1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the primary stateless implementation of the 11 // Alias Analysis interface that implements identities (two different 12 // globals cannot alias, etc), but does no stateful analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/BasicAliasAnalysis.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/CFG.h" 21 #include "llvm/Analysis/CaptureTracking.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include <algorithm> 40 41 #define DEBUG_TYPE "basicaa" 42 43 using namespace llvm; 44 45 /// Enable analysis of recursive PHI nodes. 46 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden, 47 cl::init(false)); 48 /// SearchLimitReached / SearchTimes shows how often the limit of 49 /// to decompose GEPs is reached. It will affect the precision 50 /// of basic alias analysis. 51 STATISTIC(SearchLimitReached, "Number of times the limit to " 52 "decompose GEPs is reached"); 53 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 54 55 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 56 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be 57 /// careful with value equivalence. We use reachability to make sure a value 58 /// cannot be involved in a cycle. 59 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 60 61 // The max limit of the search depth in DecomposeGEPExpression() and 62 // GetUnderlyingObject(), both functions need to use the same search 63 // depth otherwise the algorithm in aliasGEP will assert. 64 static const unsigned MaxLookupSearchDepth = 6; 65 66 //===----------------------------------------------------------------------===// 67 // Useful predicates 68 //===----------------------------------------------------------------------===// 69 70 /// Returns true if the pointer is to a function-local object that never 71 /// escapes from the function. 72 static bool isNonEscapingLocalObject(const Value *V) { 73 // If this is a local allocation, check to see if it escapes. 74 if (isa<AllocaInst>(V) || isNoAliasCall(V)) 75 // Set StoreCaptures to True so that we can assume in our callers that the 76 // pointer is not the result of a load instruction. Currently 77 // PointerMayBeCaptured doesn't have any special analysis for the 78 // StoreCaptures=false case; if it did, our callers could be refined to be 79 // more precise. 80 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 81 82 // If this is an argument that corresponds to a byval or noalias argument, 83 // then it has not escaped before entering the function. Check if it escapes 84 // inside the function. 85 if (const Argument *A = dyn_cast<Argument>(V)) 86 if (A->hasByValAttr() || A->hasNoAliasAttr()) 87 // Note even if the argument is marked nocapture, we still need to check 88 // for copies made inside the function. The nocapture attribute only 89 // specifies that there are no copies made that outlive the function. 90 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 91 92 return false; 93 } 94 95 /// Returns true if the pointer is one which would have been considered an 96 /// escape by isNonEscapingLocalObject. 97 static bool isEscapeSource(const Value *V) { 98 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V)) 99 return true; 100 101 // The load case works because isNonEscapingLocalObject considers all 102 // stores to be escapes (it passes true for the StoreCaptures argument 103 // to PointerMayBeCaptured). 104 if (isa<LoadInst>(V)) 105 return true; 106 107 return false; 108 } 109 110 /// Returns the size of the object specified by V or UnknownSize if unknown. 111 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 112 const TargetLibraryInfo &TLI, 113 bool RoundToAlign = false) { 114 uint64_t Size; 115 if (getObjectSize(V, Size, DL, &TLI, RoundToAlign)) 116 return Size; 117 return MemoryLocation::UnknownSize; 118 } 119 120 /// Returns true if we can prove that the object specified by V is smaller than 121 /// Size. 122 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 123 const DataLayout &DL, 124 const TargetLibraryInfo &TLI) { 125 // Note that the meanings of the "object" are slightly different in the 126 // following contexts: 127 // c1: llvm::getObjectSize() 128 // c2: llvm.objectsize() intrinsic 129 // c3: isObjectSmallerThan() 130 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 131 // refers to the "entire object". 132 // 133 // Consider this example: 134 // char *p = (char*)malloc(100) 135 // char *q = p+80; 136 // 137 // In the context of c1 and c2, the "object" pointed by q refers to the 138 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 139 // 140 // However, in the context of c3, the "object" refers to the chunk of memory 141 // being allocated. So, the "object" has 100 bytes, and q points to the middle 142 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 143 // parameter, before the llvm::getObjectSize() is called to get the size of 144 // entire object, we should: 145 // - either rewind the pointer q to the base-address of the object in 146 // question (in this case rewind to p), or 147 // - just give up. It is up to caller to make sure the pointer is pointing 148 // to the base address the object. 149 // 150 // We go for 2nd option for simplicity. 151 if (!isIdentifiedObject(V)) 152 return false; 153 154 // This function needs to use the aligned object size because we allow 155 // reads a bit past the end given sufficient alignment. 156 uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/ true); 157 158 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; 159 } 160 161 /// Returns true if we can prove that the object specified by V has size Size. 162 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, 163 const TargetLibraryInfo &TLI) { 164 uint64_t ObjectSize = getObjectSize(V, DL, TLI); 165 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; 166 } 167 168 //===----------------------------------------------------------------------===// 169 // GetElementPtr Instruction Decomposition and Analysis 170 //===----------------------------------------------------------------------===// 171 172 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 173 /// B are constant integers. 174 /// 175 /// Returns the scale and offset values as APInts and return V as a Value*, and 176 /// return whether we looked through any sign or zero extends. The incoming 177 /// Value is known to have IntegerType, and it may already be sign or zero 178 /// extended. 179 /// 180 /// Note that this looks through extends, so the high bits may not be 181 /// represented in the result. 182 /*static*/ const Value *BasicAAResult::GetLinearExpression( 183 const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits, 184 unsigned &SExtBits, const DataLayout &DL, unsigned Depth, 185 AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) { 186 assert(V->getType()->isIntegerTy() && "Not an integer value"); 187 188 // Limit our recursion depth. 189 if (Depth == 6) { 190 Scale = 1; 191 Offset = 0; 192 return V; 193 } 194 195 if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) { 196 // If it's a constant, just convert it to an offset and remove the variable. 197 // If we've been called recursively, the Offset bit width will be greater 198 // than the constant's (the Offset's always as wide as the outermost call), 199 // so we'll zext here and process any extension in the isa<SExtInst> & 200 // isa<ZExtInst> cases below. 201 Offset += Const->getValue().zextOrSelf(Offset.getBitWidth()); 202 assert(Scale == 0 && "Constant values don't have a scale"); 203 return V; 204 } 205 206 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 207 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 208 209 // If we've been called recursively, then Offset and Scale will be wider 210 // than the BOp operands. We'll always zext it here as we'll process sign 211 // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases). 212 APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth()); 213 214 switch (BOp->getOpcode()) { 215 default: 216 // We don't understand this instruction, so we can't decompose it any 217 // further. 