapingLocalObject(O2, &AAQI.IsCapturedCache))
1525       return NoAlias;
1526     if (isEscapeSource(O2) &&
1527         isNonEscapingLocalObject(O1, &AAQI.IsCapturedCache))
1528       return NoAlias;
1529   }
1530 
1531   // If the size of one access is larger than the entire object on the other
1532   // side, then we know such behavior is undefined and can assume no alias.
1533   bool NullIsValidLocation = NullPointerIsDefined(&F);
1534   if ((isObjectSmallerThan(
1535           O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL,
1536           TLI, NullIsValidLocation)) ||
1537       (isObjectSmallerThan(
1538           O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL,
1539           TLI, NullIsValidLocation)))
1540     return NoAlias;
1541 
1542   // If one the accesses may be before the accessed pointer, canonicalize this
1543   // by using unknown after-pointer sizes for both accesses. This is
1544   // equivalent, because regardless of which pointer is lower, one of them
1545   // will always came after the other, as long as the underlying objects aren't
1546   // disjoint. We do this so that the rest of BasicAA does not have to deal
1547   // with accesses before the base pointer, and to improve cache utilization by
1548   // merging equivalent states.
1549   if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) {
1550     V1Size = LocationSize::afterPointer();
1551     V2Size = LocationSize::afterPointer();
1552   }
1553 
1554   // FIXME: If this depth limit is hit, then we may cache sub-optimal results
1555   // for recursive queries. For this reason, this limit is chosen to be large
1556   // enough to be very rarely hit, while still being small enough to avoid
1557   // stack overflows.
1558   if (AAQI.Depth >= 512)
1559     return MayAlias;
1560 
1561   // Check the cache before climbing up use-def chains. This also terminates
1562   // otherwise infinitely recursive queries.
1563   AAQueryInfo::LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
1564                             MemoryLocation(V2, V2Size, V2AAInfo));
1565   if (V1 > V2)
1566     std::swap(Locs.first, Locs.second);
1567   const auto &Pair = AAQI.AliasCache.try_emplace(
1568       Locs, AAQueryInfo::CacheEntry{NoAlias, 0});
1569   if (!Pair.second) {
1570     auto &Entry = Pair.first->second;
1571     if (!Entry.isDefinitive()) {
1572       // Remember that we used an assumption.
1573       ++Entry.NumAssumptionUses;
1574       ++AAQI.NumAssumptionUses;
1575     }
1576     return Entry.Result;
1577   }
1578 
1579   int OrigNumAssumptionUses = AAQI.NumAssumptionUses;
1580   unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size();
1581   AliasResult Result = aliasCheckRecursive(V1, V1Size, V1AAInfo, V2, V2Size,
1582                                            V2AAInfo, AAQI, O1, O2);
1583 
1584   auto It = AAQI.AliasCache.find(Locs);
1585   assert(It != AAQI.AliasCache.end() && "Must be in cache");
1586   auto &Entry = It->second;
1587 
1588   // Check whether a NoAlias assumption has been used, but disproven.
1589   bool AssumptionDisproven = Entry.NumAssumptionUses > 0 && Result != NoAlias;
1590   if (AssumptionDisproven)
1591     Result = MayAlias;
1592 
1593   // This is a definitive result now, when considered as a root query.
1594   AAQI.NumAssumptionUses -= Entry.NumAssumptionUses;
1595   Entry.Result = Result;
1596   Entry.NumAssumptionUses = -1;
1597 
1598   // If the assumption has been disproven, remove any results that may have
1599   // been based on this assumption. Do this after the Entry updates above to
1600   // avoid iterator invalidation.
1601   if (AssumptionDisproven)
1602     while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults)
1603       AAQI.AliasCache.erase(AAQI.AssumptionBasedResults.pop_back_val());
1604 
1605   // The result may still be based on assumptions higher up in the chain.
1606   // Remember it, so it can be purged from the cache later.
