1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the primary stateless implementation of the 11 // Alias Analysis interface that implements identities (two different 12 // globals cannot alias, etc), but does no stateful analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/BasicAliasAnalysis.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/CFG.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/MemoryBuiltins.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/Argument.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GetElementPtrTypeIterator.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/Metadata.h" 49 #include "llvm/IR/Operator.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/User.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/Pass.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Compiler.h" 57 #include "llvm/Support/KnownBits.h" 58 #include <cassert> 59 #include <cstdint> 60 #include <cstdlib> 61 #include <utility> 62 63 #define DEBUG_TYPE "basicaa" 64 65 using namespace llvm; 66 67 /// Enable analysis of recursive PHI nodes. 68 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden, 69 cl::init(false)); 70 /// SearchLimitReached / SearchTimes shows how often the limit of 71 /// to decompose GEPs is reached. It will affect the precision 72 /// of basic alias analysis. 73 STATISTIC(SearchLimitReached, "Number of times the limit to " 74 "decompose GEPs is reached"); 75 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 76 77 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 78 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be 79 /// careful with value equivalence. We use reachability to make sure a value 80 /// cannot be involved in a cycle. 81 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 82 83 // The max limit of the search depth in DecomposeGEPExpression() and 84 // GetUnderlyingObject(), both functions need to use the same search 85 // depth otherwise the algorithm in aliasGEP will assert. 86 static const unsigned MaxLookupSearchDepth = 6; 87 88 bool BasicAAResult::invalidate(Function &F, const PreservedAnalyses &PA, 89 FunctionAnalysisManager::Invalidator &Inv) { 90 // We don't care if this analysis itself is preserved, it has no state. But 91 // we need to check that the analyses it depends on have been. Note that we 92 // may be created without handles to some analyses and in that case don't 93 // depend on them. 94 if (Inv.invalidate<AssumptionAnalysis>(F, PA) || 95 (DT && Inv.invalidate<DominatorTreeAnalysis>(F, PA)) || 96 (LI && Inv.invalidate<LoopAnalysis>(F, PA))) 97 return true; 98 99 // Otherwise this analysis result remains valid. 100 return false; 101 } 102 103 //===----------------------------------------------------------------------===// 104 // Useful predicates 105 //===----------------------------------------------------------------------===// 106 107 /// Returns true if the pointer is to a function-local object that never 108 /// escapes from the function. 109 static bool isNonEscapingLocalObject(const Value *V) { 110 // If this is a local allocation, check to see if it escapes. 111 if (isa<AllocaInst>(V) || isNoAliasCall(V)) 112 // Set StoreCaptures to True so that we can assume in our callers that the 113 // pointer is not the result of a load instruction. Currently 114 // PointerMayBeCaptured doesn't have any special analysis for the 115 // StoreCaptures=false case; if it did, our callers could be refined to be 116 // more precise. 117 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 118 119 // If this is an argument that corresponds to a byval or noalias argument, 120 // then it has not escaped before entering the function. Check if it escapes 121 // inside the function. 122 if (const Argument *A = dyn_cast<Argument>(V)) 123 if (A->hasByValAttr() || A->hasNoAliasAttr()) 124 // Note even if the argument is marked nocapture, we still need to check 125 // for copies made inside the function. The nocapture attribute only 126 // specifies that there are no copies made that outlive the function. 127 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 128 129 return false; 130 } 131 132 /// Returns true if the pointer is one which would have been considered an 133 /// escape by isNonEscapingLocalObject. 134 static bool isEscapeSource(const Value *V) { 135 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V)) 136 return true; 137 138 // The load case works because isNonEscapingLocalObject considers all 139 // stores to be escapes (it passes true for the StoreCaptures argument 140 // to PointerMayBeCaptured). 141 if (isa<LoadInst>(V)) 142 return true; 143 144 return false; 145 } 146 147 /// Returns the size of the object specified by V or UnknownSize if unknown. 148 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 149 const TargetLibraryInfo &TLI, 150 bool RoundToAlign = false) { 151 uint64_t Size; 152 ObjectSizeOpts Opts; 153 Opts.RoundToAlign = RoundToAlign; 154 if (getObjectSize(V, Size, DL, &TLI, Opts)) 155 return Size; 156 return MemoryLocation::UnknownSize; 157 } 158 159 /// Returns true if we can prove that the object specified by V is smaller than 160 /// Size. 161 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 162 const DataLayout &DL, 163 const TargetLibraryInfo &TLI) { 164 // Note that the meanings of the "object" are slightly different in the 165 // following contexts: 166 // c1: llvm::getObjectSize() 167 // c2: llvm.objectsize() intrinsic 168 // c3: isObjectSmallerThan() 169 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 170 // refers to the "entire object". 171 // 172 // Consider this example: 173 // char *p = (char*)malloc(100) 174 // char *q = p+80; 175 // 176 // In the context of c1 and c2, the "object" pointed by q refers to the 177 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 178 // 179 // However, in the context of c3, the "object" refers to the chunk of memory 180 // being allocated. So, the "object" has 100 bytes, and q points to the middle 181 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 182 // parameter, before the llvm::getObjectSize() is called to get the size of 183 // entire object, we should: 184 // - either rewind the pointer q to the base-address of the object in 185 // question (in this case rewind to p), or 186 // - just give up. It is up to caller to make sure the pointer is pointing 187 // to the base address the object. 188 // 189 // We go for 2nd option for simplicity. 190 if (!isIdentifiedObject(V)) 191 return false; 192 193 // This function needs to use the aligned object size because we allow 194 // reads a bit past the end given sufficient alignment. 195 uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/ true); 196 197 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; 198 } 199 200 /// Returns true if we can prove that the object specified by V has size Size. 201 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, 202 const TargetLibraryInfo &TLI) { 203 uint64_t ObjectSize = getObjectSize(V, DL, TLI); 204 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; 205 } 206 207 //===----------------------------------------------------------------------===// 208 // GetElementPtr Instruction Decomposition and Analysis 209 //===----------------------------------------------------------------------===// 210 211 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 212 /// B are constant integers. 213 /// 214 /// Returns the scale and offset values as APInts and return V as a Value*, and 215 /// return whether we looked through any sign or zero extends. The incoming 216 /// Value is known to have IntegerType, and it may already be sign or zero 217 /// extended. 218 /// 219 /// Note that this looks through extends, so the high bits may not be 220 /// represented in the result. 221 /*static*/ const Value *BasicAAResult::GetLinearExpression( 222 const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits, 223 unsigned &SExtBits, const DataLayout &DL, unsigned Depth, 224 AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) { 225 assert(V->getType()->isIntegerTy() && "Not an integer value"); 226 227 // Limit our recursion depth. 228 if (Depth == 6) { 229 Scale = 1; 230 Offset = 0; 231 return V; 232 } 233 234 if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) { 235 // If it's a constant, just convert it to an offset and remove the variable. 236 // If we've been called recursively, the Offset bit width will be greater 237 // than the constant's (the Offset's always as wide as the outermost call), 238 // so we'll zext here and process any extension in the isa<SExtInst> & 239 // isa<ZExtInst> cases below. 240 Offset += Const->getValue().zextOrSelf(Offset.getBitWidth()); 241 assert(Scale == 0 && "Constant values don't have a scale"); 242 return V; 243 } 244 245 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 246 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 247 // If we've been called recursively, then Offset and Scale will be wider 248 // than the BOp operands. We'll always zext it here as we'll process sign 249 // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases). 250 APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth()); 251 252 switch (BOp->getOpcode()) { 253 default: 254 // We don't understand this instruction, so we can't decompose it any 255 // further. 