1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the primary stateless implementation of the
10 // Alias Analysis interface that implements identities (two different
11 // globals cannot alias, etc), but does no stateful analysis.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/BasicAliasAnalysis.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/PhiValues.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GetElementPtrTypeIterator.h"
40 #include "llvm/IR/GlobalAlias.h"
41 #include "llvm/IR/GlobalVariable.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/Operator.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/KnownBits.h"
58 #include <cassert>
59 #include <cstdint>
60 #include <cstdlib>
61 #include <utility>
62 
63 #define DEBUG_TYPE "basicaa"
64 
65 using namespace llvm;
66 
67 /// Enable analysis of recursive PHI nodes.
68 static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden,
69                                           cl::init(true));
70 
71 /// By default, even on 32-bit architectures we use 64-bit integers for
72 /// calculations. This will allow us to more-aggressively decompose indexing
73 /// expressions calculated using i64 values (e.g., long long in C) which is
74 /// common enough to worry about.
75 static cl::opt<bool> ForceAtLeast64Bits("basic-aa-force-at-least-64b",
76                                         cl::Hidden, cl::init(true));
77 static cl::opt<bool> DoubleCalcBits("basic-aa-double-calc-bits",
78                                     cl::Hidden, cl::init(false));
79 
80 /// SearchLimitReached / SearchTimes shows how often the limit of
81 /// to decompose GEPs is reached. It will affect the precision
82 /// of basic alias analysis.
83 STATISTIC(SearchLimitReached, "Number of times the limit to "
84                               "decompose GEPs is reached");
85 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
86 
87 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
88 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
89 /// careful with value equivalence. We use reachability to make sure a value
90 /// cannot be involved in a cycle.
91 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
92 
93 // The max limit of the search depth in DecomposeGEPExpression() and
94 // getUnderlyingObject(), both functions need to use the same search
95 // depth otherwise the algorithm in aliasGEP will assert.
96 static const unsigned MaxLookupSearchDepth = 6;
97 
98 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
99                                FunctionAnalysisManager::Invalidator &Inv) {
100   // We don't care if this analysis itself is preserved, it has no state. But
101   // we need to check that the analyses it depends on have been. Note that we
102   // may be created without handles to some analyses and in that case don't
103   // depend on them.
104   if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
105       (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) ||
106       (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA)))
107     return true;
108 
109   // Otherwise this analysis result remains valid.
110   return false;
111 }
112 
113 //===----------------------------------------------------------------------===//
114 // Useful predicates
115 //===----------------------------------------------------------------------===//
116 
117 /// Returns true if the pointer is one which would have been considered an
118 /// escape by isNonEscapingLocalObject.
119 static bool isEscapeSource(const Value *V) {
120   if (isa<CallBase>(V))
121     return true;
122 
123   // The load case works because isNonEscapingLocalObject considers all
124   // stores to be escapes (it passes true for the StoreCaptures argument
125   // to PointerMayBeCaptured).
126   if (isa<LoadInst>(V))
127     return true;
128 
129   // The inttoptr case works because isNonEscapingLocalObject considers all
130   // means of converting or equating a pointer to an int (ptrtoint, ptr store
131   // which could be followed by an integer load, ptr<->int compare) as
132   // escaping, and objects located at well-known addresses via platform-specific
133   // means cannot be considered non-escaping local objects.
134   if (isa<IntToPtrInst>(V))
135     return true;
136 
137   return false;
138 }
139 
140 /// Returns the size of the object specified by V or UnknownSize if unknown.
141 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
142                               const TargetLibraryInfo &TLI,
143                               bool NullIsValidLoc,
144                               bool RoundToAlign = false) {
145   uint64_t Size;
146   ObjectSizeOpts Opts;
147   Opts.RoundToAlign = RoundToAlign;
148   Opts.NullIsUnknownSize = NullIsValidLoc;
149   if (getObjectSize(V, Size, DL, &TLI, Opts))
150     return Size;
151   return MemoryLocation::UnknownSize;
152 }
153 
154 /// Returns true if we can prove that the object specified by V is smaller than
155 /// Size.
