1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the primary stateless implementation of the
11 // Alias Analysis interface that implements identities (two different
12 // globals cannot alias, etc), but does no stateful analysis.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Analysis/BasicAliasAnalysis.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GetElementPtrTypeIterator.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/Metadata.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/User.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/KnownBits.h"
58 #include <cassert>
59 #include <cstdint>
60 #include <cstdlib>
61 #include <utility>
62 
63 #define DEBUG_TYPE "basicaa"
64 
65 using namespace llvm;
66 
67 /// Enable analysis of recursive PHI nodes.
68 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden,
69                                           cl::init(false));
70 /// SearchLimitReached / SearchTimes shows how often the limit of
71 /// to decompose GEPs is reached. It will affect the precision
72 /// of basic alias analysis.
73 STATISTIC(SearchLimitReached, "Number of times the limit to "
74                               "decompose GEPs is reached");
75 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
76 
77 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
78 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
79 /// careful with value equivalence. We use reachability to make sure a value
80 /// cannot be involved in a cycle.
81 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
82 
83 // The max limit of the search depth in DecomposeGEPExpression() and
84 // GetUnderlyingObject(), both functions need to use the same search
85 // depth otherwise the algorithm in aliasGEP will assert.
86 static const unsigned MaxLookupSearchDepth = 6;
87 
88 bool BasicAAResult::invalidate(Function &F, const PreservedAnalyses &PA,
89                                FunctionAnalysisManager::Invalidator &Inv) {
90   // We don't care if this analysis itself is preserved, it has no state. But
91   // we need to check that the analyses it depends on have been. Note that we
92   // may be created without handles to some analyses and in that case don't
93   // depend on them.
94   if (Inv.invalidate<AssumptionAnalysis>(F, PA) ||
95       (DT && Inv.invalidate<DominatorTreeAnalysis>(F, PA)) ||
96       (LI && Inv.invalidate<LoopAnalysis>(F, PA)))
97     return true;
98 
99   // Otherwise this analysis result remains valid.
100   return false;
101 }
102 
103 //===----------------------------------------------------------------------===//
104 // Useful predicates
105 //===----------------------------------------------------------------------===//
106 
107 /// Returns true if the pointer is to a function-local object that never
108 /// escapes from the function.
109 static bool isNonEscapingLocalObject(const Value *V) {
110   // If this is a local allocation, check to see if it escapes.
111   if (isa<AllocaInst>(V) || isNoAliasCall(V))
112     // Set StoreCaptures to True so that we can assume in our callers that the
113     // pointer is not the result of a load instruction. Currently
114     // PointerMayBeCaptured doesn't have any special analysis for the
115     // StoreCaptures=false case; if it did, our callers could be refined to be
116     // more precise.
117     return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
118 
119   // If this is an argument that corresponds to a byval or noalias argument,
120   // then it has not escaped before entering the function.  Check if it escapes
121   // inside the function.
122   if (const Argument *A = dyn_cast<Argument>(V))
123     if (A->hasByValAttr() || A->hasNoAliasAttr())
124       // Note even if the argument is marked nocapture, we still need to check
125       // for copies made inside the function. The nocapture attribute only
126       // specifies that there are no copies made that outlive the function.
127       return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
128 
129   return false;
130 }
131 
132 /// Returns true if the pointer is one which would have been considered an
133 /// escape by isNonEscapingLocalObject.
134 static bool isEscapeSource(const Value *V) {
135   if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
136     return true;
137 
138   // The load case works because isNonEscapingLocalObject considers all
139   // stores to be escapes (it passes true for the StoreCaptures argument
140   // to PointerMayBeCaptured).
141   if (isa<LoadInst>(V))
142     return true;
143 
144   return false;
145 }
146 
147 /// Returns the size of the object specified by V or UnknownSize if unknown.
148 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
149                               const TargetLibraryInfo &TLI,
150                               bool RoundToAlign = false) {
151   uint64_t Size;
152   ObjectSizeOpts Opts;
153   Opts.RoundToAlign = RoundToAlign;
154   if (getObjectSize(V, Size, DL, &TLI, Opts))
155     return Size;
156   return MemoryLocation::UnknownSize;
157 }
158 
159 /// Returns true if we can prove that the object specified by V is smaller than
160 /// Size.
161 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
162                                 const DataLayout &DL,
163                                 const TargetLibraryInfo &TLI) {
164   // Note that the meanings of the "object" are slightly different in the
165   // following contexts:
166   //    c1: llvm::getObjectSize()
167   //    c2: llvm.objectsize() intrinsic
168   //    c3: isObjectSmallerThan()
169   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
170   // refers to the "entire object".
171   //
172   //  Consider this example:
173   //     char *p = (char*)malloc(100)
174   //     char *q = p+80;
175   //
176   //  In the context of c1 and c2, the "object" pointed by q refers to the
177   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
178   //
179   //  However, in the context of c3, the "object" refers to the chunk of memory
180   // being allocated. So, the "object" has 100 bytes, and q points to the middle
181   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
182   // parameter, before the llvm::getObjectSize() is called to get the size of
183   // entire object, we should:
184   //    - either rewind the pointer q to the base-address of the object in
185   //      question (in this case rewind to p), or
186   //    - just give up. It is up to caller to make sure the pointer is pointing
187   //      to the base address the object.
188   //
189   // We go for 2nd option for simplicity.
190   if (!isIdentifiedObject(V))
191     return false;
192 
193   // This function needs to use the aligned object size because we allow
194   // reads a bit past the end given sufficient alignment.
195   uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/ true);
196 
197   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
198 }
199 
200 /// Returns true if we can prove that the object specified by V has size Size.
201 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
202                          const TargetLibraryInfo &TLI) {
203   uint64_t ObjectSize = getObjectSize(V, DL, TLI);
204   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
205 }
206 
207 //===----------------------------------------------------------------------===//
208 // GetElementPtr Instruction Decomposition and Analysis
209 //===----------------------------------------------------------------------===//
210 
211 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
212 /// B are constant integers.
213 ///
214 /// Returns the scale and offset values as APInts and return V as a Value*, and
215 /// return whether we looked through any sign or zero extends.  The incoming
216 /// Value is known to have IntegerType, and it may already be sign or zero
217 /// extended.
218 ///
219 /// Note that this looks through extends, so the high bits may not be
220 /// represented in the result.
221 /*static*/ const Value *BasicAAResult::GetLinearExpression(
222     const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
223     unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
224     AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
225   assert(V->getType()->isIntegerTy() && "Not an integer value");
226 
227   // Limit our recursion depth.
228   if (Depth == 6) {
229     Scale = 1;
230     Offset = 0;
231     return V;
232   }
233 
234   if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
235     // If it's a constant, just convert it to an offset and remove the variable.
236     // If we've been called recursively, the Offset bit width will be greater
237     // than the constant's (the Offset's always as wide as the outermost call),
238     // so we'll zext here and process any extension in the isa<SExtInst> &
239     // isa<ZExtInst> cases below.
240     Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
241     assert(Scale == 0 && "Constant values don't have a scale");
242     return V;
243   }
244 
245   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
246     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
247       // If we've been called recursively, then Offset and Scale will be wider
248       // than the BOp operands. We'll always zext it here as we'll process sign
249       // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
250       APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
251 
252       switch (BOp->getOpcode()) {
253       default:
254         // We don't understand this instruction, so we can't decompose it any
255         // further.
256         Scale = 1;
257         Offset = 0;
258         return V;
259       case Instruction::Or:
260         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
261         // analyze it.
262         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
263                                BOp, DT)) {
264           Scale = 1;
265           Offset = 0;
266           return V;
267         }
268         LLVM_FALLTHROUGH;
269       case Instruction::Add:
270         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
271                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
272         Offset += RHS;
273         break;
274       case Instruction::Sub:
275         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
276                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
277         Offset -= RHS;
278         break;
279       case Instruction::Mul:
280         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
281                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
282         Offset *= RHS;
283         Scale *= RHS;
284         break;
285       case Instruction::Shl:
286         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
287                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
288 
289         // We're trying to linearize an expression of the kind:
290         //   shl i8 -128, 36
291         // where the shift count exceeds the bitwidth of the type.
292         // We can't decompose this further (the expression would return
293         // a poison value).
294         if (Offset.getBitWidth() < RHS.getLimitedValue() ||
295             Scale.getBitWidth() < RHS.getLimitedValue()) {
296           Scale = 1;
297           Offset = 0;
298           return V;
299         }
300 
301         Offset <<= RHS.getLimitedValue();
302         Scale <<= RHS.getLimitedValue();
303         // the semantics of nsw and nuw for left shifts don't match those of
304         // multiplications, so we won't propagate them.
