1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the primary stateless implementation of the
11 // Alias Analysis interface that implements identities (two different
12 // globals cannot alias, etc), but does no stateful analysis.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Analysis/BasicAliasAnalysis.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/CFG.h"
21 #include "llvm/Analysis/CaptureTracking.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include <algorithm>
40 
41 #define DEBUG_TYPE "basicaa"
42 
43 using namespace llvm;
44 
45 /// Enable analysis of recursive PHI nodes.
46 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden,
47                                           cl::init(false));
48 /// SearchLimitReached / SearchTimes shows how often the limit of
49 /// to decompose GEPs is reached. It will affect the precision
50 /// of basic alias analysis.
51 STATISTIC(SearchLimitReached, "Number of times the limit to "
52                               "decompose GEPs is reached");
53 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
54 
55 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
56 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
57 /// careful with value equivalence. We use reachability to make sure a value
58 /// cannot be involved in a cycle.
59 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
60 
61 // The max limit of the search depth in DecomposeGEPExpression() and
62 // GetUnderlyingObject(), both functions need to use the same search
63 // depth otherwise the algorithm in aliasGEP will assert.
64 static const unsigned MaxLookupSearchDepth = 6;
65 
66 //===----------------------------------------------------------------------===//
67 // Useful predicates
68 //===----------------------------------------------------------------------===//
69 
70 /// Returns true if the pointer is to a function-local object that never
71 /// escapes from the function.
72 static bool isNonEscapingLocalObject(const Value *V) {
73   // If this is a local allocation, check to see if it escapes.
74   if (isa<AllocaInst>(V) || isNoAliasCall(V))
75     // Set StoreCaptures to True so that we can assume in our callers that the
76     // pointer is not the result of a load instruction. Currently
77     // PointerMayBeCaptured doesn't have any special analysis for the
78     // StoreCaptures=false case; if it did, our callers could be refined to be
79     // more precise.
80     return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
81 
82   // If this is an argument that corresponds to a byval or noalias argument,
83   // then it has not escaped before entering the function.  Check if it escapes
84   // inside the function.
85   if (const Argument *A = dyn_cast<Argument>(V))
86     if (A->hasByValAttr() || A->hasNoAliasAttr())
87       // Note even if the argument is marked nocapture, we still need to check
88       // for copies made inside the function. The nocapture attribute only
89       // specifies that there are no copies made that outlive the function.
90       return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
91 
92   return false;
93 }
94 
95 /// Returns true if the pointer is one which would have been considered an
96 /// escape by isNonEscapingLocalObject.
97 static bool isEscapeSource(const Value *V) {
98   if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
99     return true;
100 
101   // The load case works because isNonEscapingLocalObject considers all
102   // stores to be escapes (it passes true for the StoreCaptures argument
103   // to PointerMayBeCaptured).
104   if (isa<LoadInst>(V))
105     return true;
106 
107   return false;
108 }
109 
110 /// Returns the size of the object specified by V or UnknownSize if unknown.
111 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
112                               const TargetLibraryInfo &TLI,
113                               bool RoundToAlign = false) {
114   uint64_t Size;
115   if (getObjectSize(V, Size, DL, &TLI, RoundToAlign))
116     return Size;
117   return MemoryLocation::UnknownSize;
118 }
119 
120 /// Returns true if we can prove that the object specified by V is smaller than
121 /// Size.
122 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
123                                 const DataLayout &DL,
124                                 const TargetLibraryInfo &TLI) {
125   // Note that the meanings of the "object" are slightly different in the
126   // following contexts:
127   //    c1: llvm::getObjectSize()
128   //    c2: llvm.objectsize() intrinsic
129   //    c3: isObjectSmallerThan()
130   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
131   // refers to the "entire object".
132   //
133   //  Consider this example:
134   //     char *p = (char*)malloc(100)
135   //     char *q = p+80;
136   //
137   //  In the context of c1 and c2, the "object" pointed by q refers to the
138   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
139   //
140   //  However, in the context of c3, the "object" refers to the chunk of memory
141   // being allocated. So, the "object" has 100 bytes, and q points to the middle
142   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
143   // parameter, before the llvm::getObjectSize() is called to get the size of
144   // entire object, we should:
145   //    - either rewind the pointer q to the base-address of the object in
146   //      question (in this case rewind to p), or
147   //    - just give up. It is up to caller to make sure the pointer is pointing
148   //      to the base address the object.
149   //
150   // We go for 2nd option for simplicity.
151   if (!isIdentifiedObject(V))
152     return false;
153 
154   // This function needs to use the aligned object size because we allow
155   // reads a bit past the end given sufficient alignment.
156   uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/ true);
157 
158   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
159 }
160 
161 /// Returns true if we can prove that the object specified by V has size Size.
162 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
163                          const TargetLibraryInfo &TLI) {
164   uint64_t ObjectSize = getObjectSize(V, DL, TLI);
165   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
166 }
167 
168 //===----------------------------------------------------------------------===//
169 // GetElementPtr Instruction Decomposition and Analysis
170 //===----------------------------------------------------------------------===//
171 
172 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
173 /// B are constant integers.
174 ///
175 /// Returns the scale and offset values as APInts and return V as a Value*, and
176 /// return whether we looked through any sign or zero extends.  The incoming
177 /// Value is known to have IntegerType, and it may already be sign or zero
178 /// extended.
179 ///
180 /// Note that this looks through extends, so the high bits may not be
181 /// represented in the result.
182 /*static*/ const Value *BasicAAResult::GetLinearExpression(
183     const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
184     unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
185     AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
186   assert(V->getType()->isIntegerTy() && "Not an integer value");
187 
188   // Limit our recursion depth.
189   if (Depth == 6) {
190     Scale = 1;
191     Offset = 0;
192     return V;
193   }
194 
195   if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
196     // If it's a constant, just convert it to an offset and remove the variable.
197     // If we've been called recursively, the Offset bit width will be greater
198     // than the constant's (the Offset's always as wide as the outermost call),
199     // so we'll zext here and process any extension in the isa<SExtInst> &
200     // isa<ZExtInst> cases below.
201     Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
202     assert(Scale == 0 && "Constant values don't have a scale");
203     return V;
204   }
205 
206   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
207     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
208 
209       // If we've been called recursively, then Offset and Scale will be wider
210       // than the BOp operands. We'll always zext it here as we'll process sign
211       // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
212       APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
213 
214       switch (BOp->getOpcode()) {
215       default:
216         // We don't understand this instruction, so we can't decompose it any
217         // further.
218         Scale = 1;
219         Offset = 0;
220         return V;
221       case Instruction::Or:
222         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
223         // analyze it.
224         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
225                                BOp, DT)) {
226           Scale = 1;
227           Offset = 0;
228           return V;
229         }
230       // FALL THROUGH.
231       case Instruction::Add:
232         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
233                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
234         Offset += RHS;
235         break;
236       case Instruction::Sub:
237         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
238                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
239         Offset -= RHS;
240         break;
241       case Instruction::Mul:
242         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
243                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
244         Offset *= RHS;
245         Scale *= RHS;
246         break;
247       case Instruction::Shl:
248         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
249                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
250         Offset <<= RHS.getLimitedValue();
251         Scale <<= RHS.getLimitedValue();
252         // the semantics of nsw and nuw for left shifts don't match those of
253         // multiplications, so we won't propagate them.