1607   if (OrigNumAssumptionUses != AAQI.NumAssumptionUses && Result != MayAlias)
1608     AAQI.AssumptionBasedResults.push_back(Locs);
1609   return Result;
1610 }
1611 
1612 AliasResult BasicAAResult::aliasCheckRecursive(
1613     const Value *V1, LocationSize V1Size, const AAMDNodes &V1AAInfo,
1614     const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo,
1615     AAQueryInfo &AAQI, const Value *O1, const Value *O2) {
1616   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1617     AliasResult Result =
1618         aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2, AAQI);
1619     if (Result != MayAlias)
1620       return Result;
1621   } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) {
1622     AliasResult Result =
1623         aliasGEP(GV2, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, O2, O1, AAQI);
1624     if (Result != MayAlias)
1625       return Result;
1626   }
1627 
1628   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1629     AliasResult Result =
1630         aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, AAQI);
1631     if (Result != MayAlias)
1632       return Result;
1633   } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) {
1634     AliasResult Result =
1635         aliasPHI(PN, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, AAQI);
1636     if (Result != MayAlias)
1637       return Result;
1638   }
1639 
1640   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1641     AliasResult Result =
1642         aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, AAQI);
1643     if (Result != MayAlias)
1644       return Result;
1645   } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) {
1646     AliasResult Result =
1647         aliasSelect(S2, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, AAQI);
1648     if (Result != MayAlias)
1649       return Result;
1650   }
1651 
1652   // If both pointers are pointing into the same object and one of them
1653   // accesses the entire object, then the accesses must overlap in some way.
1654   if (O1 == O2) {
1655     bool NullIsValidLocation = NullPointerIsDefined(&F);
1656     if (V1Size.isPrecise() && V2Size.isPrecise() &&
1657         (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
1658          isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation)))
1659       return PartialAlias;
1660   }
1661 
1662   return MayAlias;
1663 }
1664 
1665 /// Check whether two Values can be considered equivalent.
1666 ///
1667 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1668 /// they can not be part of a cycle in the value graph by looking at all
1669 /// visited phi nodes an making sure that the phis cannot reach the value. We
1670 /// have to do this because we are looking through phi nodes (That is we say
1671 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1672 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1673                                                   const Value *V2) {
1674   if (V != V2)
1675     return false;
1676 
1677   const Instruction *Inst = dyn_cast<Instruction>(V);
1678   if (!Inst)
1679     return true;
1680 
1681   if (VisitedPhiBBs.empty())
1682     return true;
1683 
1684   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1685     return false;
1686 
1687   // Make sure that the visited phis cannot reach the Value. This ensures that
1688   // the Values cannot come from different iterations of a potential cycle the
1689   // phi nodes could be involved in.
1690   for (auto *P : VisitedPhiBBs)
1691     if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT))
1692       return false;
1693 
1694   return true;
1695 }
1696 
1697 /// Computes the symbolic difference between two de-composed GEPs.
1698 ///
1699 /// Dest and Src are the variable indices from two decomposed GetElementPtr
1700 /// instructions GEP1 and GEP2 which have common base pointers.
1701 void BasicAAResult::GetIndexDifference(
1702     SmallVectorImpl<VariableGEPIndex> &Dest,
1703     const SmallVectorImpl<VariableGEPIndex> &Src) {
1704   if (Src.empty())
1705     return;
1706 
1707   for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1708     const Value *V = Src[i].V;
1709     unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
1710     APInt Scale = Src[i].Scale;
1711 
1712     // Find V in Dest.  This is N^2, but pointer indices almost never have more
1713     // than a few variable indexes.
1714     for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1715       if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1716           Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
1717         continue;
1718 
1719       // If we found it, subtract off Scale V's from the entry in Dest.  If it
1720       // goes to zero, remove the entry.
1721       if (Dest[j].Scale != Scale)
1722         Dest[j].Scale -= Scale;
1723       else
1724         Dest.erase(Dest.begin() + j);
1725       Scale = 0;
1726       break;
1727     }
1728 
1729     // If we didn't consume this entry, add it to the end of the Dest list.