305         NSW = NUW = false;
306         return V;
307       }
308 
309       if (isa<OverflowingBinaryOperator>(BOp)) {
310         NUW &= BOp->hasNoUnsignedWrap();
311         NSW &= BOp->hasNoSignedWrap();
312       }
313       return V;
314     }
315   }
316 
317   // Since GEP indices are sign extended anyway, we don't care about the high
318   // bits of a sign or zero extended value - just scales and offsets.  The
319   // extensions have to be consistent though.
320   if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
321     Value *CastOp = cast<CastInst>(V)->getOperand(0);
322     unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
323     unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
324     unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
325     const Value *Result =
326         GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
327                             Depth + 1, AC, DT, NSW, NUW);
328 
329     // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this
330     // by just incrementing the number of bits we've extended by.
331     unsigned ExtendedBy = NewWidth - SmallWidth;
332 
333     if (isa<SExtInst>(V) && ZExtBits == 0) {
334       // sext(sext(%x, a), b) == sext(%x, a + b)
335 
336       if (NSW) {
337         // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
338         // into sext(%x) + sext(c). We'll sext the Offset ourselves:
339         unsigned OldWidth = Offset.getBitWidth();
340         Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
341       } else {
342         // We may have signed-wrapped, so don't decompose sext(%x + c) into
343         // sext(%x) + sext(c)
344         Scale = 1;
345         Offset = 0;
346         Result = CastOp;
347         ZExtBits = OldZExtBits;
348         SExtBits = OldSExtBits;
349       }
350       SExtBits += ExtendedBy;
351     } else {
352       // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
353 
354       if (!NUW) {
355         // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
356         // zext(%x) + zext(c)
357         Scale = 1;
358         Offset = 0;
359         Result = CastOp;
360         ZExtBits = OldZExtBits;
361         SExtBits = OldSExtBits;
362       }
363       ZExtBits += ExtendedBy;
364     }
365 
366     return Result;
367   }
368 
369   Scale = 1;
370   Offset = 0;
371   return V;
372 }
373 
374 /// To ensure a pointer offset fits in an integer of size PointerSize
375 /// (in bits) when that size is smaller than 64. This is an issue in
376 /// particular for 32b programs with negative indices that rely on two's
377 /// complement wrap-arounds for precise alias information.
378 static int64_t adjustToPointerSize(int64_t Offset, unsigned PointerSize) {
379   assert(PointerSize <= 64 && "Invalid PointerSize!");
380   unsigned ShiftBits = 64 - PointerSize;
381   return (int64_t)((uint64_t)Offset << ShiftBits) >> ShiftBits;
382 }
383 
384 /// If V is a symbolic pointer expression, decompose it into a base pointer
385 /// with a constant offset and a number of scaled symbolic offsets.
386 ///
387 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
388 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
389 /// specified amount, but which may have other unrepresented high bits. As
390 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
391 ///
392 /// When DataLayout is around, this function is capable of analyzing everything
393 /// that GetUnderlyingObject can look through. To be able to do that
394 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search
395 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks
396 /// through pointer casts.
397 bool BasicAAResult::DecomposeGEPExpression(const Value *V,
398        DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC,
399        DominatorTree *DT) {
400   // Limit recursion depth to limit compile time in crazy cases.
401   unsigned MaxLookup = MaxLookupSearchDepth;
402   SearchTimes++;
403 
404   Decomposed.StructOffset = 0;
405   Decomposed.OtherOffset = 0;
406   Decomposed.VarIndices.clear();
407   do {
408     // See if this is a bitcast or GEP.
409     const Operator *Op = dyn_cast<Operator>(V);
410     if (!Op) {
411       // The only non-operator case we can handle are GlobalAliases.
412       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
413         if (!GA->isInterposable()) {
414           V = GA->getAliasee();
415           continue;
416         }
417       }
418       Decomposed.Base = V;
419       return false;
420     }
421 
422     if (Op->getOpcode() == Instruction::BitCast ||
423         Op->getOpcode() == Instruction::AddrSpaceCast) {
424       V = Op->getOperand(0);
425       continue;
426     }
427 
428     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
429     if (!GEPOp) {
430       if (auto CS = ImmutableCallSite(V))
431         if (const Value *RV = CS.getReturnedArgOperand()) {
432           V = RV;
433           continue;
434         }
435 
436       // If it's not a GEP, hand it off to SimplifyInstruction to see if it
437       // can come up with something. This matches what GetUnderlyingObject does.
438       if (const Instruction *I = dyn_cast<Instruction>(V))
439         // TODO: Get a DominatorTree and AssumptionCache and use them here
440         // (these are both now available in this function, but this should be
441         // updated when GetUnderlyingObject is updated). TLI should be
442         // provided also.
443         if (const Value *Simplified =
444                 SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
445           V = Simplified;
446           continue;
447         }
448 
449       Decomposed.Base = V;
450       return false;
451     }
452 
453     // Don't attempt to analyze GEPs over unsized objects.
454     if (!GEPOp->getSourceElementType()->isSized()) {
455       Decomposed.Base = V;
456       return false;
457     }
458 
459     unsigned AS = GEPOp->getPointerAddressSpace();
460     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
461     gep_type_iterator GTI = gep_type_begin(GEPOp);
462     unsigned PointerSize = DL.getPointerSizeInBits(AS);
463     // Assume all GEP operands are constants until proven otherwise.
464     bool GepHasConstantOffset = true;
465     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
466          I != E; ++I, ++GTI) {
467       const Value *Index = *I;
468       // Compute the (potentially symbolic) offset in bytes for this index.
469       if (StructType *STy = GTI.getStructTypeOrNull()) {
470         // For a struct, add the member offset.
471         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
472         if (FieldNo == 0)
473           continue;
474 
475         Decomposed.StructOffset +=
476           DL.getStructLayout(STy)->getElementOffset(FieldNo);
477         continue;
478       }
479 
480       // For an array/pointer, add the element offset, explicitly scaled.
481       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
482         if (CIdx->isZero())
483           continue;
484         Decomposed.OtherOffset +=
485           DL.getTypeAllocSize(GTI.getIndexedType()) * CIdx->getSExtValue();
486         continue;
487       }
488 
489       GepHasConstantOffset = false;
490 
491       uint64_t Scale = DL.getTypeAllocSize(GTI.getIndexedType());
492       unsigned ZExtBits = 0, SExtBits = 0;
493 
494       // If the integer type is smaller than the pointer size, it is implicitly
495       // sign extended to pointer size.
496       unsigned Width = Index->getType()->getIntegerBitWidth();
497       if (PointerSize > Width)
498         SExtBits += PointerSize - Width;
499 
500       // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
501       APInt IndexScale(Width, 0), IndexOffset(Width, 0);
502       bool NSW = true, NUW = true;
503       Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
504                                   SExtBits, DL, 0, AC, DT, NSW, NUW);
505 
506       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
507       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
508       Decomposed.OtherOffset += IndexOffset.getSExtValue() * Scale;
509       Scale *= IndexScale.getSExtValue();
510 
511       // If we already had an occurrence of this index variable, merge this
512       // scale into it.  For example, we want to handle:
513       //   A[x][x] -> x*16 + x*4 -> x*20
514       // This also ensures that 'x' only appears in the index list once.
515       for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
516         if (Decomposed.VarIndices[i].V == Index &&
517             Decomposed.VarIndices[i].ZExtBits == ZExtBits &&
518             Decomposed.VarIndices[i].SExtBits == SExtBits) {
519           Scale += Decomposed.VarIndices[i].Scale;
520           Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
521           break;
522         }
523       }
524 
525       // Make sure that we have a scale that makes sense for this target's
526       // pointer size.
527       Scale = adjustToPointerSize(Scale, PointerSize);
528 
529       if (Scale) {
530         VariableGEPIndex Entry = {Index, ZExtBits, SExtBits,
531                                   static_cast<int64_t>(Scale)};
532         Decomposed.VarIndices.push_back(Entry);
533       }
534     }
535 
536     // Take care of wrap-arounds
537     if (GepHasConstantOffset) {
538       Decomposed.StructOffset =
539           adjustToPointerSize(Decomposed.StructOffset, PointerSize);
540       Decomposed.OtherOffset =
541           adjustToPointerSize(Decomposed.OtherOffset, PointerSize);
542     }
543 
544     // Analyze the base pointer next.