156 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
157                                 const DataLayout &DL,
158                                 const TargetLibraryInfo &TLI,
159                                 bool NullIsValidLoc) {
160   // Note that the meanings of the "object" are slightly different in the
161   // following contexts:
162   //    c1: llvm::getObjectSize()
163   //    c2: llvm.objectsize() intrinsic
164   //    c3: isObjectSmallerThan()
165   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
166   // refers to the "entire object".
167   //
168   //  Consider this example:
169   //     char *p = (char*)malloc(100)
170   //     char *q = p+80;
171   //
172   //  In the context of c1 and c2, the "object" pointed by q refers to the
173   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
174   //
175   //  However, in the context of c3, the "object" refers to the chunk of memory
176   // being allocated. So, the "object" has 100 bytes, and q points to the middle
177   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
178   // parameter, before the llvm::getObjectSize() is called to get the size of
179   // entire object, we should:
180   //    - either rewind the pointer q to the base-address of the object in
181   //      question (in this case rewind to p), or
182   //    - just give up. It is up to caller to make sure the pointer is pointing
183   //      to the base address the object.
184   //
185   // We go for 2nd option for simplicity.
186   if (!isIdentifiedObject(V))
187     return false;
188 
189   // This function needs to use the aligned object size because we allow
190   // reads a bit past the end given sufficient alignment.
191   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
192                                       /*RoundToAlign*/ true);
193 
194   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
195 }
196 
197 /// Return the minimal extent from \p V to the end of the underlying object,
198 /// assuming the result is used in an aliasing query. E.g., we do use the query
199 /// location size and the fact that null pointers cannot alias here.
200 static uint64_t getMinimalExtentFrom(const Value &V,
201                                      const LocationSize &LocSize,
202                                      const DataLayout &DL,
203                                      bool NullIsValidLoc) {
204   // If we have dereferenceability information we know a lower bound for the
205   // extent as accesses for a lower offset would be valid. We need to exclude
206   // the "or null" part if null is a valid pointer.
207   bool CanBeNull, CanBeFreed;
208   uint64_t DerefBytes =
209     V.getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
210   DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes;
211   DerefBytes = CanBeFreed ? 0 : DerefBytes;
212   // If queried with a precise location size, we assume that location size to be
213   // accessed, thus valid.
214   if (LocSize.isPrecise())
215     DerefBytes = std::max(DerefBytes, LocSize.getValue());
216   return DerefBytes;
217 }
218 
219 /// Returns true if we can prove that the object specified by V has size Size.
220 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
221                          const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
222   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc);
223   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
224 }
225 
226 //===----------------------------------------------------------------------===//
227 // CaptureInfo implementations
228 //===----------------------------------------------------------------------===//
229 
230 CaptureInfo::~CaptureInfo() = default;
231 
232 bool SimpleCaptureInfo::isNotCapturedBeforeOrAt(const Value *Object,
233                                                 const Instruction *I) {
234   return isNonEscapingLocalObject(Object, &IsCapturedCache);
235 }
236 
237 bool EarliestEscapeInfo::isNotCapturedBeforeOrAt(const Value *Object,
238                                                  const Instruction *I) {
239   if (!isIdentifiedFunctionLocal(Object))
240     return false;
241 
242   auto Iter = EarliestEscapes.insert({Object, nullptr});
243   if (Iter.second) {
244     Instruction *EarliestCapture = FindEarliestCapture(
245         Object, *const_cast<Function *>(I->getFunction()),
246         /*ReturnCaptures=*/false, /*StoreCaptures=*/true, DT);
247     if (EarliestCapture) {
248       auto Ins = Inst2Obj.insert({EarliestCapture, {}});
249       Ins.first->second.push_back(Object);
250     }
251     Iter.first->second = EarliestCapture;
252   }
253 
254   // No capturing instruction.