254         NSW = NUW = false;
255         return V;
256       }
257 
258       if (isa<OverflowingBinaryOperator>(BOp)) {
259         NUW &= BOp->hasNoUnsignedWrap();
260         NSW &= BOp->hasNoSignedWrap();
261       }
262       return V;
263     }
264   }
265 
266   // Since GEP indices are sign extended anyway, we don't care about the high
267   // bits of a sign or zero extended value - just scales and offsets.  The
268   // extensions have to be consistent though.
269   if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
270     Value *CastOp = cast<CastInst>(V)->getOperand(0);
271     unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
272     unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
273     unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
274     const Value *Result =
275         GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
276                             Depth + 1, AC, DT, NSW, NUW);
277 
278     // zext(zext(%x)) == zext(%x), and similiarly for sext; we'll handle this
279     // by just incrementing the number of bits we've extended by.
280     unsigned ExtendedBy = NewWidth - SmallWidth;
281 
282     if (isa<SExtInst>(V) && ZExtBits == 0) {
283       // sext(sext(%x, a), b) == sext(%x, a + b)
284 
285       if (NSW) {
286         // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
287         // into sext(%x) + sext(c). We'll sext the Offset ourselves:
288         unsigned OldWidth = Offset.getBitWidth();
289         Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
290       } else {
291         // We may have signed-wrapped, so don't decompose sext(%x + c) into
292         // sext(%x) + sext(c)
293         Scale = 1;
294         Offset = 0;
295         Result = CastOp;
296         ZExtBits = OldZExtBits;
297         SExtBits = OldSExtBits;
298       }
299       SExtBits += ExtendedBy;
300     } else {
301       // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
302 
303       if (!NUW) {
304         // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
305         // zext(%x) + zext(c)
306         Scale = 1;
307         Offset = 0;
308         Result = CastOp;
309         ZExtBits = OldZExtBits;
310         SExtBits = OldSExtBits;
311       }
312       ZExtBits += ExtendedBy;
313     }
314 
315     return Result;
316   }
317 
318   Scale = 1;
319   Offset = 0;
320   return V;
321 }
322 
323 /// To ensure a pointer offset fits in an integer of size PointerSize
324 /// (in bits) when that size is smaller than 64. This is an issue in
325 /// particular for 32b programs with negative indices that rely on two's
326 /// complement wrap-arounds for precise alias information.
327 static int64_t adjustToPointerSize(int64_t Offset, unsigned PointerSize) {
328   assert(PointerSize <= 64 && "Invalid PointerSize!");
329   unsigned ShiftBits = 64 - PointerSize;
330   return (int64_t)((uint64_t)Offset << ShiftBits) >> ShiftBits;
331 }
332 
333 /// If V is a symbolic pointer expression, decompose it into a base pointer
334 /// with a constant offset and a number of scaled symbolic offsets.
335 ///
336 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
337 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
338 /// specified amount, but which may have other unrepresented high bits. As
339 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
340 ///
341 /// When DataLayout is around, this function is capable of analyzing everything
342 /// that GetUnderlyingObject can look through. To be able to do that
343 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search
344 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks
345 /// through pointer casts.
346 /*static*/ const Value *BasicAAResult::DecomposeGEPExpression(
347     const Value *V, int64_t &BaseOffs,
348     SmallVectorImpl<VariableGEPIndex> &VarIndices, bool &MaxLookupReached,
349     const DataLayout &DL, AssumptionCache *AC, DominatorTree *DT) {
350   // Limit recursion depth to limit compile time in crazy cases.
351   unsigned MaxLookup = MaxLookupSearchDepth;
352   MaxLookupReached = false;
353   SearchTimes++;
354 
355   BaseOffs = 0;
356   do {
357     // See if this is a bitcast or GEP.
358     const Operator *Op = dyn_cast<Operator>(V);
359     if (!Op) {
360       // The only non-operator case we can handle are GlobalAliases.
361       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
362         if (!GA->mayBeOverridden()) {
363           V = GA->getAliasee();
364           continue;
365         }
366       }
367       return V;
368     }
369 
370     if (Op->getOpcode() == Instruction::BitCast ||
371         Op->getOpcode() == Instruction::AddrSpaceCast) {
372       V = Op->getOperand(0);
373       continue;
374     }
375 
376     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
377     if (!GEPOp) {
378       // If it's not a GEP, hand it off to SimplifyInstruction to see if it
379       // can come up with something. This matches what GetUnderlyingObject does.
380       if (const Instruction *I = dyn_cast<Instruction>(V))
381         // TODO: Get a DominatorTree and AssumptionCache and use them here
382         // (these are both now available in this function, but this should be
383         // updated when GetUnderlyingObject is updated). TLI should be
384         // provided also.
385         if (const Value *Simplified =
386                 SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
387           V = Simplified;
388           continue;
389         }
390 
391       return V;
392     }
393 
394     // Don't attempt to analyze GEPs over unsized objects.
395     if (!GEPOp->getSourceElementType()->isSized())
396       return V;
397 
398     unsigned AS = GEPOp->getPointerAddressSpace();
399     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
400     gep_type_iterator GTI = gep_type_begin(GEPOp);
401     unsigned PointerSize = DL.getPointerSizeInBits(AS);
402     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
403          I != E; ++I) {
404       const Value *Index = *I;
405       // Compute the (potentially symbolic) offset in bytes for this index.
406       if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
407         // For a struct, add the member offset.
408         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
409         if (FieldNo == 0)
410           continue;
411 
412         BaseOffs += DL.getStructLayout(STy)->getElementOffset(FieldNo);
413         continue;
414       }
415 
416       // For an array/pointer, add the element offset, explicitly scaled.
417       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
418         if (CIdx->isZero())
419           continue;
420         BaseOffs += DL.getTypeAllocSize(*GTI) * CIdx->getSExtValue();
421         continue;
422       }
423 
424       uint64_t Scale = DL.getTypeAllocSize(*GTI);
425       unsigned ZExtBits = 0, SExtBits = 0;
426 
427       // If the integer type is smaller than the pointer size, it is implicitly
428       // sign extended to pointer size.
429       unsigned Width = Index->getType()->getIntegerBitWidth();
430       if (PointerSize > Width)
431         SExtBits += PointerSize - Width;
432 
433       // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
434       APInt IndexScale(Width, 0), IndexOffset(Width, 0);
435       bool NSW = true, NUW = true;
436       Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
437                                   SExtBits, DL, 0, AC, DT, NSW, NUW);
438 
439       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
440       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
441       BaseOffs += IndexOffset.getSExtValue() * Scale;
442       Scale *= IndexScale.getSExtValue();
443 
444       // If we already had an occurrence of this index variable, merge this
445       // scale into it.  For example, we want to handle:
446       //   A[x][x] -> x*16 + x*4 -> x*20
447       // This also ensures that 'x' only appears in the index list once.
