1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the primary stateless implementation of the
11 // Alias Analysis interface that implements identities (two different
12 // globals cannot alias, etc), but does no stateful analysis.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Analysis/BasicAliasAnalysis.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/CFG.h"
21 #include "llvm/Analysis/CaptureTracking.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include <algorithm>
40 
41 #define DEBUG_TYPE "basicaa"
42 
43 using namespace llvm;
44 
45 /// Enable analysis of recursive PHI nodes.
46 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden,
47                                           cl::init(false));
48 /// SearchLimitReached / SearchTimes shows how often the limit of
49 /// to decompose GEPs is reached. It will affect the precision
50 /// of basic alias analysis.
51 STATISTIC(SearchLimitReached, "Number of times the limit to "
52                               "decompose GEPs is reached");
53 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
54 
55 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
56 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
57 /// careful with value equivalence. We use reachability to make sure a value
58 /// cannot be involved in a cycle.
59 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
60 
61 // The max limit of the search depth in DecomposeGEPExpression() and
62 // GetUnderlyingObject(), both functions need to use the same search
63 // depth otherwise the algorithm in aliasGEP will assert.
64 static const unsigned MaxLookupSearchDepth = 6;
65 
66 //===----------------------------------------------------------------------===//
67 // Useful predicates
68 //===----------------------------------------------------------------------===//
69 
70 /// Returns true if the pointer is to a function-local object that never
71 /// escapes from the function.
72 static bool isNonEscapingLocalObject(const Value *V) {
73   // If this is a local allocation, check to see if it escapes.
74   if (isa<AllocaInst>(V) || isNoAliasCall(V))
75     // Set StoreCaptures to True so that we can assume in our callers that the
76     // pointer is not the result of a load instruction. Currently
77     // PointerMayBeCaptured doesn't have any special analysis for the
78     // StoreCaptures=false case; if it did, our callers could be refined to be
79     // more precise.
80     return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
81 
82   // If this is an argument that corresponds to a byval or noalias argument,
83   // then it has not escaped before entering the function.  Check if it escapes
84   // inside the function.
85   if (const Argument *A = dyn_cast<Argument>(V))
86     if (A->hasByValAttr() || A->hasNoAliasAttr())
87       // Note even if the argument is marked nocapture, we still need to check
88       // for copies made inside the function. The nocapture attribute only
89       // specifies that there are no copies made that outlive the function.
90       return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
91 
92   return false;
93 }
94 
95 /// Returns true if the pointer is one which would have been considered an
96 /// escape by isNonEscapingLocalObject.
97 static bool isEscapeSource(const Value *V) {
98   if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
99     return true;
100 
101   // The load case works because isNonEscapingLocalObject considers all
102   // stores to be escapes (it passes true for the StoreCaptures argument
103   // to PointerMayBeCaptured).
104   if (isa<LoadInst>(V))
105     return true;
106 
107   return false;
108 }
109 
110 /// Returns the size of the object specified by V or UnknownSize if unknown.
111 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
112                               const TargetLibraryInfo &TLI,
113                               bool RoundToAlign = false) {
114   uint64_t Size;
115   if (getObjectSize(V, Size, DL, &TLI, RoundToAlign))
116     return Size;
117   return MemoryLocation::UnknownSize;
118 }
119 
120 /// Returns true if we can prove that the object specified by V is smaller than
121 /// Size.
122 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
123                                 const DataLayout &DL,
124                                 const TargetLibraryInfo &TLI) {
125   // Note that the meanings of the "object" are slightly different in the
126   // following contexts:
127   //    c1: llvm::getObjectSize()
128   //    c2: llvm.objectsize() intrinsic
129   //    c3: isObjectSmallerThan()
130   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
131   // refers to the "entire object".
132   //
133   //  Consider this example:
134   //     char *p = (char*)malloc(100)
135   //     char *q = p+80;
136   //
137   //  In the context of c1 and c2, the "object" pointed by q refers to the
138   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
139   //
140   //  However, in the context of c3, the "object" refers to the chunk of memory
141   // being allocated. So, the "object" has 100 bytes, and q points to the middle
142   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
143   // parameter, before the llvm::getObjectSize() is called to get the size of
144   // entire object, we should:
145   //    - either rewind the pointer q to the base-address of the object in
146   //      question (in this case rewind to p), or
147   //    - just give up. It is up to caller to make sure the pointer is pointing
148   //      to the base address the object.
149   //
150   // We go for 2nd option for simplicity.
151   if (!isIdentifiedObject(V))
152     return false;
153 
154   // This function needs to use the aligned object size because we allow
155   // reads a bit past the end given sufficient alignment.
156   uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/ true);
157 
158   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
159 }
160 
161 /// Returns true if we can prove that the object specified by V has size Size.
162 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
163                          const TargetLibraryInfo &TLI) {
164   uint64_t ObjectSize = getObjectSize(V, DL, TLI);
165   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
166 }
167 
168 //===----------------------------------------------------------------------===//
169 // GetElementPtr Instruction Decomposition and Analysis
170 //===----------------------------------------------------------------------===//
171 
172 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
173 /// B are constant integers.
174 ///
175 /// Returns the scale and offset values as APInts and return V as a Value*, and
176 /// return whether we looked through any sign or zero extends.  The incoming
177 /// Value is known to have IntegerType, and it may already be sign or zero
178 /// extended.
179 ///
180 /// Note that this looks through extends, so the high bits may not be
181 /// represented in the result.
182 /*static*/ const Value *BasicAAResult::GetLinearExpression(
183     const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
184     unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
185     AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
186   assert(V->getType()->isIntegerTy() && "Not an integer value");
187 
188   // Limit our recursion depth.
189   if (Depth == 6) {
190     Scale = 1;
191     Offset = 0;
192     return V;
193   }
194 
195   if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
196     // If it's a constant, just convert it to an offset and remove the variable.
197     // If we've been called recursively, the Offset bit width will be greater
198     // than the constant's (the Offset's always as wide as the outermost call),
199     // so we'll zext here and process any extension in the isa<SExtInst> &
200     // isa<ZExtInst> cases below.
201     Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
202     assert(Scale == 0 && "Constant values don't have a scale");
203     return V;
204   }
205 
206   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
207     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
208 
209       // If we've been called recursively, then Offset and Scale will be wider
210       // than the BOp operands. We'll always zext it here as we'll process sign
211       // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
212       APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
213 
214       switch (BOp->getOpcode()) {
215       default:
216         // We don't understand this instruction, so we can't decompose it any
217         // further.
218         Scale = 1;
219         Offset = 0;
220         return V;
221       case Instruction::Or:
222         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
223         // analyze it.
224         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
225                                BOp, DT)) {
226           Scale = 1;
227           Offset = 0;
228           return V;
229         }
230         LLVM_FALLTHROUGH;
231       case Instruction::Add:
232         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
233                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
234         Offset += RHS;
235         break;
236       case Instruction::Sub:
237         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
238                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
239         Offset -= RHS;
240         break;
241       case Instruction::Mul:
242         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
243                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
244         Offset *= RHS;
245         Scale *= RHS;
246         break;
247       case Instruction::Shl:
248         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
249                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
250         Offset <<= RHS.getLimitedValue();
251         Scale <<= RHS.getLimitedValue();
252         // the semantics of nsw and nuw for left shifts don't match those of
253         // multiplications, so we won't propagate them.
254         NSW = NUW = false;
255         return V;
256       }
257 
258       if (isa<OverflowingBinaryOperator>(BOp)) {
259         NUW &= BOp->hasNoUnsignedWrap();
260         NSW &= BOp->hasNoSignedWrap();
261       }
262       return V;
263     }
264   }
265 
266   // Since GEP indices are sign extended anyway, we don't care about the high
267   // bits of a sign or zero extended value - just scales and offsets.  The
268   // extensions have to be consistent though.