255   if (!Iter.first->second)
256     return true;
257 
258   return I != Iter.first->second &&
259          !isPotentiallyReachable(Iter.first->second, I, nullptr, &DT, &LI);
260 }
261 
262 void EarliestEscapeInfo::removeInstruction(Instruction *I) {
263   auto Iter = Inst2Obj.find(I);
264   if (Iter != Inst2Obj.end()) {
265     for (const Value *Obj : Iter->second)
266       EarliestEscapes.erase(Obj);
267     Inst2Obj.erase(I);
268   }
269 }
270 
271 //===----------------------------------------------------------------------===//
272 // GetElementPtr Instruction Decomposition and Analysis
273 //===----------------------------------------------------------------------===//
274 
275 namespace {
276 /// Represents zext(sext(V)).
277 struct ExtendedValue {
278   const Value *V;
279   unsigned ZExtBits;
280   unsigned SExtBits;
281 
282   explicit ExtendedValue(const Value *V, unsigned ZExtBits = 0,
283                          unsigned SExtBits = 0)
284       : V(V), ZExtBits(ZExtBits), SExtBits(SExtBits) {}
285 
286   unsigned getBitWidth() const {
287     return V->getType()->getPrimitiveSizeInBits() + ZExtBits + SExtBits;
288   }
289 
290   ExtendedValue withValue(const Value *NewV) const {
291     return ExtendedValue(NewV, ZExtBits, SExtBits);
292   }
293 
294   ExtendedValue withZExtOfValue(const Value *NewV) const {
295     unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() -
296                         NewV->getType()->getPrimitiveSizeInBits();
297     // zext(sext(zext(NewV))) == zext(zext(zext(NewV)))
298     return ExtendedValue(NewV, ZExtBits + SExtBits + ExtendBy, 0);
299   }
300 
301   ExtendedValue withSExtOfValue(const Value *NewV) const {
302     unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() -
303                         NewV->getType()->getPrimitiveSizeInBits();
304     // zext(sext(sext(NewV)))
305     return ExtendedValue(NewV, ZExtBits, SExtBits + ExtendBy);
306   }
307 
308   APInt evaluateWith(APInt N) const {
309     assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() &&
310            "Incompatible bit width");
311     if (SExtBits) N = N.sext(N.getBitWidth() + SExtBits);
312     if (ZExtBits) N = N.zext(N.getBitWidth() + ZExtBits);
313     return N;
314   }
315 
316   bool canDistributeOver(bool NUW, bool NSW) const {
317     // zext(x op<nuw> y) == zext(x) op<nuw> zext(y)
318     // sext(x op<nsw> y) == sext(x) op<nsw> sext(y)
319     return (!ZExtBits || NUW) && (!SExtBits || NSW);
320   }
321 };
322 
323 /// Represents zext(sext(V)) * Scale + Offset.
324 struct LinearExpression {
325   ExtendedValue Val;
326   APInt Scale;
327   APInt Offset;
328 
329   /// True if all operations in this expression are NSW.
330   bool IsNSW;
331 
332   LinearExpression(const ExtendedValue &Val, const APInt &Scale,
333                    const APInt &Offset, bool IsNSW)
334       : Val(Val), Scale(Scale), Offset(Offset), IsNSW(IsNSW) {}
335 
336   LinearExpression(const ExtendedValue &Val) : Val(Val), IsNSW(true) {
337     unsigned BitWidth = Val.getBitWidth();
338     Scale = APInt(BitWidth, 1);
339     Offset = APInt(BitWidth, 0);
340   }
341 };
342 }
343 
344 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
345 /// B are constant integers.
346 static LinearExpression GetLinearExpression(
347     const ExtendedValue &Val,  const DataLayout &DL, unsigned Depth,
348     AssumptionCache *AC, DominatorTree *DT) {
349   // Limit our recursion depth.
350   if (Depth == 6)
351     return Val;
352 
353   if (const ConstantInt *Const = dyn_cast<ConstantInt>(Val.V))
354     return LinearExpression(Val, APInt(Val.getBitWidth(), 0),
355                             Val.evaluateWith(Const->getValue()), true);
356 
357   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val.V)) {
358     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
359       APInt RHS = Val.evaluateWith(RHSC->getValue());
360       // The only non-OBO case we deal with is or, and only limited to the
361       // case where it is both nuw and nsw.