448       for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
449         if (VarIndices[i].V == Index && VarIndices[i].ZExtBits == ZExtBits &&
450             VarIndices[i].SExtBits == SExtBits) {
451           Scale += VarIndices[i].Scale;
452           VarIndices.erase(VarIndices.begin() + i);
453           break;
454         }
455       }
456 
457       // Make sure that we have a scale that makes sense for this target's
458       // pointer size.
459       Scale = adjustToPointerSize(Scale, PointerSize);
460 
461       if (Scale) {
462         VariableGEPIndex Entry = {Index, ZExtBits, SExtBits,
463                                   static_cast<int64_t>(Scale)};
464         VarIndices.push_back(Entry);
465       }
466     }
467 
468     // Take care of wrap-arounds
469     BaseOffs = adjustToPointerSize(BaseOffs, PointerSize);
470 
471     // Analyze the base pointer next.
472     V = GEPOp->getOperand(0);
473   } while (--MaxLookup);
474 
475   // If the chain of expressions is too deep, just return early.
476   MaxLookupReached = true;
477   SearchLimitReached++;
478   return V;
479 }
480 
481 /// Returns whether the given pointer value points to memory that is local to
482 /// the function, with global constants being considered local to all
483 /// functions.
484 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
485                                            bool OrLocal) {
486   assert(Visited.empty() && "Visited must be cleared after use!");
487 
488   unsigned MaxLookup = 8;
489   SmallVector<const Value *, 16> Worklist;
490   Worklist.push_back(Loc.Ptr);
491   do {
492     const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
493     if (!Visited.insert(V).second) {
494       Visited.clear();
495       return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
496     }
497 
498     // An alloca instruction defines local memory.
499     if (OrLocal && isa<AllocaInst>(V))
500       continue;
501 
502     // A global constant counts as local memory for our purposes.
503     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
504       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
505       // global to be marked constant in some modules and non-constant in
506       // others.  GV may even be a declaration, not a definition.
507       if (!GV->isConstant()) {
508         Visited.clear();
509         return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
510       }
511       continue;
512     }
513 
514     // If both select values point to local memory, then so does the select.
515     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
516       Worklist.push_back(SI->getTrueValue());
517       Worklist.push_back(SI->getFalseValue());
518       continue;
519     }
520 
521     // If all values incoming to a phi node point to local memory, then so does
522     // the phi.
523     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
524       // Don't bother inspecting phi nodes with many operands.
525       if (PN->getNumIncomingValues() > MaxLookup) {
526         Visited.clear();
527         return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
528       }
529       for (Value *IncValue : PN->incoming_values())
530         Worklist.push_back(IncValue);
531       continue;
532     }
533 
534     // Otherwise be conservative.
535     Visited.clear();
536     return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
537 
538   } while (!Worklist.empty() && --MaxLookup);
539 
540   Visited.clear();
541   return Worklist.empty();
542 }
543 
544 // FIXME: This code is duplicated with MemoryLocation and should be hoisted to
545 // some common utility location.
546 static bool isMemsetPattern16(const Function *MS,
547                               const TargetLibraryInfo &TLI) {
548   if (TLI.has(LibFunc::memset_pattern16) &&
549       MS->getName() == "memset_pattern16") {
550     FunctionType *MemsetType = MS->getFunctionType();
551     if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 &&
552         isa<PointerType>(MemsetType->getParamType(0)) &&
553         isa<PointerType>(MemsetType->getParamType(1)) &&
554         isa<IntegerType>(MemsetType->getParamType(2)))
555       return true;
556   }
557   return false;
558 }
559 
560 /// Returns the behavior when calling the given call site.
561 FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) {
562   if (CS.doesNotAccessMemory())
563     // Can't do better than this.
564     return FMRB_DoesNotAccessMemory;
565 
566   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
567 
568   // If the callsite knows it only reads memory, don't return worse
569   // than that.
570   if (CS.onlyReadsMemory())
571     Min = FMRB_OnlyReadsMemory;
572 
573   if (CS.onlyAccessesArgMemory())
574     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
575 
576   // If CS has operand bundles then aliasing attributes from the function it
577   // calls do not directly apply to the CallSite.  This can be made more
578   // precise in the future.
579   if (!CS.hasOperandBundles())
580     if (const Function *F = CS.getCalledFunction())
581       Min =
582           FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
583 
584   return Min;
585 }
586 
587 /// Returns the behavior when calling the given function. For use when the call
588 /// site is not known.
589 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
590   // If the function declares it doesn't access memory, we can't do better.
591   if (F->doesNotAccessMemory())
592     return FMRB_DoesNotAccessMemory;
593 
594   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
595 
596   // If the function declares it only reads memory, go with that.
597   if (F->onlyReadsMemory())
598     Min = FMRB_OnlyReadsMemory;
599 
600   if (F->onlyAccessesArgMemory())
601     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
602 
603   return Min;
604 }
605 
606 /// Returns true if this is a writeonly (i.e Mod only) parameter.  Currently,
607 /// we don't have a writeonly attribute, so this only knows about builtin
608 /// intrinsics and target library functions.  We could consider adding a
609 /// writeonly attribute in the future and moving all of these facts to either
610 /// Intrinsics.td or InferFunctionAttr.cpp
611 static bool isWriteOnlyParam(ImmutableCallSite CS, unsigned ArgIdx,
612                              const TargetLibraryInfo &TLI) {
613   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()))
614     switch (II->getIntrinsicID()) {
615     default:
616       break;
617     case Intrinsic::memset:
618     case Intrinsic::memcpy:
619     case Intrinsic::memmove:
620       // We don't currently have a writeonly attribute.  All other properties
621       // of these intrinsics are nicely described via attributes in
622       // Intrinsics.td and handled generically.
623       if (ArgIdx == 0)
624         return true;
625     }
626 
627   // We can bound the aliasing properties of memset_pattern16 just as we can
628   // for memcpy/memset.  This is particularly important because the
629   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
630   // whenever possible.  Note that all but the missing writeonly attribute are
631   // handled via InferFunctionAttr.
632   if (CS.getCalledFunction() && isMemsetPattern16(CS.getCalledFunction(), TLI))
633     if (ArgIdx == 0)
634       return true;
635 
636   // TODO: memset_pattern4, memset_pattern8
637   // TODO: _chk variants
638   // TODO: strcmp, strcpy
639 
640   return false;
641 }
642 
643 ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS,
644                                            unsigned ArgIdx) {
645 
646   // Emulate the missing writeonly attribute by checking for known builtin
647   // intrinsics and target library functions.
648   if (isWriteOnlyParam(CS, ArgIdx, TLI))
649     return MRI_Mod;
650 
651   if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadOnly))
652     return MRI_Ref;
653 
654   if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadNone))
655     return MRI_NoModRef;
656 
657   return AAResultBase::getArgModRefInfo(CS, ArgIdx);
658 }
659 
660 static bool isAssumeIntrinsic(ImmutableCallSite CS) {
661   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
662   return II && II->getIntrinsicID() == Intrinsic::assume;
663 }
664 
665 #ifndef NDEBUG
666 static const Function *getParent(const Value *V) {
667   if (const Instruction *inst = dyn_cast<Instruction>(V))
668     return inst->getParent()->getParent();
669 
670   if (const Argument *arg = dyn_cast<Argument>(V))
671     return arg->getParent();
672 
673   return nullptr;
674 }
675 
676 static bool notDifferentParent(const Value *O1, const Value *O2) {
677 
678   const Function *F1 = getParent(O1);
679   const Function *F2 = getParent(O2);
680 
681   return !F1 || !F2 || F1 == F2;
682 }
683 #endif
684 
685 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
686                                  const MemoryLocation &LocB) {
687   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
688          "BasicAliasAnalysis doesn't support interprocedural queries.");
689 
690   // If we have a directly cached entry for these locations, we have recursed
691   // through this once, so just return the cached results. Notably, when this
692   // happens, we don't clear the cache.