256 Scale = 1; 257 Offset = 0; 258 return V; 259 case Instruction::Or: 260 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 261 // analyze it. 262 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, 263 BOp, DT)) { 264 Scale = 1; 265 Offset = 0; 266 return V; 267 } 268 LLVM_FALLTHROUGH; 269 case Instruction::Add: 270 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 271 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 272 Offset += RHS; 273 break; 274 case Instruction::Sub: 275 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 276 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 277 Offset -= RHS; 278 break; 279 case Instruction::Mul: 280 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 281 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 282 Offset *= RHS; 283 Scale *= RHS; 284 break; 285 case Instruction::Shl: 286 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 287 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 288 289 // We're trying to linearize an expression of the kind: 290 // shl i8 -128, 36 291 // where the shift count exceeds the bitwidth of the type. 292 // We can't decompose this further (the expression would return 293 // a poison value). 294 if (Offset.getBitWidth() < RHS.getLimitedValue() || 295 Scale.getBitWidth() < RHS.getLimitedValue()) { 296 Scale = 1; 297 Offset = 0; 298 return V; 299 } 300 301 Offset <<= RHS.getLimitedValue(); 302 Scale <<= RHS.getLimitedValue(); 303 // the semantics of nsw and nuw for left shifts don't match those of 304 // multiplications, so we won't propagate them. 305 NSW = NUW = false; 306 return V; 307 } 308 309 if (isa<OverflowingBinaryOperator>(BOp)) { 310 NUW &= BOp->hasNoUnsignedWrap(); 311 NSW &= BOp->hasNoSignedWrap(); 312 } 313 return V; 314 } 315 } 316 317 // Since GEP indices are sign extended anyway, we don't care about the high 318 // bits of a sign or zero extended value - just scales and offsets. The 319 // extensions have to be consistent though. 320 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) { 321 Value *CastOp = cast<CastInst>(V)->getOperand(0); 322 unsigned NewWidth = V->getType()->getPrimitiveSizeInBits(); 323 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 324 unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits; 325 const Value *Result = 326 GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL, 327 Depth + 1, AC, DT, NSW, NUW); 328 329 // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this 330 // by just incrementing the number of bits we've extended by. 331 unsigned ExtendedBy = NewWidth - SmallWidth; 332 333 if (isa<SExtInst>(V) && ZExtBits == 0) { 334 // sext(sext(%x, a), b) == sext(%x, a + b) 335 336 if (NSW) { 337 // We haven't sign-wrapped, so it's valid to decompose sext(%x + c) 338 // into sext(%x) + sext(c). We'll sext the Offset ourselves: 339 unsigned OldWidth = Offset.getBitWidth(); 340 Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth); 341 } else { 342 // We may have signed-wrapped, so don't decompose sext(%x + c) into 343 // sext(%x) + sext(c) 344 Scale = 1; 345 Offset = 0; 346 Result = CastOp; 347 ZExtBits = OldZExtBits; 348 SExtBits = OldSExtBits; 349 } 350 SExtBits += ExtendedBy; 351 } else { 352 // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b) 353 354 if (!NUW) { 355 // We may have unsigned-wrapped, so don't decompose zext(%x + c) into 356 // zext(%x) + zext(c) 357 Scale = 1; 358 Offset = 0; 359 Result = CastOp; 360 ZExtBits = OldZExtBits; 361 SExtBits = OldSExtBits; 362 } 363 ZExtBits += ExtendedBy; 364 } 365 366 return Result; 367 } 368 369 Scale = 1; 370 Offset = 0; 371 return V; 372 } 373 374 /// To ensure a pointer offset fits in an integer of size PointerSize 375 /// (in bits) when that size is smaller than 64. This is an issue in 376 /// particular for 32b programs with negative indices that rely on two's 377 /// complement wrap-arounds for precise alias information. 378 static int64_t adjustToPointerSize(int64_t Offset, unsigned PointerSize) { 379 assert(PointerSize <= 64 && "Invalid PointerSize!"); 380 unsigned ShiftBits = 64 - PointerSize; 381 return (int64_t)((uint64_t)Offset << ShiftBits) >> ShiftBits; 382 } 383 384 /// If V is a symbolic pointer expression, decompose it into a base pointer 385 /// with a constant offset and a number of scaled symbolic offsets. 386 /// 387 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 388 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 389 /// specified amount, but which may have other unrepresented high bits. As 390 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 391 /// 392 /// When DataLayout is around, this function is capable of analyzing everything 393 /// that GetUnderlyingObject can look through. To be able to do that 394 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search 395 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks 396 /// through pointer casts. 397 bool BasicAAResult::DecomposeGEPExpression(const Value *V, 398 DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC, 399 DominatorTree *DT) { 400 // Limit recursion depth to limit compile time in crazy cases. 401 unsigned MaxLookup = MaxLookupSearchDepth; 402 SearchTimes++; 403 404 Decomposed.StructOffset = 0; 405 Decomposed.OtherOffset = 0; 406 Decomposed.VarIndices.clear(); 407 do { 408 // See if this is a bitcast or GEP. 409 const Operator *Op = dyn_cast<Operator>(V); 410 if (!Op) { 411 // The only non-operator case we can handle are GlobalAliases. 412 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 413 if (!GA->isInterposable()) { 414 V = GA->getAliasee(); 415 continue; 416 } 417 } 418 Decomposed.Base = V; 419 return false; 420 } 421 422 if (Op->getOpcode() == Instruction::BitCast || 423 Op->getOpcode() == Instruction::AddrSpaceCast) { 424 V = Op->getOperand(0); 425 continue; 426 } 427 428 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 429 if (!GEPOp) { 430 if (auto CS = ImmutableCallSite(V)) 431 if (const Value *RV = CS.getReturnedArgOperand()) { 432 V = RV; 433 continue; 434 } 435 436 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 437 // can come up with something. This matches what GetUnderlyingObject does. 438 if (const Instruction *I = dyn_cast<Instruction>(V)) 439 // TODO: Get a DominatorTree and AssumptionCache and use them here 440 // (these are both now available in this function, but this should be 441 // updated when GetUnderlyingObject is updated). TLI should be 442 // provided also. 443 if (const Value *Simplified = 444 SimplifyInstruction(const_cast<Instruction *>(I), DL)) { 445 V = Simplified; 446 continue; 447 } 448 449 Decomposed.Base = V; 450 return false; 451 } 452 453 // Don't attempt to analyze GEPs over unsized objects. 454 if (!GEPOp->getSourceElementType()->isSized()) { 455 Decomposed.Base = V; 456 return false; 457 } 458 459 unsigned AS = GEPOp->getPointerAddressSpace(); 460 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 461 gep_type_iterator GTI = gep_type_begin(GEPOp); 462 unsigned PointerSize = DL.getPointerSizeInBits(AS); 463 // Assume all GEP operands are constants until proven otherwise. 464 bool GepHasConstantOffset = true; 465 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 466 I != E; ++I, ++GTI) { 467 const Value *Index = *I; 468 // Compute the (potentially symbolic) offset in bytes for this index. 469 if (StructType *STy = GTI.getStructTypeOrNull()) { 470 // For a struct, add the member offset. 471 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 472 if (FieldNo == 0) 473 continue; 474 475 Decomposed.StructOffset += 476 DL.getStructLayout(STy)->getElementOffset(FieldNo); 477 continue; 478 } 479 480 // For an array/pointer, add the element offset, explicitly scaled. 481 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 482 if (CIdx->isZero()) 483 continue; 484 Decomposed.OtherOffset += 485 DL.getTypeAllocSize(GTI.getIndexedType()) * CIdx->getSExtValue(); 486 continue; 487 } 488 489 GepHasConstantOffset = false; 490 491 uint64_t Scale = DL.getTypeAllocSize(GTI.getIndexedType()); 492 unsigned ZExtBits = 0, SExtBits = 0; 493 494 // If the integer type is smaller than the pointer size, it is implicitly 495 // sign extended to pointer size. 496 unsigned Width = Index->getType()->getIntegerBitWidth(); 497 if (PointerSize > Width) 498 SExtBits += PointerSize - Width; 499 500 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 501 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 502 bool NSW = true, NUW = true; 503 Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits, 504 SExtBits, DL, 0, AC, DT, NSW, NUW); 505 506 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 507 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 508 Decomposed.OtherOffset += IndexOffset.getSExtValue() * Scale; 509 Scale *= IndexScale.getSExtValue(); 510 511 // If we already had an occurrence of this index variable, merge this 512 // scale into it. For example, we want to handle: 513 // A[x][x] -> x*16 + x*4 -> x*20 514 // This also ensures that 'x' only appears in the index list once. 515 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { 516 if (Decomposed.VarIndices[i].V == Index && 517 Decomposed.VarIndices[i].ZExtBits == ZExtBits && 518 Decomposed.VarIndices[i].SExtBits == SExtBits) { 519 Scale += Decomposed.VarIndices[i].Scale; 520 Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i); 521 break; 522 } 523 } 524 525 // Make sure that we have a scale that makes sense for this target's 526 // pointer size. 527 Scale = adjustToPointerSize(Scale, PointerSize); 528 529 if (Scale) { 530 VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, 531 static_cast<int64_t>(Scale)}; 532 Decomposed.VarIndices.push_back(Entry); 533 } 534 } 535 536 // Take care of wrap-arounds 537 if (GepHasConstantOffset) { 538 Decomposed.StructOffset = 539 adjustToPointerSize(Decomposed.StructOffset, PointerSize); 540 Decomposed.OtherOffset = 541 adjustToPointerSize(Decomposed.OtherOffset, PointerSize); 542 } 543 544 // Analyze the base pointer next. 545 V = GEPOp->getOperand(0); 546 } while (--MaxLookup); 547 548 // If the chain of expressions is too deep, just return early. 