269   if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
270     Value *CastOp = cast<CastInst>(V)->getOperand(0);
271     unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
272     unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
273     unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
274     const Value *Result =
275         GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
276                             Depth + 1, AC, DT, NSW, NUW);
277 
278     // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this
279     // by just incrementing the number of bits we've extended by.
280     unsigned ExtendedBy = NewWidth - SmallWidth;
281 
282     if (isa<SExtInst>(V) && ZExtBits == 0) {
283       // sext(sext(%x, a), b) == sext(%x, a + b)
284 
285       if (NSW) {
286         // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
287         // into sext(%x) + sext(c). We'll sext the Offset ourselves:
288         unsigned OldWidth = Offset.getBitWidth();
289         Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
290       } else {
291         // We may have signed-wrapped, so don't decompose sext(%x + c) into
292         // sext(%x) + sext(c)
293         Scale = 1;
294         Offset = 0;
295         Result = CastOp;
296         ZExtBits = OldZExtBits;
297         SExtBits = OldSExtBits;
298       }
299       SExtBits += ExtendedBy;
300     } else {
301       // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
302 
303       if (!NUW) {
304         // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
305         // zext(%x) + zext(c)
306         Scale = 1;
307         Offset = 0;
308         Result = CastOp;
309         ZExtBits = OldZExtBits;
310         SExtBits = OldSExtBits;
311       }
312       ZExtBits += ExtendedBy;
313     }
314 
315     return Result;
316   }
317 
318   Scale = 1;
319   Offset = 0;
320   return V;
321 }
322 
323 /// To ensure a pointer offset fits in an integer of size PointerSize
324 /// (in bits) when that size is smaller than 64. This is an issue in
325 /// particular for 32b programs with negative indices that rely on two's
326 /// complement wrap-arounds for precise alias information.
327 static int64_t adjustToPointerSize(int64_t Offset, unsigned PointerSize) {
328   assert(PointerSize <= 64 && "Invalid PointerSize!");
329   unsigned ShiftBits = 64 - PointerSize;
330   return (int64_t)((uint64_t)Offset << ShiftBits) >> ShiftBits;
331 }
332 
333 /// If V is a symbolic pointer expression, decompose it into a base pointer
334 /// with a constant offset and a number of scaled symbolic offsets.
335 ///
336 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
337 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
338 /// specified amount, but which may have other unrepresented high bits. As
339 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
340 ///
341 /// When DataLayout is around, this function is capable of analyzing everything
342 /// that GetUnderlyingObject can look through. To be able to do that
343 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search
344 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks
345 /// through pointer casts.
346 bool BasicAAResult::DecomposeGEPExpression(const Value *V,
347        DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC,
348        DominatorTree *DT) {
349   // Limit recursion depth to limit compile time in crazy cases.
350   unsigned MaxLookup = MaxLookupSearchDepth;
351   SearchTimes++;
352 
353   Decomposed.StructOffset = 0;
354   Decomposed.OtherOffset = 0;
355   Decomposed.VarIndices.clear();
356   do {
357     // See if this is a bitcast or GEP.
358     const Operator *Op = dyn_cast<Operator>(V);
359     if (!Op) {
360       // The only non-operator case we can handle are GlobalAliases.
361       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
362         if (!GA->isInterposable()) {
363           V = GA->getAliasee();
364           continue;
365         }
366       }
367       Decomposed.Base = V;
368       return false;
369     }
370 
371     if (Op->getOpcode() == Instruction::BitCast ||
372         Op->getOpcode() == Instruction::AddrSpaceCast) {
373       V = Op->getOperand(0);
374       continue;
375     }
376 
377     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
378     if (!GEPOp) {
379       if (auto CS = ImmutableCallSite(V))
380         if (const Value *RV = CS.getReturnedArgOperand()) {
381           V = RV;
382           continue;
383         }
384 
385       // If it's not a GEP, hand it off to SimplifyInstruction to see if it
386       // can come up with something. This matches what GetUnderlyingObject does.
387       if (const Instruction *I = dyn_cast<Instruction>(V))
388         // TODO: Get a DominatorTree and AssumptionCache and use them here
389         // (these are both now available in this function, but this should be
390         // updated when GetUnderlyingObject is updated). TLI should be
391         // provided also.
392         if (const Value *Simplified =
393                 SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
394           V = Simplified;
395           continue;
396         }
397 
398       Decomposed.Base = V;
399       return false;
400     }
401 
402     // Don't attempt to analyze GEPs over unsized objects.
403     if (!GEPOp->getSourceElementType()->isSized()) {
404       Decomposed.Base = V;
405       return false;
406     }
407 
408     unsigned AS = GEPOp->getPointerAddressSpace();
409     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
410     gep_type_iterator GTI = gep_type_begin(GEPOp);
411     unsigned PointerSize = DL.getPointerSizeInBits(AS);
412     // Assume all GEP operands are constants until proven otherwise.
413     bool GepHasConstantOffset = true;
414     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
415          I != E; ++I) {
416       const Value *Index = *I;
417       // Compute the (potentially symbolic) offset in bytes for this index.
418       if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
419         // For a struct, add the member offset.
420         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
421         if (FieldNo == 0)
422           continue;
423 
424         Decomposed.StructOffset +=
425           DL.getStructLayout(STy)->getElementOffset(FieldNo);
426         continue;
427       }
428 
429       // For an array/pointer, add the element offset, explicitly scaled.
430       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
431         if (CIdx->isZero())
432           continue;
433         Decomposed.OtherOffset +=
434           DL.getTypeAllocSize(*GTI) * CIdx->getSExtValue();
435         continue;
436       }
437 
438       GepHasConstantOffset = false;
439 
440       uint64_t Scale = DL.getTypeAllocSize(*GTI);
441       unsigned ZExtBits = 0, SExtBits = 0;
442 
443       // If the integer type is smaller than the pointer size, it is implicitly
444       // sign extended to pointer size.
445       unsigned Width = Index->getType()->getIntegerBitWidth();
446       if (PointerSize > Width)
447         SExtBits += PointerSize - Width;
448 
449       // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
450       APInt IndexScale(Width, 0), IndexOffset(Width, 0);
451       bool NSW = true, NUW = true;
452       Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
453                                   SExtBits, DL, 0, AC, DT, NSW, NUW);
454 
455       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
456       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
457       Decomposed.OtherOffset += IndexOffset.getSExtValue() * Scale;
458       Scale *= IndexScale.getSExtValue();
459 
460       // If we already had an occurrence of this index variable, merge this
461       // scale into it.  For example, we want to handle:
462       //   A[x][x] -> x*16 + x*4 -> x*20
463       // This also ensures that 'x' only appears in the index list once.
464       for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
465         if (Decomposed.VarIndices[i].V == Index &&
466             Decomposed.VarIndices[i].ZExtBits == ZExtBits &&
467             Decomposed.VarIndices[i].SExtBits == SExtBits) {
468           Scale += Decomposed.VarIndices[i].Scale;
469           Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
470           break;
471         }
472       }
473 
474       // Make sure that we have a scale that makes sense for this target's
475       // pointer size.
476       Scale = adjustToPointerSize(Scale, PointerSize);
477 
478       if (Scale) {
479         VariableGEPIndex Entry = {Index, ZExtBits, SExtBits,
480                                   static_cast<int64_t>(Scale)};
481         Decomposed.VarIndices.push_back(Entry);
482       }
483     }
484 
485     // Take care of wrap-arounds
486     if (GepHasConstantOffset) {
487       Decomposed.StructOffset =
488           adjustToPointerSize(Decomposed.StructOffset, PointerSize);
489       Decomposed.OtherOffset =
490           adjustToPointerSize(Decomposed.OtherOffset, PointerSize);
491     }
492 
493     // Analyze the base pointer next.