362       bool NUW = true, NSW = true;
363       if (isa<OverflowingBinaryOperator>(BOp)) {
364         NUW &= BOp->hasNoUnsignedWrap();
365         NSW &= BOp->hasNoSignedWrap();
366       }
367       if (!Val.canDistributeOver(NUW, NSW))
368         return Val;
369 
370       LinearExpression E(Val);
371       switch (BOp->getOpcode()) {
372       default:
373         // We don't understand this instruction, so we can't decompose it any
374         // further.
375         return Val;
376       case Instruction::Or:
377         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
378         // analyze it.
379         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
380                                BOp, DT))
381           return Val;
382 
383         LLVM_FALLTHROUGH;
384       case Instruction::Add: {
385         E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
386                                 Depth + 1, AC, DT);
387         E.Offset += RHS;
388         E.IsNSW &= NSW;
389         break;
390       }
391       case Instruction::Sub: {
392         E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
393                                 Depth + 1, AC, DT);
394         E.Offset -= RHS;
395         E.IsNSW &= NSW;
396         break;
397       }
398       case Instruction::Mul: {
399         E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
400                                 Depth + 1, AC, DT);
401         E.Offset *= RHS;
402         E.Scale *= RHS;
403         E.IsNSW &= NSW;
404         break;
405       }
406       case Instruction::Shl:
407         // We're trying to linearize an expression of the kind:
408         //   shl i8 -128, 36
409         // where the shift count exceeds the bitwidth of the type.
410         // We can't decompose this further (the expression would return
411         // a poison value).
412         if (RHS.getLimitedValue() > Val.getBitWidth())
413           return Val;
414 
415         E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
416                                 Depth + 1, AC, DT);
417         E.Offset <<= RHS.getLimitedValue();
418         E.Scale <<= RHS.getLimitedValue();
419         E.IsNSW &= NSW;
420         break;
421       }
422       return E;
423     }
424   }
425 
426   if (isa<ZExtInst>(Val.V))
427     return GetLinearExpression(
428         Val.withZExtOfValue(cast<CastInst>(Val.V)->getOperand(0)),
429         DL, Depth + 1, AC, DT);
430 
431   if (isa<SExtInst>(Val.V))
432     return GetLinearExpression(
433         Val.withSExtOfValue(cast<CastInst>(Val.V)->getOperand(0)),
434         DL, Depth + 1, AC, DT);
435 
436   return Val;
437 }
438 
439 /// To ensure a pointer offset fits in an integer of size PointerSize
440 /// (in bits) when that size is smaller than the maximum pointer size. This is
441 /// an issue, for example, in particular for 32b pointers with negative indices
442 /// that rely on two's complement wrap-arounds for precise alias information
443 /// where the maximum pointer size is 64b.
444 static APInt adjustToPointerSize(const APInt &Offset, unsigned PointerSize) {
445   assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!");
446   unsigned ShiftBits = Offset.getBitWidth() - PointerSize;
447   return (Offset << ShiftBits).ashr(ShiftBits);
448 }
449 
450 static unsigned getMaxPointerSize(const DataLayout &DL) {
451   unsigned MaxPointerSize = DL.getMaxPointerSizeInBits();
452   if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64;
453   if (DoubleCalcBits) MaxPointerSize *= 2;
454 
455   return MaxPointerSize;
456 }
457 
458 /// If V is a symbolic pointer expression, decompose it into a base pointer
459 /// with a constant offset and a number of scaled symbolic offsets.
460 ///
461 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
462 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
463 /// specified amount, but which may have other unrepresented high bits. As
464 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
465 ///
466 /// This function is capable of analyzing everything that getUnderlyingObject
467 /// can look through. To be able to do that getUnderlyingObject and
468 /// DecomposeGEPExpression must use the same search depth
469 /// (MaxLookupSearchDepth).
470 BasicAAResult::DecomposedGEP
471 BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL,
472                                       AssumptionCache *AC, DominatorTree *DT) {
473   // Limit recursion depth to limit compile time in crazy cases.
