1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the primary stateless implementation of the 11 // Alias Analysis interface that implements identities (two different 12 // globals cannot alias, etc), but does no stateful analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/Passes.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/Function.h" 21 #include "llvm/GlobalAlias.h" 22 #include "llvm/GlobalVariable.h" 23 #include "llvm/Instructions.h" 24 #include "llvm/IntrinsicInst.h" 25 #include "llvm/LLVMContext.h" 26 #include "llvm/Operator.h" 27 #include "llvm/Pass.h" 28 #include "llvm/Analysis/CaptureTracking.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/Target/TargetData.h" 33 #include "llvm/ADT/SmallPtrSet.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/GetElementPtrTypeIterator.h" 37 #include <algorithm> 38 using namespace llvm; 39 40 //===----------------------------------------------------------------------===// 41 // Useful predicates 42 //===----------------------------------------------------------------------===// 43 44 /// isKnownNonNull - Return true if we know that the specified value is never 45 /// null. 46 static bool isKnownNonNull(const Value *V) { 47 // Alloca never returns null, malloc might. 48 if (isa<AllocaInst>(V)) return true; 49 50 // A byval argument is never null. 51 if (const Argument *A = dyn_cast<Argument>(V)) 52 return A->hasByValAttr(); 53 54 // Global values are not null unless extern weak. 55 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 56 return !GV->hasExternalWeakLinkage(); 57 return false; 58 } 59 60 /// isNonEscapingLocalObject - Return true if the pointer is to a function-local 61 /// object that never escapes from the function. 62 static bool isNonEscapingLocalObject(const Value *V) { 63 // If this is a local allocation, check to see if it escapes. 64 if (isa<AllocaInst>(V) || isNoAliasCall(V)) 65 // Set StoreCaptures to True so that we can assume in our callers that the 66 // pointer is not the result of a load instruction. Currently 67 // PointerMayBeCaptured doesn't have any special analysis for the 68 // StoreCaptures=false case; if it did, our callers could be refined to be 69 // more precise. 70 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 71 72 // If this is an argument that corresponds to a byval or noalias argument, 73 // then it has not escaped before entering the function. Check if it escapes 74 // inside the function. 75 if (const Argument *A = dyn_cast<Argument>(V)) 76 if (A->hasByValAttr() || A->hasNoAliasAttr()) { 77 // Don't bother analyzing arguments already known not to escape. 78 if (A->hasNoCaptureAttr()) 79 return true; 80 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 81 } 82 return false; 83 } 84 85 /// isEscapeSource - Return true if the pointer is one which would have 86 /// been considered an escape by isNonEscapingLocalObject. 87 static bool isEscapeSource(const Value *V) { 88 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V)) 89 return true; 90 91 // The load case works because isNonEscapingLocalObject considers all 92 // stores to be escapes (it passes true for the StoreCaptures argument 93 // to PointerMayBeCaptured). 94 if (isa<LoadInst>(V)) 95 return true; 96 97 return false; 98 } 99 100 /// getObjectSize - Return the size of the object specified by V, or 101 /// UnknownSize if unknown. 102 static uint64_t getObjectSize(const Value *V, const TargetData &TD) { 103 Type *AccessTy; 104 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 105 if (!GV->hasDefinitiveInitializer()) 106 return AliasAnalysis::UnknownSize; 107 AccessTy = GV->getType()->getElementType(); 108 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 109 if (!AI->isArrayAllocation()) 110 AccessTy = AI->getType()->getElementType(); 111 else 112 return AliasAnalysis::UnknownSize; 113 } else if (const CallInst* CI = extractMallocCall(V)) { 114 if (!isArrayMalloc(V, &TD)) 115 // The size is the argument to the malloc call. 116 if (const ConstantInt* C = dyn_cast<ConstantInt>(CI->getArgOperand(0))) 117 return C->getZExtValue(); 118 return AliasAnalysis::UnknownSize; 119 } else if (const Argument *A = dyn_cast<Argument>(V)) { 120 if (A->hasByValAttr()) 121 AccessTy = cast<PointerType>(A->getType())->getElementType(); 122 else 123 return AliasAnalysis::UnknownSize; 124 } else { 125 return AliasAnalysis::UnknownSize; 126 } 127 128 if (AccessTy->isSized()) 129 return TD.getTypeAllocSize(AccessTy); 130 return AliasAnalysis::UnknownSize; 131 } 132 133 /// isObjectSmallerThan - Return true if we can prove that the object specified 134 /// by V is smaller than Size. 135 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 136 const TargetData &TD) { 137 uint64_t ObjectSize = getObjectSize(V, TD); 138 return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size; 139 } 140 141 /// isObjectSize - Return true if we can prove that the object specified 142 /// by V has size Size. 143 static bool isObjectSize(const Value *V, uint64_t Size, 144 const TargetData &TD) { 145 uint64_t ObjectSize = getObjectSize(V, TD); 146 return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size; 147 } 148 149 //===----------------------------------------------------------------------===// 150 // GetElementPtr Instruction Decomposition and Analysis 151 //===----------------------------------------------------------------------===// 152 153 namespace { 154 enum ExtensionKind { 155 EK_NotExtended, 156 EK_SignExt, 157 EK_ZeroExt 158 }; 159 160 struct VariableGEPIndex { 161 const Value *V; 162 ExtensionKind Extension; 163 int64_t Scale; 164 }; 165 } 166 167 168 /// GetLinearExpression - Analyze the specified value as a linear expression: 169 /// "A*V + B", where A and B are constant integers. Return the scale and offset 170 /// values as APInts and return V as a Value*, and return whether we looked 171 /// through any sign or zero extends. The incoming Value is known to have 172 /// IntegerType and it may already be sign or zero extended. 