218 Scale = 1; 219 Offset = 0; 220 return V; 221 case Instruction::Or: 222 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 223 // analyze it. 224 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, 225 BOp, DT)) { 226 Scale = 1; 227 Offset = 0; 228 return V; 229 } 230 LLVM_FALLTHROUGH; 231 case Instruction::Add: 232 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 233 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 234 Offset += RHS; 235 break; 236 case Instruction::Sub: 237 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 238 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 239 Offset -= RHS; 240 break; 241 case Instruction::Mul: 242 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 243 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 244 Offset *= RHS; 245 Scale *= RHS; 246 break; 247 case Instruction::Shl: 248 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 249 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 250 Offset <<= RHS.getLimitedValue(); 251 Scale <<= RHS.getLimitedValue(); 252 // the semantics of nsw and nuw for left shifts don't match those of 253 // multiplications, so we won't propagate them. 254 NSW = NUW = false; 255 return V; 256 } 257 258 if (isa<OverflowingBinaryOperator>(BOp)) { 259 NUW &= BOp->hasNoUnsignedWrap(); 260 NSW &= BOp->hasNoSignedWrap(); 261 } 262 return V; 263 } 264 } 265 266 // Since GEP indices are sign extended anyway, we don't care about the high 267 // bits of a sign or zero extended value - just scales and offsets. The 268 // extensions have to be consistent though. 269 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) { 270 Value *CastOp = cast<CastInst>(V)->getOperand(0); 271 unsigned NewWidth = V->getType()->getPrimitiveSizeInBits(); 272 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 273 unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits; 274 const Value *Result = 275 GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL, 276 Depth + 1, AC, DT, NSW, NUW); 277 278 // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this 279 // by just incrementing the number of bits we've extended by. 280 unsigned ExtendedBy = NewWidth - SmallWidth; 281 282 if (isa<SExtInst>(V) && ZExtBits == 0) { 283 // sext(sext(%x, a), b) == sext(%x, a + b) 284 285 if (NSW) { 286 // We haven't sign-wrapped, so it's valid to decompose sext(%x + c) 287 // into sext(%x) + sext(c). We'll sext the Offset ourselves: 288 unsigned OldWidth = Offset.getBitWidth(); 289 Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth); 290 } else { 291 // We may have signed-wrapped, so don't decompose sext(%x + c) into 292 // sext(%x) + sext(c) 293 Scale = 1; 294 Offset = 0; 295 Result = CastOp; 296 ZExtBits = OldZExtBits; 297 SExtBits = OldSExtBits; 298 } 299 SExtBits += ExtendedBy; 300 } else { 301 // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b) 302 303 if (!NUW) { 304 // We may have unsigned-wrapped, so don't decompose zext(%x + c) into 305 // zext(%x) + zext(c) 306 Scale = 1; 307 Offset = 0; 308 Result = CastOp; 309 ZExtBits = OldZExtBits; 310 SExtBits = OldSExtBits; 311 } 312 ZExtBits += ExtendedBy; 313 } 314 315 return Result; 316 } 317 318 Scale = 1; 319 Offset = 0; 320 return V; 321 } 322 323 /// To ensure a pointer offset fits in an integer of size PointerSize 324 /// (in bits) when that size is smaller than 64. This is an issue in 325 /// particular for 32b programs with negative indices that rely on two's 326 /// complement wrap-arounds for precise alias information. 327 static int64_t adjustToPointerSize(int64_t Offset, unsigned PointerSize) { 328 assert(PointerSize <= 64 && "Invalid PointerSize!"); 329 unsigned ShiftBits = 64 - PointerSize; 330 return (int64_t)((uint64_t)Offset << ShiftBits) >> ShiftBits; 331 } 332 333 /// If V is a symbolic pointer expression, decompose it into a base pointer 334 /// with a constant offset and a number of scaled symbolic offsets. 335 /// 336 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 337 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 338 /// specified amount, but which may have other unrepresented high bits. As 339 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 340 /// 341 /// When DataLayout is around, this function is capable of analyzing everything 342 /// that GetUnderlyingObject can look through. To be able to do that 343 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search 344 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks 345 /// through pointer casts. 346 bool BasicAAResult::DecomposeGEPExpression(const Value *V, 347 DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC, 348 DominatorTree *DT) { 349 // Limit recursion depth to limit compile time in crazy cases. 350 unsigned MaxLookup = MaxLookupSearchDepth; 351 SearchTimes++; 352 353 Decomposed.StructOffset = 0; 354 Decomposed.OtherOffset = 0; 355 Decomposed.VarIndices.clear(); 356 do { 357 // See if this is a bitcast or GEP. 358 const Operator *Op = dyn_cast<Operator>(V); 359 if (!Op) { 360 // The only non-operator case we can handle are GlobalAliases. 361 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 362 if (!GA->isInterposable()) { 363 V = GA->getAliasee(); 364 continue; 365 } 366 } 367 Decomposed.Base = V; 368 return false; 369 } 370 371 if (Op->getOpcode() == Instruction::BitCast || 372 Op->getOpcode() == Instruction::AddrSpaceCast) { 373 V = Op->getOperand(0); 374 continue; 375 } 376 377 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 378 if (!GEPOp) { 379 if (auto CS = ImmutableCallSite(V)) 380 if (const Value *RV = CS.getReturnedArgOperand()) { 381 V = RV; 382 continue; 383 } 384 385 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 386 // can come up with something. This matches what GetUnderlyingObject does. 387 if (const Instruction *I = dyn_cast<Instruction>(V)) 388 // TODO: Get a DominatorTree and AssumptionCache and use them here 389 // (these are both now available in this function, but this should be 390 // updated when GetUnderlyingObject is updated). TLI should be 391 // provided also. 392 if (const Value *Simplified = 393 SimplifyInstruction(const_cast<Instruction *>(I), DL)) { 394 V = Simplified; 395 continue; 396 } 397 398 Decomposed.Base = V; 399 return false; 400 } 401 402 // Don't attempt to analyze GEPs over unsized objects. 403 if (!GEPOp->getSourceElementType()->isSized()) { 404 Decomposed.Base = V; 405 return false; 406 } 407 408 unsigned AS = GEPOp->getPointerAddressSpace(); 409 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 410 gep_type_iterator GTI = gep_type_begin(GEPOp); 411 unsigned PointerSize = DL.getPointerSizeInBits(AS); 412 // Assume all GEP operands are constants until proven otherwise. 413 bool GepHasConstantOffset = true; 414 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 415 I != E; ++I) { 416 const Value *Index = *I; 417 // Compute the (potentially symbolic) offset in bytes for this index. 418 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 419 // For a struct, add the member offset. 420 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 421 if (FieldNo == 0) 422 continue; 423 424 Decomposed.StructOffset += 425 DL.getStructLayout(STy)->getElementOffset(FieldNo); 426 continue; 427 } 428 429 // For an array/pointer, add the element offset, explicitly scaled. 430 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 431 if (CIdx->isZero()) 432 continue; 433 Decomposed.OtherOffset += 434 DL.getTypeAllocSize(*GTI) * CIdx->getSExtValue(); 435 continue; 436 } 437 438 GepHasConstantOffset = false; 439 440 uint64_t Scale = DL.getTypeAllocSize(*GTI); 441 unsigned ZExtBits = 0, SExtBits = 0; 442 443 // If the integer type is smaller than the pointer size, it is implicitly 444 // sign extended to pointer size. 445 unsigned Width = Index->getType()->getIntegerBitWidth(); 446 if (PointerSize > Width) 447 SExtBits += PointerSize - Width; 448 449 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 450 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 451 bool NSW = true, NUW = true; 452 Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits, 453 SExtBits, DL, 0, AC, DT, NSW, NUW); 454 455 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 456 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 457 Decomposed.OtherOffset += IndexOffset.getSExtValue() * Scale; 458 Scale *= IndexScale.getSExtValue(); 459 460 // If we already had an occurrence of this index variable, merge this 461 // scale into it. For example, we want to handle: 462 // A[x][x] -> x*16 + x*4 -> x*20 463 // This also ensures that 'x' only appears in the index list once. 464 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { 465 if (Decomposed.VarIndices[i].V == Index && 466 Decomposed.VarIndices[i].ZExtBits == ZExtBits && 467 Decomposed.VarIndices[i].SExtBits == SExtBits) { 468 Scale += Decomposed.VarIndices[i].Scale; 469 Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i); 470 break; 471 } 472 } 473 474 // Make sure that we have a scale that makes sense for this target's 475 // pointer size. 476 Scale = adjustToPointerSize(Scale, PointerSize); 477 478 if (Scale) { 479 VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, 480 static_cast<int64_t>(Scale)}; 481 Decomposed.VarIndices.push_back(Entry); 482 } 483 } 484 485 // Take care of wrap-arounds 486 if (GepHasConstantOffset) { 487 Decomposed.StructOffset = 488 adjustToPointerSize(Decomposed.StructOffset, PointerSize); 489 Decomposed.OtherOffset = 490 adjustToPointerSize(Decomposed.OtherOffset, PointerSize); 491 } 492 493 // Analyze the base pointer next. 494 V = GEPOp->getOperand(0); 495 } while (--MaxLookup); 496 497 // If the chain of expressions is too deep, just return early. 