474   unsigned MaxLookup = MaxLookupSearchDepth;
475   SearchTimes++;
476   const Instruction *CxtI = dyn_cast<Instruction>(V);
477 
478   unsigned MaxPointerSize = getMaxPointerSize(DL);
479   DecomposedGEP Decomposed;
480   Decomposed.Offset = APInt(MaxPointerSize, 0);
481   Decomposed.HasCompileTimeConstantScale = true;
482   do {
483     // See if this is a bitcast or GEP.
484     const Operator *Op = dyn_cast<Operator>(V);
485     if (!Op) {
486       // The only non-operator case we can handle are GlobalAliases.
487       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
488         if (!GA->isInterposable()) {
489           V = GA->getAliasee();
490           continue;
491         }
492       }
493       Decomposed.Base = V;
494       return Decomposed;
495     }
496 
497     if (Op->getOpcode() == Instruction::BitCast ||
498         Op->getOpcode() == Instruction::AddrSpaceCast) {
499       V = Op->getOperand(0);
500       continue;
501     }
502 
503     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
504     if (!GEPOp) {
505       if (const auto *PHI = dyn_cast<PHINode>(V)) {
506         // Look through single-arg phi nodes created by LCSSA.
507         if (PHI->getNumIncomingValues() == 1) {
508           V = PHI->getIncomingValue(0);
509           continue;
510         }
511       } else if (const auto *Call = dyn_cast<CallBase>(V)) {
512         // CaptureTracking can know about special capturing properties of some
513         // intrinsics like launder.invariant.group, that can't be expressed with
514         // the attributes, but have properties like returning aliasing pointer.
515         // Because some analysis may assume that nocaptured pointer is not
516         // returned from some special intrinsic (because function would have to
517         // be marked with returns attribute), it is crucial to use this function
518         // because it should be in sync with CaptureTracking. Not using it may
519         // cause weird miscompilations where 2 aliasing pointers are assumed to
520         // noalias.
521         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
522           V = RP;
523           continue;
524         }
525       }
526 
527       Decomposed.Base = V;
528       return Decomposed;
529     }
530 
531     // Track whether we've seen at least one in bounds gep, and if so, whether
532     // all geps parsed were in bounds.
533     if (Decomposed.InBounds == None)
534       Decomposed.InBounds = GEPOp->isInBounds();
535     else if (!GEPOp->isInBounds())
536       Decomposed.InBounds = false;
537 
538     assert(GEPOp->getSourceElementType()->isSized() && "GEP must be sized");
539 
540     // Don't attempt to analyze GEPs if index scale is not a compile-time
541     // constant.
542     if (isa<ScalableVectorType>(GEPOp->getSourceElementType())) {
543       Decomposed.Base = V;
544       Decomposed.HasCompileTimeConstantScale = false;
545       return Decomposed;
546     }
547 
548     unsigned AS = GEPOp->getPointerAddressSpace();
549     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
550     gep_type_iterator GTI = gep_type_begin(GEPOp);
551     unsigned PointerSize = DL.getPointerSizeInBits(AS);
552     // Assume all GEP operands are constants until proven otherwise.
553     bool GepHasConstantOffset = true;
554     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
555          I != E; ++I, ++GTI) {
556       const Value *Index = *I;
557       // Compute the (potentially symbolic) offset in bytes for this index.
558       if (StructType *STy = GTI.getStructTypeOrNull()) {
559         // For a struct, add the member offset.
560         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
561         if (FieldNo == 0)
562           continue;
563 
564         Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo);
565         continue;
566       }
567 
568       // For an array/pointer, add the element offset, explicitly scaled.
569       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
570         if (CIdx->isZero())
571           continue;
572         Decomposed.Offset +=
573             DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize() *
574             CIdx->getValue().sextOrTrunc(MaxPointerSize);
575         continue;
576       }
577 
578       GepHasConstantOffset = false;
579 
580       APInt Scale(MaxPointerSize,
581                   DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize());
582       // If the integer type is smaller than the pointer size, it is implicitly
583       // sign extended to pointer size.