173 /// 174 /// Note that this looks through extends, so the high bits may not be 175 /// represented in the result. 176 static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset, 177 ExtensionKind &Extension, 178 const TargetData &TD, unsigned Depth) { 179 assert(V->getType()->isIntegerTy() && "Not an integer value"); 180 181 // Limit our recursion depth. 182 if (Depth == 6) { 183 Scale = 1; 184 Offset = 0; 185 return V; 186 } 187 188 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 189 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 190 switch (BOp->getOpcode()) { 191 default: break; 192 case Instruction::Or: 193 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 194 // analyze it. 195 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &TD)) 196 break; 197 // FALL THROUGH. 198 case Instruction::Add: 199 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 200 TD, Depth+1); 201 Offset += RHSC->getValue(); 202 return V; 203 case Instruction::Mul: 204 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 205 TD, Depth+1); 206 Offset *= RHSC->getValue(); 207 Scale *= RHSC->getValue(); 208 return V; 209 case Instruction::Shl: 210 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 211 TD, Depth+1); 212 Offset <<= RHSC->getValue().getLimitedValue(); 213 Scale <<= RHSC->getValue().getLimitedValue(); 214 return V; 215 } 216 } 217 } 218 219 // Since GEP indices are sign extended anyway, we don't care about the high 220 // bits of a sign or zero extended value - just scales and offsets. The 221 // extensions have to be consistent though. 222 if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) || 223 (isa<ZExtInst>(V) && Extension != EK_SignExt)) { 224 Value *CastOp = cast<CastInst>(V)->getOperand(0); 225 unsigned OldWidth = Scale.getBitWidth(); 226 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 227 Scale = Scale.trunc(SmallWidth); 228 Offset = Offset.trunc(SmallWidth); 229 Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt; 230 231 Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension, 232 TD, Depth+1); 233 Scale = Scale.zext(OldWidth); 234 Offset = Offset.zext(OldWidth); 235 236 return Result; 237 } 238 239 Scale = 1; 240 Offset = 0; 241 return V; 242 } 243 244 /// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it 245 /// into a base pointer with a constant offset and a number of scaled symbolic 246 /// offsets. 247 /// 248 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale in 249 /// the VarIndices vector) are Value*'s that are known to be scaled by the 250 /// specified amount, but which may have other unrepresented high bits. As such, 251 /// the gep cannot necessarily be reconstructed from its decomposed form. 252 /// 253 /// When TargetData is around, this function is capable of analyzing everything 254 /// that GetUnderlyingObject can look through. When not, it just looks 255 /// through pointer casts. 256 /// 257 static const Value * 258 DecomposeGEPExpression(const Value *V, int64_t &BaseOffs, 259 SmallVectorImpl<VariableGEPIndex> &VarIndices, 260 const TargetData *TD) { 261 // Limit recursion depth to limit compile time in crazy cases. 262 unsigned MaxLookup = 6; 263 264 BaseOffs = 0; 265 do { 266 // See if this is a bitcast or GEP. 267 const Operator *Op = dyn_cast<Operator>(V); 268 if (Op == 0) { 269 // The only non-operator case we can handle are GlobalAliases. 270 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 271 if (!GA->mayBeOverridden()) { 272 V = GA->getAliasee(); 273 continue; 274 } 275 } 276 return V; 277 } 278 279 if (Op->getOpcode() == Instruction::BitCast) { 280 V = Op->getOperand(0); 281 continue; 282 } 283 284 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 285 if (GEPOp == 0) { 286 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 287 // can come up with something. This matches what GetUnderlyingObject does. 288 if (const Instruction *I = dyn_cast<Instruction>(V)) 289 // TODO: Get a DominatorTree and use it here. 290 if (const Value *Simplified = 291 SimplifyInstruction(const_cast<Instruction *>(I), TD)) { 292 V = Simplified; 293 continue; 294 } 295 296 return V; 297 } 298 299 // Don't attempt to analyze GEPs over unsized objects. 300 if (!cast<PointerType>(GEPOp->getOperand(0)->getType()) 301 ->getElementType()->isSized()) 302 return V; 303 304 // If we are lacking TargetData information, we can't compute the offets of 305 // elements computed by GEPs. However, we can handle bitcast equivalent 306 // GEPs. 307 if (TD == 0) { 308 if (!GEPOp->hasAllZeroIndices()) 309 return V; 310 V = GEPOp->getOperand(0); 311 continue; 312 } 313 314 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 315 gep_type_iterator GTI = gep_type_begin(GEPOp); 316 for (User::const_op_iterator I = GEPOp->op_begin()+1, 317 E = GEPOp->op_end(); I != E; ++I) { 318 Value *Index = *I; 319 // Compute the (potentially symbolic) offset in bytes for this index. 320 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 321 // For a struct, add the member offset. 322 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 323 if (FieldNo == 0) continue; 324 325 BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo); 326 continue; 327 } 328 329 // For an array/pointer, add the element offset, explicitly scaled. 