693   auto CacheIt = AliasCache.find(LocPair(LocA, LocB));
694   if (CacheIt != AliasCache.end())
695     return CacheIt->second;
696 
697   AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
698                                  LocB.Size, LocB.AATags);
699   // AliasCache rarely has more than 1 or 2 elements, always use
700   // shrink_and_clear so it quickly returns to the inline capacity of the
701   // SmallDenseMap if it ever grows larger.
702   // FIXME: This should really be shrink_to_inline_capacity_and_clear().
703   AliasCache.shrink_and_clear();
704   VisitedPhiBBs.clear();
705   return Alias;
706 }
707 
708 /// Checks to see if the specified callsite can clobber the specified memory
709 /// object.
710 ///
711 /// Since we only look at local properties of this function, we really can't
712 /// say much about this query.  We do, however, use simple "address taken"
713 /// analysis on local objects.
714 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS,
715                                         const MemoryLocation &Loc) {
716   assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
717          "AliasAnalysis query involving multiple functions!");
718 
719   const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);
720 
721   // If this is a tail call and Loc.Ptr points to a stack location, we know that
722   // the tail call cannot access or modify the local stack.
723   // We cannot exclude byval arguments here; these belong to the caller of
724   // the current function not to the current function, and a tail callee
725   // may reference them.
726   if (isa<AllocaInst>(Object))
727     if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
728       if (CI->isTailCall())
729         return MRI_NoModRef;
730 
731   // If the pointer is to a locally allocated object that does not escape,
732   // then the call can not mod/ref the pointer unless the call takes the pointer
733   // as an argument, and itself doesn't capture it.
734   if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
735       isNonEscapingLocalObject(Object)) {
736     bool PassedAsArg = false;
737     unsigned OperandNo = 0;
738     for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end();
739          CI != CE; ++CI, ++OperandNo) {
740       // Only look at the no-capture or byval pointer arguments.  If this
741       // pointer were passed to arguments that were neither of these, then it
742       // couldn't be no-capture.
743       if (!(*CI)->getType()->isPointerTy() ||
744           (!CS.doesNotCapture(OperandNo) && !CS.isByValArgument(OperandNo)))
745         continue;
746 
747       // If this is a no-capture pointer argument, see if we can tell that it
748       // is impossible to alias the pointer we're checking.  If not, we have to
749       // assume that the call could touch the pointer, even though it doesn't
750       // escape.
751       AliasResult AR =
752           getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object));
753       if (AR) {
754         PassedAsArg = true;
755         break;
756       }
757     }
758 
759     if (!PassedAsArg)
760       return MRI_NoModRef;
761   }
762 
763   // While the assume intrinsic is marked as arbitrarily writing so that
764   // proper control dependencies will be maintained, it never aliases any
765   // particular memory location.
766   if (isAssumeIntrinsic(CS))
767     return MRI_NoModRef;
768 
769   // The AAResultBase base class has some smarts, lets use them.
770   return AAResultBase::getModRefInfo(CS, Loc);
771 }
772 
773 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1,
774                                         ImmutableCallSite CS2) {
775   // While the assume intrinsic is marked as arbitrarily writing so that
776   // proper control dependencies will be maintained, it never aliases any
777   // particular memory location.
778   if (isAssumeIntrinsic(CS1) || isAssumeIntrinsic(CS2))
779     return MRI_NoModRef;
780 
781   // The AAResultBase base class has some smarts, lets use them.
782   return AAResultBase::getModRefInfo(CS1, CS2);
783 }
784 
785 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
786 /// both having the exact same pointer operand.
787 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
788                                             uint64_t V1Size,
789                                             const GEPOperator *GEP2,
790                                             uint64_t V2Size,
791                                             const DataLayout &DL) {
792 
793   assert(GEP1->getPointerOperand() == GEP2->getPointerOperand() &&
794          "Expected GEPs with the same pointer operand");
795 
796   // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
797   // such that the struct field accesses provably cannot alias.
798   // We also need at least two indices (the pointer, and the struct field).
799   if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
800       GEP1->getNumIndices() < 2)
801     return MayAlias;
802 
803   // If we don't know the size of the accesses through both GEPs, we can't
804   // determine whether the struct fields accessed can't alias.
805   if (V1Size == MemoryLocation::UnknownSize ||
806       V2Size == MemoryLocation::UnknownSize)
807     return MayAlias;
808 
809   ConstantInt *C1 =
810       dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
811   ConstantInt *C2 =
812       dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
813 
814   // If the last (struct) indices are constants and are equal, the other indices
815   // might be also be dynamically equal, so the GEPs can alias.
816   if (C1 && C2 && C1 == C2)
817     return MayAlias;
818 
819   // Find the last-indexed type of the GEP, i.e., the type you'd get if
820   // you stripped the last index.
821   // On the way, look at each indexed type.  If there's something other
822   // than an array, different indices can lead to different final types.
823   SmallVector<Value *, 8> IntermediateIndices;
824 
825   // Insert the first index; we don't need to check the type indexed
826   // through it as it only drops the pointer indirection.
827   assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
828   IntermediateIndices.push_back(GEP1->getOperand(1));
829 
830   // Insert all the remaining indices but the last one.
831   // Also, check that they all index through arrays.
832   for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
833     if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
834             GEP1->getSourceElementType(), IntermediateIndices)))
835       return MayAlias;
836     IntermediateIndices.push_back(GEP1->getOperand(i + 1));
837   }
838 
839   auto *Ty = GetElementPtrInst::getIndexedType(
840     GEP1->getSourceElementType(), IntermediateIndices);
841   StructType *LastIndexedStruct = dyn_cast<StructType>(Ty);
842 
843   if (isa<SequentialType>(Ty)) {
844     // We know that:
845     // - both GEPs begin indexing from the exact same pointer;
846     // - the last indices in both GEPs are constants, indexing into a sequential
847     //   type (array or pointer);
848     // - both GEPs only index through arrays prior to that.
849     //
850     // Because array indices greater than the number of elements are valid in
851     // GEPs, unless we know the intermediate indices are identical between
852     // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
853     // partially overlap. We also need to check that the loaded size matches
854     // the element size, otherwise we could still have overlap.
855     const uint64_t ElementSize =
856         DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType());
857     if (V1Size != ElementSize || V2Size != ElementSize)
858       return MayAlias;
859 
860     for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i)
861       if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1))
862         return MayAlias;
863 
864     // Now we know that the array/pointer that GEP1 indexes into and that
865     // that GEP2 indexes into must either precisely overlap or be disjoint.