545     V = GEPOp->getOperand(0);
546   } while (--MaxLookup);
547 
548   // If the chain of expressions is too deep, just return early.
549   Decomposed.Base = V;
550   SearchLimitReached++;
551   return true;
552 }
553 
554 /// Returns whether the given pointer value points to memory that is local to
555 /// the function, with global constants being considered local to all
556 /// functions.
557 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
558                                            bool OrLocal) {
559   assert(Visited.empty() && "Visited must be cleared after use!");
560 
561   unsigned MaxLookup = 8;
562   SmallVector<const Value *, 16> Worklist;
563   Worklist.push_back(Loc.Ptr);
564   do {
565     const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
566     if (!Visited.insert(V).second) {
567       Visited.clear();
568       return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
569     }
570 
571     // An alloca instruction defines local memory.
572     if (OrLocal && isa<AllocaInst>(V))
573       continue;
574 
575     // A global constant counts as local memory for our purposes.
576     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
577       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
578       // global to be marked constant in some modules and non-constant in
579       // others.  GV may even be a declaration, not a definition.
580       if (!GV->isConstant()) {
581         Visited.clear();
582         return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
583       }
584       continue;
585     }
586 
587     // If both select values point to local memory, then so does the select.
588     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
589       Worklist.push_back(SI->getTrueValue());
590       Worklist.push_back(SI->getFalseValue());
591       continue;
592     }
593 
594     // If all values incoming to a phi node point to local memory, then so does
595     // the phi.
596     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
597       // Don't bother inspecting phi nodes with many operands.
598       if (PN->getNumIncomingValues() > MaxLookup) {
599         Visited.clear();
600         return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
601       }
602       for (Value *IncValue : PN->incoming_values())
603         Worklist.push_back(IncValue);
604       continue;
605     }
606 
607     // Otherwise be conservative.
608     Visited.clear();
609     return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
610   } while (!Worklist.empty() && --MaxLookup);
611 
612   Visited.clear();
613   return Worklist.empty();
614 }
615 
616 /// Returns the behavior when calling the given call site.
617 FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) {
618   if (CS.doesNotAccessMemory())
619     // Can't do better than this.
620     return FMRB_DoesNotAccessMemory;
621 
622   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
623 
624   // If the callsite knows it only reads memory, don't return worse
625   // than that.
626   if (CS.onlyReadsMemory())
627     Min = FMRB_OnlyReadsMemory;
628   else if (CS.doesNotReadMemory())
629     Min = FMRB_DoesNotReadMemory;
630 
631   if (CS.onlyAccessesArgMemory())
632     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
633   else if (CS.onlyAccessesInaccessibleMemory())
634     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
635   else if (CS.onlyAccessesInaccessibleMemOrArgMem())
636     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
637 
638   // If CS has operand bundles then aliasing attributes from the function it
639   // calls do not directly apply to the CallSite.  This can be made more
640   // precise in the future.
641   if (!CS.hasOperandBundles())
642     if (const Function *F = CS.getCalledFunction())
643       Min =
644           FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
645 
646   return Min;
647 }
648 
649 /// Returns the behavior when calling the given function. For use when the call
650 /// site is not known.
651 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
652   // If the function declares it doesn't access memory, we can't do better.
653   if (F->doesNotAccessMemory())
654     return FMRB_DoesNotAccessMemory;
655 
656   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
657 
658   // If the function declares it only reads memory, go with that.
659   if (F->onlyReadsMemory())
660     Min = FMRB_OnlyReadsMemory;
661   else if (F->doesNotReadMemory())
662     Min = FMRB_DoesNotReadMemory;
663 
664   if (F->onlyAccessesArgMemory())
665     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
666   else if (F->onlyAccessesInaccessibleMemory())
667     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
668   else if (F->onlyAccessesInaccessibleMemOrArgMem())
669     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
670 
671   return Min;
672 }
673 
674 /// Returns true if this is a writeonly (i.e Mod only) parameter.
675 static bool isWriteOnlyParam(ImmutableCallSite CS, unsigned ArgIdx,
676                              const TargetLibraryInfo &TLI) {
677   if (CS.paramHasAttr(ArgIdx, Attribute::WriteOnly))
678     return true;
679 
680   // We can bound the aliasing properties of memset_pattern16 just as we can
681   // for memcpy/memset.  This is particularly important because the
682   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
683   // whenever possible.
684   // FIXME Consider handling this in InferFunctionAttr.cpp together with other
685   // attributes.
686   LibFunc F;
687   if (CS.getCalledFunction() && TLI.getLibFunc(*CS.getCalledFunction(), F) &&
688       F == LibFunc_memset_pattern16 && TLI.has(F))
689     if (ArgIdx == 0)
690       return true;
691 
692   // TODO: memset_pattern4, memset_pattern8
693   // TODO: _chk variants
694   // TODO: strcmp, strcpy
695 
696   return false;
697 }
698 
699 ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS,
700                                            unsigned ArgIdx) {
701   // Checking for known builtin intrinsics and target library functions.
702   if (isWriteOnlyParam(CS, ArgIdx, TLI))
703     return ModRefInfo::Mod;
704 
705   if (CS.paramHasAttr(ArgIdx, Attribute::ReadOnly))
706     return ModRefInfo::Ref;
707 
708   if (CS.paramHasAttr(ArgIdx, Attribute::ReadNone))
709     return ModRefInfo::NoModRef;
710 
711   return AAResultBase::getArgModRefInfo(CS, ArgIdx);
712 }
713 
714 static bool isIntrinsicCall(ImmutableCallSite CS, Intrinsic::ID IID) {
715   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
716   return II && II->getIntrinsicID() == IID;
717 }
718 
719 #ifndef NDEBUG
720 static const Function *getParent(const Value *V) {
721   if (const Instruction *inst = dyn_cast<Instruction>(V)) {
722     if (!inst->getParent())
723       return nullptr;
724     return inst->getParent()->getParent();
725   }
726 
727   if (const Argument *arg = dyn_cast<Argument>(V))
728     return arg->getParent();
729 
730   return nullptr;
731 }
732 
733 static bool notDifferentParent(const Value *O1, const Value *O2) {
734 
735   const Function *F1 = getParent(O1);
736   const Function *F2 = getParent(O2);
737 
738   return !F1 || !F2 || F1 == F2;
739 }
740 #endif
741 
742 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
743                                  const MemoryLocation &LocB) {
744   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
745          "BasicAliasAnalysis doesn't support interprocedural queries.");
746 
747   // If we have a directly cached entry for these locations, we have recursed
748   // through this once, so just return the cached results. Notably, when this
749   // happens, we don't clear the cache.
750   auto CacheIt = AliasCache.find(LocPair(LocA, LocB));
751   if (CacheIt != AliasCache.end())
752     return CacheIt->second;
753 
754   AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
755                                  LocB.Size, LocB.AATags);
756   // AliasCache rarely has more than 1 or 2 elements, always use
757   // shrink_and_clear so it quickly returns to the inline capacity of the
758   // SmallDenseMap if it ever grows larger.
759   // FIXME: This should really be shrink_to_inline_capacity_and_clear().
760   AliasCache.shrink_and_clear();
761   VisitedPhiBBs.clear();
762   return Alias;
763 }
764 
765 /// Checks to see if the specified callsite can clobber the specified memory
766 /// object.
767 ///
768 /// Since we only look at local properties of this function, we really can't
769 /// say much about this query.  We do, however, use simple "address taken"
770 /// analysis on local objects.
771 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS,
772                                         const MemoryLocation &Loc) {
773   assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
774          "AliasAnalysis query involving multiple functions!");
775 
776   const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);
777 
778   // If this is a tail call and Loc.Ptr points to a stack location, we know that
779   // the tail call cannot access or modify the local stack.
780   // We cannot exclude byval arguments here; these belong to the caller of
781   // the current function not to the current function, and a tail callee
782   // may reference them.
783   if (isa<AllocaInst>(Object))
784     if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
785       if (CI->isTailCall())
786         return ModRefInfo::NoModRef;
787 
788   // If the pointer is to a locally allocated object that does not escape,
789   // then the call can not mod/ref the pointer unless the call takes the pointer
790   // as an argument, and itself doesn't capture it.
791   if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
792       isNonEscapingLocalObject(Object)) {
793 
794     // Optimistically assume that call doesn't touch Object and check this
795     // assumption in the following loop.