330 if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 331 if (CIdx->isZero()) continue; 332 BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue(); 333 continue; 334 } 335 336 uint64_t Scale = TD->getTypeAllocSize(*GTI); 337 ExtensionKind Extension = EK_NotExtended; 338 339 // If the integer type is smaller than the pointer size, it is implicitly 340 // sign extended to pointer size. 341 unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth(); 342 if (TD->getPointerSizeInBits() > Width) 343 Extension = EK_SignExt; 344 345 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 346 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 347 Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension, 348 *TD, 0); 349 350 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 351 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 352 BaseOffs += IndexOffset.getSExtValue()*Scale; 353 Scale *= IndexScale.getSExtValue(); 354 355 356 // If we already had an occurrence of this index variable, merge this 357 // scale into it. For example, we want to handle: 358 // A[x][x] -> x*16 + x*4 -> x*20 359 // This also ensures that 'x' only appears in the index list once. 360 for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) { 361 if (VarIndices[i].V == Index && 362 VarIndices[i].Extension == Extension) { 363 Scale += VarIndices[i].Scale; 364 VarIndices.erase(VarIndices.begin()+i); 365 break; 366 } 367 } 368 369 // Make sure that we have a scale that makes sense for this target's 370 // pointer size. 371 if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) { 372 Scale <<= ShiftBits; 373 Scale = (int64_t)Scale >> ShiftBits; 374 } 375 376 if (Scale) { 377 VariableGEPIndex Entry = {Index, Extension, 378 static_cast<int64_t>(Scale)}; 379 VarIndices.push_back(Entry); 380 } 381 } 382 383 // Analyze the base pointer next. 384 V = GEPOp->getOperand(0); 385 } while (--MaxLookup); 386 387 // If the chain of expressions is too deep, just return early. 388 return V; 389 } 390 391 /// GetIndexDifference - Dest and Src are the variable indices from two 392 /// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base 393 /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic 394 /// difference between the two pointers. 395 static void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest, 396 const SmallVectorImpl<VariableGEPIndex> &Src) { 397 if (Src.empty()) return; 398 399 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 400 const Value *V = Src[i].V; 401 ExtensionKind Extension = Src[i].Extension; 402 int64_t Scale = Src[i].Scale; 403 404 // Find V in Dest. This is N^2, but pointer indices almost never have more 405 // than a few variable indexes. 406 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 407 if (Dest[j].V != V || Dest[j].Extension != Extension) continue; 408 409 // If we found it, subtract off Scale V's from the entry in Dest. If it 410 // goes to zero, remove the entry. 411 if (Dest[j].Scale != Scale) 412 Dest[j].Scale -= Scale; 413 else 414 Dest.erase(Dest.begin()+j); 415 Scale = 0; 416 break; 417 } 418 419 // If we didn't consume this entry, add it to the end of the Dest list. 420 if (Scale) { 421 VariableGEPIndex Entry = { V, Extension, -Scale }; 422 Dest.push_back(Entry); 423 } 424 } 425 } 426 427 //===----------------------------------------------------------------------===// 428 // BasicAliasAnalysis Pass 429 //===----------------------------------------------------------------------===// 430 431 #ifndef NDEBUG 432 static const Function *getParent(const Value *V) { 433 if (const Instruction *inst = dyn_cast<Instruction>(V)) 434 return inst->getParent()->getParent(); 435 436 if (const Argument *arg = dyn_cast<Argument>(V)) 437 return arg->getParent(); 438 439 return NULL; 440 } 441 442 static bool notDifferentParent(const Value *O1, const Value *O2) { 443 444 const Function *F1 = getParent(O1); 445 const Function *F2 = getParent(O2); 446 447 return !F1 || !F2 || F1 == F2; 448 } 449 #endif 450 451 namespace { 452 /// BasicAliasAnalysis - This is the primary alias analysis implementation. 453 struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis { 454 static char ID; // Class identification, replacement for typeinfo 455 BasicAliasAnalysis() : ImmutablePass(ID), 456 // AliasCache rarely has more than 1 or 2 elements, 457 // so start it off fairly small so that clear() 458 // doesn't have to tromp through 64 (the default) 459 // elements on each alias query. This really wants 460 // something like a SmallDenseMap. 461 AliasCache(8) { 462 initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry()); 463 } 464 465 virtual void initializePass() { 466 InitializeAliasAnalysis(this); 467 } 468 469 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 470 AU.addRequired<AliasAnalysis>(); 471 } 472 473 virtual AliasResult alias(const Location &LocA, 474 const Location &LocB) { 475 assert(AliasCache.empty() && "AliasCache must be cleared after use!"); 476 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 477 "BasicAliasAnalysis doesn't support interprocedural queries."); 478 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.TBAATag, 479 LocB.Ptr, LocB.Size, LocB.TBAATag); 480 AliasCache.clear(); 481 return Alias; 482 } 483 484 virtual ModRefResult getModRefInfo(ImmutableCallSite CS, 485 const Location &Loc); 486 487 virtual ModRefResult getModRefInfo(ImmutableCallSite CS1, 488 ImmutableCallSite CS2) { 489 // The AliasAnalysis base class has some smarts, lets use them. 490 return AliasAnalysis::getModRefInfo(CS1, CS2); 491 } 492 493 /// pointsToConstantMemory - Chase pointers until we find a (constant 494 /// global) or not. 495 virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal); 496 497 /// getModRefBehavior - Return the behavior when calling the given 498 /// call site. 499 virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS); 500 501 /// getModRefBehavior - Return the behavior when calling the given function. 