866     // Because they cannot partially overlap and because fields in an array
867     // cannot overlap, if we can prove the final indices are different between
868     // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
869 
870     // If the last indices are constants, we've already checked they don't
871     // equal each other so we can exit early.
872     if (C1 && C2)
873       return NoAlias;
874     if (isKnownNonEqual(GEP1->getOperand(GEP1->getNumOperands() - 1),
875                         GEP2->getOperand(GEP2->getNumOperands() - 1),
876                         DL))
877       return NoAlias;
878     return MayAlias;
879   } else if (!LastIndexedStruct || !C1 || !C2) {
880     return MayAlias;
881   }
882 
883   // We know that:
884   // - both GEPs begin indexing from the exact same pointer;
885   // - the last indices in both GEPs are constants, indexing into a struct;
886   // - said indices are different, hence, the pointed-to fields are different;
887   // - both GEPs only index through arrays prior to that.
888   //
889   // This lets us determine that the struct that GEP1 indexes into and the
890   // struct that GEP2 indexes into must either precisely overlap or be
891   // completely disjoint.  Because they cannot partially overlap, indexing into
892   // different non-overlapping fields of the struct will never alias.
893 
894   // Therefore, the only remaining thing needed to show that both GEPs can't
895   // alias is that the fields are not overlapping.
896   const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
897   const uint64_t StructSize = SL->getSizeInBytes();
898   const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
899   const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
900 
901   auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
902                                       uint64_t V2Off, uint64_t V2Size) {
903     return V1Off < V2Off && V1Off + V1Size <= V2Off &&
904            ((V2Off + V2Size <= StructSize) ||
905             (V2Off + V2Size - StructSize <= V1Off));
906   };
907 
908   if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
909       EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
910     return NoAlias;
911 
912   return MayAlias;
913 }
914 
915 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
916 /// another pointer.
917 ///
918 /// We know that V1 is a GEP, but we don't know anything about V2.
919 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for
920 /// V2.
921 AliasResult BasicAAResult::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
922                                     const AAMDNodes &V1AAInfo, const Value *V2,
923                                     uint64_t V2Size, const AAMDNodes &V2AAInfo,
924                                     const Value *UnderlyingV1,
925                                     const Value *UnderlyingV2) {
926   int64_t GEP1BaseOffset;
927   bool GEP1MaxLookupReached;
928   SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
929 
930   // If we have two gep instructions with must-alias or not-alias'ing base
931   // pointers, figure out if the indexes to the GEP tell us anything about the
932   // derived pointer.
933   if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
934     // Do the base pointers alias?
935     AliasResult BaseAlias =
936         aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(),
937                    UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes());
938 
939     // Check for geps of non-aliasing underlying pointers where the offsets are
940     // identical.
941     if ((BaseAlias == MayAlias) && V1Size == V2Size) {
942       // Do the base pointers alias assuming type and size.
943       AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo,
944                                                 UnderlyingV2, V2Size, V2AAInfo);
945       if (PreciseBaseAlias == NoAlias) {
946         // See if the computed offset from the common pointer tells us about the
947         // relation of the resulting pointer.
948         int64_t GEP2BaseOffset;
949         bool GEP2MaxLookupReached;
950         SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
951         const Value *GEP2BasePtr =
952             DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
953                                    GEP2MaxLookupReached, DL, &AC, DT);
954         const Value *GEP1BasePtr =
955             DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
956                                    GEP1MaxLookupReached, DL, &AC, DT);
957         // DecomposeGEPExpression and GetUnderlyingObject should return the
958         // same result except when DecomposeGEPExpression has no DataLayout.
959         // FIXME: They always have a DataLayout, so this should become an
960         // assert.
961         if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
962           return MayAlias;
963         }
964         // If the max search depth is reached the result is undefined
965         if (GEP2MaxLookupReached || GEP1MaxLookupReached)
966           return MayAlias;
967 
968         // Same offsets.
969         if (GEP1BaseOffset == GEP2BaseOffset &&
970             GEP1VariableIndices == GEP2VariableIndices)
971           return NoAlias;
972         GEP1VariableIndices.clear();
973       }
974     }
975 
976     // If we get a No or May, then return it immediately, no amount of analysis
977     // will improve this situation.
978     if (BaseAlias != MustAlias)
979       return BaseAlias;
980 
981     // Otherwise, we have a MustAlias.  Since the base pointers alias each other
982     // exactly, see if the computed offset from the common pointer tells us
983     // about the relation of the resulting pointer.
984     const Value *GEP1BasePtr =
985         DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
986                                GEP1MaxLookupReached, DL, &AC, DT);
987 
988     int64_t GEP2BaseOffset;
989     bool GEP2MaxLookupReached;
990     SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
991     const Value *GEP2BasePtr =
992         DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
993                                GEP2MaxLookupReached, DL, &AC, DT);
994 
995     // DecomposeGEPExpression and GetUnderlyingObject should return the
996     // same result except when DecomposeGEPExpression has no DataLayout.
997     // FIXME: They always have a DataLayout, so this should become an assert.
998     if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
999       return MayAlias;
1000     }
1001 
1002     // If we know the two GEPs are based off of the exact same pointer (and not
1003     // just the same underlying object), see if that tells us anything about
1004     // the resulting pointers.
1005     if (GEP1->getPointerOperand() == GEP2->getPointerOperand()) {
1006       AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL);
1007       // If we couldn't find anything interesting, don't abandon just yet.
1008       if (R != MayAlias)
1009         return R;
1010     }
1011 
1012     // If the max search depth is reached, the result is undefined
1013     if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1014       return MayAlias;
1015 
1016     // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1017     // symbolic difference.
1018     GEP1BaseOffset -= GEP2BaseOffset;
1019     GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);
1020 
1021   } else {
1022     // Check to see if these two pointers are related by the getelementptr
1023     // instruction.  If one pointer is a GEP with a non-zero index of the other
1024     // pointer, we know they cannot alias.
1025 
1026     // If both accesses are unknown size, we can't do anything useful here.
1027     if (V1Size == MemoryLocation::UnknownSize &&
1028         V2Size == MemoryLocation::UnknownSize)
1029       return MayAlias;
1030 
1031     AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize,
1032                                AAMDNodes(), V2, V2Size, V2AAInfo);
1033     if (R != MustAlias)
1034       // If V2 may alias GEP base pointer, conservatively returns MayAlias.
1035       // If V2 is known not to alias GEP base pointer, then the two values
1036       // cannot alias per GEP semantics: "A pointer value formed from a
1037       // getelementptr instruction is associated with the addresses associated
1038       // with the first operand of the getelementptr".
1039       return R;
1040 
1041     const Value *GEP1BasePtr =
1042         DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
1043                                GEP1MaxLookupReached, DL, &AC, DT);
1044 
1045     // DecomposeGEPExpression and GetUnderlyingObject should return the
1046     // same result except when DecomposeGEPExpression has no DataLayout.
1047     // FIXME: They always have a DataLayout, so this should become an assert.