1730     if (!!Scale) {
1731       VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale, Src[i].CxtI};
1732       Dest.push_back(Entry);
1733     }
1734   }
1735 }
1736 
1737 bool BasicAAResult::constantOffsetHeuristic(
1738     const SmallVectorImpl<VariableGEPIndex> &VarIndices,
1739     LocationSize MaybeV1Size, LocationSize MaybeV2Size, const APInt &BaseOffset,
1740     AssumptionCache *AC, DominatorTree *DT) {
1741   if (VarIndices.size() != 2 || !MaybeV1Size.hasValue() ||
1742       !MaybeV2Size.hasValue())
1743     return false;
1744 
1745   const uint64_t V1Size = MaybeV1Size.getValue();
1746   const uint64_t V2Size = MaybeV2Size.getValue();
1747 
1748   const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
1749 
1750   if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
1751       Var0.Scale != -Var1.Scale)
1752     return false;
1753 
1754   unsigned Width = Var1.V->getType()->getIntegerBitWidth();
1755 
1756   // We'll strip off the Extensions of Var0 and Var1 and do another round
1757   // of GetLinearExpression decomposition. In the example above, if Var0
1758   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1759 
1760   APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
1761       V1Offset(Width, 0);
1762   bool NSW = true, NUW = true;
1763   unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
1764   const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
1765                                         V0SExtBits, DL, 0, AC, DT, NSW, NUW);
1766   NSW = true;
1767   NUW = true;
1768   const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
1769                                         V1SExtBits, DL, 0, AC, DT, NSW, NUW);
1770 
1771   if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
1772       V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
1773     return false;
1774 
1775   // We have a hit - Var0 and Var1 only differ by a constant offset!
1776 
1777   // If we've been sext'ed then zext'd the maximum difference between Var0 and
1778   // Var1 is possible to calculate, but we're just interested in the absolute
1779   // minimum difference between the two. The minimum distance may occur due to
1780   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1781   // the minimum distance between %i and %i + 5 is 3.
1782   APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
1783   MinDiff = APIntOps::umin(MinDiff, Wrapped);
1784   APInt MinDiffBytes =
1785     MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs();
1786 
1787   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
1788   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
1789   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
1790   // V2Size can fit in the MinDiffBytes gap.
1791   return MinDiffBytes.uge(V1Size + BaseOffset.abs()) &&
1792          MinDiffBytes.uge(V2Size + BaseOffset.abs());
1793 }
1794 
1795 //===----------------------------------------------------------------------===//
1796 // BasicAliasAnalysis Pass
1797 //===----------------------------------------------------------------------===//
1798 
1799 AnalysisKey BasicAA::Key;
1800 
1801 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
1802   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1803   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1804   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1805   auto *PV = AM.getCachedResult<PhiValuesAnalysis>(F);
1806   return BasicAAResult(F.getParent()->getDataLayout(), F, TLI, AC, DT, PV);
1807 }
1808 
1809 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
1810   initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
1811 }
1812 
1813 char BasicAAWrapperPass::ID = 0;
1814 
1815 void BasicAAWrapperPass::anchor() {}
1816 
1817 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa",
1818                       "Basic Alias Analysis (stateless AA impl)", true, true)
1819 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1820 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1821 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1822 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
1823 INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa",
1824                     "Basic Alias Analysis (stateless AA impl)", true, true)
1825 
1826 FunctionPass *llvm::createBasicAAWrapperPass() {
1827   return new BasicAAWrapperPass();
1828 }
1829 
1830 bool BasicAAWrapperPass::runOnFunction(Function &F) {
1831   auto &ACT = getAnalysis<AssumptionCacheTracker>();
1832   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
1833   auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
1834   auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>();
1835 
1836   Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F,
1837                                  TLIWP.getTLI(F), ACT.getAssumptionCache(F),
1838                                  &DTWP.getDomTree(),
1839                                  PVWP ? &PVWP->getResult() : nullptr));
1840 
1841   return false;
1842 }
1843 
1844 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1845   AU.setPreservesAll();
1846   AU.addRequiredTransitive<AssumptionCacheTracker>();
1847   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
1848   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1849   AU.addUsedIfAvailable<PhiValuesWrapperPass>();
1850 }
1851 
1852 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
1853   return BasicAAResult(
1854       F.getParent()->getDataLayout(), F,
1855       P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
1856       P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
1857 }
1858