502 /// For use when the call site is not known. 503 virtual ModRefBehavior getModRefBehavior(const Function *F); 504 505 /// getAdjustedAnalysisPointer - This method is used when a pass implements 506 /// an analysis interface through multiple inheritance. If needed, it 507 /// should override this to adjust the this pointer as needed for the 508 /// specified pass info. 509 virtual void *getAdjustedAnalysisPointer(const void *ID) { 510 if (ID == &AliasAnalysis::ID) 511 return (AliasAnalysis*)this; 512 return this; 513 } 514 515 private: 516 // AliasCache - Track alias queries to guard against recursion. 517 typedef std::pair<Location, Location> LocPair; 518 typedef DenseMap<LocPair, AliasResult> AliasCacheTy; 519 AliasCacheTy AliasCache; 520 521 // Visited - Track instructions visited by pointsToConstantMemory. 522 SmallPtrSet<const Value*, 16> Visited; 523 524 // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP 525 // instruction against another. 526 AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size, 527 const Value *V2, uint64_t V2Size, 528 const MDNode *V2TBAAInfo, 529 const Value *UnderlyingV1, const Value *UnderlyingV2); 530 531 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI 532 // instruction against another. 533 AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize, 534 const MDNode *PNTBAAInfo, 535 const Value *V2, uint64_t V2Size, 536 const MDNode *V2TBAAInfo); 537 538 /// aliasSelect - Disambiguate a Select instruction against another value. 539 AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize, 540 const MDNode *SITBAAInfo, 541 const Value *V2, uint64_t V2Size, 542 const MDNode *V2TBAAInfo); 543 544 AliasResult aliasCheck(const Value *V1, uint64_t V1Size, 545 const MDNode *V1TBAATag, 546 const Value *V2, uint64_t V2Size, 547 const MDNode *V2TBAATag); 548 }; 549 } // End of anonymous namespace 550 551 // Register this pass... 552 char BasicAliasAnalysis::ID = 0; 553 INITIALIZE_AG_PASS(BasicAliasAnalysis, AliasAnalysis, "basicaa", 554 "Basic Alias Analysis (stateless AA impl)", 555 false, true, false) 556 557 ImmutablePass *llvm::createBasicAliasAnalysisPass() { 558 return new BasicAliasAnalysis(); 559 } 560 561 /// pointsToConstantMemory - Returns whether the given pointer value 562 /// points to memory that is local to the function, with global constants being 563 /// considered local to all functions. 564 bool 565 BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) { 566 assert(Visited.empty() && "Visited must be cleared after use!"); 567 568 unsigned MaxLookup = 8; 569 SmallVector<const Value *, 16> Worklist; 570 Worklist.push_back(Loc.Ptr); 571 do { 572 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), TD); 573 if (!Visited.insert(V)) { 574 Visited.clear(); 575 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 576 } 577 578 // An alloca instruction defines local memory. 579 if (OrLocal && isa<AllocaInst>(V)) 580 continue; 581 582 // A global constant counts as local memory for our purposes. 583 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 584 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 585 // global to be marked constant in some modules and non-constant in 586 // others. GV may even be a declaration, not a definition. 587 if (!GV->isConstant()) { 588 Visited.clear(); 589 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 590 } 591 continue; 592 } 593 594 // If both select values point to local memory, then so does the select. 595 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 596 Worklist.push_back(SI->getTrueValue()); 597 Worklist.push_back(SI->getFalseValue()); 598 continue; 599 } 600 601 // If all values incoming to a phi node point to local memory, then so does 602 // the phi. 603 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 604 // Don't bother inspecting phi nodes with many operands. 605 if (PN->getNumIncomingValues() > MaxLookup) { 606 Visited.clear(); 607 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 608 } 609 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 610 Worklist.push_back(PN->getIncomingValue(i)); 611 continue; 612 } 613 614 // Otherwise be conservative. 615 Visited.clear(); 616 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 617 618 } while (!Worklist.empty() && --MaxLookup); 619 620 Visited.clear(); 621 return Worklist.empty(); 622 } 623 624 /// getModRefBehavior - Return the behavior when calling the given call site. 625 AliasAnalysis::ModRefBehavior 626 BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) { 627 if (CS.doesNotAccessMemory()) 628 // Can't do better than this. 629 return DoesNotAccessMemory; 630 631 ModRefBehavior Min = UnknownModRefBehavior; 632 633 // If the callsite knows it only reads memory, don't return worse 634 // than that. 635 if (CS.onlyReadsMemory()) 636 Min = OnlyReadsMemory; 637 638 // The AliasAnalysis base class has some smarts, lets use them. 639 return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min); 640 } 641 642 /// getModRefBehavior - Return the behavior when calling the given function. 643 /// For use when the call site is not known. 644 AliasAnalysis::ModRefBehavior 645 BasicAliasAnalysis::getModRefBehavior(const Function *F) { 646 // If the function declares it doesn't access memory, we can't do better. 