549 Decomposed.Base = V; 550 SearchLimitReached++; 551 return true; 552 } 553 554 /// Returns whether the given pointer value points to memory that is local to 555 /// the function, with global constants being considered local to all 556 /// functions. 557 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc, 558 bool OrLocal) { 559 assert(Visited.empty() && "Visited must be cleared after use!"); 560 561 unsigned MaxLookup = 8; 562 SmallVector<const Value *, 16> Worklist; 563 Worklist.push_back(Loc.Ptr); 564 do { 565 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL); 566 if (!Visited.insert(V).second) { 567 Visited.clear(); 568 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 569 } 570 571 // An alloca instruction defines local memory. 572 if (OrLocal && isa<AllocaInst>(V)) 573 continue; 574 575 // A global constant counts as local memory for our purposes. 576 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 577 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 578 // global to be marked constant in some modules and non-constant in 579 // others. GV may even be a declaration, not a definition. 580 if (!GV->isConstant()) { 581 Visited.clear(); 582 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 583 } 584 continue; 585 } 586 587 // If both select values point to local memory, then so does the select. 588 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 589 Worklist.push_back(SI->getTrueValue()); 590 Worklist.push_back(SI->getFalseValue()); 591 continue; 592 } 593 594 // If all values incoming to a phi node point to local memory, then so does 595 // the phi. 596 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 597 // Don't bother inspecting phi nodes with many operands. 598 if (PN->getNumIncomingValues() > MaxLookup) { 599 Visited.clear(); 600 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 601 } 602 for (Value *IncValue : PN->incoming_values()) 603 Worklist.push_back(IncValue); 604 continue; 605 } 606 607 // Otherwise be conservative. 608 Visited.clear(); 609 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 610 } while (!Worklist.empty() && --MaxLookup); 611 612 Visited.clear(); 613 return Worklist.empty(); 614 } 615 616 /// Returns the behavior when calling the given call site. 617 FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) { 618 if (CS.doesNotAccessMemory()) 619 // Can't do better than this. 620 return FMRB_DoesNotAccessMemory; 621 622 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 623 624 // If the callsite knows it only reads memory, don't return worse 625 // than that. 626 if (CS.onlyReadsMemory()) 627 Min = FMRB_OnlyReadsMemory; 628 else if (CS.doesNotReadMemory()) 629 Min = FMRB_DoesNotReadMemory; 630 631 if (CS.onlyAccessesArgMemory()) 632 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 633 else if (CS.onlyAccessesInaccessibleMemory()) 634 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 635 else if (CS.onlyAccessesInaccessibleMemOrArgMem()) 636 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 637 638 // If CS has operand bundles then aliasing attributes from the function it 639 // calls do not directly apply to the CallSite. This can be made more 640 // precise in the future. 641 if (!CS.hasOperandBundles()) 642 if (const Function *F = CS.getCalledFunction()) 643 Min = 644 FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F)); 645 646 return Min; 647 } 648 649 /// Returns the behavior when calling the given function. For use when the call 650 /// site is not known. 651 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) { 652 // If the function declares it doesn't access memory, we can't do better. 653 if (F->doesNotAccessMemory()) 654 return FMRB_DoesNotAccessMemory; 655 656 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 657 658 // If the function declares it only reads memory, go with that. 659 if (F->onlyReadsMemory()) 660 Min = FMRB_OnlyReadsMemory; 661 else if (F->doesNotReadMemory()) 662 Min = FMRB_DoesNotReadMemory; 663 664 if (F->onlyAccessesArgMemory()) 665 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 666 else if (F->onlyAccessesInaccessibleMemory()) 667 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 668 else if (F->onlyAccessesInaccessibleMemOrArgMem()) 669 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 670 671 return Min; 672 } 673 674 /// Returns true if this is a writeonly (i.e Mod only) parameter. 675 static bool isWriteOnlyParam(ImmutableCallSite CS, unsigned ArgIdx, 676 const TargetLibraryInfo &TLI) { 677 if (CS.paramHasAttr(ArgIdx, Attribute::WriteOnly)) 678 return true; 679 680 // We can bound the aliasing properties of memset_pattern16 just as we can 681 // for memcpy/memset. This is particularly important because the 682 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 683 // whenever possible. 684 // FIXME Consider handling this in InferFunctionAttr.cpp together with other 685 // attributes. 686 LibFunc F; 687 if (CS.getCalledFunction() && TLI.getLibFunc(*CS.getCalledFunction(), F) && 688 F == LibFunc_memset_pattern16 && TLI.has(F)) 689 if (ArgIdx == 0) 690 return true; 691 692 // TODO: memset_pattern4, memset_pattern8 693 // TODO: _chk variants 694 // TODO: strcmp, strcpy 695 696 return false; 697 } 698 699 ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS, 700 unsigned ArgIdx) { 701 // Checking for known builtin intrinsics and target library functions. 702 if (isWriteOnlyParam(CS, ArgIdx, TLI)) 703 return ModRefInfo::Mod; 704 705 if (CS.paramHasAttr(ArgIdx, Attribute::ReadOnly)) 706 return ModRefInfo::Ref; 707 708 if (CS.paramHasAttr(ArgIdx, Attribute::ReadNone)) 709 return ModRefInfo::NoModRef; 710 711 return AAResultBase::getArgModRefInfo(CS, ArgIdx); 712 } 713 714 static bool isIntrinsicCall(ImmutableCallSite CS, Intrinsic::ID IID) { 715 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 716 return II && II->getIntrinsicID() == IID; 717 } 718 719 #ifndef NDEBUG 720 static const Function *getParent(const Value *V) { 721 if (const Instruction *inst = dyn_cast<Instruction>(V)) { 722 if (!inst->getParent()) 723 return nullptr; 724 return inst->getParent()->getParent(); 725 } 726 727 if (const Argument *arg = dyn_cast<Argument>(V)) 728 return arg->getParent(); 729 730 return nullptr; 731 } 732 733 static bool notDifferentParent(const Value *O1, const Value *O2) { 734 735 const Function *F1 = getParent(O1); 736 const Function *F2 = getParent(O2); 737 738 return !F1 || !F2 || F1 == F2; 739 } 740 #endif 741 742 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 743 const MemoryLocation &LocB) { 744 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 745 "BasicAliasAnalysis doesn't support interprocedural queries."); 746 747 // If we have a directly cached entry for these locations, we have recursed 748 // through this once, so just return the cached results. Notably, when this 749 // happens, we don't clear the cache. 750 auto CacheIt = AliasCache.find(LocPair(LocA, LocB)); 751 if (CacheIt != AliasCache.end()) 752 return CacheIt->second; 753 754 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr, 755 LocB.Size, LocB.AATags); 756 // AliasCache rarely has more than 1 or 2 elements, always use 757 // shrink_and_clear so it quickly returns to the inline capacity of the 758 // SmallDenseMap if it ever grows larger. 759 // FIXME: This should really be shrink_to_inline_capacity_and_clear(). 760 AliasCache.shrink_and_clear(); 761 VisitedPhiBBs.clear(); 762 return Alias; 763 } 764 765 /// Checks to see if the specified callsite can clobber the specified memory 766 /// object. 767 /// 768 /// Since we only look at local properties of this function, we really can't 769 /// say much about this query. We do, however, use simple "address taken" 770 /// analysis on local objects. 771 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS, 772 const MemoryLocation &Loc) { 773 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && 774 "AliasAnalysis query involving multiple functions!"); 775 776 const Value *Object = GetUnderlyingObject(Loc.Ptr, DL); 777 778 // If this is a tail call and Loc.Ptr points to a stack location, we know that 779 // the tail call cannot access or modify the local stack. 