1048     if (GEP1BasePtr != UnderlyingV1) {
1049       return MayAlias;
1050     }
1051     // If the max search depth is reached the result is undefined
1052     if (GEP1MaxLookupReached)
1053       return MayAlias;
1054   }
1055 
1056   // In the two GEP Case, if there is no difference in the offsets of the
1057   // computed pointers, the resultant pointers are a must alias.  This
1058   // happens when we have two lexically identical GEP's (for example).
1059   //
1060   // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
1061   // must aliases the GEP, the end result is a must alias also.
1062   if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
1063     return MustAlias;
1064 
1065   // If there is a constant difference between the pointers, but the difference
1066   // is less than the size of the associated memory object, then we know
1067   // that the objects are partially overlapping.  If the difference is
1068   // greater, we know they do not overlap.
1069   if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) {
1070     if (GEP1BaseOffset >= 0) {
1071       if (V2Size != MemoryLocation::UnknownSize) {
1072         if ((uint64_t)GEP1BaseOffset < V2Size)
1073           return PartialAlias;
1074         return NoAlias;
1075       }
1076     } else {
1077       // We have the situation where:
1078       // +                +
1079       // | BaseOffset     |
1080       // ---------------->|
1081       // |-->V1Size       |-------> V2Size
1082       // GEP1             V2
1083       // We need to know that V2Size is not unknown, otherwise we might have
1084       // stripped a gep with negative index ('gep <ptr>, -1, ...).
1085       if (V1Size != MemoryLocation::UnknownSize &&
1086           V2Size != MemoryLocation::UnknownSize) {
1087         if (-(uint64_t)GEP1BaseOffset < V1Size)
1088           return PartialAlias;
1089         return NoAlias;
1090       }
1091     }
1092   }
1093 
1094   if (!GEP1VariableIndices.empty()) {
1095     uint64_t Modulo = 0;
1096     bool AllPositive = true;
1097     for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) {
1098 
1099       // Try to distinguish something like &A[i][1] against &A[42][0].
1100       // Grab the least significant bit set in any of the scales. We
1101       // don't need std::abs here (even if the scale's negative) as we'll
1102       // be ^'ing Modulo with itself later.
1103       Modulo |= (uint64_t)GEP1VariableIndices[i].Scale;
1104 
1105       if (AllPositive) {
1106         // If the Value could change between cycles, then any reasoning about
1107         // the Value this cycle may not hold in the next cycle. We'll just
1108         // give up if we can't determine conditions that hold for every cycle:
1109         const Value *V = GEP1VariableIndices[i].V;
1110 
1111         bool SignKnownZero, SignKnownOne;
1112         ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, DL,
1113                        0, &AC, nullptr, DT);
1114 
1115         // Zero-extension widens the variable, and so forces the sign
1116         // bit to zero.
1117         bool IsZExt = GEP1VariableIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
1118         SignKnownZero |= IsZExt;
1119         SignKnownOne &= !IsZExt;
1120 
1121         // If the variable begins with a zero then we know it's
1122         // positive, regardless of whether the value is signed or
1123         // unsigned.
1124         int64_t Scale = GEP1VariableIndices[i].Scale;
1125         AllPositive =
1126             (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0);
1127       }
1128     }
1129 
1130     Modulo = Modulo ^ (Modulo & (Modulo - 1));
1131 
1132     // We can compute the difference between the two addresses
1133     // mod Modulo. Check whether that difference guarantees that the
1134     // two locations do not alias.
1135     uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
1136     if (V1Size != MemoryLocation::UnknownSize &&
1137         V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size &&
1138         V1Size <= Modulo - ModOffset)
1139       return NoAlias;
1140 
1141     // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
1142     // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
1143     // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
1144     if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset)
1145       return NoAlias;
1146 
1147     if (constantOffsetHeuristic(GEP1VariableIndices, V1Size, V2Size,
1148                                 GEP1BaseOffset, &AC, DT))
1149       return NoAlias;
1150   }
1151 
1152   // Statically, we can see that the base objects are the same, but the
1153   // pointers have dynamic offsets which we can't resolve. And none of our
1154   // little tricks above worked.
1155   //
1156   // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
1157   // practical effect of this is protecting TBAA in the case of dynamic
1158   // indices into arrays of unions or malloc'd memory.
1159   return PartialAlias;
1160 }
1161 
1162 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1163   // If the results agree, take it.
1164   if (A == B)
1165     return A;
1166   // A mix of PartialAlias and MustAlias is PartialAlias.
1167   if ((A == PartialAlias && B == MustAlias) ||
1168       (B == PartialAlias && A == MustAlias))
1169     return PartialAlias;
1170   // Otherwise, we don't know anything.
1171   return MayAlias;
1172 }
1173 
1174 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1175 /// against another.
1176 AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, uint64_t SISize,
1177                                        const AAMDNodes &SIAAInfo,
1178                                        const Value *V2, uint64_t V2Size,
1179                                        const AAMDNodes &V2AAInfo) {
1180   // If the values are Selects with the same condition, we can do a more precise
1181   // check: just check for aliases between the values on corresponding arms.
1182   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1183     if (SI->getCondition() == SI2->getCondition()) {
1184       AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo,
1185                                      SI2->getTrueValue(), V2Size, V2AAInfo);
1186       if (Alias == MayAlias)
1187         return MayAlias;
1188       AliasResult ThisAlias =
1189           aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
1190                      SI2->getFalseValue(), V2Size, V2AAInfo);
1191       return MergeAliasResults(ThisAlias, Alias);
1192     }
1193 
1194   // If both arms of the Select node NoAlias or MustAlias V2, then returns
1195   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1196   AliasResult Alias =
1197       aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), SISize, SIAAInfo);
1198   if (Alias == MayAlias)
1199     return MayAlias;
1200 
1201   AliasResult ThisAlias =
1202       aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo);
1203   return MergeAliasResults(ThisAlias, Alias);
1204 }
1205 
1206 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1207 /// another.
1208 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, uint64_t PNSize,
1209                                     const AAMDNodes &PNAAInfo, const Value *V2,
1210                                     uint64_t V2Size,
1211                                     const AAMDNodes &V2AAInfo) {
1212   // Track phi nodes we have visited. We use this information when we determine
1213   // value equivalence.
1214   VisitedPhiBBs.insert(PN->getParent());
1215 
1216   // If the values are PHIs in the same block, we can do a more precise
1217   // as well as efficient check: just check for aliases between the values
1218   // on corresponding edges.
1219   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1220     if (PN2->getParent() == PN->getParent()) {
1221       LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
1222                    MemoryLocation(V2, V2Size, V2AAInfo));
1223       if (PN > V2)
1224         std::swap(Locs.first, Locs.second);
1225       // Analyse the PHIs' inputs under the assumption that the PHIs are
1226       // NoAlias.
1227       // If the PHIs are May/MustAlias there must be (recursively) an input
1228       // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1229       // there must be an operation on the PHIs within the PHIs' value cycle
1230       // that causes a MayAlias.
1231       // Pretend the phis do not alias.