647 if (F->doesNotAccessMemory()) 648 return DoesNotAccessMemory; 649 650 // For intrinsics, we can check the table. 651 if (unsigned iid = F->getIntrinsicID()) { 652 #define GET_INTRINSIC_MODREF_BEHAVIOR 653 #include "llvm/Intrinsics.gen" 654 #undef GET_INTRINSIC_MODREF_BEHAVIOR 655 } 656 657 ModRefBehavior Min = UnknownModRefBehavior; 658 659 // If the function declares it only reads memory, go with that. 660 if (F->onlyReadsMemory()) 661 Min = OnlyReadsMemory; 662 663 // Otherwise be conservative. 664 return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min); 665 } 666 667 /// getModRefInfo - Check to see if the specified callsite can clobber the 668 /// specified memory object. Since we only look at local properties of this 669 /// function, we really can't say much about this query. We do, however, use 670 /// simple "address taken" analysis on local objects. 671 AliasAnalysis::ModRefResult 672 BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS, 673 const Location &Loc) { 674 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && 675 "AliasAnalysis query involving multiple functions!"); 676 677 const Value *Object = GetUnderlyingObject(Loc.Ptr, TD); 678 679 // If this is a tail call and Loc.Ptr points to a stack location, we know that 680 // the tail call cannot access or modify the local stack. 681 // We cannot exclude byval arguments here; these belong to the caller of 682 // the current function not to the current function, and a tail callee 683 // may reference them. 684 if (isa<AllocaInst>(Object)) 685 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) 686 if (CI->isTailCall()) 687 return NoModRef; 688 689 // If the pointer is to a locally allocated object that does not escape, 690 // then the call can not mod/ref the pointer unless the call takes the pointer 691 // as an argument, and itself doesn't capture it. 692 if (!isa<Constant>(Object) && CS.getInstruction() != Object && 693 isNonEscapingLocalObject(Object)) { 694 bool PassedAsArg = false; 695 unsigned ArgNo = 0; 696 for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end(); 697 CI != CE; ++CI, ++ArgNo) { 698 // Only look at the no-capture or byval pointer arguments. If this 699 // pointer were passed to arguments that were neither of these, then it 700 // couldn't be no-capture. 701 if (!(*CI)->getType()->isPointerTy() || 702 (!CS.paramHasAttr(ArgNo+1, Attribute::NoCapture) && 703 !CS.paramHasAttr(ArgNo+1, Attribute::ByVal))) 704 continue; 705 706 // If this is a no-capture pointer argument, see if we can tell that it 707 // is impossible to alias the pointer we're checking. If not, we have to 708 // assume that the call could touch the pointer, even though it doesn't 709 // escape. 710 if (!isNoAlias(Location(cast<Value>(CI)), Loc)) { 711 PassedAsArg = true; 712 break; 713 } 714 } 715 716 if (!PassedAsArg) 717 return NoModRef; 718 } 719 720 ModRefResult Min = ModRef; 721 722 // Finally, handle specific knowledge of intrinsics. 723 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 724 if (II != 0) 725 switch (II->getIntrinsicID()) { 726 default: break; 727 case Intrinsic::memcpy: 728 case Intrinsic::memmove: { 729 uint64_t Len = UnknownSize; 730 if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) 731 Len = LenCI->getZExtValue(); 732 Value *Dest = II->getArgOperand(0); 733 Value *Src = II->getArgOperand(1); 734 // If it can't overlap the source dest, then it doesn't modref the loc. 735 if (isNoAlias(Location(Dest, Len), Loc)) { 736 if (isNoAlias(Location(Src, Len), Loc)) 737 return NoModRef; 738 // If it can't overlap the dest, then worst case it reads the loc. 739 Min = Ref; 740 } else if (isNoAlias(Location(Src, Len), Loc)) { 741 // If it can't overlap the source, then worst case it mutates the loc. 742 Min = Mod; 743 } 744 break; 745 } 746 case Intrinsic::memset: 747 // Since memset is 'accesses arguments' only, the AliasAnalysis base class 748 // will handle it for the variable length case. 749 if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) { 750 uint64_t Len = LenCI->getZExtValue(); 751 Value *Dest = II->getArgOperand(0); 752 if (isNoAlias(Location(Dest, Len), Loc)) 753 return NoModRef; 754 } 755 // We know that memset doesn't load anything. 756 Min = Mod; 757 break; 758 case Intrinsic::atomic_cmp_swap: 759 case Intrinsic::atomic_swap: 760 case Intrinsic::atomic_load_add: 761 case Intrinsic::atomic_load_sub: 762 case Intrinsic::atomic_load_and: 763 case Intrinsic::atomic_load_nand: 764 case Intrinsic::atomic_load_or: 765 case Intrinsic::atomic_load_xor: 766 case Intrinsic::atomic_load_max: 767 case Intrinsic::atomic_load_min: 768 case Intrinsic::atomic_load_umax: 769 case Intrinsic::atomic_load_umin: 770 if (TD) { 771 Value *Op1 = II->getArgOperand(0); 772 uint64_t Op1Size = TD->getTypeStoreSize(Op1->getType()); 773 MDNode *Tag = II->getMetadata(LLVMContext::MD_tbaa); 774 if (isNoAlias(Location(Op1, Op1Size, Tag), Loc)) 775 return NoModRef; 776 } 777 break; 778 case Intrinsic::lifetime_start: 779 case Intrinsic::lifetime_end: 780 case Intrinsic::invariant_start: { 781 uint64_t PtrSize = 782 cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(); 783 if (isNoAlias(Location(II->getArgOperand(1), 784 PtrSize, 785 II->getMetadata(LLVMContext::MD_tbaa)), 786 Loc)) 787 return NoModRef; 788 break; 789 } 790 case Intrinsic::invariant_end: { 791 uint64_t PtrSize = 792 cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(); 793 if (isNoAlias(Location(II->getArgOperand(2), 794 PtrSize, 795 II->getMetadata(LLVMContext::MD_tbaa)), 796 Loc)) 797 return NoModRef; 798 break; 799 } 800 case Intrinsic::arm_neon_vld1: { 801 // LLVM's vld1 and vst1 intrinsics currently only support a single 802 // vector register. 