780 // We cannot exclude byval arguments here; these belong to the caller of 781 // the current function not to the current function, and a tail callee 782 // may reference them. 783 if (isa<AllocaInst>(Object)) 784 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) 785 if (CI->isTailCall()) 786 return ModRefInfo::NoModRef; 787 788 // If the pointer is to a locally allocated object that does not escape, 789 // then the call can not mod/ref the pointer unless the call takes the pointer 790 // as an argument, and itself doesn't capture it. 791 if (!isa<Constant>(Object) && CS.getInstruction() != Object && 792 isNonEscapingLocalObject(Object)) { 793 794 // Optimistically assume that call doesn't touch Object and check this 795 // assumption in the following loop. 796 ModRefInfo Result = ModRefInfo::NoModRef; 797 bool IsMustAlias = true; 798 799 unsigned OperandNo = 0; 800 for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end(); 801 CI != CE; ++CI, ++OperandNo) { 802 // Only look at the no-capture or byval pointer arguments. If this 803 // pointer were passed to arguments that were neither of these, then it 804 // couldn't be no-capture. 805 if (!(*CI)->getType()->isPointerTy() || 806 (!CS.doesNotCapture(OperandNo) && 807 OperandNo < CS.getNumArgOperands() && !CS.isByValArgument(OperandNo))) 808 continue; 809 810 // Call doesn't access memory through this operand, so we don't care 811 // if it aliases with Object. 812 if (CS.doesNotAccessMemory(OperandNo)) 813 continue; 814 815 // If this is a no-capture pointer argument, see if we can tell that it 816 // is impossible to alias the pointer we're checking. 817 AliasResult AR = 818 getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object)); 819 if (AR != MustAlias) 820 IsMustAlias = false; 821 // Operand doesnt alias 'Object', continue looking for other aliases 822 if (AR == NoAlias) 823 continue; 824 // Operand aliases 'Object', but call doesn't modify it. Strengthen 825 // initial assumption and keep looking in case if there are more aliases. 826 if (CS.onlyReadsMemory(OperandNo)) { 827 Result = setRef(Result); 828 continue; 829 } 830 // Operand aliases 'Object' but call only writes into it. 831 if (CS.doesNotReadMemory(OperandNo)) { 832 Result = setMod(Result); 833 continue; 834 } 835 // This operand aliases 'Object' and call reads and writes into it. 836 // Setting ModRef will not yield an early return below, MustAlias is not 837 // used further. 838 Result = ModRefInfo::ModRef; 839 break; 840 } 841 842 // No operand aliases, reset Must bit. Add below if at least one aliases 843 // and all aliases found are MustAlias. 844 if (isNoModRef(Result)) 845 IsMustAlias = false; 846 847 // Early return if we improved mod ref information 848 if (!isModAndRefSet(Result)) 849 return IsMustAlias ? setMust(Result) : clearMust(Result); 850 } 851 852 // If the CallSite is to malloc or calloc, we can assume that it doesn't 853 // modify any IR visible value. This is only valid because we assume these 854 // routines do not read values visible in the IR. TODO: Consider special 855 // casing realloc and strdup routines which access only their arguments as 856 // well. Or alternatively, replace all of this with inaccessiblememonly once 857 // that's implemented fully. 858 auto *Inst = CS.getInstruction(); 859 if (isMallocOrCallocLikeFn(Inst, &TLI)) { 860 // Be conservative if the accessed pointer may alias the allocation - 861 // fallback to the generic handling below. 862 if (getBestAAResults().alias(MemoryLocation(Inst), Loc) == NoAlias) 863 return ModRefInfo::NoModRef; 864 } 865 866 // The semantics of memcpy intrinsics forbid overlap between their respective 867 // operands, i.e., source and destination of any given memcpy must no-alias. 868 // If Loc must-aliases either one of these two locations, then it necessarily 869 // no-aliases the other. 870 if (auto *Inst = dyn_cast<MemCpyInst>(CS.getInstruction())) { 871 AliasResult SrcAA, DestAA; 872 873 if ((SrcAA = getBestAAResults().alias(MemoryLocation::getForSource(Inst), 874 Loc)) == MustAlias) 875 // Loc is exactly the memcpy source thus disjoint from memcpy dest. 876 return ModRefInfo::Ref; 877 if ((DestAA = getBestAAResults().alias(MemoryLocation::getForDest(Inst), 878 Loc)) == MustAlias) 879 // The converse case. 880 return ModRefInfo::Mod; 881 882 // It's also possible for Loc to alias both src and dest, or neither. 883 ModRefInfo rv = ModRefInfo::NoModRef; 884 if (SrcAA != NoAlias) 885 rv = setRef(rv); 886 if (DestAA != NoAlias) 887 rv = setMod(rv); 888 return rv; 889 } 890 891 // While the assume intrinsic is marked as arbitrarily writing so that 892 // proper control dependencies will be maintained, it never aliases any 893 // particular memory location. 894 if (isIntrinsicCall(CS, Intrinsic::assume)) 895 return ModRefInfo::NoModRef; 896 897 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 898 // that proper control dependencies are maintained but they never mods any 899 // particular memory location. 900 // 901 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 902 // heap state at the point the guard is issued needs to be consistent in case 903 // the guard invokes the "deopt" continuation. 904 if (isIntrinsicCall(CS, Intrinsic::experimental_guard)) 905 return ModRefInfo::Ref; 906 907 // Like assumes, invariant.start intrinsics were also marked as arbitrarily 908 // writing so that proper control dependencies are maintained but they never 909 // mod any particular memory location visible to the IR. 910 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start 911 // intrinsic is now modeled as reading memory. This prevents hoisting the 912 // invariant.start intrinsic over stores. Consider: 913 // *ptr = 40; 914 // *ptr = 50; 915 // invariant_start(ptr) 916 // int val = *ptr; 917 // print(val); 918 // 919 // This cannot be transformed to: 920 // 921 // *ptr = 40; 922 // invariant_start(ptr) 923 // *ptr = 50; 924 // int val = *ptr; 925 // print(val); 926 // 927 // The transformation will cause the second store to be ignored (based on 928 // rules of invariant.start) and print 40, while the first program always 929 // prints 50. 930 if (isIntrinsicCall(CS, Intrinsic::invariant_start)) 931 return ModRefInfo::Ref; 932 933 // The AAResultBase base class has some smarts, lets use them. 934 return AAResultBase::getModRefInfo(CS, Loc); 935 } 936 937 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1, 938 ImmutableCallSite CS2) { 939 // While the assume intrinsic is marked as arbitrarily writing so that 940 // proper control dependencies will be maintained, it never aliases any 941 // particular memory location. 942 if (isIntrinsicCall(CS1, Intrinsic::assume) || 943 isIntrinsicCall(CS2, Intrinsic::assume)) 944 return ModRefInfo::NoModRef; 945 946 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 947 // that proper control dependencies are maintained but they never mod any 948 // particular memory location. 949 // 950 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 951 // heap state at the point the guard is issued needs to be consistent in case 952 // the guard invokes the "deopt" continuation. 953 954 // NB! This function is *not* commutative, so we specical case two 955 // possibilities for guard intrinsics. 956 957 if (isIntrinsicCall(CS1, Intrinsic::experimental_guard)) 958 return isModSet(createModRefInfo(getModRefBehavior(CS2))) 959 ? ModRefInfo::Ref 960 : ModRefInfo::NoModRef; 961 962 if (isIntrinsicCall(CS2, Intrinsic::experimental_guard)) 963 return isModSet(createModRefInfo(getModRefBehavior(CS1))) 964 ? ModRefInfo::Mod 965 : ModRefInfo::NoModRef; 966 967 // The AAResultBase base class has some smarts, lets use them. 968 return AAResultBase::getModRefInfo(CS1, CS2); 969 } 970 971 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators, 972 /// both having the exact same pointer operand. 973 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1, 974 uint64_t V1Size, 975 const GEPOperator *GEP2, 976 uint64_t V2Size, 977 const DataLayout &DL) { 978 assert(GEP1->getPointerOperand()->stripPointerCastsAndBarriers() == 979 GEP2->getPointerOperand()->stripPointerCastsAndBarriers() && 980 GEP1->getPointerOperandType() == GEP2->getPointerOperandType() && 981 "Expected GEPs with the same pointer operand"); 982 983 // Try to determine whether GEP1 and GEP2 index through arrays, into structs, 984 // such that the struct field accesses provably cannot alias. 985 // We also need at least two indices (the pointer, and the struct field). 986 if (GEP1->getNumIndices() != GEP2->getNumIndices() || 987 GEP1->getNumIndices() < 2) 988 return MayAlias; 989 990 // If we don't know the size of the accesses through both GEPs, we can't 991 // determine whether the struct fields accessed can't alias. 992 if (V1Size == MemoryLocation::UnknownSize || 993 V2Size == MemoryLocation::UnknownSize) 994 return MayAlias; 995 996 ConstantInt *C1 = 997 dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1)); 998 ConstantInt *C2 = 999 dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1)); 1000 1001 // If the last (struct) indices are constants and are equal, the other indices 1002 // might be also be dynamically equal, so the GEPs can alias. 1003 if (C1 && C2 && C1->getSExtValue() == C2->getSExtValue()) 1004 return MayAlias; 1005 1006 // Find the last-indexed type of the GEP, i.e., the type you'd get if 1007 // you stripped the last index. 