498 Decomposed.Base = V; 499 SearchLimitReached++; 500 return true; 501 } 502 503 /// Returns whether the given pointer value points to memory that is local to 504 /// the function, with global constants being considered local to all 505 /// functions. 506 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc, 507 bool OrLocal) { 508 assert(Visited.empty() && "Visited must be cleared after use!"); 509 510 unsigned MaxLookup = 8; 511 SmallVector<const Value *, 16> Worklist; 512 Worklist.push_back(Loc.Ptr); 513 do { 514 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL); 515 if (!Visited.insert(V).second) { 516 Visited.clear(); 517 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 518 } 519 520 // An alloca instruction defines local memory. 521 if (OrLocal && isa<AllocaInst>(V)) 522 continue; 523 524 // A global constant counts as local memory for our purposes. 525 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 526 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 527 // global to be marked constant in some modules and non-constant in 528 // others. GV may even be a declaration, not a definition. 529 if (!GV->isConstant()) { 530 Visited.clear(); 531 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 532 } 533 continue; 534 } 535 536 // If both select values point to local memory, then so does the select. 537 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 538 Worklist.push_back(SI->getTrueValue()); 539 Worklist.push_back(SI->getFalseValue()); 540 continue; 541 } 542 543 // If all values incoming to a phi node point to local memory, then so does 544 // the phi. 545 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 546 // Don't bother inspecting phi nodes with many operands. 547 if (PN->getNumIncomingValues() > MaxLookup) { 548 Visited.clear(); 549 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 550 } 551 for (Value *IncValue : PN->incoming_values()) 552 Worklist.push_back(IncValue); 553 continue; 554 } 555 556 // Otherwise be conservative. 557 Visited.clear(); 558 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 559 560 } while (!Worklist.empty() && --MaxLookup); 561 562 Visited.clear(); 563 return Worklist.empty(); 564 } 565 566 /// Returns the behavior when calling the given call site. 567 FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) { 568 if (CS.doesNotAccessMemory()) 569 // Can't do better than this. 570 return FMRB_DoesNotAccessMemory; 571 572 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 573 574 // If the callsite knows it only reads memory, don't return worse 575 // than that. 576 if (CS.onlyReadsMemory()) 577 Min = FMRB_OnlyReadsMemory; 578 else if (CS.doesNotReadMemory()) 579 Min = FMRB_DoesNotReadMemory; 580 581 if (CS.onlyAccessesArgMemory()) 582 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 583 584 // If CS has operand bundles then aliasing attributes from the function it 585 // calls do not directly apply to the CallSite. This can be made more 586 // precise in the future. 587 if (!CS.hasOperandBundles()) 588 if (const Function *F = CS.getCalledFunction()) 589 Min = 590 FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F)); 591 592 return Min; 593 } 594 595 /// Returns the behavior when calling the given function. For use when the call 596 /// site is not known. 597 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) { 598 // If the function declares it doesn't access memory, we can't do better. 599 if (F->doesNotAccessMemory()) 600 return FMRB_DoesNotAccessMemory; 601 602 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 603 604 // If the function declares it only reads memory, go with that. 605 if (F->onlyReadsMemory()) 606 Min = FMRB_OnlyReadsMemory; 607 else if (F->doesNotReadMemory()) 608 Min = FMRB_DoesNotReadMemory; 609 610 if (F->onlyAccessesArgMemory()) 611 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 612 else if (F->onlyAccessesInaccessibleMemory()) 613 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 614 else if (F->onlyAccessesInaccessibleMemOrArgMem()) 615 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 616 617 return Min; 618 } 619 620 /// Returns true if this is a writeonly (i.e Mod only) parameter. 621 static bool isWriteOnlyParam(ImmutableCallSite CS, unsigned ArgIdx, 622 const TargetLibraryInfo &TLI) { 623 if (CS.paramHasAttr(ArgIdx + 1, Attribute::WriteOnly)) 624 return true; 625 626 // We can bound the aliasing properties of memset_pattern16 just as we can 627 // for memcpy/memset. This is particularly important because the 628 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 629 // whenever possible. 630 // FIXME Consider handling this in InferFunctionAttr.cpp together with other 631 // attributes. 632 LibFunc::Func F; 633 if (CS.getCalledFunction() && TLI.getLibFunc(*CS.getCalledFunction(), F) && 634 F == LibFunc::memset_pattern16 && TLI.has(F)) 635 if (ArgIdx == 0) 636 return true; 637 638 // TODO: memset_pattern4, memset_pattern8 639 // TODO: _chk variants 640 // TODO: strcmp, strcpy 641 642 return false; 643 } 644 645 ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS, 646 unsigned ArgIdx) { 647 648 // Checking for known builtin intrinsics and target library functions. 649 if (isWriteOnlyParam(CS, ArgIdx, TLI)) 650 return MRI_Mod; 651 652 if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadOnly)) 653 return MRI_Ref; 654 655 if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadNone)) 656 return MRI_NoModRef; 657 658 return AAResultBase::getArgModRefInfo(CS, ArgIdx); 659 } 660 661 static bool isIntrinsicCall(ImmutableCallSite CS, Intrinsic::ID IID) { 662 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 663 return II && II->getIntrinsicID() == IID; 664 } 665 666 #ifndef NDEBUG 667 static const Function *getParent(const Value *V) { 668 if (const Instruction *inst = dyn_cast<Instruction>(V)) 669 return inst->getParent()->getParent(); 670 671 if (const Argument *arg = dyn_cast<Argument>(V)) 672 return arg->getParent(); 673 674 return nullptr; 675 } 676 677 static bool notDifferentParent(const Value *O1, const Value *O2) { 678 679 const Function *F1 = getParent(O1); 680 const Function *F2 = getParent(O2); 681 682 return !F1 || !F2 || F1 == F2; 683 } 684 #endif 685 686 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 687 const MemoryLocation &LocB) { 688 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 689 "BasicAliasAnalysis doesn't support interprocedural queries."); 690 691 // If we have a directly cached entry for these locations, we have recursed 692 // through this once, so just return the cached results. Notably, when this 693 // happens, we don't clear the cache. 694 auto CacheIt = AliasCache.find(LocPair(LocA, LocB)); 695 if (CacheIt != AliasCache.end()) 696 return CacheIt->second; 697 698 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr, 699 LocB.Size, LocB.AATags); 700 // AliasCache rarely has more than 1 or 2 elements, always use 701 // shrink_and_clear so it quickly returns to the inline capacity of the 702 // SmallDenseMap if it ever grows larger. 703 // FIXME: This should really be shrink_to_inline_capacity_and_clear(). 704 AliasCache.shrink_and_clear(); 705 VisitedPhiBBs.clear(); 706 return Alias; 707 } 708 709 /// Checks to see if the specified callsite can clobber the specified memory 710 /// object. 711 /// 712 /// Since we only look at local properties of this function, we really can't 713 /// say much about this query. We do, however, use simple "address taken" 714 /// analysis on local objects. 715 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS, 716 const MemoryLocation &Loc) { 717 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && 718 "AliasAnalysis query involving multiple functions!"); 719 720 const Value *Object = GetUnderlyingObject(Loc.Ptr, DL); 721 722 // If this is a tail call and Loc.Ptr points to a stack location, we know that 723 // the tail call cannot access or modify the local stack. 