796     ModRefInfo Result = ModRefInfo::NoModRef;
797     bool IsMustAlias = true;
798 
799     unsigned OperandNo = 0;
800     for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end();
801          CI != CE; ++CI, ++OperandNo) {
802       // Only look at the no-capture or byval pointer arguments.  If this
803       // pointer were passed to arguments that were neither of these, then it
804       // couldn't be no-capture.
805       if (!(*CI)->getType()->isPointerTy() ||
806           (!CS.doesNotCapture(OperandNo) &&
807            OperandNo < CS.getNumArgOperands() && !CS.isByValArgument(OperandNo)))
808         continue;
809 
810       // Call doesn't access memory through this operand, so we don't care
811       // if it aliases with Object.
812       if (CS.doesNotAccessMemory(OperandNo))
813         continue;
814 
815       // If this is a no-capture pointer argument, see if we can tell that it
816       // is impossible to alias the pointer we're checking.
817       AliasResult AR =
818           getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object));
819       if (AR != MustAlias)
820         IsMustAlias = false;
821       // Operand doesnt alias 'Object', continue looking for other aliases
822       if (AR == NoAlias)
823         continue;
824       // Operand aliases 'Object', but call doesn't modify it. Strengthen
825       // initial assumption and keep looking in case if there are more aliases.
826       if (CS.onlyReadsMemory(OperandNo)) {
827         Result = setRef(Result);
828         continue;
829       }
830       // Operand aliases 'Object' but call only writes into it.
831       if (CS.doesNotReadMemory(OperandNo)) {
832         Result = setMod(Result);
833         continue;
834       }
835       // This operand aliases 'Object' and call reads and writes into it.
836       // Setting ModRef will not yield an early return below, MustAlias is not
837       // used further.
838       Result = ModRefInfo::ModRef;
839       break;
840     }
841 
842     // No operand aliases, reset Must bit. Add below if at least one aliases
843     // and all aliases found are MustAlias.
844     if (isNoModRef(Result))
845       IsMustAlias = false;
846 
847     // Early return if we improved mod ref information
848     if (!isModAndRefSet(Result))
849       return IsMustAlias ? setMust(Result) : clearMust(Result);
850   }
851 
852   // If the CallSite is to malloc or calloc, we can assume that it doesn't
853   // modify any IR visible value.  This is only valid because we assume these
854   // routines do not read values visible in the IR.  TODO: Consider special
855   // casing realloc and strdup routines which access only their arguments as
856   // well.  Or alternatively, replace all of this with inaccessiblememonly once
857   // that's implemented fully.
858   auto *Inst = CS.getInstruction();
859   if (isMallocOrCallocLikeFn(Inst, &TLI)) {
860     // Be conservative if the accessed pointer may alias the allocation -
861     // fallback to the generic handling below.
862     if (getBestAAResults().alias(MemoryLocation(Inst), Loc) == NoAlias)
863       return ModRefInfo::NoModRef;
864   }
865 
866   // The semantics of memcpy intrinsics forbid overlap between their respective
867   // operands, i.e., source and destination of any given memcpy must no-alias.
868   // If Loc must-aliases either one of these two locations, then it necessarily
869   // no-aliases the other.
870   if (auto *Inst = dyn_cast<MemCpyInst>(CS.getInstruction())) {
871     AliasResult SrcAA, DestAA;
872 
873     if ((SrcAA = getBestAAResults().alias(MemoryLocation::getForSource(Inst),
874                                           Loc)) == MustAlias)
875       // Loc is exactly the memcpy source thus disjoint from memcpy dest.
876       return ModRefInfo::Ref;
877     if ((DestAA = getBestAAResults().alias(MemoryLocation::getForDest(Inst),
878                                            Loc)) == MustAlias)
879       // The converse case.
880       return ModRefInfo::Mod;
881 
882     // It's also possible for Loc to alias both src and dest, or neither.
883     ModRefInfo rv = ModRefInfo::NoModRef;
884     if (SrcAA != NoAlias)
885       rv = setRef(rv);
886     if (DestAA != NoAlias)
887       rv = setMod(rv);
888     return rv;
889   }
890 
891   // While the assume intrinsic is marked as arbitrarily writing so that
892   // proper control dependencies will be maintained, it never aliases any
893   // particular memory location.
894   if (isIntrinsicCall(CS, Intrinsic::assume))
895     return ModRefInfo::NoModRef;
896 
897   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
898   // that proper control dependencies are maintained but they never mods any
899   // particular memory location.
900   //
901   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
902   // heap state at the point the guard is issued needs to be consistent in case
903   // the guard invokes the "deopt" continuation.
904   if (isIntrinsicCall(CS, Intrinsic::experimental_guard))
905     return ModRefInfo::Ref;
906 
907   // Like assumes, invariant.start intrinsics were also marked as arbitrarily
908   // writing so that proper control dependencies are maintained but they never
909   // mod any particular memory location visible to the IR.
910   // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
911   // intrinsic is now modeled as reading memory. This prevents hoisting the
912   // invariant.start intrinsic over stores. Consider:
913   // *ptr = 40;
914   // *ptr = 50;
915   // invariant_start(ptr)
916   // int val = *ptr;
917   // print(val);
918   //
919   // This cannot be transformed to:
920   //
921   // *ptr = 40;
922   // invariant_start(ptr)
923   // *ptr = 50;
924   // int val = *ptr;
925   // print(val);
926   //
927   // The transformation will cause the second store to be ignored (based on
928   // rules of invariant.start)  and print 40, while the first program always
929   // prints 50.
930   if (isIntrinsicCall(CS, Intrinsic::invariant_start))
931     return ModRefInfo::Ref;
932 
933   // The AAResultBase base class has some smarts, lets use them.
934   return AAResultBase::getModRefInfo(CS, Loc);
935 }
936 
937 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1,
938                                         ImmutableCallSite CS2) {
939   // While the assume intrinsic is marked as arbitrarily writing so that
940   // proper control dependencies will be maintained, it never aliases any
941   // particular memory location.
942   if (isIntrinsicCall(CS1, Intrinsic::assume) ||
943       isIntrinsicCall(CS2, Intrinsic::assume))
944     return ModRefInfo::NoModRef;
945 
946   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
947   // that proper control dependencies are maintained but they never mod any
948   // particular memory location.
949   //
950   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
951   // heap state at the point the guard is issued needs to be consistent in case
952   // the guard invokes the "deopt" continuation.
953 
954   // NB! This function is *not* commutative, so we specical case two
955   // possibilities for guard intrinsics.
956 
957   if (isIntrinsicCall(CS1, Intrinsic::experimental_guard))
958     return isModSet(createModRefInfo(getModRefBehavior(CS2)))
959                ? ModRefInfo::Ref
960                : ModRefInfo::NoModRef;
961 
962   if (isIntrinsicCall(CS2, Intrinsic::experimental_guard))
963     return isModSet(createModRefInfo(getModRefBehavior(CS1)))
964                ? ModRefInfo::Mod
965                : ModRefInfo::NoModRef;
966 
967   // The AAResultBase base class has some smarts, lets use them.
968   return AAResultBase::getModRefInfo(CS1, CS2);
969 }
970 
971 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
972 /// both having the exact same pointer operand.
973 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
974                                             uint64_t V1Size,
975                                             const GEPOperator *GEP2,
976                                             uint64_t V2Size,
977                                             const DataLayout &DL) {
978   assert(GEP1->getPointerOperand()->stripPointerCastsAndBarriers() ==
979              GEP2->getPointerOperand()->stripPointerCastsAndBarriers() &&
980          GEP1->getPointerOperandType() == GEP2->getPointerOperandType() &&
981          "Expected GEPs with the same pointer operand");
982 
983   // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
984   // such that the struct field accesses provably cannot alias.
985   // We also need at least two indices (the pointer, and the struct field).
986   if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
987       GEP1->getNumIndices() < 2)
988     return MayAlias;
989 
990   // If we don't know the size of the accesses through both GEPs, we can't
991   // determine whether the struct fields accessed can't alias.
992   if (V1Size == MemoryLocation::UnknownSize ||
993       V2Size == MemoryLocation::UnknownSize)
994     return MayAlias;
995 
996   ConstantInt *C1 =
997       dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
998   ConstantInt *C2 =
999       dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
1000 
1001   // If the last (struct) indices are constants and are equal, the other indices
1002   // might be also be dynamically equal, so the GEPs can alias.
1003   if (C1 && C2 && C1->getSExtValue() == C2->getSExtValue())
1004     return MayAlias;
1005 
1006   // Find the last-indexed type of the GEP, i.e., the type you'd get if
1007   // you stripped the last index.