803 uint64_t Size = 804 TD ? TD->getTypeStoreSize(II->getType()) : UnknownSize; 805 if (isNoAlias(Location(II->getArgOperand(0), Size, 806 II->getMetadata(LLVMContext::MD_tbaa)), 807 Loc)) 808 return NoModRef; 809 break; 810 } 811 case Intrinsic::arm_neon_vst1: { 812 uint64_t Size = 813 TD ? TD->getTypeStoreSize(II->getArgOperand(1)->getType()) : UnknownSize; 814 if (isNoAlias(Location(II->getArgOperand(0), Size, 815 II->getMetadata(LLVMContext::MD_tbaa)), 816 Loc)) 817 return NoModRef; 818 break; 819 } 820 } 821 822 // The AliasAnalysis base class has some smarts, lets use them. 823 return ModRefResult(AliasAnalysis::getModRefInfo(CS, Loc) & Min); 824 } 825 826 /// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction 827 /// against another pointer. We know that V1 is a GEP, but we don't know 828 /// anything about V2. UnderlyingV1 is GetUnderlyingObject(GEP1, TD), 829 /// UnderlyingV2 is the same for V2. 830 /// 831 AliasAnalysis::AliasResult 832 BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, 833 const Value *V2, uint64_t V2Size, 834 const MDNode *V2TBAAInfo, 835 const Value *UnderlyingV1, 836 const Value *UnderlyingV2) { 837 int64_t GEP1BaseOffset; 838 SmallVector<VariableGEPIndex, 4> GEP1VariableIndices; 839 840 // If we have two gep instructions with must-alias'ing base pointers, figure 841 // out if the indexes to the GEP tell us anything about the derived pointer. 842 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 843 // Do the base pointers alias? 844 AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, 0, 845 UnderlyingV2, UnknownSize, 0); 846 847 // If we get a No or May, then return it immediately, no amount of analysis 848 // will improve this situation. 849 if (BaseAlias != MustAlias) return BaseAlias; 850 851 // Otherwise, we have a MustAlias. Since the base pointers alias each other 852 // exactly, see if the computed offset from the common pointer tells us 853 // about the relation of the resulting pointer. 854 const Value *GEP1BasePtr = 855 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD); 856 857 int64_t GEP2BaseOffset; 858 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 859 const Value *GEP2BasePtr = 860 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD); 861 862 // If DecomposeGEPExpression isn't able to look all the way through the 863 // addressing operation, we must not have TD and this is too complex for us 864 // to handle without it. 865 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 866 assert(TD == 0 && 867 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 868 return MayAlias; 869 } 870 871 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 872 // symbolic difference. 873 GEP1BaseOffset -= GEP2BaseOffset; 874 GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices); 875 876 } else { 877 // Check to see if these two pointers are related by the getelementptr 878 // instruction. If one pointer is a GEP with a non-zero index of the other 879 // pointer, we know they cannot alias. 880 881 // If both accesses are unknown size, we can't do anything useful here. 882 if (V1Size == UnknownSize && V2Size == UnknownSize) 883 return MayAlias; 884 885 AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, 0, 886 V2, V2Size, V2TBAAInfo); 887 if (R != MustAlias) 888 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 889 // If V2 is known not to alias GEP base pointer, then the two values 890 // cannot alias per GEP semantics: "A pointer value formed from a 891 // getelementptr instruction is associated with the addresses associated 892 // with the first operand of the getelementptr". 893 return R; 894 895 const Value *GEP1BasePtr = 896 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD); 897 898 // If DecomposeGEPExpression isn't able to look all the way through the 899 // addressing operation, we must not have TD and this is too complex for us 900 // to handle without it. 901 if (GEP1BasePtr != UnderlyingV1) { 902 assert(TD == 0 && 903 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 904 return MayAlias; 905 } 906 } 907 908 // In the two GEP Case, if there is no difference in the offsets of the 909 // computed pointers, the resultant pointers are a must alias. This 910 // hapens when we have two lexically identical GEP's (for example). 911 // 912 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 913 // must aliases the GEP, the end result is a must alias also. 914 if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty()) 915 return MustAlias; 916 917 // If there is a difference between the pointers, but the difference is 918 // less than the size of the associated memory object, then we know 919 // that the objects are partially overlapping. 920 if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) { 921 if (GEP1BaseOffset >= 0 ? 922 (V2Size != UnknownSize && (uint64_t)GEP1BaseOffset < V2Size) : 923 (V1Size != UnknownSize && -(uint64_t)GEP1BaseOffset < V1Size && 924 GEP1BaseOffset != INT64_MIN)) 925 return PartialAlias; 926 } 927 928 // If we have a known constant offset, see if this offset is larger than the 929 // access size being queried. If so, and if no variable indices can remove 930 // pieces of this constant, then we know we have a no-alias. For example, 931 // &A[100] != &A. 932 933 // In order to handle cases like &A[100][i] where i is an out of range 934 // subscript, we have to ignore all constant offset pieces that are a multiple 935 // of a scaled index. Do this by removing constant offsets that are a 936 // multiple of any of our variable indices. This allows us to transform 937 // things like &A[i][1] because i has a stride of (e.g.) 8 bytes but the 1 938 // provides an offset of 4 bytes (assuming a <= 4 byte access). 