1008 // On the way, look at each indexed type. If there's something other 1009 // than an array, different indices can lead to different final types. 1010 SmallVector<Value *, 8> IntermediateIndices; 1011 1012 // Insert the first index; we don't need to check the type indexed 1013 // through it as it only drops the pointer indirection. 1014 assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine"); 1015 IntermediateIndices.push_back(GEP1->getOperand(1)); 1016 1017 // Insert all the remaining indices but the last one. 1018 // Also, check that they all index through arrays. 1019 for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) { 1020 if (!isa<ArrayType>(GetElementPtrInst::getIndexedType( 1021 GEP1->getSourceElementType(), IntermediateIndices))) 1022 return MayAlias; 1023 IntermediateIndices.push_back(GEP1->getOperand(i + 1)); 1024 } 1025 1026 auto *Ty = GetElementPtrInst::getIndexedType( 1027 GEP1->getSourceElementType(), IntermediateIndices); 1028 StructType *LastIndexedStruct = dyn_cast<StructType>(Ty); 1029 1030 if (isa<SequentialType>(Ty)) { 1031 // We know that: 1032 // - both GEPs begin indexing from the exact same pointer; 1033 // - the last indices in both GEPs are constants, indexing into a sequential 1034 // type (array or pointer); 1035 // - both GEPs only index through arrays prior to that. 1036 // 1037 // Because array indices greater than the number of elements are valid in 1038 // GEPs, unless we know the intermediate indices are identical between 1039 // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't 1040 // partially overlap. We also need to check that the loaded size matches 1041 // the element size, otherwise we could still have overlap. 1042 const uint64_t ElementSize = 1043 DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType()); 1044 if (V1Size != ElementSize || V2Size != ElementSize) 1045 return MayAlias; 1046 1047 for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i) 1048 if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1)) 1049 return MayAlias; 1050 1051 // Now we know that the array/pointer that GEP1 indexes into and that 1052 // that GEP2 indexes into must either precisely overlap or be disjoint. 1053 // Because they cannot partially overlap and because fields in an array 1054 // cannot overlap, if we can prove the final indices are different between 1055 // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias. 1056 1057 // If the last indices are constants, we've already checked they don't 1058 // equal each other so we can exit early. 1059 if (C1 && C2) 1060 return NoAlias; 1061 { 1062 Value *GEP1LastIdx = GEP1->getOperand(GEP1->getNumOperands() - 1); 1063 Value *GEP2LastIdx = GEP2->getOperand(GEP2->getNumOperands() - 1); 1064 if (isa<PHINode>(GEP1LastIdx) || isa<PHINode>(GEP2LastIdx)) { 1065 // If one of the indices is a PHI node, be safe and only use 1066 // computeKnownBits so we don't make any assumptions about the 1067 // relationships between the two indices. This is important if we're 1068 // asking about values from different loop iterations. See PR32314. 1069 // TODO: We may be able to change the check so we only do this when 1070 // we definitely looked through a PHINode. 1071 if (GEP1LastIdx != GEP2LastIdx && 1072 GEP1LastIdx->getType() == GEP2LastIdx->getType()) { 1073 KnownBits Known1 = computeKnownBits(GEP1LastIdx, DL); 1074 KnownBits Known2 = computeKnownBits(GEP2LastIdx, DL); 1075 if (Known1.Zero.intersects(Known2.One) || 1076 Known1.One.intersects(Known2.Zero)) 1077 return NoAlias; 1078 } 1079 } else if (isKnownNonEqual(GEP1LastIdx, GEP2LastIdx, DL)) 1080 return NoAlias; 1081 } 1082 return MayAlias; 1083 } else if (!LastIndexedStruct || !C1 || !C2) { 1084 return MayAlias; 1085 } 1086 1087 // We know that: 1088 // - both GEPs begin indexing from the exact same pointer; 1089 // - the last indices in both GEPs are constants, indexing into a struct; 1090 // - said indices are different, hence, the pointed-to fields are different; 1091 // - both GEPs only index through arrays prior to that. 1092 // 1093 // This lets us determine that the struct that GEP1 indexes into and the 1094 // struct that GEP2 indexes into must either precisely overlap or be 1095 // completely disjoint. Because they cannot partially overlap, indexing into 1096 // different non-overlapping fields of the struct will never alias. 1097 1098 // Therefore, the only remaining thing needed to show that both GEPs can't 1099 // alias is that the fields are not overlapping. 1100 const StructLayout *SL = DL.getStructLayout(LastIndexedStruct); 1101 const uint64_t StructSize = SL->getSizeInBytes(); 1102 const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue()); 1103 const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue()); 1104 1105 auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size, 1106 uint64_t V2Off, uint64_t V2Size) { 1107 return V1Off < V2Off && V1Off + V1Size <= V2Off && 1108 ((V2Off + V2Size <= StructSize) || 1109 (V2Off + V2Size - StructSize <= V1Off)); 1110 }; 1111 1112 if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) || 1113 EltsDontOverlap(V2Off, V2Size, V1Off, V1Size)) 1114 return NoAlias; 1115 1116 return MayAlias; 1117 } 1118 1119 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the 1120 // beginning of the object the GEP points would have a negative offset with 1121 // repsect to the alloca, that means the GEP can not alias pointer (b). 1122 // Note that the pointer based on the alloca may not be a GEP. For 1123 // example, it may be the alloca itself. 1124 // The same applies if (b) is based on a GlobalVariable. Note that just being 1125 // based on isIdentifiedObject() is not enough - we need an identified object 1126 // that does not permit access to negative offsets. For example, a negative 1127 // offset from a noalias argument or call can be inbounds w.r.t the actual 1128 // underlying object. 1129 // 1130 // For example, consider: 1131 // 1132 // struct { int f0, int f1, ...} foo; 1133 // foo alloca; 1134 // foo* random = bar(alloca); 1135 // int *f0 = &alloca.f0 1136 // int *f1 = &random->f1; 1137 // 1138 // Which is lowered, approximately, to: 1139 // 1140 // %alloca = alloca %struct.foo 1141 // %random = call %struct.foo* @random(%struct.foo* %alloca) 1142 // %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0 1143 // %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1 1144 // 1145 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated 1146 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also 1147 // point into the same object. But since %f0 points to the beginning of %alloca, 1148 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher 1149 // than (%alloca - 1), and so is not inbounds, a contradiction. 1150 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp, 1151 const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject, 1152 uint64_t ObjectAccessSize) { 1153 // If the object access size is unknown, or the GEP isn't inbounds, bail. 1154 if (ObjectAccessSize == MemoryLocation::UnknownSize || !GEPOp->isInBounds()) 1155 return false; 1156 1157 // We need the object to be an alloca or a globalvariable, and want to know 1158 // the offset of the pointer from the object precisely, so no variable 1159 // indices are allowed. 1160 if (!(isa<AllocaInst>(DecompObject.Base) || 1161 isa<GlobalVariable>(DecompObject.Base)) || 1162 !DecompObject.VarIndices.empty()) 1163 return false; 1164 1165 int64_t ObjectBaseOffset = DecompObject.StructOffset + 1166 DecompObject.OtherOffset; 1167 1168 // If the GEP has no variable indices, we know the precise offset 1169 // from the base, then use it. If the GEP has variable indices, we're in 1170 // a bit more trouble: we can't count on the constant offsets that come 1171 // from non-struct sources, since these can be "rewound" by a negative 1172 // variable offset. So use only offsets that came from structs. 1173 int64_t GEPBaseOffset = DecompGEP.StructOffset; 1174 if (DecompGEP.VarIndices.empty()) 1175 GEPBaseOffset += DecompGEP.OtherOffset; 1176 1177 return (GEPBaseOffset >= ObjectBaseOffset + (int64_t)ObjectAccessSize); 1178 } 1179 1180 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 1181 /// another pointer. 1182 /// 1183 /// We know that V1 is a GEP, but we don't know anything about V2. 1184 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for 1185 /// V2. 1186 AliasResult BasicAAResult::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, 1187 const AAMDNodes &V1AAInfo, const Value *V2, 1188 uint64_t V2Size, const AAMDNodes &V2AAInfo, 1189 const Value *UnderlyingV1, 1190 const Value *UnderlyingV2) { 1191 DecomposedGEP DecompGEP1, DecompGEP2; 1192 bool GEP1MaxLookupReached = 1193 DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT); 1194 bool GEP2MaxLookupReached = 1195 DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT); 1196 1197 int64_t GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset; 1198 int64_t GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset; 1199 1200 assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 && 1201 "DecomposeGEPExpression returned a result different from " 1202 "GetUnderlyingObject"); 1203 1204 // If the GEP's offset relative to its base is such that the base would 1205 // fall below the start of the object underlying V2, then the GEP and V2 1206 // cannot alias. 