1008   // On the way, look at each indexed type.  If there's something other
1009   // than an array, different indices can lead to different final types.
1010   SmallVector<Value *, 8> IntermediateIndices;
1011 
1012   // Insert the first index; we don't need to check the type indexed
1013   // through it as it only drops the pointer indirection.
1014   assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
1015   IntermediateIndices.push_back(GEP1->getOperand(1));
1016 
1017   // Insert all the remaining indices but the last one.
1018   // Also, check that they all index through arrays.
1019   for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
1020     if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
1021             GEP1->getSourceElementType(), IntermediateIndices)))
1022       return MayAlias;
1023     IntermediateIndices.push_back(GEP1->getOperand(i + 1));
1024   }
1025 
1026   auto *Ty = GetElementPtrInst::getIndexedType(
1027     GEP1->getSourceElementType(), IntermediateIndices);
1028   StructType *LastIndexedStruct = dyn_cast<StructType>(Ty);
1029 
1030   if (isa<SequentialType>(Ty)) {
1031     // We know that:
1032     // - both GEPs begin indexing from the exact same pointer;
1033     // - the last indices in both GEPs are constants, indexing into a sequential
1034     //   type (array or pointer);
1035     // - both GEPs only index through arrays prior to that.
1036     //
1037     // Because array indices greater than the number of elements are valid in
1038     // GEPs, unless we know the intermediate indices are identical between
1039     // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
1040     // partially overlap. We also need to check that the loaded size matches
1041     // the element size, otherwise we could still have overlap.
1042     const uint64_t ElementSize =
1043         DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType());
1044     if (V1Size != ElementSize || V2Size != ElementSize)
1045       return MayAlias;
1046 
1047     for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i)
1048       if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1))
1049         return MayAlias;
1050 
1051     // Now we know that the array/pointer that GEP1 indexes into and that
1052     // that GEP2 indexes into must either precisely overlap or be disjoint.
1053     // Because they cannot partially overlap and because fields in an array
1054     // cannot overlap, if we can prove the final indices are different between
1055     // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
1056 
1057     // If the last indices are constants, we've already checked they don't
1058     // equal each other so we can exit early.
1059     if (C1 && C2)
1060       return NoAlias;
1061     {
1062       Value *GEP1LastIdx = GEP1->getOperand(GEP1->getNumOperands() - 1);
1063       Value *GEP2LastIdx = GEP2->getOperand(GEP2->getNumOperands() - 1);
1064       if (isa<PHINode>(GEP1LastIdx) || isa<PHINode>(GEP2LastIdx)) {
1065         // If one of the indices is a PHI node, be safe and only use
1066         // computeKnownBits so we don't make any assumptions about the
1067         // relationships between the two indices. This is important if we're
1068         // asking about values from different loop iterations. See PR32314.
1069         // TODO: We may be able to change the check so we only do this when
1070         // we definitely looked through a PHINode.
1071         if (GEP1LastIdx != GEP2LastIdx &&
1072             GEP1LastIdx->getType() == GEP2LastIdx->getType()) {
1073           KnownBits Known1 = computeKnownBits(GEP1LastIdx, DL);
1074           KnownBits Known2 = computeKnownBits(GEP2LastIdx, DL);
1075           if (Known1.Zero.intersects(Known2.One) ||
1076               Known1.One.intersects(Known2.Zero))
1077             return NoAlias;
1078         }
1079       } else if (isKnownNonEqual(GEP1LastIdx, GEP2LastIdx, DL))
1080         return NoAlias;
1081     }
1082     return MayAlias;
1083   } else if (!LastIndexedStruct || !C1 || !C2) {
1084     return MayAlias;
1085   }
1086 
1087   // We know that:
1088   // - both GEPs begin indexing from the exact same pointer;
1089   // - the last indices in both GEPs are constants, indexing into a struct;
1090   // - said indices are different, hence, the pointed-to fields are different;
1091   // - both GEPs only index through arrays prior to that.
1092   //
1093   // This lets us determine that the struct that GEP1 indexes into and the
1094   // struct that GEP2 indexes into must either precisely overlap or be
1095   // completely disjoint.  Because they cannot partially overlap, indexing into
1096   // different non-overlapping fields of the struct will never alias.
1097 
1098   // Therefore, the only remaining thing needed to show that both GEPs can't
1099   // alias is that the fields are not overlapping.
1100   const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
1101   const uint64_t StructSize = SL->getSizeInBytes();
1102   const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
1103   const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
1104 
1105   auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
1106                                       uint64_t V2Off, uint64_t V2Size) {
1107     return V1Off < V2Off && V1Off + V1Size <= V2Off &&
1108            ((V2Off + V2Size <= StructSize) ||
1109             (V2Off + V2Size - StructSize <= V1Off));
1110   };
1111 
1112   if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
1113       EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
1114     return NoAlias;
1115 
1116   return MayAlias;
1117 }
1118 
1119 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the
1120 // beginning of the object the GEP points would have a negative offset with
1121 // repsect to the alloca, that means the GEP can not alias pointer (b).
1122 // Note that the pointer based on the alloca may not be a GEP. For
1123 // example, it may be the alloca itself.
1124 // The same applies if (b) is based on a GlobalVariable. Note that just being
1125 // based on isIdentifiedObject() is not enough - we need an identified object
1126 // that does not permit access to negative offsets. For example, a negative
1127 // offset from a noalias argument or call can be inbounds w.r.t the actual
1128 // underlying object.
1129 //
1130 // For example, consider:
1131 //
1132 //   struct { int f0, int f1, ...} foo;
1133 //   foo alloca;
1134 //   foo* random = bar(alloca);
1135 //   int *f0 = &alloca.f0
1136 //   int *f1 = &random->f1;
1137 //
1138 // Which is lowered, approximately, to:
1139 //
1140 //  %alloca = alloca %struct.foo
1141 //  %random = call %struct.foo* @random(%struct.foo* %alloca)
1142 //  %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0
1143 //  %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1
1144 //
1145 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated
1146 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also
1147 // point into the same object. But since %f0 points to the beginning of %alloca,
1148 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher
1149 // than (%alloca - 1), and so is not inbounds, a contradiction.
1150 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp,
1151       const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject,
1152       uint64_t ObjectAccessSize) {
1153   // If the object access size is unknown, or the GEP isn't inbounds, bail.
1154   if (ObjectAccessSize == MemoryLocation::UnknownSize || !GEPOp->isInBounds())
1155     return false;
1156 
1157   // We need the object to be an alloca or a globalvariable, and want to know
1158   // the offset of the pointer from the object precisely, so no variable
1159   // indices are allowed.
1160   if (!(isa<AllocaInst>(DecompObject.Base) ||
1161         isa<GlobalVariable>(DecompObject.Base)) ||
1162       !DecompObject.VarIndices.empty())
1163     return false;
1164 
1165   int64_t ObjectBaseOffset = DecompObject.StructOffset +
1166                              DecompObject.OtherOffset;
1167 
1168   // If the GEP has no variable indices, we know the precise offset
1169   // from the base, then use it. If the GEP has variable indices, we're in
1170   // a bit more trouble: we can't count on the constant offsets that come
1171   // from non-struct sources, since these can be "rewound" by a negative
1172   // variable offset. So use only offsets that came from structs.
1173   int64_t GEPBaseOffset = DecompGEP.StructOffset;
1174   if (DecompGEP.VarIndices.empty())
1175     GEPBaseOffset += DecompGEP.OtherOffset;
1176 
1177   return (GEPBaseOffset >= ObjectBaseOffset + (int64_t)ObjectAccessSize);
1178 }
1179 
1180 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1181 /// another pointer.
1182 ///
1183 /// We know that V1 is a GEP, but we don't know anything about V2.
1184 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for
1185 /// V2.
1186 AliasResult BasicAAResult::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
1187                                     const AAMDNodes &V1AAInfo, const Value *V2,
1188                                     uint64_t V2Size, const AAMDNodes &V2AAInfo,
1189                                     const Value *UnderlyingV1,
1190                                     const Value *UnderlyingV2) {
1191   DecomposedGEP DecompGEP1, DecompGEP2;
1192   bool GEP1MaxLookupReached =
1193     DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT);
1194   bool GEP2MaxLookupReached =
1195     DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT);
1196 
1197   int64_t GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset;
1198   int64_t GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset;
1199 
1200   assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
1201          "DecomposeGEPExpression returned a result different from "
1202          "GetUnderlyingObject");
1203 
1204   // If the GEP's offset relative to its base is such that the base would
1205   // fall below the start of the object underlying V2, then the GEP and V2
1206   // cannot alias.