939 for (unsigned i = 0, e = GEP1VariableIndices.size(); 940 i != e && GEP1BaseOffset;++i) 941 if (int64_t RemovedOffset = GEP1BaseOffset/GEP1VariableIndices[i].Scale) 942 GEP1BaseOffset -= RemovedOffset*GEP1VariableIndices[i].Scale; 943 944 // If our known offset is bigger than the access size, we know we don't have 945 // an alias. 946 if (GEP1BaseOffset) { 947 if (GEP1BaseOffset >= 0 ? 948 (V2Size != UnknownSize && (uint64_t)GEP1BaseOffset >= V2Size) : 949 (V1Size != UnknownSize && -(uint64_t)GEP1BaseOffset >= V1Size && 950 GEP1BaseOffset != INT64_MIN)) 951 return NoAlias; 952 } 953 954 // Statically, we can see that the base objects are the same, but the 955 // pointers have dynamic offsets which we can't resolve. And none of our 956 // little tricks above worked. 957 // 958 // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the 959 // practical effect of this is protecting TBAA in the case of dynamic 960 // indices into arrays of unions. An alternative way to solve this would 961 // be to have clang emit extra metadata for unions and/or union accesses. 962 // A union-specific solution wouldn't handle the problem for malloc'd 963 // memory however. 964 return PartialAlias; 965 } 966 967 static AliasAnalysis::AliasResult 968 MergeAliasResults(AliasAnalysis::AliasResult A, AliasAnalysis::AliasResult B) { 969 // If the results agree, take it. 970 if (A == B) 971 return A; 972 // A mix of PartialAlias and MustAlias is PartialAlias. 973 if ((A == AliasAnalysis::PartialAlias && B == AliasAnalysis::MustAlias) || 974 (B == AliasAnalysis::PartialAlias && A == AliasAnalysis::MustAlias)) 975 return AliasAnalysis::PartialAlias; 976 // Otherwise, we don't know anything. 977 return AliasAnalysis::MayAlias; 978 } 979 980 /// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select 981 /// instruction against another. 982 AliasAnalysis::AliasResult 983 BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize, 984 const MDNode *SITBAAInfo, 985 const Value *V2, uint64_t V2Size, 986 const MDNode *V2TBAAInfo) { 987 // If the values are Selects with the same condition, we can do a more precise 988 // check: just check for aliases between the values on corresponding arms. 989 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 990 if (SI->getCondition() == SI2->getCondition()) { 991 AliasResult Alias = 992 aliasCheck(SI->getTrueValue(), SISize, SITBAAInfo, 993 SI2->getTrueValue(), V2Size, V2TBAAInfo); 994 if (Alias == MayAlias) 995 return MayAlias; 996 AliasResult ThisAlias = 997 aliasCheck(SI->getFalseValue(), SISize, SITBAAInfo, 998 SI2->getFalseValue(), V2Size, V2TBAAInfo); 999 return MergeAliasResults(ThisAlias, Alias); 1000 } 1001 1002 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1003 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1004 AliasResult Alias = 1005 aliasCheck(V2, V2Size, V2TBAAInfo, SI->getTrueValue(), SISize, SITBAAInfo); 1006 if (Alias == MayAlias) 1007 return MayAlias; 1008 1009 AliasResult ThisAlias = 1010 aliasCheck(V2, V2Size, V2TBAAInfo, SI->getFalseValue(), SISize, SITBAAInfo); 1011 return MergeAliasResults(ThisAlias, Alias); 1012 } 1013 1014 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction 1015 // against another. 1016 AliasAnalysis::AliasResult 1017 BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize, 1018 const MDNode *PNTBAAInfo, 1019 const Value *V2, uint64_t V2Size, 1020 const MDNode *V2TBAAInfo) { 1021 // If the values are PHIs in the same block, we can do a more precise 1022 // as well as efficient check: just check for aliases between the values 1023 // on corresponding edges. 1024 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1025 if (PN2->getParent() == PN->getParent()) { 1026 AliasResult Alias = 1027 aliasCheck(PN->getIncomingValue(0), PNSize, PNTBAAInfo, 1028 PN2->getIncomingValueForBlock(PN->getIncomingBlock(0)), 1029 V2Size, V2TBAAInfo); 1030 if (Alias == MayAlias) 1031 return MayAlias; 1032 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 1033 AliasResult ThisAlias = 1034 aliasCheck(PN->getIncomingValue(i), PNSize, PNTBAAInfo, 1035 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1036 V2Size, V2TBAAInfo); 1037 Alias = MergeAliasResults(ThisAlias, Alias); 1038 if (Alias == MayAlias) 1039 break; 1040 } 1041 return Alias; 1042 } 1043 1044 SmallPtrSet<Value*, 4> UniqueSrc; 1045 SmallVector<Value*, 4> V1Srcs; 1046 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1047 Value *PV1 = PN->getIncomingValue(i); 1048 if (isa<PHINode>(PV1)) 1049 // If any of the source itself is a PHI, return MayAlias conservatively 1050 // to avoid compile time explosion. The worst possible case is if both 1051 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1052 // and 'n' are the number of PHI sources. 1053 return MayAlias; 1054 if (UniqueSrc.insert(PV1)) 1055 V1Srcs.push_back(PV1); 1056 } 1057 1058 AliasResult Alias = aliasCheck(V2, V2Size, V2TBAAInfo, 1059 V1Srcs[0], PNSize, PNTBAAInfo); 1060 // Early exit if the check of the first PHI source against V2 is MayAlias. 1061 // Other results are not possible. 1062 if (Alias == MayAlias) 1063 return MayAlias; 1064 1065 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1066 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1067 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1068 Value *V = V1Srcs[i]; 1069 1070 AliasResult ThisAlias = aliasCheck(V2, V2Size, V2TBAAInfo, 1071 V, PNSize, PNTBAAInfo); 1072 Alias = MergeAliasResults(ThisAlias, Alias); 1073 if (Alias == MayAlias) 1074 break; 1075 } 1076 1077 return Alias; 1078 } 1079 1080 // aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases, 1081 // such as array references. 