1232       AliasResult Alias = NoAlias;
1233       assert(AliasCache.count(Locs) &&
1234              "There must exist an entry for the phi node");
1235       AliasResult OrigAliasResult = AliasCache[Locs];
1236       AliasCache[Locs] = NoAlias;
1237 
1238       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1239         AliasResult ThisAlias =
1240             aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
1241                        PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1242                        V2Size, V2AAInfo);
1243         Alias = MergeAliasResults(ThisAlias, Alias);
1244         if (Alias == MayAlias)
1245           break;
1246       }
1247 
1248       // Reset if speculation failed.
1249       if (Alias != NoAlias)
1250         AliasCache[Locs] = OrigAliasResult;
1251 
1252       return Alias;
1253     }
1254 
1255   SmallPtrSet<Value *, 4> UniqueSrc;
1256   SmallVector<Value *, 4> V1Srcs;
1257   bool isRecursive = false;
1258   for (Value *PV1 : PN->incoming_values()) {
1259     if (isa<PHINode>(PV1))
1260       // If any of the source itself is a PHI, return MayAlias conservatively
1261       // to avoid compile time explosion. The worst possible case is if both
1262       // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1263       // and 'n' are the number of PHI sources.
1264       return MayAlias;
1265 
1266     if (EnableRecPhiAnalysis)
1267       if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
1268         // Check whether the incoming value is a GEP that advances the pointer
1269         // result of this PHI node (e.g. in a loop). If this is the case, we
1270         // would recurse and always get a MayAlias. Handle this case specially
1271         // below.
1272         if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
1273             isa<ConstantInt>(PV1GEP->idx_begin())) {
1274           isRecursive = true;
1275           continue;
1276         }
1277       }
1278 
1279     if (UniqueSrc.insert(PV1).second)
1280       V1Srcs.push_back(PV1);
1281   }
1282 
1283   // If this PHI node is recursive, set the size of the accessed memory to
1284   // unknown to represent all the possible values the GEP could advance the
1285   // pointer to.
1286   if (isRecursive)
1287     PNSize = MemoryLocation::UnknownSize;
1288 
1289   AliasResult Alias =
1290       aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize, PNAAInfo);
1291 
1292   // Early exit if the check of the first PHI source against V2 is MayAlias.
1293   // Other results are not possible.
1294   if (Alias == MayAlias)
1295     return MayAlias;
1296 
1297   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1298   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1299   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1300     Value *V = V1Srcs[i];
1301 
1302     AliasResult ThisAlias =
1303         aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo);
1304     Alias = MergeAliasResults(ThisAlias, Alias);
1305     if (Alias == MayAlias)
1306       break;
1307   }
1308 
1309   return Alias;
1310 }
1311 
1312 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1313 /// array references.
1314 AliasResult BasicAAResult::aliasCheck(const Value *V1, uint64_t V1Size,
1315                                       AAMDNodes V1AAInfo, const Value *V2,
1316                                       uint64_t V2Size, AAMDNodes V2AAInfo) {
1317   // If either of the memory references is empty, it doesn't matter what the
1318   // pointer values are.
1319   if (V1Size == 0 || V2Size == 0)
1320     return NoAlias;
1321 
1322   // Strip off any casts if they exist.
1323   V1 = V1->stripPointerCasts();
1324   V2 = V2->stripPointerCasts();
1325 
1326   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1327   // value for undef that aliases nothing in the program.
1328   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1329     return NoAlias;
1330 
1331   // Are we checking for alias of the same value?
1332   // Because we look 'through' phi nodes, we could look at "Value" pointers from
1333   // different iterations. We must therefore make sure that this is not the
1334   // case. The function isValueEqualInPotentialCycles ensures that this cannot
1335   // happen by looking at the visited phi nodes and making sure they cannot
1336   // reach the value.
1337   if (isValueEqualInPotentialCycles(V1, V2))
1338     return MustAlias;
1339 
1340   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1341     return NoAlias; // Scalars cannot alias each other
1342 
1343   // Figure out what objects these things are pointing to if we can.
1344   const Value *O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
1345   const Value *O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);
1346 
1347   // Null values in the default address space don't point to any object, so they
1348   // don't alias any other pointer.
1349   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1350     if (CPN->getType()->getAddressSpace() == 0)
1351       return NoAlias;
1352   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1353     if (CPN->getType()->getAddressSpace() == 0)
1354       return NoAlias;
1355 
1356   if (O1 != O2) {
1357     // If V1/V2 point to two different objects, we know that we have no alias.
1358     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1359       return NoAlias;
1360 
1361     // Constant pointers can't alias with non-const isIdentifiedObject objects.
1362     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1363         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1364       return NoAlias;
1365 
1366     // Function arguments can't alias with things that are known to be
1367     // unambigously identified at the function level.
1368     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1369         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1370       return NoAlias;
1371 
1372     // Most objects can't alias null.
1373     if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
1374         (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
1375       return NoAlias;
1376 
1377     // If one pointer is the result of a call/invoke or load and the other is a
1378     // non-escaping local object within the same function, then we know the
1379     // object couldn't escape to a point where the call could return it.
1380     //
1381     // Note that if the pointers are in different functions, there are a
1382     // variety of complications. A call with a nocapture argument may still
1383     // temporary store the nocapture argument's value in a temporary memory
1384     // location if that memory location doesn't escape. Or it may pass a
1385     // nocapture value to other functions as long as they don't capture it.
1386     if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
1387       return NoAlias;
1388     if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
1389       return NoAlias;
1390   }
1391 
1392   // If the size of one access is larger than the entire object on the other
1393   // side, then we know such behavior is undefined and can assume no alias.
1394   if ((V1Size != MemoryLocation::UnknownSize &&
1395        isObjectSmallerThan(O2, V1Size, DL, TLI)) ||
1396       (V2Size != MemoryLocation::UnknownSize &&
1397        isObjectSmallerThan(O1, V2Size, DL, TLI)))
1398     return NoAlias;
1399 
1400   // Check the cache before climbing up use-def chains. This also terminates
1401   // otherwise infinitely recursive queries.
1402   LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
1403                MemoryLocation(V2, V2Size, V2AAInfo));
1404   if (V1 > V2)
1405     std::swap(Locs.first, Locs.second);
1406   std::pair<AliasCacheTy::iterator, bool> Pair =
1407       AliasCache.insert(std::make_pair(Locs, MayAlias));
1408   if (!Pair.second)
1409     return Pair.first->second;
1410 
1411   // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1412   // GEP can't simplify, we don't even look at the PHI cases.
1413   if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1414     std::swap(V1, V2);
1415     std::swap(V1Size, V2Size);
1416     std::swap(O1, O2);
1417     std::swap(V1AAInfo, V2AAInfo);
1418   }
1419   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1420     AliasResult Result =
1421         aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2);
1422     if (Result != MayAlias)
1423       return AliasCache[Locs] = Result;
1424   }
1425 
1426   if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1427     std::swap(V1, V2);
1428     std::swap(V1Size, V2Size);
1429     std::swap(V1AAInfo, V2AAInfo);
1430   }
1431   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1432     AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo);
1433     if (Result != MayAlias)
1434       return AliasCache[Locs] = Result;
1435   }
1436 
1437   if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1438     std::swap(V1, V2);
1439     std::swap(V1Size, V2Size);
1440     std::swap(V1AAInfo, V2AAInfo);
1441   }
1442   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1443     AliasResult Result =
1444         aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo);
1445     if (Result != MayAlias)
1446       return AliasCache[Locs] = Result;
1447   }
1448 
1449   // If both pointers are pointing into the same object and one of them
1450   // accesses the entire object, then the accesses must overlap in some way.