1207 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1208 isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size)) 1209 return NoAlias; 1210 // If we have two gep instructions with must-alias or not-alias'ing base 1211 // pointers, figure out if the indexes to the GEP tell us anything about the 1212 // derived pointer. 1213 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 1214 // Check for the GEP base being at a negative offset, this time in the other 1215 // direction. 1216 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1217 isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size)) 1218 return NoAlias; 1219 // Do the base pointers alias? 1220 AliasResult BaseAlias = 1221 aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(), 1222 UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes()); 1223 1224 // Check for geps of non-aliasing underlying pointers where the offsets are 1225 // identical. 1226 if ((BaseAlias == MayAlias) && V1Size == V2Size) { 1227 // Do the base pointers alias assuming type and size. 1228 AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo, 1229 UnderlyingV2, V2Size, V2AAInfo); 1230 if (PreciseBaseAlias == NoAlias) { 1231 // See if the computed offset from the common pointer tells us about the 1232 // relation of the resulting pointer. 1233 // If the max search depth is reached the result is undefined 1234 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1235 return MayAlias; 1236 1237 // Same offsets. 1238 if (GEP1BaseOffset == GEP2BaseOffset && 1239 DecompGEP1.VarIndices == DecompGEP2.VarIndices) 1240 return NoAlias; 1241 } 1242 } 1243 1244 // If we get a No or May, then return it immediately, no amount of analysis 1245 // will improve this situation. 1246 if (BaseAlias != MustAlias) { 1247 assert(BaseAlias == NoAlias || BaseAlias == MayAlias); 1248 return BaseAlias; 1249 } 1250 1251 // Otherwise, we have a MustAlias. Since the base pointers alias each other 1252 // exactly, see if the computed offset from the common pointer tells us 1253 // about the relation of the resulting pointer. 1254 // If we know the two GEPs are based off of the exact same pointer (and not 1255 // just the same underlying object), see if that tells us anything about 1256 // the resulting pointers. 1257 if (GEP1->getPointerOperand()->stripPointerCastsAndBarriers() == 1258 GEP2->getPointerOperand()->stripPointerCastsAndBarriers() && 1259 GEP1->getPointerOperandType() == GEP2->getPointerOperandType()) { 1260 AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL); 1261 // If we couldn't find anything interesting, don't abandon just yet. 1262 if (R != MayAlias) 1263 return R; 1264 } 1265 1266 // If the max search depth is reached, the result is undefined 1267 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1268 return MayAlias; 1269 1270 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1271 // symbolic difference. 1272 GEP1BaseOffset -= GEP2BaseOffset; 1273 GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices); 1274 1275 } else { 1276 // Check to see if these two pointers are related by the getelementptr 1277 // instruction. If one pointer is a GEP with a non-zero index of the other 1278 // pointer, we know they cannot alias. 1279 1280 // If both accesses are unknown size, we can't do anything useful here. 1281 if (V1Size == MemoryLocation::UnknownSize && 1282 V2Size == MemoryLocation::UnknownSize) 1283 return MayAlias; 1284 1285 AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, 1286 AAMDNodes(), V2, MemoryLocation::UnknownSize, 1287 V2AAInfo, nullptr, UnderlyingV2); 1288 if (R != MustAlias) { 1289 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 1290 // If V2 is known not to alias GEP base pointer, then the two values 1291 // cannot alias per GEP semantics: "Any memory access must be done through 1292 // a pointer value associated with an address range of the memory access, 1293 // otherwise the behavior is undefined.". 1294 assert(R == NoAlias || R == MayAlias); 1295 return R; 1296 } 1297 1298 // If the max search depth is reached the result is undefined 1299 if (GEP1MaxLookupReached) 1300 return MayAlias; 1301 } 1302 1303 // In the two GEP Case, if there is no difference in the offsets of the 1304 // computed pointers, the resultant pointers are a must alias. This 1305 // happens when we have two lexically identical GEP's (for example). 1306 // 1307 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 1308 // must aliases the GEP, the end result is a must alias also. 1309 if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty()) 1310 return MustAlias; 1311 1312 // If there is a constant difference between the pointers, but the difference 1313 // is less than the size of the associated memory object, then we know 1314 // that the objects are partially overlapping. If the difference is 1315 // greater, we know they do not overlap. 1316 if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) { 1317 if (GEP1BaseOffset >= 0) { 1318 if (V2Size != MemoryLocation::UnknownSize) { 1319 if ((uint64_t)GEP1BaseOffset < V2Size) 1320 return PartialAlias; 1321 return NoAlias; 1322 } 1323 } else { 1324 // We have the situation where: 1325 // + + 1326 // | BaseOffset | 1327 // ---------------->| 1328 // |-->V1Size |-------> V2Size 1329 // GEP1 V2 1330 // We need to know that V2Size is not unknown, otherwise we might have 1331 // stripped a gep with negative index ('gep <ptr>, -1, ...). 1332 if (V1Size != MemoryLocation::UnknownSize && 1333 V2Size != MemoryLocation::UnknownSize) { 1334 if (-(uint64_t)GEP1BaseOffset < V1Size) 1335 return PartialAlias; 1336 return NoAlias; 1337 } 1338 } 1339 } 1340 1341 if (!DecompGEP1.VarIndices.empty()) { 1342 uint64_t Modulo = 0; 1343 bool AllPositive = true; 1344 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { 1345 1346 // Try to distinguish something like &A[i][1] against &A[42][0]. 1347 // Grab the least significant bit set in any of the scales. We 1348 // don't need std::abs here (even if the scale's negative) as we'll 1349 // be ^'ing Modulo with itself later. 1350 Modulo |= (uint64_t)DecompGEP1.VarIndices[i].Scale; 1351 1352 if (AllPositive) { 1353 // If the Value could change between cycles, then any reasoning about 1354 // the Value this cycle may not hold in the next cycle. We'll just 1355 // give up if we can't determine conditions that hold for every cycle: 1356 const Value *V = DecompGEP1.VarIndices[i].V; 1357 1358 KnownBits Known = computeKnownBits(V, DL, 0, &AC, nullptr, DT); 1359 bool SignKnownZero = Known.isNonNegative(); 1360 bool SignKnownOne = Known.isNegative(); 1361 1362 // Zero-extension widens the variable, and so forces the sign 1363 // bit to zero. 1364 bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V); 1365 SignKnownZero |= IsZExt; 1366 SignKnownOne &= !IsZExt; 1367 1368 // If the variable begins with a zero then we know it's 1369 // positive, regardless of whether the value is signed or 1370 // unsigned. 1371 int64_t Scale = DecompGEP1.VarIndices[i].Scale; 1372 AllPositive = 1373 (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0); 1374 } 1375 } 1376 1377 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1378 1379 // We can compute the difference between the two addresses 1380 // mod Modulo. Check whether that difference guarantees that the 1381 // two locations do not alias. 1382 uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1); 1383 if (V1Size != MemoryLocation::UnknownSize && 1384 V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size && 1385 V1Size <= Modulo - ModOffset) 1386 return NoAlias; 1387 1388 // If we know all the variables are positive, then GEP1 >= GEP1BasePtr. 1389 // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers 1390 // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr. 1391 if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset) 1392 return NoAlias; 1393 1394 if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size, 1395 GEP1BaseOffset, &AC, DT)) 1396 return NoAlias; 1397 } 1398 1399 // Statically, we can see that the base objects are the same, but the 1400 // pointers have dynamic offsets which we can't resolve. And none of our 1401 // little tricks above worked. 1402 return MayAlias; 1403 } 1404 1405 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1406 // If the results agree, take it. 1407 if (A == B) 1408 return A; 1409 // A mix of PartialAlias and MustAlias is PartialAlias. 1410 if ((A == PartialAlias && B == MustAlias) || 1411 (B == PartialAlias && A == MustAlias)) 1412 return PartialAlias; 1413 // Otherwise, we don't know anything. 1414 return MayAlias; 1415 } 1416 1417 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1418 /// against another. 