494     V = GEPOp->getOperand(0);
495   } while (--MaxLookup);
496 
497   // If the chain of expressions is too deep, just return early.
498   Decomposed.Base = V;
499   SearchLimitReached++;
500   return true;
501 }
502 
503 /// Returns whether the given pointer value points to memory that is local to
504 /// the function, with global constants being considered local to all
505 /// functions.
506 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
507                                            bool OrLocal) {
508   assert(Visited.empty() && "Visited must be cleared after use!");
509 
510   unsigned MaxLookup = 8;
511   SmallVector<const Value *, 16> Worklist;
512   Worklist.push_back(Loc.Ptr);
513   do {
514     const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
515     if (!Visited.insert(V).second) {
516       Visited.clear();
517       return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
518     }
519 
520     // An alloca instruction defines local memory.
521     if (OrLocal && isa<AllocaInst>(V))
522       continue;
523 
524     // A global constant counts as local memory for our purposes.
525     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
526       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
527       // global to be marked constant in some modules and non-constant in
528       // others.  GV may even be a declaration, not a definition.
529       if (!GV->isConstant()) {
530         Visited.clear();
531         return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
532       }
533       continue;
534     }
535 
536     // If both select values point to local memory, then so does the select.
537     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
538       Worklist.push_back(SI->getTrueValue());
539       Worklist.push_back(SI->getFalseValue());
540       continue;
541     }
542 
543     // If all values incoming to a phi node point to local memory, then so does
544     // the phi.
545     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
546       // Don't bother inspecting phi nodes with many operands.
547       if (PN->getNumIncomingValues() > MaxLookup) {
548         Visited.clear();
549         return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
550       }
551       for (Value *IncValue : PN->incoming_values())
552         Worklist.push_back(IncValue);
553       continue;
554     }
555 
556     // Otherwise be conservative.
557     Visited.clear();
558     return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
559 
560   } while (!Worklist.empty() && --MaxLookup);
561 
562   Visited.clear();
563   return Worklist.empty();
564 }
565 
566 /// Returns the behavior when calling the given call site.
567 FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) {
568   if (CS.doesNotAccessMemory())
569     // Can't do better than this.
570     return FMRB_DoesNotAccessMemory;
571 
572   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
573 
574   // If the callsite knows it only reads memory, don't return worse
575   // than that.
576   if (CS.onlyReadsMemory())
577     Min = FMRB_OnlyReadsMemory;
578   else if (CS.doesNotReadMemory())
579     Min = FMRB_DoesNotReadMemory;
580 
581   if (CS.onlyAccessesArgMemory())
582     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
583 
584   // If CS has operand bundles then aliasing attributes from the function it
585   // calls do not directly apply to the CallSite.  This can be made more
586   // precise in the future.
587   if (!CS.hasOperandBundles())
588     if (const Function *F = CS.getCalledFunction())
589       Min =
590           FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
591 
592   return Min;
593 }
594 
595 /// Returns the behavior when calling the given function. For use when the call
596 /// site is not known.
597 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
598   // If the function declares it doesn't access memory, we can't do better.
599   if (F->doesNotAccessMemory())
600     return FMRB_DoesNotAccessMemory;
601 
602   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
603 
604   // If the function declares it only reads memory, go with that.
605   if (F->onlyReadsMemory())
606     Min = FMRB_OnlyReadsMemory;
607   else if (F->doesNotReadMemory())
608     Min = FMRB_DoesNotReadMemory;
609 
610   if (F->onlyAccessesArgMemory())
611     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
612   else if (F->onlyAccessesInaccessibleMemory())
613     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
614   else if (F->onlyAccessesInaccessibleMemOrArgMem())
615     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
616 
617   return Min;
618 }
619 
620 /// Returns true if this is a writeonly (i.e Mod only) parameter.
621 static bool isWriteOnlyParam(ImmutableCallSite CS, unsigned ArgIdx,
622                              const TargetLibraryInfo &TLI) {
623   if (CS.paramHasAttr(ArgIdx + 1, Attribute::WriteOnly))
624     return true;
625 
626   // We can bound the aliasing properties of memset_pattern16 just as we can
627   // for memcpy/memset.  This is particularly important because the
628   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
629   // whenever possible.
630   // FIXME Consider handling this in InferFunctionAttr.cpp together with other
631   // attributes.
632   LibFunc::Func F;
633   if (CS.getCalledFunction() && TLI.getLibFunc(*CS.getCalledFunction(), F) &&
634       F == LibFunc::memset_pattern16 && TLI.has(F))
635     if (ArgIdx == 0)
636       return true;
637 
638   // TODO: memset_pattern4, memset_pattern8
639   // TODO: _chk variants
640   // TODO: strcmp, strcpy
641 
642   return false;
643 }
644 
645 ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS,
646                                            unsigned ArgIdx) {
647 
648   // Checking for known builtin intrinsics and target library functions.
649   if (isWriteOnlyParam(CS, ArgIdx, TLI))
650     return MRI_Mod;
651 
652   if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadOnly))
653     return MRI_Ref;
654 
655   if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadNone))
656     return MRI_NoModRef;
657 
658   return AAResultBase::getArgModRefInfo(CS, ArgIdx);
659 }
660 
661 static bool isIntrinsicCall(ImmutableCallSite CS, Intrinsic::ID IID) {
662   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
663   return II && II->getIntrinsicID() == IID;
664 }
665 
666 #ifndef NDEBUG
667 static const Function *getParent(const Value *V) {
668   if (const Instruction *inst = dyn_cast<Instruction>(V))
669     return inst->getParent()->getParent();
670 
671   if (const Argument *arg = dyn_cast<Argument>(V))
672     return arg->getParent();
673 
674   return nullptr;
675 }
676 
677 static bool notDifferentParent(const Value *O1, const Value *O2) {
678 
679   const Function *F1 = getParent(O1);
680   const Function *F2 = getParent(O2);
681 
682   return !F1 || !F2 || F1 == F2;
683 }
684 #endif
685 
686 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
687                                  const MemoryLocation &LocB) {
688   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
689          "BasicAliasAnalysis doesn't support interprocedural queries.");
690 
691   // If we have a directly cached entry for these locations, we have recursed
692   // through this once, so just return the cached results. Notably, when this
693   // happens, we don't clear the cache.
694   auto CacheIt = AliasCache.find(LocPair(LocA, LocB));
695   if (CacheIt != AliasCache.end())
696     return CacheIt->second;
697 
698   AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
699                                  LocB.Size, LocB.AATags);
700   // AliasCache rarely has more than 1 or 2 elements, always use
701   // shrink_and_clear so it quickly returns to the inline capacity of the
702   // SmallDenseMap if it ever grows larger.
703   // FIXME: This should really be shrink_to_inline_capacity_and_clear().
704   AliasCache.shrink_and_clear();
705   VisitedPhiBBs.clear();
706   return Alias;
707 }
708 
709 /// Checks to see if the specified callsite can clobber the specified memory
710 /// object.
711 ///
712 /// Since we only look at local properties of this function, we really can't
713 /// say much about this query.  We do, however, use simple "address taken"
714 /// analysis on local objects.
715 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS,
716                                         const MemoryLocation &Loc) {
717   assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
718          "AliasAnalysis query involving multiple functions!");
719 
720   const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);
721 
722   // If this is a tail call and Loc.Ptr points to a stack location, we know that
723   // the tail call cannot access or modify the local stack.
724   // We cannot exclude byval arguments here; these belong to the caller of
725   // the current function not to the current function, and a tail callee
726   // may reference them.
727   if (isa<AllocaInst>(Object))
728     if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
729       if (CI->isTailCall())
730         return MRI_NoModRef;
731 
732   // If the pointer is to a locally allocated object that does not escape,
733   // then the call can not mod/ref the pointer unless the call takes the pointer
734   // as an argument, and itself doesn't capture it.