724 // We cannot exclude byval arguments here; these belong to the caller of 725 // the current function not to the current function, and a tail callee 726 // may reference them. 727 if (isa<AllocaInst>(Object)) 728 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) 729 if (CI->isTailCall()) 730 return MRI_NoModRef; 731 732 // If the pointer is to a locally allocated object that does not escape, 733 // then the call can not mod/ref the pointer unless the call takes the pointer 734 // as an argument, and itself doesn't capture it. 735 if (!isa<Constant>(Object) && CS.getInstruction() != Object && 736 isNonEscapingLocalObject(Object)) { 737 bool PassedAsArg = false; 738 unsigned OperandNo = 0; 739 for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end(); 740 CI != CE; ++CI, ++OperandNo) { 741 // Only look at the no-capture or byval pointer arguments. If this 742 // pointer were passed to arguments that were neither of these, then it 743 // couldn't be no-capture. 744 if (!(*CI)->getType()->isPointerTy() || 745 (!CS.doesNotCapture(OperandNo) && !CS.isByValArgument(OperandNo))) 746 continue; 747 748 // If this is a no-capture pointer argument, see if we can tell that it 749 // is impossible to alias the pointer we're checking. If not, we have to 750 // assume that the call could touch the pointer, even though it doesn't 751 // escape. 752 AliasResult AR = 753 getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object)); 754 if (AR) { 755 PassedAsArg = true; 756 break; 757 } 758 } 759 760 if (!PassedAsArg) 761 return MRI_NoModRef; 762 } 763 764 // If the CallSite is to malloc or calloc, we can assume that it doesn't 765 // modify any IR visible value. This is only valid because we assume these 766 // routines do not read values visible in the IR. TODO: Consider special 767 // casing realloc and strdup routines which access only their arguments as 768 // well. Or alternatively, replace all of this with inaccessiblememonly once 769 // that's implemented fully. 770 auto *Inst = CS.getInstruction(); 771 if (isMallocLikeFn(Inst, &TLI) || isCallocLikeFn(Inst, &TLI)) { 772 // Be conservative if the accessed pointer may alias the allocation - 773 // fallback to the generic handling below. 774 if (getBestAAResults().alias(MemoryLocation(Inst), Loc) == NoAlias) 775 return MRI_NoModRef; 776 } 777 778 // While the assume intrinsic is marked as arbitrarily writing so that 779 // proper control dependencies will be maintained, it never aliases any 780 // particular memory location. 781 if (isIntrinsicCall(CS, Intrinsic::assume)) 782 return MRI_NoModRef; 783 784 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 785 // that proper control dependencies are maintained but they never mods any 786 // particular memory location. 787 // 788 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 789 // heap state at the point the guard is issued needs to be consistent in case 790 // the guard invokes the "deopt" continuation. 791 if (isIntrinsicCall(CS, Intrinsic::experimental_guard)) 792 return MRI_Ref; 793 794 // Like assumes, invariant.start intrinsics were also marked as arbitrarily 795 // writing so that proper control dependencies are maintained but they never 796 // mod any particular memory location visible to the IR. 797 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start 798 // intrinsic is now modeled as reading memory. This prevents hoisting the 799 // invariant.start intrinsic over stores. Consider: 800 // *ptr = 40; 801 // *ptr = 50; 802 // invariant_start(ptr) 803 // int val = *ptr; 804 // print(val); 805 // 806 // This cannot be transformed to: 807 // 808 // *ptr = 40; 809 // invariant_start(ptr) 810 // *ptr = 50; 811 // int val = *ptr; 812 // print(val); 813 // 814 // The transformation will cause the second store to be ignored (based on 815 // rules of invariant.start) and print 40, while the first program always 816 // prints 50. 817 if (isIntrinsicCall(CS, Intrinsic::invariant_start)) 818 return MRI_Ref; 819 820 // The AAResultBase base class has some smarts, lets use them. 821 return AAResultBase::getModRefInfo(CS, Loc); 822 } 823 824 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1, 825 ImmutableCallSite CS2) { 826 // While the assume intrinsic is marked as arbitrarily writing so that 827 // proper control dependencies will be maintained, it never aliases any 828 // particular memory location. 829 if (isIntrinsicCall(CS1, Intrinsic::assume) || 830 isIntrinsicCall(CS2, Intrinsic::assume)) 831 return MRI_NoModRef; 832 833 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 834 // that proper control dependencies are maintained but they never mod any 835 // particular memory location. 836 // 837 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 838 // heap state at the point the guard is issued needs to be consistent in case 839 // the guard invokes the "deopt" continuation. 840 841 // NB! This function is *not* commutative, so we specical case two 842 // possibilities for guard intrinsics. 843 844 if (isIntrinsicCall(CS1, Intrinsic::experimental_guard)) 845 return getModRefBehavior(CS2) & MRI_Mod ? MRI_Ref : MRI_NoModRef; 846 847 if (isIntrinsicCall(CS2, Intrinsic::experimental_guard)) 848 return getModRefBehavior(CS1) & MRI_Mod ? MRI_Mod : MRI_NoModRef; 849 850 // The AAResultBase base class has some smarts, lets use them. 851 return AAResultBase::getModRefInfo(CS1, CS2); 852 } 853 854 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators, 855 /// both having the exact same pointer operand. 856 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1, 857 uint64_t V1Size, 858 const GEPOperator *GEP2, 859 uint64_t V2Size, 860 const DataLayout &DL) { 861 862 assert(GEP1->getPointerOperand()->stripPointerCasts() == 863 GEP2->getPointerOperand()->stripPointerCasts() && 864 GEP1->getPointerOperand()->getType() == 865 GEP2->getPointerOperand()->getType() && 866 "Expected GEPs with the same pointer operand"); 867 868 // Try to determine whether GEP1 and GEP2 index through arrays, into structs, 869 // such that the struct field accesses provably cannot alias. 870 // We also need at least two indices (the pointer, and the struct field). 871 if (GEP1->getNumIndices() != GEP2->getNumIndices() || 872 GEP1->getNumIndices() < 2) 873 return MayAlias; 874 875 // If we don't know the size of the accesses through both GEPs, we can't 876 // determine whether the struct fields accessed can't alias. 877 if (V1Size == MemoryLocation::UnknownSize || 878 V2Size == MemoryLocation::UnknownSize) 879 return MayAlias; 880 881 ConstantInt *C1 = 882 dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1)); 883 ConstantInt *C2 = 884 dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1)); 885 886 // If the last (struct) indices are constants and are equal, the other indices 887 // might be also be dynamically equal, so the GEPs can alias. 888 if (C1 && C2 && C1->getSExtValue() == C2->getSExtValue()) 889 return MayAlias; 890 891 // Find the last-indexed type of the GEP, i.e., the type you'd get if 892 // you stripped the last index. 893 // On the way, look at each indexed type. If there's something other 894 // than an array, different indices can lead to different final types. 895 SmallVector<Value *, 8> IntermediateIndices; 896 897 // Insert the first index; we don't need to check the type indexed 898 // through it as it only drops the pointer indirection. 899 assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine"); 900 IntermediateIndices.push_back(GEP1->getOperand(1)); 901 902 // Insert all the remaining indices but the last one. 903 // Also, check that they all index through arrays. 904 for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) { 905 if (!isa<ArrayType>(GetElementPtrInst::getIndexedType( 906 GEP1->getSourceElementType(), IntermediateIndices))) 907 return MayAlias; 908 IntermediateIndices.push_back(GEP1->getOperand(i + 1)); 909 } 910 911 auto *Ty = GetElementPtrInst::getIndexedType( 912 GEP1->getSourceElementType(), IntermediateIndices); 913 StructType *LastIndexedStruct = dyn_cast<StructType>(Ty); 914 915 if (isa<SequentialType>(Ty)) { 916 // We know that: 917 // - both GEPs begin indexing from the exact same pointer; 918 // - the last indices in both GEPs are constants, indexing into a sequential 919 // type (array or pointer); 920 // - both GEPs only index through arrays prior to that. 921 // 922 // Because array indices greater than the number of elements are valid in 923 // GEPs, unless we know the intermediate indices are identical between 924 // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't 925 // partially overlap. We also need to check that the loaded size matches 926 // the element size, otherwise we could still have overlap. 