1207   if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1208       isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size))
1209     return NoAlias;
1210   // If we have two gep instructions with must-alias or not-alias'ing base
1211   // pointers, figure out if the indexes to the GEP tell us anything about the
1212   // derived pointer.
1213   if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
1214     // Check for the GEP base being at a negative offset, this time in the other
1215     // direction.
1216     if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1217         isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size))
1218       return NoAlias;
1219     // Do the base pointers alias?
1220     AliasResult BaseAlias =
1221         aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(),
1222                    UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes());
1223 
1224     // Check for geps of non-aliasing underlying pointers where the offsets are
1225     // identical.
1226     if ((BaseAlias == MayAlias) && V1Size == V2Size) {
1227       // Do the base pointers alias assuming type and size.
1228       AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo,
1229                                                 UnderlyingV2, V2Size, V2AAInfo);
1230       if (PreciseBaseAlias == NoAlias) {
1231         // See if the computed offset from the common pointer tells us about the
1232         // relation of the resulting pointer.
1233         // If the max search depth is reached the result is undefined
1234         if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1235           return MayAlias;
1236 
1237         // Same offsets.
1238         if (GEP1BaseOffset == GEP2BaseOffset &&
1239             DecompGEP1.VarIndices == DecompGEP2.VarIndices)
1240           return NoAlias;
1241       }
1242     }
1243 
1244     // If we get a No or May, then return it immediately, no amount of analysis
1245     // will improve this situation.
1246     if (BaseAlias != MustAlias) {
1247       assert(BaseAlias == NoAlias || BaseAlias == MayAlias);
1248       return BaseAlias;
1249     }
1250 
1251     // Otherwise, we have a MustAlias.  Since the base pointers alias each other
1252     // exactly, see if the computed offset from the common pointer tells us
1253     // about the relation of the resulting pointer.
1254     // If we know the two GEPs are based off of the exact same pointer (and not
1255     // just the same underlying object), see if that tells us anything about
1256     // the resulting pointers.
1257     if (GEP1->getPointerOperand()->stripPointerCastsAndBarriers() ==
1258             GEP2->getPointerOperand()->stripPointerCastsAndBarriers() &&
1259         GEP1->getPointerOperandType() == GEP2->getPointerOperandType()) {
1260       AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL);
1261       // If we couldn't find anything interesting, don't abandon just yet.
1262       if (R != MayAlias)
1263         return R;
1264     }
1265 
1266     // If the max search depth is reached, the result is undefined
1267     if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1268       return MayAlias;
1269 
1270     // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1271     // symbolic difference.
1272     GEP1BaseOffset -= GEP2BaseOffset;
1273     GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);
1274 
1275   } else {
1276     // Check to see if these two pointers are related by the getelementptr
1277     // instruction.  If one pointer is a GEP with a non-zero index of the other
1278     // pointer, we know they cannot alias.
1279 
1280     // If both accesses are unknown size, we can't do anything useful here.
1281     if (V1Size == MemoryLocation::UnknownSize &&
1282         V2Size == MemoryLocation::UnknownSize)
1283       return MayAlias;
1284 
1285     AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize,
1286                                AAMDNodes(), V2, MemoryLocation::UnknownSize,
1287                                V2AAInfo, nullptr, UnderlyingV2);
1288     if (R != MustAlias) {
1289       // If V2 may alias GEP base pointer, conservatively returns MayAlias.
1290       // If V2 is known not to alias GEP base pointer, then the two values
1291       // cannot alias per GEP semantics: "Any memory access must be done through
1292       // a pointer value associated with an address range of the memory access,
1293       // otherwise the behavior is undefined.".
1294       assert(R == NoAlias || R == MayAlias);
1295       return R;
1296     }
1297 
1298     // If the max search depth is reached the result is undefined
1299     if (GEP1MaxLookupReached)
1300       return MayAlias;
1301   }
1302 
1303   // In the two GEP Case, if there is no difference in the offsets of the
1304   // computed pointers, the resultant pointers are a must alias.  This
1305   // happens when we have two lexically identical GEP's (for example).
1306   //
1307   // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
1308   // must aliases the GEP, the end result is a must alias also.
1309   if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty())
1310     return MustAlias;
1311 
1312   // If there is a constant difference between the pointers, but the difference
1313   // is less than the size of the associated memory object, then we know
1314   // that the objects are partially overlapping.  If the difference is
1315   // greater, we know they do not overlap.
1316   if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) {
1317     if (GEP1BaseOffset >= 0) {
1318       if (V2Size != MemoryLocation::UnknownSize) {
1319         if ((uint64_t)GEP1BaseOffset < V2Size)
1320           return PartialAlias;
1321         return NoAlias;
1322       }
1323     } else {
1324       // We have the situation where:
1325       // +                +
1326       // | BaseOffset     |
1327       // ---------------->|
1328       // |-->V1Size       |-------> V2Size
1329       // GEP1             V2
1330       // We need to know that V2Size is not unknown, otherwise we might have
1331       // stripped a gep with negative index ('gep <ptr>, -1, ...).
1332       if (V1Size != MemoryLocation::UnknownSize &&
1333           V2Size != MemoryLocation::UnknownSize) {
1334         if (-(uint64_t)GEP1BaseOffset < V1Size)
1335           return PartialAlias;
1336         return NoAlias;
1337       }
1338     }
1339   }
1340 
1341   if (!DecompGEP1.VarIndices.empty()) {
1342     uint64_t Modulo = 0;
1343     bool AllPositive = true;
1344     for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1345 
1346       // Try to distinguish something like &A[i][1] against &A[42][0].
1347       // Grab the least significant bit set in any of the scales. We
1348       // don't need std::abs here (even if the scale's negative) as we'll
1349       // be ^'ing Modulo with itself later.
1350       Modulo |= (uint64_t)DecompGEP1.VarIndices[i].Scale;
1351 
1352       if (AllPositive) {
1353         // If the Value could change between cycles, then any reasoning about
1354         // the Value this cycle may not hold in the next cycle. We'll just
1355         // give up if we can't determine conditions that hold for every cycle:
1356         const Value *V = DecompGEP1.VarIndices[i].V;
1357 
1358         KnownBits Known = computeKnownBits(V, DL, 0, &AC, nullptr, DT);
1359         bool SignKnownZero = Known.isNonNegative();
1360         bool SignKnownOne = Known.isNegative();
1361 
1362         // Zero-extension widens the variable, and so forces the sign
1363         // bit to zero.
1364         bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
1365         SignKnownZero |= IsZExt;
1366         SignKnownOne &= !IsZExt;
1367 
1368         // If the variable begins with a zero then we know it's
1369         // positive, regardless of whether the value is signed or
1370         // unsigned.
1371         int64_t Scale = DecompGEP1.VarIndices[i].Scale;
1372         AllPositive =
1373             (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0);
1374       }
1375     }
1376 
1377     Modulo = Modulo ^ (Modulo & (Modulo - 1));
1378 
1379     // We can compute the difference between the two addresses
1380     // mod Modulo. Check whether that difference guarantees that the
1381     // two locations do not alias.
1382     uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
1383     if (V1Size != MemoryLocation::UnknownSize &&
1384         V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size &&
1385         V1Size <= Modulo - ModOffset)
1386       return NoAlias;
1387 
1388     // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
1389     // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
1390     // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
1391     if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset)
1392       return NoAlias;
1393 
1394     if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
1395                                 GEP1BaseOffset, &AC, DT))
1396       return NoAlias;
1397   }
1398 
1399   // Statically, we can see that the base objects are the same, but the
1400   // pointers have dynamic offsets which we can't resolve. And none of our
1401   // little tricks above worked.
1402   return MayAlias;
1403 }
1404 
1405 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1406   // If the results agree, take it.
1407   if (A == B)
1408     return A;
1409   // A mix of PartialAlias and MustAlias is PartialAlias.
1410   if ((A == PartialAlias && B == MustAlias) ||
1411       (B == PartialAlias && A == MustAlias))
1412     return PartialAlias;
1413   // Otherwise, we don't know anything.
1414   return MayAlias;
1415 }
1416 
1417 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1418 /// against another.
1419 AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, uint64_t SISize,
1420                                        const AAMDNodes &SIAAInfo,
1421                                        const Value *V2, uint64_t V2Size,
1422                                        const AAMDNodes &V2AAInfo,
1423                                        const Value *UnderV2) {
1424   // If the values are Selects with the same condition, we can do a more precise
1425   // check: just check for aliases between the values on corresponding arms.