735   if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
736       isNonEscapingLocalObject(Object)) {
737     bool PassedAsArg = false;
738     unsigned OperandNo = 0;
739     for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end();
740          CI != CE; ++CI, ++OperandNo) {
741       // Only look at the no-capture or byval pointer arguments.  If this
742       // pointer were passed to arguments that were neither of these, then it
743       // couldn't be no-capture.
744       if (!(*CI)->getType()->isPointerTy() ||
745           (!CS.doesNotCapture(OperandNo) && !CS.isByValArgument(OperandNo)))
746         continue;
747 
748       // If this is a no-capture pointer argument, see if we can tell that it
749       // is impossible to alias the pointer we're checking.  If not, we have to
750       // assume that the call could touch the pointer, even though it doesn't
751       // escape.
752       AliasResult AR =
753           getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object));
754       if (AR) {
755         PassedAsArg = true;
756         break;
757       }
758     }
759 
760     if (!PassedAsArg)
761       return MRI_NoModRef;
762   }
763 
764   // If the CallSite is to malloc or calloc, we can assume that it doesn't
765   // modify any IR visible value.  This is only valid because we assume these
766   // routines do not read values visible in the IR.  TODO: Consider special
767   // casing realloc and strdup routines which access only their arguments as
768   // well.  Or alternatively, replace all of this with inaccessiblememonly once
769   // that's implemented fully.
770   auto *Inst = CS.getInstruction();
771   if (isMallocLikeFn(Inst, &TLI) || isCallocLikeFn(Inst, &TLI)) {
772     // Be conservative if the accessed pointer may alias the allocation -
773     // fallback to the generic handling below.
774     if (getBestAAResults().alias(MemoryLocation(Inst), Loc) == NoAlias)
775       return MRI_NoModRef;
776   }
777 
778   // While the assume intrinsic is marked as arbitrarily writing so that
779   // proper control dependencies will be maintained, it never aliases any
780   // particular memory location.
781   if (isIntrinsicCall(CS, Intrinsic::assume))
782     return MRI_NoModRef;
783 
784   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
785   // that proper control dependencies are maintained but they never mods any
786   // particular memory location.
787   //
788   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
789   // heap state at the point the guard is issued needs to be consistent in case
790   // the guard invokes the "deopt" continuation.
791   if (isIntrinsicCall(CS, Intrinsic::experimental_guard))
792     return MRI_Ref;
793 
794   // Like assumes, invariant.start intrinsics were also marked as arbitrarily
795   // writing so that proper control dependencies are maintained but they never
796   // mod any particular memory location visible to the IR.
797   // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
798   // intrinsic is now modeled as reading memory. This prevents hoisting the
799   // invariant.start intrinsic over stores. Consider:
800   // *ptr = 40;
801   // *ptr = 50;
802   // invariant_start(ptr)
803   // int val = *ptr;
804   // print(val);
805   //
806   // This cannot be transformed to:
807   //
808   // *ptr = 40;
809   // invariant_start(ptr)
810   // *ptr = 50;
811   // int val = *ptr;
812   // print(val);
813   //
814   // The transformation will cause the second store to be ignored (based on
815   // rules of invariant.start)  and print 40, while the first program always
816   // prints 50.
817   if (isIntrinsicCall(CS, Intrinsic::invariant_start))
818     return MRI_Ref;
819 
820   // The AAResultBase base class has some smarts, lets use them.
821   return AAResultBase::getModRefInfo(CS, Loc);
822 }
823 
824 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1,
825                                         ImmutableCallSite CS2) {
826   // While the assume intrinsic is marked as arbitrarily writing so that
827   // proper control dependencies will be maintained, it never aliases any
828   // particular memory location.
829   if (isIntrinsicCall(CS1, Intrinsic::assume) ||
830       isIntrinsicCall(CS2, Intrinsic::assume))
831     return MRI_NoModRef;
832 
833   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
834   // that proper control dependencies are maintained but they never mod any
835   // particular memory location.
836   //
837   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
838   // heap state at the point the guard is issued needs to be consistent in case
839   // the guard invokes the "deopt" continuation.
840 
841   // NB! This function is *not* commutative, so we specical case two
842   // possibilities for guard intrinsics.
843 
844   if (isIntrinsicCall(CS1, Intrinsic::experimental_guard))
845     return getModRefBehavior(CS2) & MRI_Mod ? MRI_Ref : MRI_NoModRef;
846 
847   if (isIntrinsicCall(CS2, Intrinsic::experimental_guard))
848     return getModRefBehavior(CS1) & MRI_Mod ? MRI_Mod : MRI_NoModRef;
849 
850   // The AAResultBase base class has some smarts, lets use them.
851   return AAResultBase::getModRefInfo(CS1, CS2);
852 }
853 
854 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
855 /// both having the exact same pointer operand.
856 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
857                                             uint64_t V1Size,
858                                             const GEPOperator *GEP2,
859                                             uint64_t V2Size,
860                                             const DataLayout &DL) {
861 
862   assert(GEP1->getPointerOperand()->stripPointerCasts() ==
863          GEP2->getPointerOperand()->stripPointerCasts() &&
864          GEP1->getPointerOperand()->getType() ==
865          GEP2->getPointerOperand()->getType() &&
866          "Expected GEPs with the same pointer operand");
867 
868   // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
869   // such that the struct field accesses provably cannot alias.
870   // We also need at least two indices (the pointer, and the struct field).
871   if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
872       GEP1->getNumIndices() < 2)
873     return MayAlias;
874 
875   // If we don't know the size of the accesses through both GEPs, we can't
876   // determine whether the struct fields accessed can't alias.
877   if (V1Size == MemoryLocation::UnknownSize ||
878       V2Size == MemoryLocation::UnknownSize)
879     return MayAlias;
880 
881   ConstantInt *C1 =
882       dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
883   ConstantInt *C2 =
884       dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
885 
886   // If the last (struct) indices are constants and are equal, the other indices
887   // might be also be dynamically equal, so the GEPs can alias.
888   if (C1 && C2 && C1->getSExtValue() == C2->getSExtValue())
889     return MayAlias;
890 
891   // Find the last-indexed type of the GEP, i.e., the type you'd get if
892   // you stripped the last index.
893   // On the way, look at each indexed type.  If there's something other
894   // than an array, different indices can lead to different final types.
895   SmallVector<Value *, 8> IntermediateIndices;
896 
897   // Insert the first index; we don't need to check the type indexed
898   // through it as it only drops the pointer indirection.
899   assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
900   IntermediateIndices.push_back(GEP1->getOperand(1));
901 
902   // Insert all the remaining indices but the last one.
903   // Also, check that they all index through arrays.
904   for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
905     if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
906             GEP1->getSourceElementType(), IntermediateIndices)))
907       return MayAlias;
908     IntermediateIndices.push_back(GEP1->getOperand(i + 1));
909   }
910 
911   auto *Ty = GetElementPtrInst::getIndexedType(
912     GEP1->getSourceElementType(), IntermediateIndices);
913   StructType *LastIndexedStruct = dyn_cast<StructType>(Ty);
914 
915   if (isa<SequentialType>(Ty)) {
916     // We know that:
917     // - both GEPs begin indexing from the exact same pointer;
918     // - the last indices in both GEPs are constants, indexing into a sequential
919     //   type (array or pointer);
920     // - both GEPs only index through arrays prior to that.
921     //
922     // Because array indices greater than the number of elements are valid in
923     // GEPs, unless we know the intermediate indices are identical between
924     // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
925     // partially overlap. We also need to check that the loaded size matches
926     // the element size, otherwise we could still have overlap.