927 const uint64_t ElementSize = 928 DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType()); 929 if (V1Size != ElementSize || V2Size != ElementSize) 930 return MayAlias; 931 932 for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i) 933 if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1)) 934 return MayAlias; 935 936 // Now we know that the array/pointer that GEP1 indexes into and that 937 // that GEP2 indexes into must either precisely overlap or be disjoint. 938 // Because they cannot partially overlap and because fields in an array 939 // cannot overlap, if we can prove the final indices are different between 940 // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias. 941 942 // If the last indices are constants, we've already checked they don't 943 // equal each other so we can exit early. 944 if (C1 && C2) 945 return NoAlias; 946 if (isKnownNonEqual(GEP1->getOperand(GEP1->getNumOperands() - 1), 947 GEP2->getOperand(GEP2->getNumOperands() - 1), 948 DL)) 949 return NoAlias; 950 return MayAlias; 951 } else if (!LastIndexedStruct || !C1 || !C2) { 952 return MayAlias; 953 } 954 955 // We know that: 956 // - both GEPs begin indexing from the exact same pointer; 957 // - the last indices in both GEPs are constants, indexing into a struct; 958 // - said indices are different, hence, the pointed-to fields are different; 959 // - both GEPs only index through arrays prior to that. 960 // 961 // This lets us determine that the struct that GEP1 indexes into and the 962 // struct that GEP2 indexes into must either precisely overlap or be 963 // completely disjoint. Because they cannot partially overlap, indexing into 964 // different non-overlapping fields of the struct will never alias. 965 966 // Therefore, the only remaining thing needed to show that both GEPs can't 967 // alias is that the fields are not overlapping. 968 const StructLayout *SL = DL.getStructLayout(LastIndexedStruct); 969 const uint64_t StructSize = SL->getSizeInBytes(); 970 const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue()); 971 const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue()); 972 973 auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size, 974 uint64_t V2Off, uint64_t V2Size) { 975 return V1Off < V2Off && V1Off + V1Size <= V2Off && 976 ((V2Off + V2Size <= StructSize) || 977 (V2Off + V2Size - StructSize <= V1Off)); 978 }; 979 980 if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) || 981 EltsDontOverlap(V2Off, V2Size, V1Off, V1Size)) 982 return NoAlias; 983 984 return MayAlias; 985 } 986 987 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the 988 // beginning of the object the GEP points would have a negative offset with 989 // repsect to the alloca, that means the GEP can not alias pointer (b). 990 // Note that the pointer based on the alloca may not be a GEP. For 991 // example, it may be the alloca itself. 992 // The same applies if (b) is based on a GlobalVariable. Note that just being 993 // based on isIdentifiedObject() is not enough - we need an identified object 994 // that does not permit access to negative offsets. For example, a negative 995 // offset from a noalias argument or call can be inbounds w.r.t the actual 996 // underlying object. 997 // 998 // For example, consider: 999 // 1000 // struct { int f0, int f1, ...} foo; 1001 // foo alloca; 1002 // foo* random = bar(alloca); 1003 // int *f0 = &alloca.f0 1004 // int *f1 = &random->f1; 1005 // 1006 // Which is lowered, approximately, to: 1007 // 1008 // %alloca = alloca %struct.foo 1009 // %random = call %struct.foo* @random(%struct.foo* %alloca) 1010 // %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0 1011 // %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1 1012 // 1013 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated 1014 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also 1015 // point into the same object. But since %f0 points to the beginning of %alloca, 1016 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher 1017 // than (%alloca - 1), and so is not inbounds, a contradiction. 1018 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp, 1019 const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject, 1020 uint64_t ObjectAccessSize) { 1021 // If the object access size is unknown, or the GEP isn't inbounds, bail. 1022 if (ObjectAccessSize == MemoryLocation::UnknownSize || !GEPOp->isInBounds()) 1023 return false; 1024 1025 // We need the object to be an alloca or a globalvariable, and want to know 1026 // the offset of the pointer from the object precisely, so no variable 1027 // indices are allowed. 1028 if (!(isa<AllocaInst>(DecompObject.Base) || 1029 isa<GlobalVariable>(DecompObject.Base)) || 1030 !DecompObject.VarIndices.empty()) 1031 return false; 1032 1033 int64_t ObjectBaseOffset = DecompObject.StructOffset + 1034 DecompObject.OtherOffset; 1035 1036 // If the GEP has no variable indices, we know the precise offset 1037 // from the base, then use it. If the GEP has variable indices, we're in 1038 // a bit more trouble: we can't count on the constant offsets that come 1039 // from non-struct sources, since these can be "rewound" by a negative 1040 // variable offset. So use only offsets that came from structs. 1041 int64_t GEPBaseOffset = DecompGEP.StructOffset; 1042 if (DecompGEP.VarIndices.empty()) 1043 GEPBaseOffset += DecompGEP.OtherOffset; 1044 1045 return (GEPBaseOffset >= ObjectBaseOffset + (int64_t)ObjectAccessSize); 1046 } 1047 1048 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 1049 /// another pointer. 1050 /// 1051 /// We know that V1 is a GEP, but we don't know anything about V2. 1052 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for 1053 /// V2. 1054 AliasResult BasicAAResult::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, 1055 const AAMDNodes &V1AAInfo, const Value *V2, 1056 uint64_t V2Size, const AAMDNodes &V2AAInfo, 1057 const Value *UnderlyingV1, 1058 const Value *UnderlyingV2) { 1059 DecomposedGEP DecompGEP1, DecompGEP2; 1060 bool GEP1MaxLookupReached = 1061 DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT); 1062 bool GEP2MaxLookupReached = 1063 DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT); 1064 1065 int64_t GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset; 1066 int64_t GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset; 1067 1068 assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 && 1069 "DecomposeGEPExpression returned a result different from " 1070 "GetUnderlyingObject"); 1071 1072 // If the GEP's offset relative to its base is such that the base would 1073 // fall below the start of the object underlying V2, then the GEP and V2 1074 // cannot alias. 1075 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1076 isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size)) 1077 return NoAlias; 1078 // If we have two gep instructions with must-alias or not-alias'ing base 1079 // pointers, figure out if the indexes to the GEP tell us anything about the 1080 // derived pointer. 1081 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 1082 // Check for the GEP base being at a negative offset, this time in the other 1083 // direction. 1084 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1085 isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size)) 1086 return NoAlias; 1087 // Do the base pointers alias? 1088 AliasResult BaseAlias = 1089 aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(), 1090 UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes()); 1091 1092 // Check for geps of non-aliasing underlying pointers where the offsets are 1093 // identical. 1094 if ((BaseAlias == MayAlias) && V1Size == V2Size) { 1095 // Do the base pointers alias assuming type and size. 1096 AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo, 1097 UnderlyingV2, V2Size, V2AAInfo); 1098 if (PreciseBaseAlias == NoAlias) { 1099 // See if the computed offset from the common pointer tells us about the 1100 // relation of the resulting pointer. 1101 // If the max search depth is reached the result is undefined 1102 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1103 return MayAlias; 1104 1105 // Same offsets. 1106 if (GEP1BaseOffset == GEP2BaseOffset && 1107 DecompGEP1.VarIndices == DecompGEP2.VarIndices) 1108 return NoAlias; 1109 } 1110 } 1111 1112 // If we get a No or May, then return it immediately, no amount of analysis 1113 // will improve this situation. 1114 if (BaseAlias != MustAlias) 1115 return BaseAlias; 1116 1117 // Otherwise, we have a MustAlias. Since the base pointers alias each other 1118 // exactly, see if the computed offset from the common pointer tells us 1119 // about the relation of the resulting pointer. 