1451   if (O1 == O2)
1452     if ((V1Size != MemoryLocation::UnknownSize &&
1453          isObjectSize(O1, V1Size, DL, TLI)) ||
1454         (V2Size != MemoryLocation::UnknownSize &&
1455          isObjectSize(O2, V2Size, DL, TLI)))
1456       return AliasCache[Locs] = PartialAlias;
1457 
1458   // Recurse back into the best AA results we have, potentially with refined
1459   // memory locations. We have already ensured that BasicAA has a MayAlias
1460   // cache result for these, so any recursion back into BasicAA won't loop.
1461   AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second);
1462   return AliasCache[Locs] = Result;
1463 }
1464 
1465 /// Check whether two Values can be considered equivalent.
1466 ///
1467 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1468 /// they can not be part of a cycle in the value graph by looking at all
1469 /// visited phi nodes an making sure that the phis cannot reach the value. We
1470 /// have to do this because we are looking through phi nodes (That is we say
1471 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1472 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1473                                                   const Value *V2) {
1474   if (V != V2)
1475     return false;
1476 
1477   const Instruction *Inst = dyn_cast<Instruction>(V);
1478   if (!Inst)
1479     return true;
1480 
1481   if (VisitedPhiBBs.empty())
1482     return true;
1483 
1484   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1485     return false;
1486 
1487   // Make sure that the visited phis cannot reach the Value. This ensures that
1488   // the Values cannot come from different iterations of a potential cycle the
1489   // phi nodes could be involved in.
1490   for (auto *P : VisitedPhiBBs)
1491     if (isPotentiallyReachable(&P->front(), Inst, DT, LI))
1492       return false;
1493 
1494   return true;
1495 }
1496 
1497 /// Computes the symbolic difference between two de-composed GEPs.
1498 ///
1499 /// Dest and Src are the variable indices from two decomposed GetElementPtr
1500 /// instructions GEP1 and GEP2 which have common base pointers.
1501 void BasicAAResult::GetIndexDifference(
1502     SmallVectorImpl<VariableGEPIndex> &Dest,
1503     const SmallVectorImpl<VariableGEPIndex> &Src) {
1504   if (Src.empty())
1505     return;
1506 
1507   for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1508     const Value *V = Src[i].V;
1509     unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
1510     int64_t Scale = Src[i].Scale;
1511 
1512     // Find V in Dest.  This is N^2, but pointer indices almost never have more
1513     // than a few variable indexes.
1514     for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1515       if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1516           Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
1517         continue;
1518 
1519       // If we found it, subtract off Scale V's from the entry in Dest.  If it
1520       // goes to zero, remove the entry.
1521       if (Dest[j].Scale != Scale)
1522         Dest[j].Scale -= Scale;
1523       else
1524         Dest.erase(Dest.begin() + j);
1525       Scale = 0;
1526       break;
1527     }
1528 
1529     // If we didn't consume this entry, add it to the end of the Dest list.
1530     if (Scale) {
1531       VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale};
1532       Dest.push_back(Entry);
1533     }
1534   }
1535 }
1536 
1537 bool BasicAAResult::constantOffsetHeuristic(
1538     const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size,
1539     uint64_t V2Size, int64_t BaseOffset, AssumptionCache *AC,
1540     DominatorTree *DT) {
1541   if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize ||
1542       V2Size == MemoryLocation::UnknownSize)
1543     return false;
1544 
1545   const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
1546 
1547   if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
1548       Var0.Scale != -Var1.Scale)
1549     return false;
1550 
1551   unsigned Width = Var1.V->getType()->getIntegerBitWidth();
1552 
1553   // We'll strip off the Extensions of Var0 and Var1 and do another round
1554   // of GetLinearExpression decomposition. In the example above, if Var0
1555   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1556 
1557   APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
1558       V1Offset(Width, 0);
1559   bool NSW = true, NUW = true;
1560   unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
1561   const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
1562                                         V0SExtBits, DL, 0, AC, DT, NSW, NUW);
1563   NSW = true;
1564   NUW = true;
1565   const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
1566                                         V1SExtBits, DL, 0, AC, DT, NSW, NUW);
1567 
1568   if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
1569       V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
1570     return false;
1571 
1572   // We have a hit - Var0 and Var1 only differ by a constant offset!
1573 
1574   // If we've been sext'ed then zext'd the maximum difference between Var0 and
1575   // Var1 is possible to calculate, but we're just interested in the absolute
1576   // minimum difference between the two. The minimum distance may occur due to
1577   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1578   // the minimum distance between %i and %i + 5 is 3.
1579   APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
1580   MinDiff = APIntOps::umin(MinDiff, Wrapped);
1581   uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale);
1582 
1583   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
1584   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
1585   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
1586   // V2Size can fit in the MinDiffBytes gap.
1587   return V1Size + std::abs(BaseOffset) <= MinDiffBytes &&
1588          V2Size + std::abs(BaseOffset) <= MinDiffBytes;
1589 }
1590 
1591 //===----------------------------------------------------------------------===//
1592 // BasicAliasAnalysis Pass
1593 //===----------------------------------------------------------------------===//
1594 
1595 BasicAAResult BasicAA::run(Function &F, AnalysisManager<Function> *AM) {
1596   return BasicAAResult(F.getParent()->getDataLayout(),
1597                        AM->getResult<TargetLibraryAnalysis>(F),
1598                        AM->getResult<AssumptionAnalysis>(F),
1599                        AM->getCachedResult<DominatorTreeAnalysis>(F),
1600                        AM->getCachedResult<LoopAnalysis>(F));
1601 }
1602 
1603 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
1604     initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
1605 }
1606 
1607 char BasicAAWrapperPass::ID = 0;
1608 void BasicAAWrapperPass::anchor() {}
1609 
1610 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa",
1611                       "Basic Alias Analysis (stateless AA impl)", true, true)
1612 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1613 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1614 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa",
1615                     "Basic Alias Analysis (stateless AA impl)", true, true)
1616 
1617 FunctionPass *llvm::createBasicAAWrapperPass() {
1618   return new BasicAAWrapperPass();
1619 }
1620 
1621 bool BasicAAWrapperPass::runOnFunction(Function &F) {
1622   auto &ACT = getAnalysis<AssumptionCacheTracker>();
1623   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
1624   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1625   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
1626 
1627   Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), TLIWP.getTLI(),
1628                                  ACT.getAssumptionCache(F),
1629                                  DTWP ? &DTWP->getDomTree() : nullptr,
1630                                  LIWP ? &LIWP->getLoopInfo() : nullptr));
1631 
1632   return false;
1633 }
1634 
1635 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1636   AU.setPreservesAll();
1637   AU.addRequired<AssumptionCacheTracker>();
1638   AU.addRequired<TargetLibraryInfoWrapperPass>();
1639 }
1640 
1641 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
1642   return BasicAAResult(
1643       F.getParent()->getDataLayout(),
1644       P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
1645       P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
1646 }
1647