927     const uint64_t ElementSize =
928         DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType());
929     if (V1Size != ElementSize || V2Size != ElementSize)
930       return MayAlias;
931 
932     for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i)
933       if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1))
934         return MayAlias;
935 
936     // Now we know that the array/pointer that GEP1 indexes into and that
937     // that GEP2 indexes into must either precisely overlap or be disjoint.
938     // Because they cannot partially overlap and because fields in an array
939     // cannot overlap, if we can prove the final indices are different between
940     // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
941 
942     // If the last indices are constants, we've already checked they don't
943     // equal each other so we can exit early.
944     if (C1 && C2)
945       return NoAlias;
946     if (isKnownNonEqual(GEP1->getOperand(GEP1->getNumOperands() - 1),
947                         GEP2->getOperand(GEP2->getNumOperands() - 1),
948                         DL))
949       return NoAlias;
950     return MayAlias;
951   } else if (!LastIndexedStruct || !C1 || !C2) {
952     return MayAlias;
953   }
954 
955   // We know that:
956   // - both GEPs begin indexing from the exact same pointer;
957   // - the last indices in both GEPs are constants, indexing into a struct;
958   // - said indices are different, hence, the pointed-to fields are different;
959   // - both GEPs only index through arrays prior to that.
960   //
961   // This lets us determine that the struct that GEP1 indexes into and the
962   // struct that GEP2 indexes into must either precisely overlap or be
963   // completely disjoint.  Because they cannot partially overlap, indexing into
964   // different non-overlapping fields of the struct will never alias.
965 
966   // Therefore, the only remaining thing needed to show that both GEPs can't
967   // alias is that the fields are not overlapping.
968   const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
969   const uint64_t StructSize = SL->getSizeInBytes();
970   const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
971   const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
972 
973   auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
974                                       uint64_t V2Off, uint64_t V2Size) {
975     return V1Off < V2Off && V1Off + V1Size <= V2Off &&
976            ((V2Off + V2Size <= StructSize) ||
977             (V2Off + V2Size - StructSize <= V1Off));
978   };
979 
980   if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
981       EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
982     return NoAlias;
983 
984   return MayAlias;
985 }
986 
987 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the
988 // beginning of the object the GEP points would have a negative offset with
989 // repsect to the alloca, that means the GEP can not alias pointer (b).
990 // Note that the pointer based on the alloca may not be a GEP. For
991 // example, it may be the alloca itself.
992 // The same applies if (b) is based on a GlobalVariable. Note that just being
993 // based on isIdentifiedObject() is not enough - we need an identified object
994 // that does not permit access to negative offsets. For example, a negative
995 // offset from a noalias argument or call can be inbounds w.r.t the actual
996 // underlying object.
997 //
998 // For example, consider:
999 //
1000 //   struct { int f0, int f1, ...} foo;
1001 //   foo alloca;
1002 //   foo* random = bar(alloca);
1003 //   int *f0 = &alloca.f0
1004 //   int *f1 = &random->f1;
1005 //
1006 // Which is lowered, approximately, to:
1007 //
1008 //  %alloca = alloca %struct.foo
1009 //  %random = call %struct.foo* @random(%struct.foo* %alloca)
1010 //  %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0
1011 //  %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1
1012 //
1013 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated
1014 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also
1015 // point into the same object. But since %f0 points to the beginning of %alloca,
1016 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher
1017 // than (%alloca - 1), and so is not inbounds, a contradiction.
1018 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp,
1019       const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject,
1020       uint64_t ObjectAccessSize) {
1021   // If the object access size is unknown, or the GEP isn't inbounds, bail.
1022   if (ObjectAccessSize == MemoryLocation::UnknownSize || !GEPOp->isInBounds())
1023     return false;
1024 
1025   // We need the object to be an alloca or a globalvariable, and want to know
1026   // the offset of the pointer from the object precisely, so no variable
1027   // indices are allowed.
1028   if (!(isa<AllocaInst>(DecompObject.Base) ||
1029         isa<GlobalVariable>(DecompObject.Base)) ||
1030       !DecompObject.VarIndices.empty())
1031     return false;
1032 
1033   int64_t ObjectBaseOffset = DecompObject.StructOffset +
1034                              DecompObject.OtherOffset;
1035 
1036   // If the GEP has no variable indices, we know the precise offset
1037   // from the base, then use it. If the GEP has variable indices, we're in
1038   // a bit more trouble: we can't count on the constant offsets that come
1039   // from non-struct sources, since these can be "rewound" by a negative
1040   // variable offset. So use only offsets that came from structs.
1041   int64_t GEPBaseOffset = DecompGEP.StructOffset;
1042   if (DecompGEP.VarIndices.empty())
1043     GEPBaseOffset += DecompGEP.OtherOffset;
1044 
1045   return (GEPBaseOffset >= ObjectBaseOffset + (int64_t)ObjectAccessSize);
1046 }
1047 
1048 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1049 /// another pointer.
1050 ///
1051 /// We know that V1 is a GEP, but we don't know anything about V2.
1052 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for
1053 /// V2.
1054 AliasResult BasicAAResult::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
1055                                     const AAMDNodes &V1AAInfo, const Value *V2,
1056                                     uint64_t V2Size, const AAMDNodes &V2AAInfo,
1057                                     const Value *UnderlyingV1,
1058                                     const Value *UnderlyingV2) {
1059   DecomposedGEP DecompGEP1, DecompGEP2;
1060   bool GEP1MaxLookupReached =
1061     DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT);
1062   bool GEP2MaxLookupReached =
1063     DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT);
1064 
1065   int64_t GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset;
1066   int64_t GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset;
1067 
1068   assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
1069          "DecomposeGEPExpression returned a result different from "
1070          "GetUnderlyingObject");
1071 
1072   // If the GEP's offset relative to its base is such that the base would
1073   // fall below the start of the object underlying V2, then the GEP and V2
1074   // cannot alias.
1075   if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1076       isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size))
1077     return NoAlias;
1078   // If we have two gep instructions with must-alias or not-alias'ing base
1079   // pointers, figure out if the indexes to the GEP tell us anything about the
1080   // derived pointer.
1081   if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
1082     // Check for the GEP base being at a negative offset, this time in the other
1083     // direction.
1084     if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1085         isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size))
1086       return NoAlias;
1087     // Do the base pointers alias?
1088     AliasResult BaseAlias =
1089         aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(),
1090                    UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes());
1091 
1092     // Check for geps of non-aliasing underlying pointers where the offsets are
1093     // identical.
1094     if ((BaseAlias == MayAlias) && V1Size == V2Size) {
1095       // Do the base pointers alias assuming type and size.
1096       AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo,
1097                                                 UnderlyingV2, V2Size, V2AAInfo);
1098       if (PreciseBaseAlias == NoAlias) {
1099         // See if the computed offset from the common pointer tells us about the
1100         // relation of the resulting pointer.
1101         // If the max search depth is reached the result is undefined
1102         if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1103           return MayAlias;
1104 
1105         // Same offsets.
1106         if (GEP1BaseOffset == GEP2BaseOffset &&
1107             DecompGEP1.VarIndices == DecompGEP2.VarIndices)
1108           return NoAlias;
1109       }
1110     }
1111 
1112     // If we get a No or May, then return it immediately, no amount of analysis
1113     // will improve this situation.
1114     if (BaseAlias != MustAlias)
1115       return BaseAlias;
1116 
1117     // Otherwise, we have a MustAlias.  Since the base pointers alias each other
1118     // exactly, see if the computed offset from the common pointer tells us
1119     // about the relation of the resulting pointer.
1120     // If we know the two GEPs are based off of the exact same pointer (and not
1121     // just the same underlying object), see if that tells us anything about
1122     // the resulting pointers.