1426   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1427     if (SI->getCondition() == SI2->getCondition()) {
1428       AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo,
1429                                      SI2->getTrueValue(), V2Size, V2AAInfo);
1430       if (Alias == MayAlias)
1431         return MayAlias;
1432       AliasResult ThisAlias =
1433           aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
1434                      SI2->getFalseValue(), V2Size, V2AAInfo);
1435       return MergeAliasResults(ThisAlias, Alias);
1436     }
1437 
1438   // If both arms of the Select node NoAlias or MustAlias V2, then returns
1439   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1440   AliasResult Alias =
1441       aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(),
1442                  SISize, SIAAInfo, UnderV2);
1443   if (Alias == MayAlias)
1444     return MayAlias;
1445 
1446   AliasResult ThisAlias =
1447       aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo,
1448                  UnderV2);
1449   return MergeAliasResults(ThisAlias, Alias);
1450 }
1451 
1452 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1453 /// another.
1454 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, uint64_t PNSize,
1455                                     const AAMDNodes &PNAAInfo, const Value *V2,
1456                                     uint64_t V2Size, const AAMDNodes &V2AAInfo,
1457                                     const Value *UnderV2) {
1458   // Track phi nodes we have visited. We use this information when we determine
1459   // value equivalence.
1460   VisitedPhiBBs.insert(PN->getParent());
1461 
1462   // If the values are PHIs in the same block, we can do a more precise
1463   // as well as efficient check: just check for aliases between the values
1464   // on corresponding edges.
1465   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1466     if (PN2->getParent() == PN->getParent()) {
1467       LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
1468                    MemoryLocation(V2, V2Size, V2AAInfo));
1469       if (PN > V2)
1470         std::swap(Locs.first, Locs.second);
1471       // Analyse the PHIs' inputs under the assumption that the PHIs are
1472       // NoAlias.
1473       // If the PHIs are May/MustAlias there must be (recursively) an input
1474       // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1475       // there must be an operation on the PHIs within the PHIs' value cycle
1476       // that causes a MayAlias.
1477       // Pretend the phis do not alias.
1478       AliasResult Alias = NoAlias;
1479       assert(AliasCache.count(Locs) &&
1480              "There must exist an entry for the phi node");
1481       AliasResult OrigAliasResult = AliasCache[Locs];
1482       AliasCache[Locs] = NoAlias;
1483 
1484       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1485         AliasResult ThisAlias =
1486             aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
1487                        PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1488                        V2Size, V2AAInfo);
1489         Alias = MergeAliasResults(ThisAlias, Alias);
1490         if (Alias == MayAlias)
1491           break;
1492       }
1493 
1494       // Reset if speculation failed.
1495       if (Alias != NoAlias)
1496         AliasCache[Locs] = OrigAliasResult;
1497 
1498       return Alias;
1499     }
1500 
1501   SmallPtrSet<Value *, 4> UniqueSrc;
1502   SmallVector<Value *, 4> V1Srcs;
1503   bool isRecursive = false;
1504   for (Value *PV1 : PN->incoming_values()) {
1505     if (isa<PHINode>(PV1))
1506       // If any of the source itself is a PHI, return MayAlias conservatively
1507       // to avoid compile time explosion. The worst possible case is if both
1508       // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1509       // and 'n' are the number of PHI sources.
1510       return MayAlias;
1511 
1512     if (EnableRecPhiAnalysis)
1513       if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
1514         // Check whether the incoming value is a GEP that advances the pointer
1515         // result of this PHI node (e.g. in a loop). If this is the case, we
1516         // would recurse and always get a MayAlias. Handle this case specially
1517         // below.
1518         if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
1519             isa<ConstantInt>(PV1GEP->idx_begin())) {
1520           isRecursive = true;
1521           continue;
1522         }
1523       }
1524 
1525     if (UniqueSrc.insert(PV1).second)
1526       V1Srcs.push_back(PV1);
1527   }
1528 
1529   // If this PHI node is recursive, set the size of the accessed memory to
1530   // unknown to represent all the possible values the GEP could advance the
1531   // pointer to.
1532   if (isRecursive)
1533     PNSize = MemoryLocation::UnknownSize;
1534 
1535   AliasResult Alias =
1536       aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0],
1537                  PNSize, PNAAInfo, UnderV2);
1538 
1539   // Early exit if the check of the first PHI source against V2 is MayAlias.
1540   // Other results are not possible.
1541   if (Alias == MayAlias)
1542     return MayAlias;
1543 
1544   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1545   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1546   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1547     Value *V = V1Srcs[i];
1548 
1549     AliasResult ThisAlias =
1550         aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, UnderV2);
1551     Alias = MergeAliasResults(ThisAlias, Alias);
1552     if (Alias == MayAlias)
1553       break;
1554   }
1555 
1556   return Alias;
1557 }
1558 
1559 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1560 /// array references.
1561 AliasResult BasicAAResult::aliasCheck(const Value *V1, uint64_t V1Size,
1562                                       AAMDNodes V1AAInfo, const Value *V2,
1563                                       uint64_t V2Size, AAMDNodes V2AAInfo,
1564                                       const Value *O1, const Value *O2) {
1565   // If either of the memory references is empty, it doesn't matter what the
1566   // pointer values are.
1567   if (V1Size == 0 || V2Size == 0)
1568     return NoAlias;
1569 
1570   // Strip off any casts if they exist.
1571   V1 = V1->stripPointerCastsAndBarriers();
1572   V2 = V2->stripPointerCastsAndBarriers();
1573 
1574   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1575   // value for undef that aliases nothing in the program.
1576   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1577     return NoAlias;
1578 
1579   // Are we checking for alias of the same value?
1580   // Because we look 'through' phi nodes, we could look at "Value" pointers from
1581   // different iterations. We must therefore make sure that this is not the
1582   // case. The function isValueEqualInPotentialCycles ensures that this cannot
1583   // happen by looking at the visited phi nodes and making sure they cannot
1584   // reach the value.
1585   if (isValueEqualInPotentialCycles(V1, V2))
1586     return MustAlias;
1587 
1588   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1589     return NoAlias; // Scalars cannot alias each other
1590 
1591   // Figure out what objects these things are pointing to if we can.
1592   if (O1 == nullptr)
1593     O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
1594 
1595   if (O2 == nullptr)
1596     O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);
1597 
1598   // Null values in the default address space don't point to any object, so they
1599   // don't alias any other pointer.
1600   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1601     if (CPN->getType()->getAddressSpace() == 0)
1602       return NoAlias;
1603   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1604     if (CPN->getType()->getAddressSpace() == 0)
1605       return NoAlias;
1606 
1607   if (O1 != O2) {
1608     // If V1/V2 point to two different objects, we know that we have no alias.
1609     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1610       return NoAlias;
1611 
1612     // Constant pointers can't alias with non-const isIdentifiedObject objects.
1613     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1614         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1615       return NoAlias;
1616 
1617     // Function arguments can't alias with things that are known to be
1618     // unambigously identified at the function level.
1619     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1620         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1621       return NoAlias;
1622 
1623     // If one pointer is the result of a call/invoke or load and the other is a
1624     // non-escaping local object within the same function, then we know the
1625     // object couldn't escape to a point where the call could return it.
1626     //
1627     // Note that if the pointers are in different functions, there are a
1628     // variety of complications. A call with a nocapture argument may still
1629     // temporary store the nocapture argument's value in a temporary memory
1630     // location if that memory location doesn't escape. Or it may pass a
1631     // nocapture value to other functions as long as they don't capture it.
1632     if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
1633       return NoAlias;
1634     if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
1635       return NoAlias;
1636   }
1637 
1638   // If the size of one access is larger than the entire object on the other
1639   // side, then we know such behavior is undefined and can assume no alias.
1640   if ((V1Size != MemoryLocation::UnknownSize &&
1641        isObjectSmallerThan(O2, V1Size, DL, TLI)) ||
1642       (V2Size != MemoryLocation::UnknownSize &&
1643        isObjectSmallerThan(O1, V2Size, DL, TLI)))
1644     return NoAlias;
1645 
1646   // Check the cache before climbing up use-def chains. This also terminates
1647   // otherwise infinitely recursive queries.