1120 // If we know the two GEPs are based off of the exact same pointer (and not 1121 // just the same underlying object), see if that tells us anything about 1122 // the resulting pointers. 1123 if (GEP1->getPointerOperand()->stripPointerCasts() == 1124 GEP2->getPointerOperand()->stripPointerCasts() && 1125 GEP1->getPointerOperand()->getType() == 1126 GEP2->getPointerOperand()->getType()) { 1127 AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL); 1128 // If we couldn't find anything interesting, don't abandon just yet. 1129 if (R != MayAlias) 1130 return R; 1131 } 1132 1133 // If the max search depth is reached, the result is undefined 1134 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1135 return MayAlias; 1136 1137 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1138 // symbolic difference. 1139 GEP1BaseOffset -= GEP2BaseOffset; 1140 GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices); 1141 1142 } else { 1143 // Check to see if these two pointers are related by the getelementptr 1144 // instruction. If one pointer is a GEP with a non-zero index of the other 1145 // pointer, we know they cannot alias. 1146 1147 // If both accesses are unknown size, we can't do anything useful here. 1148 if (V1Size == MemoryLocation::UnknownSize && 1149 V2Size == MemoryLocation::UnknownSize) 1150 return MayAlias; 1151 1152 AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, 1153 AAMDNodes(), V2, V2Size, V2AAInfo, 1154 nullptr, UnderlyingV2); 1155 if (R != MustAlias) 1156 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 1157 // If V2 is known not to alias GEP base pointer, then the two values 1158 // cannot alias per GEP semantics: "A pointer value formed from a 1159 // getelementptr instruction is associated with the addresses associated 1160 // with the first operand of the getelementptr". 1161 return R; 1162 1163 // If the max search depth is reached the result is undefined 1164 if (GEP1MaxLookupReached) 1165 return MayAlias; 1166 } 1167 1168 // In the two GEP Case, if there is no difference in the offsets of the 1169 // computed pointers, the resultant pointers are a must alias. This 1170 // happens when we have two lexically identical GEP's (for example). 1171 // 1172 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 1173 // must aliases the GEP, the end result is a must alias also. 1174 if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty()) 1175 return MustAlias; 1176 1177 // If there is a constant difference between the pointers, but the difference 1178 // is less than the size of the associated memory object, then we know 1179 // that the objects are partially overlapping. If the difference is 1180 // greater, we know they do not overlap. 1181 if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) { 1182 if (GEP1BaseOffset >= 0) { 1183 if (V2Size != MemoryLocation::UnknownSize) { 1184 if ((uint64_t)GEP1BaseOffset < V2Size) 1185 return PartialAlias; 1186 return NoAlias; 1187 } 1188 } else { 1189 // We have the situation where: 1190 // + + 1191 // | BaseOffset | 1192 // ---------------->| 1193 // |-->V1Size |-------> V2Size 1194 // GEP1 V2 1195 // We need to know that V2Size is not unknown, otherwise we might have 1196 // stripped a gep with negative index ('gep <ptr>, -1, ...). 1197 if (V1Size != MemoryLocation::UnknownSize && 1198 V2Size != MemoryLocation::UnknownSize) { 1199 if (-(uint64_t)GEP1BaseOffset < V1Size) 1200 return PartialAlias; 1201 return NoAlias; 1202 } 1203 } 1204 } 1205 1206 if (!DecompGEP1.VarIndices.empty()) { 1207 uint64_t Modulo = 0; 1208 bool AllPositive = true; 1209 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { 1210 1211 // Try to distinguish something like &A[i][1] against &A[42][0]. 1212 // Grab the least significant bit set in any of the scales. We 1213 // don't need std::abs here (even if the scale's negative) as we'll 1214 // be ^'ing Modulo with itself later. 1215 Modulo |= (uint64_t)DecompGEP1.VarIndices[i].Scale; 1216 1217 if (AllPositive) { 1218 // If the Value could change between cycles, then any reasoning about 1219 // the Value this cycle may not hold in the next cycle. We'll just 1220 // give up if we can't determine conditions that hold for every cycle: 1221 const Value *V = DecompGEP1.VarIndices[i].V; 1222 1223 bool SignKnownZero, SignKnownOne; 1224 ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, DL, 1225 0, &AC, nullptr, DT); 1226 1227 // Zero-extension widens the variable, and so forces the sign 1228 // bit to zero. 1229 bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V); 1230 SignKnownZero |= IsZExt; 1231 SignKnownOne &= !IsZExt; 1232 1233 // If the variable begins with a zero then we know it's 1234 // positive, regardless of whether the value is signed or 1235 // unsigned. 1236 int64_t Scale = DecompGEP1.VarIndices[i].Scale; 1237 AllPositive = 1238 (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0); 1239 } 1240 } 1241 1242 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1243 1244 // We can compute the difference between the two addresses 1245 // mod Modulo. Check whether that difference guarantees that the 1246 // two locations do not alias. 1247 uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1); 1248 if (V1Size != MemoryLocation::UnknownSize && 1249 V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size && 1250 V1Size <= Modulo - ModOffset) 1251 return NoAlias; 1252 1253 // If we know all the variables are positive, then GEP1 >= GEP1BasePtr. 1254 // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers 1255 // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr. 1256 if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset) 1257 return NoAlias; 1258 1259 if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size, 1260 GEP1BaseOffset, &AC, DT)) 1261 return NoAlias; 1262 } 1263 1264 // Statically, we can see that the base objects are the same, but the 1265 // pointers have dynamic offsets which we can't resolve. And none of our 1266 // little tricks above worked. 1267 // 1268 // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the 1269 // practical effect of this is protecting TBAA in the case of dynamic 1270 // indices into arrays of unions or malloc'd memory. 1271 return PartialAlias; 1272 } 1273 1274 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1275 // If the results agree, take it. 1276 if (A == B) 1277 return A; 1278 // A mix of PartialAlias and MustAlias is PartialAlias. 1279 if ((A == PartialAlias && B == MustAlias) || 1280 (B == PartialAlias && A == MustAlias)) 1281 return PartialAlias; 1282 // Otherwise, we don't know anything. 1283 return MayAlias; 1284 } 1285 1286 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1287 /// against another. 1288 AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, uint64_t SISize, 1289 const AAMDNodes &SIAAInfo, 1290 const Value *V2, uint64_t V2Size, 1291 const AAMDNodes &V2AAInfo, 1292 const Value *UnderV2) { 1293 // If the values are Selects with the same condition, we can do a more precise 1294 // check: just check for aliases between the values on corresponding arms. 1295 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1296 if (SI->getCondition() == SI2->getCondition()) { 1297 AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, 1298 SI2->getTrueValue(), V2Size, V2AAInfo); 1299 if (Alias == MayAlias) 1300 return MayAlias; 1301 AliasResult ThisAlias = 1302 aliasCheck(SI->getFalseValue(), SISize, SIAAInfo, 1303 SI2->getFalseValue(), V2Size, V2AAInfo); 1304 return MergeAliasResults(ThisAlias, Alias); 1305 } 1306 1307 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1308 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1309 AliasResult Alias = 1310 aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), 1311 SISize, SIAAInfo, UnderV2); 1312 if (Alias == MayAlias) 1313 return MayAlias; 1314 1315 AliasResult ThisAlias = 1316 aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo, 1317 UnderV2); 1318 return MergeAliasResults(ThisAlias, Alias); 1319 } 1320 1321 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1322 /// another. 1323 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, uint64_t PNSize, 1324 const AAMDNodes &PNAAInfo, const Value *V2, 1325 uint64_t V2Size, const AAMDNodes &V2AAInfo, 1326 const Value *UnderV2) { 1327 // Track phi nodes we have visited. We use this information when we determine 1328 // value equivalence. 1329 VisitedPhiBBs.insert(PN->getParent()); 1330 1331 // If the values are PHIs in the same block, we can do a more precise 1332 // as well as efficient check: just check for aliases between the values 1333 // on corresponding edges. 