1123     if (GEP1->getPointerOperand()->stripPointerCasts() ==
1124         GEP2->getPointerOperand()->stripPointerCasts() &&
1125         GEP1->getPointerOperand()->getType() ==
1126         GEP2->getPointerOperand()->getType()) {
1127       AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL);
1128       // If we couldn't find anything interesting, don't abandon just yet.
1129       if (R != MayAlias)
1130         return R;
1131     }
1132 
1133     // If the max search depth is reached, the result is undefined
1134     if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1135       return MayAlias;
1136 
1137     // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1138     // symbolic difference.
1139     GEP1BaseOffset -= GEP2BaseOffset;
1140     GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);
1141 
1142   } else {
1143     // Check to see if these two pointers are related by the getelementptr
1144     // instruction.  If one pointer is a GEP with a non-zero index of the other
1145     // pointer, we know they cannot alias.
1146 
1147     // If both accesses are unknown size, we can't do anything useful here.
1148     if (V1Size == MemoryLocation::UnknownSize &&
1149         V2Size == MemoryLocation::UnknownSize)
1150       return MayAlias;
1151 
1152     AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize,
1153                                AAMDNodes(), V2, V2Size, V2AAInfo,
1154                                nullptr, UnderlyingV2);
1155     if (R != MustAlias)
1156       // If V2 may alias GEP base pointer, conservatively returns MayAlias.
1157       // If V2 is known not to alias GEP base pointer, then the two values
1158       // cannot alias per GEP semantics: "A pointer value formed from a
1159       // getelementptr instruction is associated with the addresses associated
1160       // with the first operand of the getelementptr".
1161       return R;
1162 
1163     // If the max search depth is reached the result is undefined
1164     if (GEP1MaxLookupReached)
1165       return MayAlias;
1166   }
1167 
1168   // In the two GEP Case, if there is no difference in the offsets of the
1169   // computed pointers, the resultant pointers are a must alias.  This
1170   // happens when we have two lexically identical GEP's (for example).
1171   //
1172   // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
1173   // must aliases the GEP, the end result is a must alias also.
1174   if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty())
1175     return MustAlias;
1176 
1177   // If there is a constant difference between the pointers, but the difference
1178   // is less than the size of the associated memory object, then we know
1179   // that the objects are partially overlapping.  If the difference is
1180   // greater, we know they do not overlap.
1181   if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) {
1182     if (GEP1BaseOffset >= 0) {
1183       if (V2Size != MemoryLocation::UnknownSize) {
1184         if ((uint64_t)GEP1BaseOffset < V2Size)
1185           return PartialAlias;
1186         return NoAlias;
1187       }
1188     } else {
1189       // We have the situation where:
1190       // +                +
1191       // | BaseOffset     |
1192       // ---------------->|
1193       // |-->V1Size       |-------> V2Size
1194       // GEP1             V2
1195       // We need to know that V2Size is not unknown, otherwise we might have
1196       // stripped a gep with negative index ('gep <ptr>, -1, ...).
1197       if (V1Size != MemoryLocation::UnknownSize &&
1198           V2Size != MemoryLocation::UnknownSize) {
1199         if (-(uint64_t)GEP1BaseOffset < V1Size)
1200           return PartialAlias;
1201         return NoAlias;
1202       }
1203     }
1204   }
1205 
1206   if (!DecompGEP1.VarIndices.empty()) {
1207     uint64_t Modulo = 0;
1208     bool AllPositive = true;
1209     for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1210 
1211       // Try to distinguish something like &A[i][1] against &A[42][0].
1212       // Grab the least significant bit set in any of the scales. We
1213       // don't need std::abs here (even if the scale's negative) as we'll
1214       // be ^'ing Modulo with itself later.
1215       Modulo |= (uint64_t)DecompGEP1.VarIndices[i].Scale;
1216 
1217       if (AllPositive) {
1218         // If the Value could change between cycles, then any reasoning about
1219         // the Value this cycle may not hold in the next cycle. We'll just
1220         // give up if we can't determine conditions that hold for every cycle:
1221         const Value *V = DecompGEP1.VarIndices[i].V;
1222 
1223         bool SignKnownZero, SignKnownOne;
1224         ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, DL,
1225                        0, &AC, nullptr, DT);
1226 
1227         // Zero-extension widens the variable, and so forces the sign
1228         // bit to zero.
1229         bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
1230         SignKnownZero |= IsZExt;
1231         SignKnownOne &= !IsZExt;
1232 
1233         // If the variable begins with a zero then we know it's
1234         // positive, regardless of whether the value is signed or
1235         // unsigned.
1236         int64_t Scale = DecompGEP1.VarIndices[i].Scale;
1237         AllPositive =
1238             (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0);
1239       }
1240     }
1241 
1242     Modulo = Modulo ^ (Modulo & (Modulo - 1));
1243 
1244     // We can compute the difference between the two addresses
1245     // mod Modulo. Check whether that difference guarantees that the
1246     // two locations do not alias.
1247     uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
1248     if (V1Size != MemoryLocation::UnknownSize &&
1249         V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size &&
1250         V1Size <= Modulo - ModOffset)
1251       return NoAlias;
1252 
1253     // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
1254     // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
1255     // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
1256     if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset)
1257       return NoAlias;
1258 
1259     if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
1260                                 GEP1BaseOffset, &AC, DT))
1261       return NoAlias;
1262   }
1263 
1264   // Statically, we can see that the base objects are the same, but the
1265   // pointers have dynamic offsets which we can't resolve. And none of our
1266   // little tricks above worked.
1267   //
1268   // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
1269   // practical effect of this is protecting TBAA in the case of dynamic
1270   // indices into arrays of unions or malloc'd memory.
1271   return PartialAlias;
1272 }
1273 
1274 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1275   // If the results agree, take it.
1276   if (A == B)
1277     return A;
1278   // A mix of PartialAlias and MustAlias is PartialAlias.
1279   if ((A == PartialAlias && B == MustAlias) ||
1280       (B == PartialAlias && A == MustAlias))
1281     return PartialAlias;
1282   // Otherwise, we don't know anything.
1283   return MayAlias;
1284 }
1285 
1286 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1287 /// against another.
1288 AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, uint64_t SISize,
1289                                        const AAMDNodes &SIAAInfo,
1290                                        const Value *V2, uint64_t V2Size,
1291                                        const AAMDNodes &V2AAInfo,
1292                                        const Value *UnderV2) {
1293   // If the values are Selects with the same condition, we can do a more precise
1294   // check: just check for aliases between the values on corresponding arms.
1295   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1296     if (SI->getCondition() == SI2->getCondition()) {
1297       AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo,
1298                                      SI2->getTrueValue(), V2Size, V2AAInfo);
1299       if (Alias == MayAlias)
1300         return MayAlias;
1301       AliasResult ThisAlias =
1302           aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
1303                      SI2->getFalseValue(), V2Size, V2AAInfo);
1304       return MergeAliasResults(ThisAlias, Alias);
1305     }
1306 
1307   // If both arms of the Select node NoAlias or MustAlias V2, then returns
1308   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1309   AliasResult Alias =
1310       aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(),
1311                  SISize, SIAAInfo, UnderV2);
1312   if (Alias == MayAlias)
1313     return MayAlias;
1314 
1315   AliasResult ThisAlias =
1316       aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo,
1317                  UnderV2);
1318   return MergeAliasResults(ThisAlias, Alias);
1319 }
1320 
1321 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1322 /// another.
1323 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, uint64_t PNSize,
1324                                     const AAMDNodes &PNAAInfo, const Value *V2,
1325                                     uint64_t V2Size, const AAMDNodes &V2AAInfo,
1326                                     const Value *UnderV2) {
1327   // Track phi nodes we have visited. We use this information when we determine
1328   // value equivalence.
1329   VisitedPhiBBs.insert(PN->getParent());
1330 
1331   // If the values are PHIs in the same block, we can do a more precise
1332   // as well as efficient check: just check for aliases between the values
1333   // on corresponding edges.