1082 // 1083 AliasAnalysis::AliasResult 1084 BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size, 1085 const MDNode *V1TBAAInfo, 1086 const Value *V2, uint64_t V2Size, 1087 const MDNode *V2TBAAInfo) { 1088 // If either of the memory references is empty, it doesn't matter what the 1089 // pointer values are. 1090 if (V1Size == 0 || V2Size == 0) 1091 return NoAlias; 1092 1093 // Strip off any casts if they exist. 1094 V1 = V1->stripPointerCasts(); 1095 V2 = V2->stripPointerCasts(); 1096 1097 // Are we checking for alias of the same value? 1098 if (V1 == V2) return MustAlias; 1099 1100 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1101 return NoAlias; // Scalars cannot alias each other 1102 1103 // Figure out what objects these things are pointing to if we can. 1104 const Value *O1 = GetUnderlyingObject(V1, TD); 1105 const Value *O2 = GetUnderlyingObject(V2, TD); 1106 1107 // Null values in the default address space don't point to any object, so they 1108 // don't alias any other pointer. 1109 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1110 if (CPN->getType()->getAddressSpace() == 0) 1111 return NoAlias; 1112 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1113 if (CPN->getType()->getAddressSpace() == 0) 1114 return NoAlias; 1115 1116 if (O1 != O2) { 1117 // If V1/V2 point to two different objects we know that we have no alias. 1118 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1119 return NoAlias; 1120 1121 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1122 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1123 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1124 return NoAlias; 1125 1126 // Arguments can't alias with local allocations or noalias calls 1127 // in the same function. 1128 if (((isa<Argument>(O1) && (isa<AllocaInst>(O2) || isNoAliasCall(O2))) || 1129 (isa<Argument>(O2) && (isa<AllocaInst>(O1) || isNoAliasCall(O1))))) 1130 return NoAlias; 1131 1132 // Most objects can't alias null. 1133 if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) || 1134 (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2))) 1135 return NoAlias; 1136 1137 // If one pointer is the result of a call/invoke or load and the other is a 1138 // non-escaping local object within the same function, then we know the 1139 // object couldn't escape to a point where the call could return it. 1140 // 1141 // Note that if the pointers are in different functions, there are a 1142 // variety of complications. A call with a nocapture argument may still 1143 // temporary store the nocapture argument's value in a temporary memory 1144 // location if that memory location doesn't escape. Or it may pass a 1145 // nocapture value to other functions as long as they don't capture it. 1146 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) 1147 return NoAlias; 1148 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) 1149 return NoAlias; 1150 } 1151 1152 // If the size of one access is larger than the entire object on the other 1153 // side, then we know such behavior is undefined and can assume no alias. 1154 if (TD) 1155 if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *TD)) || 1156 (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *TD))) 1157 return NoAlias; 1158 1159 // Check the cache before climbing up use-def chains. This also terminates 1160 // otherwise infinitely recursive queries. 1161 LocPair Locs(Location(V1, V1Size, V1TBAAInfo), 1162 Location(V2, V2Size, V2TBAAInfo)); 1163 if (V1 > V2) 1164 std::swap(Locs.first, Locs.second); 1165 std::pair<AliasCacheTy::iterator, bool> Pair = 1166 AliasCache.insert(std::make_pair(Locs, MayAlias)); 1167 if (!Pair.second) 1168 return Pair.first->second; 1169 1170 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1171 // GEP can't simplify, we don't even look at the PHI cases. 1172 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1173 std::swap(V1, V2); 1174 std::swap(V1Size, V2Size); 1175 std::swap(O1, O2); 1176 } 1177 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1178 AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, V2TBAAInfo, O1, O2); 1179 if (Result != MayAlias) return AliasCache[Locs] = Result; 1180 } 1181 1182 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1183 std::swap(V1, V2); 1184 std::swap(V1Size, V2Size); 1185 } 1186 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1187 AliasResult Result = aliasPHI(PN, V1Size, V1TBAAInfo, 1188 V2, V2Size, V2TBAAInfo); 1189 if (Result != MayAlias) return AliasCache[Locs] = Result; 1190 } 1191 1192 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1193 std::swap(V1, V2); 1194 std::swap(V1Size, V2Size); 1195 } 1196 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1197 AliasResult Result = aliasSelect(S1, V1Size, V1TBAAInfo, 1198 V2, V2Size, V2TBAAInfo); 1199 if (Result != MayAlias) return AliasCache[Locs] = Result; 1200 } 1201 1202 // If both pointers are pointing into the same object and one of them 1203 // accesses is accessing the entire object, then the accesses must 1204 // overlap in some way. 1205 if (TD && O1 == O2) 1206 if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *TD)) || 1207 (V2Size != UnknownSize && isObjectSize(O2, V2Size, *TD))) 1208 return AliasCache[Locs] = PartialAlias; 1209 1210 AliasResult Result = 1211 AliasAnalysis::alias(Location(V1, V1Size, V1TBAAInfo), 1212 Location(V2, V2Size, V2TBAAInfo)); 1213 return AliasCache[Locs] = Result; 1214 } 1215