1334 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1335 if (PN2->getParent() == PN->getParent()) { 1336 LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo), 1337 MemoryLocation(V2, V2Size, V2AAInfo)); 1338 if (PN > V2) 1339 std::swap(Locs.first, Locs.second); 1340 // Analyse the PHIs' inputs under the assumption that the PHIs are 1341 // NoAlias. 1342 // If the PHIs are May/MustAlias there must be (recursively) an input 1343 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1344 // there must be an operation on the PHIs within the PHIs' value cycle 1345 // that causes a MayAlias. 1346 // Pretend the phis do not alias. 1347 AliasResult Alias = NoAlias; 1348 assert(AliasCache.count(Locs) && 1349 "There must exist an entry for the phi node"); 1350 AliasResult OrigAliasResult = AliasCache[Locs]; 1351 AliasCache[Locs] = NoAlias; 1352 1353 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1354 AliasResult ThisAlias = 1355 aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo, 1356 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1357 V2Size, V2AAInfo); 1358 Alias = MergeAliasResults(ThisAlias, Alias); 1359 if (Alias == MayAlias) 1360 break; 1361 } 1362 1363 // Reset if speculation failed. 1364 if (Alias != NoAlias) 1365 AliasCache[Locs] = OrigAliasResult; 1366 1367 return Alias; 1368 } 1369 1370 SmallPtrSet<Value *, 4> UniqueSrc; 1371 SmallVector<Value *, 4> V1Srcs; 1372 bool isRecursive = false; 1373 for (Value *PV1 : PN->incoming_values()) { 1374 if (isa<PHINode>(PV1)) 1375 // If any of the source itself is a PHI, return MayAlias conservatively 1376 // to avoid compile time explosion. The worst possible case is if both 1377 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1378 // and 'n' are the number of PHI sources. 1379 return MayAlias; 1380 1381 if (EnableRecPhiAnalysis) 1382 if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) { 1383 // Check whether the incoming value is a GEP that advances the pointer 1384 // result of this PHI node (e.g. in a loop). If this is the case, we 1385 // would recurse and always get a MayAlias. Handle this case specially 1386 // below. 1387 if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 && 1388 isa<ConstantInt>(PV1GEP->idx_begin())) { 1389 isRecursive = true; 1390 continue; 1391 } 1392 } 1393 1394 if (UniqueSrc.insert(PV1).second) 1395 V1Srcs.push_back(PV1); 1396 } 1397 1398 // If this PHI node is recursive, set the size of the accessed memory to 1399 // unknown to represent all the possible values the GEP could advance the 1400 // pointer to. 1401 if (isRecursive) 1402 PNSize = MemoryLocation::UnknownSize; 1403 1404 AliasResult Alias = 1405 aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], 1406 PNSize, PNAAInfo, UnderV2); 1407 1408 // Early exit if the check of the first PHI source against V2 is MayAlias. 1409 // Other results are not possible. 1410 if (Alias == MayAlias) 1411 return MayAlias; 1412 1413 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1414 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1415 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1416 Value *V = V1Srcs[i]; 1417 1418 AliasResult ThisAlias = 1419 aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, UnderV2); 1420 Alias = MergeAliasResults(ThisAlias, Alias); 1421 if (Alias == MayAlias) 1422 break; 1423 } 1424 1425 return Alias; 1426 } 1427 1428 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1429 /// array references. 1430 AliasResult BasicAAResult::aliasCheck(const Value *V1, uint64_t V1Size, 1431 AAMDNodes V1AAInfo, const Value *V2, 1432 uint64_t V2Size, AAMDNodes V2AAInfo, 1433 const Value *O1, const Value *O2) { 1434 // If either of the memory references is empty, it doesn't matter what the 1435 // pointer values are. 1436 if (V1Size == 0 || V2Size == 0) 1437 return NoAlias; 1438 1439 // Strip off any casts if they exist. 1440 V1 = V1->stripPointerCasts(); 1441 V2 = V2->stripPointerCasts(); 1442 1443 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1444 // value for undef that aliases nothing in the program. 1445 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1446 return NoAlias; 1447 1448 // Are we checking for alias of the same value? 1449 // Because we look 'through' phi nodes, we could look at "Value" pointers from 1450 // different iterations. We must therefore make sure that this is not the 1451 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1452 // happen by looking at the visited phi nodes and making sure they cannot 1453 // reach the value. 1454 if (isValueEqualInPotentialCycles(V1, V2)) 1455 return MustAlias; 1456 1457 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1458 return NoAlias; // Scalars cannot alias each other 1459 1460 // Figure out what objects these things are pointing to if we can. 1461 if (O1 == nullptr) 1462 O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth); 1463 1464 if (O2 == nullptr) 1465 O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth); 1466 1467 // Null values in the default address space don't point to any object, so they 1468 // don't alias any other pointer. 1469 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1470 if (CPN->getType()->getAddressSpace() == 0) 1471 return NoAlias; 1472 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1473 if (CPN->getType()->getAddressSpace() == 0) 1474 return NoAlias; 1475 1476 if (O1 != O2) { 1477 // If V1/V2 point to two different objects, we know that we have no alias. 1478 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1479 return NoAlias; 1480 1481 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1482 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1483 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1484 return NoAlias; 1485 1486 // Function arguments can't alias with things that are known to be 1487 // unambigously identified at the function level. 1488 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1489 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1490 return NoAlias; 1491 1492 // Most objects can't alias null. 1493 if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) || 1494 (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2))) 1495 return NoAlias; 1496 1497 // If one pointer is the result of a call/invoke or load and the other is a 1498 // non-escaping local object within the same function, then we know the 1499 // object couldn't escape to a point where the call could return it. 1500 // 1501 // Note that if the pointers are in different functions, there are a 1502 // variety of complications. A call with a nocapture argument may still 1503 // temporary store the nocapture argument's value in a temporary memory 1504 // location if that memory location doesn't escape. Or it may pass a 1505 // nocapture value to other functions as long as they don't capture it. 1506 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) 1507 return NoAlias; 1508 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) 1509 return NoAlias; 1510 } 1511 1512 // If the size of one access is larger than the entire object on the other 1513 // side, then we know such behavior is undefined and can assume no alias. 1514 if ((V1Size != MemoryLocation::UnknownSize && 1515 isObjectSmallerThan(O2, V1Size, DL, TLI)) || 1516 (V2Size != MemoryLocation::UnknownSize && 1517 isObjectSmallerThan(O1, V2Size, DL, TLI))) 1518 return NoAlias; 1519 1520 // Check the cache before climbing up use-def chains. This also terminates 1521 // otherwise infinitely recursive queries. 1522 LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo), 1523 MemoryLocation(V2, V2Size, V2AAInfo)); 1524 if (V1 > V2) 1525 std::swap(Locs.first, Locs.second); 1526 std::pair<AliasCacheTy::iterator, bool> Pair = 1527 AliasCache.insert(std::make_pair(Locs, MayAlias)); 1528 if (!Pair.second) 1529 return Pair.first->second; 1530 1531 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1532 // GEP can't simplify, we don't even look at the PHI cases. 