1334   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1335     if (PN2->getParent() == PN->getParent()) {
1336       LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
1337                    MemoryLocation(V2, V2Size, V2AAInfo));
1338       if (PN > V2)
1339         std::swap(Locs.first, Locs.second);
1340       // Analyse the PHIs' inputs under the assumption that the PHIs are
1341       // NoAlias.
1342       // If the PHIs are May/MustAlias there must be (recursively) an input
1343       // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1344       // there must be an operation on the PHIs within the PHIs' value cycle
1345       // that causes a MayAlias.
1346       // Pretend the phis do not alias.
1347       AliasResult Alias = NoAlias;
1348       assert(AliasCache.count(Locs) &&
1349              "There must exist an entry for the phi node");
1350       AliasResult OrigAliasResult = AliasCache[Locs];
1351       AliasCache[Locs] = NoAlias;
1352 
1353       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1354         AliasResult ThisAlias =
1355             aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
1356                        PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1357                        V2Size, V2AAInfo);
1358         Alias = MergeAliasResults(ThisAlias, Alias);
1359         if (Alias == MayAlias)
1360           break;
1361       }
1362 
1363       // Reset if speculation failed.
1364       if (Alias != NoAlias)
1365         AliasCache[Locs] = OrigAliasResult;
1366 
1367       return Alias;
1368     }
1369 
1370   SmallPtrSet<Value *, 4> UniqueSrc;
1371   SmallVector<Value *, 4> V1Srcs;
1372   bool isRecursive = false;
1373   for (Value *PV1 : PN->incoming_values()) {
1374     if (isa<PHINode>(PV1))
1375       // If any of the source itself is a PHI, return MayAlias conservatively
1376       // to avoid compile time explosion. The worst possible case is if both
1377       // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1378       // and 'n' are the number of PHI sources.
1379       return MayAlias;
1380 
1381     if (EnableRecPhiAnalysis)
1382       if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
1383         // Check whether the incoming value is a GEP that advances the pointer
1384         // result of this PHI node (e.g. in a loop). If this is the case, we
1385         // would recurse and always get a MayAlias. Handle this case specially
1386         // below.
1387         if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
1388             isa<ConstantInt>(PV1GEP->idx_begin())) {
1389           isRecursive = true;
1390           continue;
1391         }
1392       }
1393 
1394     if (UniqueSrc.insert(PV1).second)
1395       V1Srcs.push_back(PV1);
1396   }
1397 
1398   // If this PHI node is recursive, set the size of the accessed memory to
1399   // unknown to represent all the possible values the GEP could advance the
1400   // pointer to.
1401   if (isRecursive)
1402     PNSize = MemoryLocation::UnknownSize;
1403 
1404   AliasResult Alias =
1405       aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0],
1406                  PNSize, PNAAInfo, UnderV2);
1407 
1408   // Early exit if the check of the first PHI source against V2 is MayAlias.
1409   // Other results are not possible.
1410   if (Alias == MayAlias)
1411     return MayAlias;
1412 
1413   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1414   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1415   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1416     Value *V = V1Srcs[i];
1417 
1418     AliasResult ThisAlias =
1419         aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, UnderV2);
1420     Alias = MergeAliasResults(ThisAlias, Alias);
1421     if (Alias == MayAlias)
1422       break;
1423   }
1424 
1425   return Alias;
1426 }
1427 
1428 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1429 /// array references.
1430 AliasResult BasicAAResult::aliasCheck(const Value *V1, uint64_t V1Size,
1431                                       AAMDNodes V1AAInfo, const Value *V2,
1432                                       uint64_t V2Size, AAMDNodes V2AAInfo,
1433                                       const Value *O1, const Value *O2) {
1434   // If either of the memory references is empty, it doesn't matter what the
1435   // pointer values are.
1436   if (V1Size == 0 || V2Size == 0)
1437     return NoAlias;
1438 
1439   // Strip off any casts if they exist.
1440   V1 = V1->stripPointerCasts();
1441   V2 = V2->stripPointerCasts();
1442 
1443   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1444   // value for undef that aliases nothing in the program.
1445   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1446     return NoAlias;
1447 
1448   // Are we checking for alias of the same value?
1449   // Because we look 'through' phi nodes, we could look at "Value" pointers from
1450   // different iterations. We must therefore make sure that this is not the
1451   // case. The function isValueEqualInPotentialCycles ensures that this cannot
1452   // happen by looking at the visited phi nodes and making sure they cannot
1453   // reach the value.
1454   if (isValueEqualInPotentialCycles(V1, V2))
1455     return MustAlias;
1456 
1457   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1458     return NoAlias; // Scalars cannot alias each other
1459 
1460   // Figure out what objects these things are pointing to if we can.
1461   if (O1 == nullptr)
1462     O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
1463 
1464   if (O2 == nullptr)
1465     O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);
1466 
1467   // Null values in the default address space don't point to any object, so they
1468   // don't alias any other pointer.
1469   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1470     if (CPN->getType()->getAddressSpace() == 0)
1471       return NoAlias;
1472   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1473     if (CPN->getType()->getAddressSpace() == 0)
1474       return NoAlias;
1475 
1476   if (O1 != O2) {
1477     // If V1/V2 point to two different objects, we know that we have no alias.
1478     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1479       return NoAlias;
1480 
1481     // Constant pointers can't alias with non-const isIdentifiedObject objects.
1482     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1483         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1484       return NoAlias;
1485 
1486     // Function arguments can't alias with things that are known to be
1487     // unambigously identified at the function level.
1488     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1489         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1490       return NoAlias;
1491 
1492     // Most objects can't alias null.
1493     if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
1494         (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
1495       return NoAlias;
1496 
1497     // If one pointer is the result of a call/invoke or load and the other is a
1498     // non-escaping local object within the same function, then we know the
1499     // object couldn't escape to a point where the call could return it.
1500     //
1501     // Note that if the pointers are in different functions, there are a
1502     // variety of complications. A call with a nocapture argument may still
1503     // temporary store the nocapture argument's value in a temporary memory
1504     // location if that memory location doesn't escape. Or it may pass a
1505     // nocapture value to other functions as long as they don't capture it.
1506     if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
1507       return NoAlias;
1508     if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
1509       return NoAlias;
1510   }
1511 
1512   // If the size of one access is larger than the entire object on the other
1513   // side, then we know such behavior is undefined and can assume no alias.
1514   if ((V1Size != MemoryLocation::UnknownSize &&
1515        isObjectSmallerThan(O2, V1Size, DL, TLI)) ||
1516       (V2Size != MemoryLocation::UnknownSize &&
1517        isObjectSmallerThan(O1, V2Size, DL, TLI)))
1518     return NoAlias;
1519 
1520   // Check the cache before climbing up use-def chains. This also terminates
1521   // otherwise infinitely recursive queries.
1522   LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
1523                MemoryLocation(V2, V2Size, V2AAInfo));
1524   if (V1 > V2)
1525     std::swap(Locs.first, Locs.second);
1526   std::pair<AliasCacheTy::iterator, bool> Pair =
1527       AliasCache.insert(std::make_pair(Locs, MayAlias));
1528   if (!Pair.second)
1529     return Pair.first->second;
1530 
1531   // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1532   // GEP can't simplify, we don't even look at the PHI cases.