1419 AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, uint64_t SISize, 1420 const AAMDNodes &SIAAInfo, 1421 const Value *V2, uint64_t V2Size, 1422 const AAMDNodes &V2AAInfo, 1423 const Value *UnderV2) { 1424 // If the values are Selects with the same condition, we can do a more precise 1425 // check: just check for aliases between the values on corresponding arms. 1426 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1427 if (SI->getCondition() == SI2->getCondition()) { 1428 AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, 1429 SI2->getTrueValue(), V2Size, V2AAInfo); 1430 if (Alias == MayAlias) 1431 return MayAlias; 1432 AliasResult ThisAlias = 1433 aliasCheck(SI->getFalseValue(), SISize, SIAAInfo, 1434 SI2->getFalseValue(), V2Size, V2AAInfo); 1435 return MergeAliasResults(ThisAlias, Alias); 1436 } 1437 1438 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1439 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1440 AliasResult Alias = 1441 aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), 1442 SISize, SIAAInfo, UnderV2); 1443 if (Alias == MayAlias) 1444 return MayAlias; 1445 1446 AliasResult ThisAlias = 1447 aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo, 1448 UnderV2); 1449 return MergeAliasResults(ThisAlias, Alias); 1450 } 1451 1452 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1453 /// another. 1454 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, uint64_t PNSize, 1455 const AAMDNodes &PNAAInfo, const Value *V2, 1456 uint64_t V2Size, const AAMDNodes &V2AAInfo, 1457 const Value *UnderV2) { 1458 // Track phi nodes we have visited. We use this information when we determine 1459 // value equivalence. 1460 VisitedPhiBBs.insert(PN->getParent()); 1461 1462 // If the values are PHIs in the same block, we can do a more precise 1463 // as well as efficient check: just check for aliases between the values 1464 // on corresponding edges. 1465 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1466 if (PN2->getParent() == PN->getParent()) { 1467 LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo), 1468 MemoryLocation(V2, V2Size, V2AAInfo)); 1469 if (PN > V2) 1470 std::swap(Locs.first, Locs.second); 1471 // Analyse the PHIs' inputs under the assumption that the PHIs are 1472 // NoAlias. 1473 // If the PHIs are May/MustAlias there must be (recursively) an input 1474 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1475 // there must be an operation on the PHIs within the PHIs' value cycle 1476 // that causes a MayAlias. 1477 // Pretend the phis do not alias. 1478 AliasResult Alias = NoAlias; 1479 assert(AliasCache.count(Locs) && 1480 "There must exist an entry for the phi node"); 1481 AliasResult OrigAliasResult = AliasCache[Locs]; 1482 AliasCache[Locs] = NoAlias; 1483 1484 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1485 AliasResult ThisAlias = 1486 aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo, 1487 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1488 V2Size, V2AAInfo); 1489 Alias = MergeAliasResults(ThisAlias, Alias); 1490 if (Alias == MayAlias) 1491 break; 1492 } 1493 1494 // Reset if speculation failed. 1495 if (Alias != NoAlias) 1496 AliasCache[Locs] = OrigAliasResult; 1497 1498 return Alias; 1499 } 1500 1501 SmallPtrSet<Value *, 4> UniqueSrc; 1502 SmallVector<Value *, 4> V1Srcs; 1503 bool isRecursive = false; 1504 for (Value *PV1 : PN->incoming_values()) { 1505 if (isa<PHINode>(PV1)) 1506 // If any of the source itself is a PHI, return MayAlias conservatively 1507 // to avoid compile time explosion. The worst possible case is if both 1508 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1509 // and 'n' are the number of PHI sources. 1510 return MayAlias; 1511 1512 if (EnableRecPhiAnalysis) 1513 if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) { 1514 // Check whether the incoming value is a GEP that advances the pointer 1515 // result of this PHI node (e.g. in a loop). If this is the case, we 1516 // would recurse and always get a MayAlias. Handle this case specially 1517 // below. 1518 if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 && 1519 isa<ConstantInt>(PV1GEP->idx_begin())) { 1520 isRecursive = true; 1521 continue; 1522 } 1523 } 1524 1525 if (UniqueSrc.insert(PV1).second) 1526 V1Srcs.push_back(PV1); 1527 } 1528 1529 // If this PHI node is recursive, set the size of the accessed memory to 1530 // unknown to represent all the possible values the GEP could advance the 1531 // pointer to. 1532 if (isRecursive) 1533 PNSize = MemoryLocation::UnknownSize; 1534 1535 AliasResult Alias = 1536 aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], 1537 PNSize, PNAAInfo, UnderV2); 1538 1539 // Early exit if the check of the first PHI source against V2 is MayAlias. 1540 // Other results are not possible. 1541 if (Alias == MayAlias) 1542 return MayAlias; 1543 1544 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1545 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1546 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1547 Value *V = V1Srcs[i]; 1548 1549 AliasResult ThisAlias = 1550 aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, UnderV2); 1551 Alias = MergeAliasResults(ThisAlias, Alias); 1552 if (Alias == MayAlias) 1553 break; 1554 } 1555 1556 return Alias; 1557 } 1558 1559 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1560 /// array references. 1561 AliasResult BasicAAResult::aliasCheck(const Value *V1, uint64_t V1Size, 1562 AAMDNodes V1AAInfo, const Value *V2, 1563 uint64_t V2Size, AAMDNodes V2AAInfo, 1564 const Value *O1, const Value *O2) { 1565 // If either of the memory references is empty, it doesn't matter what the 1566 // pointer values are. 1567 if (V1Size == 0 || V2Size == 0) 1568 return NoAlias; 1569 1570 // Strip off any casts if they exist. 1571 V1 = V1->stripPointerCastsAndBarriers(); 1572 V2 = V2->stripPointerCastsAndBarriers(); 1573 1574 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1575 // value for undef that aliases nothing in the program. 1576 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1577 return NoAlias; 1578 1579 // Are we checking for alias of the same value? 1580 // Because we look 'through' phi nodes, we could look at "Value" pointers from 1581 // different iterations. We must therefore make sure that this is not the 1582 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1583 // happen by looking at the visited phi nodes and making sure they cannot 1584 // reach the value. 1585 if (isValueEqualInPotentialCycles(V1, V2)) 1586 return MustAlias; 1587 1588 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1589 return NoAlias; // Scalars cannot alias each other 1590 1591 // Figure out what objects these things are pointing to if we can. 1592 if (O1 == nullptr) 1593 O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth); 1594 1595 if (O2 == nullptr) 1596 O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth); 1597 1598 // Null values in the default address space don't point to any object, so they 1599 // don't alias any other pointer. 1600 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1601 if (CPN->getType()->getAddressSpace() == 0) 1602 return NoAlias; 1603 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1604 if (CPN->getType()->getAddressSpace() == 0) 1605 return NoAlias; 1606 1607 if (O1 != O2) { 1608 // If V1/V2 point to two different objects, we know that we have no alias. 1609 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1610 return NoAlias; 1611 1612 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1613 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1614 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1615 return NoAlias; 1616 1617 // Function arguments can't alias with things that are known to be 1618 // unambigously identified at the function level. 1619 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1620 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1621 return NoAlias; 1622 1623 // If one pointer is the result of a call/invoke or load and the other is a 1624 // non-escaping local object within the same function, then we know the 1625 // object couldn't escape to a point where the call could return it. 1626 // 1627 // Note that if the pointers are in different functions, there are a 1628 // variety of complications. A call with a nocapture argument may still 1629 // temporary store the nocapture argument's value in a temporary memory 1630 // location if that memory location doesn't escape. Or it may pass a 1631 // nocapture value to other functions as long as they don't capture it. 1632 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) 1633 return NoAlias; 1634 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) 1635 return NoAlias; 1636 } 1637 1638 // If the size of one access is larger than the entire object on the other 1639 // side, then we know such behavior is undefined and can assume no alias. 1640 if ((V1Size != MemoryLocation::UnknownSize && 1641 isObjectSmallerThan(O2, V1Size, DL, TLI)) || 1642 (V2Size != MemoryLocation::UnknownSize && 1643 isObjectSmallerThan(O1, V2Size, DL, TLI))) 1644 return NoAlias; 1645 1646 // Check the cache before climbing up use-def chains. This also terminates 1647 // otherwise infinitely recursive queries. 1648 LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo), 1649 MemoryLocation(V2, V2Size, V2AAInfo)); 1650 if (V1 > V2) 1651 std::swap(Locs.first, Locs.second); 1652 std::pair<AliasCacheTy::iterator, bool> Pair = 1653 AliasCache.insert(std::make_pair(Locs, MayAlias)); 1654 if (!Pair.second) 1655 return Pair.first->second; 1656 1657 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1658 // GEP can't simplify, we don't even look at the PHI cases. 