1648   LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
1649                MemoryLocation(V2, V2Size, V2AAInfo));
1650   if (V1 > V2)
1651     std::swap(Locs.first, Locs.second);
1652   std::pair<AliasCacheTy::iterator, bool> Pair =
1653       AliasCache.insert(std::make_pair(Locs, MayAlias));
1654   if (!Pair.second)
1655     return Pair.first->second;
1656 
1657   // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1658   // GEP can't simplify, we don't even look at the PHI cases.
1659   if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1660     std::swap(V1, V2);
1661     std::swap(V1Size, V2Size);
1662     std::swap(O1, O2);
1663     std::swap(V1AAInfo, V2AAInfo);
1664   }
1665   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1666     AliasResult Result =
1667         aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2);
1668     if (Result != MayAlias)
1669       return AliasCache[Locs] = Result;
1670   }
1671 
1672   if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1673     std::swap(V1, V2);
1674     std::swap(O1, O2);
1675     std::swap(V1Size, V2Size);
1676     std::swap(V1AAInfo, V2AAInfo);
1677   }
1678   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1679     AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo,
1680                                   V2, V2Size, V2AAInfo, O2);
1681     if (Result != MayAlias)
1682       return AliasCache[Locs] = Result;
1683   }
1684 
1685   if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1686     std::swap(V1, V2);
1687     std::swap(O1, O2);
1688     std::swap(V1Size, V2Size);
1689     std::swap(V1AAInfo, V2AAInfo);
1690   }
1691   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1692     AliasResult Result =
1693         aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2);
1694     if (Result != MayAlias)
1695       return AliasCache[Locs] = Result;
1696   }
1697 
1698   // If both pointers are pointing into the same object and one of them
1699   // accesses the entire object, then the accesses must overlap in some way.
1700   if (O1 == O2)
1701     if (V1Size != MemoryLocation::UnknownSize &&
1702         V2Size != MemoryLocation::UnknownSize &&
1703         (isObjectSize(O1, V1Size, DL, TLI) ||
1704          isObjectSize(O2, V2Size, DL, TLI)))
1705       return AliasCache[Locs] = PartialAlias;
1706 
1707   // Recurse back into the best AA results we have, potentially with refined
1708   // memory locations. We have already ensured that BasicAA has a MayAlias
1709   // cache result for these, so any recursion back into BasicAA won't loop.
1710   AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second);
1711   return AliasCache[Locs] = Result;
1712 }
1713 
1714 /// Check whether two Values can be considered equivalent.
1715 ///
1716 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1717 /// they can not be part of a cycle in the value graph by looking at all
1718 /// visited phi nodes an making sure that the phis cannot reach the value. We
1719 /// have to do this because we are looking through phi nodes (That is we say
1720 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1721 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1722                                                   const Value *V2) {
1723   if (V != V2)
1724     return false;
1725 
1726   const Instruction *Inst = dyn_cast<Instruction>(V);
1727   if (!Inst)
1728     return true;
1729 
1730   if (VisitedPhiBBs.empty())
1731     return true;
1732 
1733   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1734     return false;
1735 
1736   // Make sure that the visited phis cannot reach the Value. This ensures that
1737   // the Values cannot come from different iterations of a potential cycle the
1738   // phi nodes could be involved in.
1739   for (auto *P : VisitedPhiBBs)
1740     if (isPotentiallyReachable(&P->front(), Inst, DT, LI))
1741       return false;
1742 
1743   return true;
1744 }
1745 
1746 /// Computes the symbolic difference between two de-composed GEPs.
1747 ///
1748 /// Dest and Src are the variable indices from two decomposed GetElementPtr
1749 /// instructions GEP1 and GEP2 which have common base pointers.
1750 void BasicAAResult::GetIndexDifference(
1751     SmallVectorImpl<VariableGEPIndex> &Dest,
1752     const SmallVectorImpl<VariableGEPIndex> &Src) {
1753   if (Src.empty())
1754     return;
1755 
1756   for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1757     const Value *V = Src[i].V;
1758     unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
1759     int64_t Scale = Src[i].Scale;
1760 
1761     // Find V in Dest.  This is N^2, but pointer indices almost never have more
1762     // than a few variable indexes.
1763     for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1764       if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1765           Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
1766         continue;
1767 
1768       // If we found it, subtract off Scale V's from the entry in Dest.  If it
1769       // goes to zero, remove the entry.
1770       if (Dest[j].Scale != Scale)
1771         Dest[j].Scale -= Scale;
1772       else
1773         Dest.erase(Dest.begin() + j);
1774       Scale = 0;
1775       break;
1776     }
1777 
1778     // If we didn't consume this entry, add it to the end of the Dest list.
1779     if (Scale) {
1780       VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale};
1781       Dest.push_back(Entry);
1782     }
1783   }
1784 }
1785 
1786 bool BasicAAResult::constantOffsetHeuristic(
1787     const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size,
1788     uint64_t V2Size, int64_t BaseOffset, AssumptionCache *AC,
1789     DominatorTree *DT) {
1790   if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize ||
1791       V2Size == MemoryLocation::UnknownSize)
1792     return false;
1793 
1794   const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
1795 
1796   if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
1797       Var0.Scale != -Var1.Scale)
1798     return false;
1799 
1800   unsigned Width = Var1.V->getType()->getIntegerBitWidth();
1801 
1802   // We'll strip off the Extensions of Var0 and Var1 and do another round
1803   // of GetLinearExpression decomposition. In the example above, if Var0
1804   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1805 
1806   APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
1807       V1Offset(Width, 0);
1808   bool NSW = true, NUW = true;
1809   unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
1810   const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
1811                                         V0SExtBits, DL, 0, AC, DT, NSW, NUW);
1812   NSW = true;
1813   NUW = true;
1814   const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
1815                                         V1SExtBits, DL, 0, AC, DT, NSW, NUW);
1816 
1817   if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
1818       V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
1819     return false;
1820 
1821   // We have a hit - Var0 and Var1 only differ by a constant offset!
1822 
1823   // If we've been sext'ed then zext'd the maximum difference between Var0 and
1824   // Var1 is possible to calculate, but we're just interested in the absolute
1825   // minimum difference between the two. The minimum distance may occur due to
1826   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1827   // the minimum distance between %i and %i + 5 is 3.
1828   APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
1829   MinDiff = APIntOps::umin(MinDiff, Wrapped);
1830   uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale);
1831 
1832   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
1833   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
1834   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
1835   // V2Size can fit in the MinDiffBytes gap.
1836   return V1Size + std::abs(BaseOffset) <= MinDiffBytes &&
1837          V2Size + std::abs(BaseOffset) <= MinDiffBytes;
1838 }
1839 
1840 //===----------------------------------------------------------------------===//
1841 // BasicAliasAnalysis Pass
1842 //===----------------------------------------------------------------------===//
1843 
1844 AnalysisKey BasicAA::Key;
1845 
1846 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
1847   return BasicAAResult(F.getParent()->getDataLayout(),
1848                        AM.getResult<TargetLibraryAnalysis>(F),
1849                        AM.getResult<AssumptionAnalysis>(F),
1850                        &AM.getResult<DominatorTreeAnalysis>(F),
1851                        AM.getCachedResult<LoopAnalysis>(F));
1852 }
1853 
1854 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
1855     initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
1856 }
1857 
1858 char BasicAAWrapperPass::ID = 0;
1859 
1860 void BasicAAWrapperPass::anchor() {}
1861 
1862 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa",
1863                       "Basic Alias Analysis (stateless AA impl)", true, true)
1864 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1865 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1866 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1867 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa",
1868                     "Basic Alias Analysis (stateless AA impl)", true, true)
1869 
1870 FunctionPass *llvm::createBasicAAWrapperPass() {
1871   return new BasicAAWrapperPass();
1872 }
1873 
1874 bool BasicAAWrapperPass::runOnFunction(Function &F) {
1875   auto &ACT = getAnalysis<AssumptionCacheTracker>();
1876   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
1877   auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
1878   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
1879 
1880   Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), TLIWP.getTLI(),
1881                                  ACT.getAssumptionCache(F), &DTWP.getDomTree(),
1882                                  LIWP ? &LIWP->getLoopInfo() : nullptr));
1883 
1884   return false;
1885 }
1886 
1887 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1888   AU.setPreservesAll();
1889   AU.addRequired<AssumptionCacheTracker>();
1890   AU.addRequired<DominatorTreeWrapperPass>();
1891   AU.addRequired<TargetLibraryInfoWrapperPass>();
1892 }
1893 
1894 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
1895   return BasicAAResult(
1896       F.getParent()->getDataLayout(),
1897       P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
1898       P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
1899 }
1900