1533   if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1534     std::swap(V1, V2);
1535     std::swap(V1Size, V2Size);
1536     std::swap(O1, O2);
1537     std::swap(V1AAInfo, V2AAInfo);
1538   }
1539   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1540     AliasResult Result =
1541         aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2);
1542     if (Result != MayAlias)
1543       return AliasCache[Locs] = Result;
1544   }
1545 
1546   if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1547     std::swap(V1, V2);
1548     std::swap(O1, O2);
1549     std::swap(V1Size, V2Size);
1550     std::swap(V1AAInfo, V2AAInfo);
1551   }
1552   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1553     AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo,
1554                                   V2, V2Size, V2AAInfo, O2);
1555     if (Result != MayAlias)
1556       return AliasCache[Locs] = Result;
1557   }
1558 
1559   if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1560     std::swap(V1, V2);
1561     std::swap(O1, O2);
1562     std::swap(V1Size, V2Size);
1563     std::swap(V1AAInfo, V2AAInfo);
1564   }
1565   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1566     AliasResult Result =
1567         aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2);
1568     if (Result != MayAlias)
1569       return AliasCache[Locs] = Result;
1570   }
1571 
1572   // If both pointers are pointing into the same object and one of them
1573   // accesses the entire object, then the accesses must overlap in some way.
1574   if (O1 == O2)
1575     if ((V1Size != MemoryLocation::UnknownSize &&
1576          isObjectSize(O1, V1Size, DL, TLI)) ||
1577         (V2Size != MemoryLocation::UnknownSize &&
1578          isObjectSize(O2, V2Size, DL, TLI)))
1579       return AliasCache[Locs] = PartialAlias;
1580 
1581   // Recurse back into the best AA results we have, potentially with refined
1582   // memory locations. We have already ensured that BasicAA has a MayAlias
1583   // cache result for these, so any recursion back into BasicAA won't loop.
1584   AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second);
1585   return AliasCache[Locs] = Result;
1586 }
1587 
1588 /// Check whether two Values can be considered equivalent.
1589 ///
1590 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1591 /// they can not be part of a cycle in the value graph by looking at all
1592 /// visited phi nodes an making sure that the phis cannot reach the value. We
1593 /// have to do this because we are looking through phi nodes (That is we say
1594 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1595 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1596                                                   const Value *V2) {
1597   if (V != V2)
1598     return false;
1599 
1600   const Instruction *Inst = dyn_cast<Instruction>(V);
1601   if (!Inst)
1602     return true;
1603 
1604   if (VisitedPhiBBs.empty())
1605     return true;
1606 
1607   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1608     return false;
1609 
1610   // Make sure that the visited phis cannot reach the Value. This ensures that
1611   // the Values cannot come from different iterations of a potential cycle the
1612   // phi nodes could be involved in.
1613   for (auto *P : VisitedPhiBBs)
1614     if (isPotentiallyReachable(&P->front(), Inst, DT, LI))
1615       return false;
1616 
1617   return true;
1618 }
1619 
1620 /// Computes the symbolic difference between two de-composed GEPs.
1621 ///
1622 /// Dest and Src are the variable indices from two decomposed GetElementPtr
1623 /// instructions GEP1 and GEP2 which have common base pointers.
1624 void BasicAAResult::GetIndexDifference(
1625     SmallVectorImpl<VariableGEPIndex> &Dest,
1626     const SmallVectorImpl<VariableGEPIndex> &Src) {
1627   if (Src.empty())
1628     return;
1629 
1630   for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1631     const Value *V = Src[i].V;
1632     unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
1633     int64_t Scale = Src[i].Scale;
1634 
1635     // Find V in Dest.  This is N^2, but pointer indices almost never have more
1636     // than a few variable indexes.
1637     for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1638       if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1639           Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
1640         continue;
1641 
1642       // If we found it, subtract off Scale V's from the entry in Dest.  If it
1643       // goes to zero, remove the entry.
1644       if (Dest[j].Scale != Scale)
1645         Dest[j].Scale -= Scale;
1646       else
1647         Dest.erase(Dest.begin() + j);
1648       Scale = 0;
1649       break;
1650     }
1651 
1652     // If we didn't consume this entry, add it to the end of the Dest list.
1653     if (Scale) {
1654       VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale};
1655       Dest.push_back(Entry);
1656     }
1657   }
1658 }
1659 
1660 bool BasicAAResult::constantOffsetHeuristic(
1661     const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size,
1662     uint64_t V2Size, int64_t BaseOffset, AssumptionCache *AC,
1663     DominatorTree *DT) {
1664   if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize ||
1665       V2Size == MemoryLocation::UnknownSize)
1666     return false;
1667 
1668   const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
1669 
1670   if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
1671       Var0.Scale != -Var1.Scale)
1672     return false;
1673 
1674   unsigned Width = Var1.V->getType()->getIntegerBitWidth();
1675 
1676   // We'll strip off the Extensions of Var0 and Var1 and do another round
1677   // of GetLinearExpression decomposition. In the example above, if Var0
1678   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1679 
1680   APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
1681       V1Offset(Width, 0);
1682   bool NSW = true, NUW = true;
1683   unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
1684   const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
1685                                         V0SExtBits, DL, 0, AC, DT, NSW, NUW);
1686   NSW = true;
1687   NUW = true;
1688   const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
1689                                         V1SExtBits, DL, 0, AC, DT, NSW, NUW);
1690 
1691   if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
1692       V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
1693     return false;
1694 
1695   // We have a hit - Var0 and Var1 only differ by a constant offset!
1696 
1697   // If we've been sext'ed then zext'd the maximum difference between Var0 and
1698   // Var1 is possible to calculate, but we're just interested in the absolute
1699   // minimum difference between the two. The minimum distance may occur due to
1700   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1701   // the minimum distance between %i and %i + 5 is 3.
1702   APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
1703   MinDiff = APIntOps::umin(MinDiff, Wrapped);
1704   uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale);
1705 
1706   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
1707   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
1708   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
1709   // V2Size can fit in the MinDiffBytes gap.
1710   return V1Size + std::abs(BaseOffset) <= MinDiffBytes &&
1711          V2Size + std::abs(BaseOffset) <= MinDiffBytes;
1712 }
1713 
1714 //===----------------------------------------------------------------------===//
1715 // BasicAliasAnalysis Pass
1716 //===----------------------------------------------------------------------===//
1717 
1718 AnalysisKey BasicAA::Key;
1719 
1720 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
1721   return BasicAAResult(F.getParent()->getDataLayout(),
1722                        AM.getResult<TargetLibraryAnalysis>(F),
1723                        AM.getResult<AssumptionAnalysis>(F),
1724                        &AM.getResult<DominatorTreeAnalysis>(F),
1725                        AM.getCachedResult<LoopAnalysis>(F));
1726 }
1727 
1728 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
1729     initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
1730 }
1731 
1732 char BasicAAWrapperPass::ID = 0;
1733 void BasicAAWrapperPass::anchor() {}
1734 
1735 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa",
1736                       "Basic Alias Analysis (stateless AA impl)", true, true)
1737 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1738 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1739 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1740 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa",
1741                     "Basic Alias Analysis (stateless AA impl)", true, true)
1742 
1743 FunctionPass *llvm::createBasicAAWrapperPass() {
1744   return new BasicAAWrapperPass();
1745 }
1746 
1747 bool BasicAAWrapperPass::runOnFunction(Function &F) {
1748   auto &ACT = getAnalysis<AssumptionCacheTracker>();
1749   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
1750   auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
1751   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
1752 
1753   Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), TLIWP.getTLI(),
1754                                  ACT.getAssumptionCache(F), &DTWP.getDomTree(),
1755                                  LIWP ? &LIWP->getLoopInfo() : nullptr));
1756 
1757   return false;
1758 }
1759 
1760 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1761   AU.setPreservesAll();
1762   AU.addRequired<AssumptionCacheTracker>();
1763   AU.addRequired<DominatorTreeWrapperPass>();
1764   AU.addRequired<TargetLibraryInfoWrapperPass>();
1765 }
1766 
1767 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
1768   return BasicAAResult(
1769       F.getParent()->getDataLayout(),
1770       P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
1771       P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
1772 }
1773