1659 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1660 std::swap(V1, V2); 1661 std::swap(V1Size, V2Size); 1662 std::swap(O1, O2); 1663 std::swap(V1AAInfo, V2AAInfo); 1664 } 1665 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1666 AliasResult Result = 1667 aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2); 1668 if (Result != MayAlias) 1669 return AliasCache[Locs] = Result; 1670 } 1671 1672 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1673 std::swap(V1, V2); 1674 std::swap(O1, O2); 1675 std::swap(V1Size, V2Size); 1676 std::swap(V1AAInfo, V2AAInfo); 1677 } 1678 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1679 AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, 1680 V2, V2Size, V2AAInfo, O2); 1681 if (Result != MayAlias) 1682 return AliasCache[Locs] = Result; 1683 } 1684 1685 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1686 std::swap(V1, V2); 1687 std::swap(O1, O2); 1688 std::swap(V1Size, V2Size); 1689 std::swap(V1AAInfo, V2AAInfo); 1690 } 1691 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1692 AliasResult Result = 1693 aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2); 1694 if (Result != MayAlias) 1695 return AliasCache[Locs] = Result; 1696 } 1697 1698 // If both pointers are pointing into the same object and one of them 1699 // accesses the entire object, then the accesses must overlap in some way. 1700 if (O1 == O2) 1701 if (V1Size != MemoryLocation::UnknownSize && 1702 V2Size != MemoryLocation::UnknownSize && 1703 (isObjectSize(O1, V1Size, DL, TLI) || 1704 isObjectSize(O2, V2Size, DL, TLI))) 1705 return AliasCache[Locs] = PartialAlias; 1706 1707 // Recurse back into the best AA results we have, potentially with refined 1708 // memory locations. We have already ensured that BasicAA has a MayAlias 1709 // cache result for these, so any recursion back into BasicAA won't loop. 1710 AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second); 1711 return AliasCache[Locs] = Result; 1712 } 1713 1714 /// Check whether two Values can be considered equivalent. 1715 /// 1716 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether 1717 /// they can not be part of a cycle in the value graph by looking at all 1718 /// visited phi nodes an making sure that the phis cannot reach the value. We 1719 /// have to do this because we are looking through phi nodes (That is we say 1720 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1721 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1722 const Value *V2) { 1723 if (V != V2) 1724 return false; 1725 1726 const Instruction *Inst = dyn_cast<Instruction>(V); 1727 if (!Inst) 1728 return true; 1729 1730 if (VisitedPhiBBs.empty()) 1731 return true; 1732 1733 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1734 return false; 1735 1736 // Make sure that the visited phis cannot reach the Value. This ensures that 1737 // the Values cannot come from different iterations of a potential cycle the 1738 // phi nodes could be involved in. 1739 for (auto *P : VisitedPhiBBs) 1740 if (isPotentiallyReachable(&P->front(), Inst, DT, LI)) 1741 return false; 1742 1743 return true; 1744 } 1745 1746 /// Computes the symbolic difference between two de-composed GEPs. 1747 /// 1748 /// Dest and Src are the variable indices from two decomposed GetElementPtr 1749 /// instructions GEP1 and GEP2 which have common base pointers. 1750 void BasicAAResult::GetIndexDifference( 1751 SmallVectorImpl<VariableGEPIndex> &Dest, 1752 const SmallVectorImpl<VariableGEPIndex> &Src) { 1753 if (Src.empty()) 1754 return; 1755 1756 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1757 const Value *V = Src[i].V; 1758 unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits; 1759 int64_t Scale = Src[i].Scale; 1760 1761 // Find V in Dest. This is N^2, but pointer indices almost never have more 1762 // than a few variable indexes. 1763 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1764 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1765 Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits) 1766 continue; 1767 1768 // If we found it, subtract off Scale V's from the entry in Dest. If it 1769 // goes to zero, remove the entry. 1770 if (Dest[j].Scale != Scale) 1771 Dest[j].Scale -= Scale; 1772 else 1773 Dest.erase(Dest.begin() + j); 1774 Scale = 0; 1775 break; 1776 } 1777 1778 // If we didn't consume this entry, add it to the end of the Dest list. 1779 if (Scale) { 1780 VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale}; 1781 Dest.push_back(Entry); 1782 } 1783 } 1784 } 1785 1786 bool BasicAAResult::constantOffsetHeuristic( 1787 const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size, 1788 uint64_t V2Size, int64_t BaseOffset, AssumptionCache *AC, 1789 DominatorTree *DT) { 1790 if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize || 1791 V2Size == MemoryLocation::UnknownSize) 1792 return false; 1793 1794 const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1]; 1795 1796 if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits || 1797 Var0.Scale != -Var1.Scale) 1798 return false; 1799 1800 unsigned Width = Var1.V->getType()->getIntegerBitWidth(); 1801 1802 // We'll strip off the Extensions of Var0 and Var1 and do another round 1803 // of GetLinearExpression decomposition. In the example above, if Var0 1804 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 1805 1806 APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0), 1807 V1Offset(Width, 0); 1808 bool NSW = true, NUW = true; 1809 unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0; 1810 const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits, 1811 V0SExtBits, DL, 0, AC, DT, NSW, NUW); 1812 NSW = true; 1813 NUW = true; 1814 const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits, 1815 V1SExtBits, DL, 0, AC, DT, NSW, NUW); 1816 1817 if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits || 1818 V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1)) 1819 return false; 1820 1821 // We have a hit - Var0 and Var1 only differ by a constant offset! 1822 1823 // If we've been sext'ed then zext'd the maximum difference between Var0 and 1824 // Var1 is possible to calculate, but we're just interested in the absolute 1825 // minimum difference between the two. The minimum distance may occur due to 1826 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 1827 // the minimum distance between %i and %i + 5 is 3. 1828 APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff; 1829 MinDiff = APIntOps::umin(MinDiff, Wrapped); 1830 uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale); 1831 1832 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 1833 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 1834 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 1835 // V2Size can fit in the MinDiffBytes gap. 1836 return V1Size + std::abs(BaseOffset) <= MinDiffBytes && 1837 V2Size + std::abs(BaseOffset) <= MinDiffBytes; 1838 } 1839 1840 //===----------------------------------------------------------------------===// 1841 // BasicAliasAnalysis Pass 1842 //===----------------------------------------------------------------------===// 1843 1844 AnalysisKey BasicAA::Key; 1845 1846 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) { 1847 return BasicAAResult(F.getParent()->getDataLayout(), 1848 AM.getResult<TargetLibraryAnalysis>(F), 1849 AM.getResult<AssumptionAnalysis>(F), 1850 &AM.getResult<DominatorTreeAnalysis>(F), 1851 AM.getCachedResult<LoopAnalysis>(F)); 1852 } 1853 1854 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 1855 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1856 } 1857 1858 char BasicAAWrapperPass::ID = 0; 1859 1860 void BasicAAWrapperPass::anchor() {} 1861 1862 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa", 1863 "Basic Alias Analysis (stateless AA impl)", true, true) 1864 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1865 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1866 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1867 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa", 1868 "Basic Alias Analysis (stateless AA impl)", true, true) 1869 1870 FunctionPass *llvm::createBasicAAWrapperPass() { 1871 return new BasicAAWrapperPass(); 1872 } 1873 1874 bool BasicAAWrapperPass::runOnFunction(Function &F) { 1875 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 1876 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 1877 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); 1878 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 1879 1880 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), TLIWP.getTLI(), 1881 ACT.getAssumptionCache(F), &DTWP.getDomTree(), 1882 LIWP ? &LIWP->getLoopInfo() : nullptr)); 1883 1884 return false; 1885 } 1886 1887 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1888 AU.setPreservesAll(); 1889 AU.addRequired<AssumptionCacheTracker>(); 1890 AU.addRequired<DominatorTreeWrapperPass>(); 1891 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1892 } 1893 1894 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { 1895 return BasicAAResult( 1896 F.getParent()->getDataLayout(), 1897 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 1898 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 1899 } 1900