1533 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1534 std::swap(V1, V2); 1535 std::swap(V1Size, V2Size); 1536 std::swap(O1, O2); 1537 std::swap(V1AAInfo, V2AAInfo); 1538 } 1539 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1540 AliasResult Result = 1541 aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2); 1542 if (Result != MayAlias) 1543 return AliasCache[Locs] = Result; 1544 } 1545 1546 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1547 std::swap(V1, V2); 1548 std::swap(O1, O2); 1549 std::swap(V1Size, V2Size); 1550 std::swap(V1AAInfo, V2AAInfo); 1551 } 1552 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1553 AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, 1554 V2, V2Size, V2AAInfo, O2); 1555 if (Result != MayAlias) 1556 return AliasCache[Locs] = Result; 1557 } 1558 1559 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1560 std::swap(V1, V2); 1561 std::swap(O1, O2); 1562 std::swap(V1Size, V2Size); 1563 std::swap(V1AAInfo, V2AAInfo); 1564 } 1565 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1566 AliasResult Result = 1567 aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2); 1568 if (Result != MayAlias) 1569 return AliasCache[Locs] = Result; 1570 } 1571 1572 // If both pointers are pointing into the same object and one of them 1573 // accesses the entire object, then the accesses must overlap in some way. 1574 if (O1 == O2) 1575 if ((V1Size != MemoryLocation::UnknownSize && 1576 isObjectSize(O1, V1Size, DL, TLI)) || 1577 (V2Size != MemoryLocation::UnknownSize && 1578 isObjectSize(O2, V2Size, DL, TLI))) 1579 return AliasCache[Locs] = PartialAlias; 1580 1581 // Recurse back into the best AA results we have, potentially with refined 1582 // memory locations. We have already ensured that BasicAA has a MayAlias 1583 // cache result for these, so any recursion back into BasicAA won't loop. 1584 AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second); 1585 return AliasCache[Locs] = Result; 1586 } 1587 1588 /// Check whether two Values can be considered equivalent. 1589 /// 1590 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether 1591 /// they can not be part of a cycle in the value graph by looking at all 1592 /// visited phi nodes an making sure that the phis cannot reach the value. We 1593 /// have to do this because we are looking through phi nodes (That is we say 1594 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1595 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1596 const Value *V2) { 1597 if (V != V2) 1598 return false; 1599 1600 const Instruction *Inst = dyn_cast<Instruction>(V); 1601 if (!Inst) 1602 return true; 1603 1604 if (VisitedPhiBBs.empty()) 1605 return true; 1606 1607 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1608 return false; 1609 1610 // Make sure that the visited phis cannot reach the Value. This ensures that 1611 // the Values cannot come from different iterations of a potential cycle the 1612 // phi nodes could be involved in. 1613 for (auto *P : VisitedPhiBBs) 1614 if (isPotentiallyReachable(&P->front(), Inst, DT, LI)) 1615 return false; 1616 1617 return true; 1618 } 1619 1620 /// Computes the symbolic difference between two de-composed GEPs. 1621 /// 1622 /// Dest and Src are the variable indices from two decomposed GetElementPtr 1623 /// instructions GEP1 and GEP2 which have common base pointers. 1624 void BasicAAResult::GetIndexDifference( 1625 SmallVectorImpl<VariableGEPIndex> &Dest, 1626 const SmallVectorImpl<VariableGEPIndex> &Src) { 1627 if (Src.empty()) 1628 return; 1629 1630 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1631 const Value *V = Src[i].V; 1632 unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits; 1633 int64_t Scale = Src[i].Scale; 1634 1635 // Find V in Dest. This is N^2, but pointer indices almost never have more 1636 // than a few variable indexes. 1637 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1638 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1639 Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits) 1640 continue; 1641 1642 // If we found it, subtract off Scale V's from the entry in Dest. If it 1643 // goes to zero, remove the entry. 1644 if (Dest[j].Scale != Scale) 1645 Dest[j].Scale -= Scale; 1646 else 1647 Dest.erase(Dest.begin() + j); 1648 Scale = 0; 1649 break; 1650 } 1651 1652 // If we didn't consume this entry, add it to the end of the Dest list. 1653 if (Scale) { 1654 VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale}; 1655 Dest.push_back(Entry); 1656 } 1657 } 1658 } 1659 1660 bool BasicAAResult::constantOffsetHeuristic( 1661 const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size, 1662 uint64_t V2Size, int64_t BaseOffset, AssumptionCache *AC, 1663 DominatorTree *DT) { 1664 if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize || 1665 V2Size == MemoryLocation::UnknownSize) 1666 return false; 1667 1668 const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1]; 1669 1670 if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits || 1671 Var0.Scale != -Var1.Scale) 1672 return false; 1673 1674 unsigned Width = Var1.V->getType()->getIntegerBitWidth(); 1675 1676 // We'll strip off the Extensions of Var0 and Var1 and do another round 1677 // of GetLinearExpression decomposition. In the example above, if Var0 1678 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 1679 1680 APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0), 1681 V1Offset(Width, 0); 1682 bool NSW = true, NUW = true; 1683 unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0; 1684 const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits, 1685 V0SExtBits, DL, 0, AC, DT, NSW, NUW); 1686 NSW = true; 1687 NUW = true; 1688 const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits, 1689 V1SExtBits, DL, 0, AC, DT, NSW, NUW); 1690 1691 if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits || 1692 V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1)) 1693 return false; 1694 1695 // We have a hit - Var0 and Var1 only differ by a constant offset! 1696 1697 // If we've been sext'ed then zext'd the maximum difference between Var0 and 1698 // Var1 is possible to calculate, but we're just interested in the absolute 1699 // minimum difference between the two. The minimum distance may occur due to 1700 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 1701 // the minimum distance between %i and %i + 5 is 3. 1702 APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff; 1703 MinDiff = APIntOps::umin(MinDiff, Wrapped); 1704 uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale); 1705 1706 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 1707 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 1708 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 1709 // V2Size can fit in the MinDiffBytes gap. 1710 return V1Size + std::abs(BaseOffset) <= MinDiffBytes && 1711 V2Size + std::abs(BaseOffset) <= MinDiffBytes; 1712 } 1713 1714 //===----------------------------------------------------------------------===// 1715 // BasicAliasAnalysis Pass 1716 //===----------------------------------------------------------------------===// 1717 1718 AnalysisKey BasicAA::Key; 1719 1720 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) { 1721 return BasicAAResult(F.getParent()->getDataLayout(), 1722 AM.getResult<TargetLibraryAnalysis>(F), 1723 AM.getResult<AssumptionAnalysis>(F), 1724 &AM.getResult<DominatorTreeAnalysis>(F), 1725 AM.getCachedResult<LoopAnalysis>(F)); 1726 } 1727 1728 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 1729 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1730 } 1731 1732 char BasicAAWrapperPass::ID = 0; 1733 void BasicAAWrapperPass::anchor() {} 1734 1735 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa", 1736 "Basic Alias Analysis (stateless AA impl)", true, true) 1737 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1738 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1739 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1740 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa", 1741 "Basic Alias Analysis (stateless AA impl)", true, true) 1742 1743 FunctionPass *llvm::createBasicAAWrapperPass() { 1744 return new BasicAAWrapperPass(); 1745 } 1746 1747 bool BasicAAWrapperPass::runOnFunction(Function &F) { 1748 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 1749 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 1750 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); 1751 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 1752 1753 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), TLIWP.getTLI(), 1754 ACT.getAssumptionCache(F), &DTWP.getDomTree(), 1755 LIWP ? &LIWP->getLoopInfo() : nullptr)); 1756 1757 return false; 1758 } 1759 1760 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1761 AU.setPreservesAll(); 1762 AU.addRequired<AssumptionCacheTracker>(); 1763 AU.addRequired<DominatorTreeWrapperPass>(); 1764 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1765 } 1766 1767 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { 1768 return BasicAAResult( 1769 F.getParent()->getDataLayout(), 1770 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 1771 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 1772 } 1773