584       unsigned Width = Index->getType()->getIntegerBitWidth();
585       unsigned SExtBits = PointerSize > Width ? PointerSize - Width : 0;
586       LinearExpression LE = GetLinearExpression(
587           ExtendedValue(Index, 0, SExtBits), DL, 0, AC, DT);
588 
589       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
590       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
591 
592       // It can be the case that, even through C1*V+C2 does not overflow for
593       // relevant values of V, (C2*Scale) can overflow. In that case, we cannot
594       // decompose the expression in this way.
595       //
596       // FIXME: C1*Scale and the other operations in the decomposed
597       // (C1*Scale)*V+C2*Scale can also overflow. We should check for this
598       // possibility.
599       bool Overflow;
600       APInt ScaledOffset = LE.Offset.sextOrTrunc(MaxPointerSize)
601                            .smul_ov(Scale, Overflow);
602       if (Overflow) {
603         LE = LinearExpression(ExtendedValue(Index, 0, SExtBits));
604       } else {
605         Decomposed.Offset += ScaledOffset;
606         Scale *= LE.Scale.sextOrTrunc(MaxPointerSize);
607       }
608 
609       // If we already had an occurrence of this index variable, merge this
610       // scale into it.  For example, we want to handle:
611       //   A[x][x] -> x*16 + x*4 -> x*20
612       // This also ensures that 'x' only appears in the index list once.
613       for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
614         if (Decomposed.VarIndices[i].V == LE.Val.V &&
615             Decomposed.VarIndices[i].ZExtBits == LE.Val.ZExtBits &&
616             Decomposed.VarIndices[i].SExtBits == LE.Val.SExtBits) {
617           Scale += Decomposed.VarIndices[i].Scale;
618           Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
619           break;
620         }
621       }
622 
623       // Make sure that we have a scale that makes sense for this target's
624       // pointer size.
625       Scale = adjustToPointerSize(Scale, PointerSize);
626 
627       if (!!Scale) {
628         VariableGEPIndex Entry = {
629             LE.Val.V, LE.Val.ZExtBits, LE.Val.SExtBits, Scale, CxtI, LE.IsNSW};
630         Decomposed.VarIndices.push_back(Entry);
631       }
632     }
633 
634     // Take care of wrap-arounds
635     if (GepHasConstantOffset)
636       Decomposed.Offset = adjustToPointerSize(Decomposed.Offset, PointerSize);
637 
638     // Analyze the base pointer next.
639     V = GEPOp->getOperand(0);
640   } while (--MaxLookup);
641 
642   // If the chain of expressions is too deep, just return early.
643   Decomposed.Base = V;
644   SearchLimitReached++;
645   return Decomposed;
646 }
647 
648 /// Returns whether the given pointer value points to memory that is local to
649 /// the function, with global constants being considered local to all
650 /// functions.
651 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
652                                            AAQueryInfo &AAQI, bool OrLocal) {
653   assert(Visited.empty() && "Visited must be cleared after use!");
654 
655   unsigned MaxLookup = 8;
656   SmallVector<const Value *, 16> Worklist;
657   Worklist.push_back(Loc.Ptr);
658   do {
659     const Value *V = getUnderlyingObject(Worklist.pop_back_val());
660     if (!Visited.insert(V).second) {
661       Visited.clear();
662       return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
663     }
664 
665     // An alloca instruction defines local memory.
666     if (OrLocal && isa<AllocaInst>(V))
667       continue;
668 
669     // A global constant counts as local memory for our purposes.
670     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
671       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
672       // global to be marked constant in some modules and non-constant in
673       // others.  GV may even be a declaration, not a definition.
674       if (!GV->isConstant()) {
675         Visited.clear();
676         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
677       }
678       continue;
679     }
680 
681     // If both select values point to local memory, then so does the select.
682     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
683       Worklist.push_back(SI->getTrueValue());
684       Worklist.push_back(SI->getFalseValue());
685       continue;
686     }
687 
688     // If all values incoming to a phi node point to local memory, then so does
689     // the phi.
690     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
691       // Don't bother inspecting phi nodes with many operands.
692       if (PN->getNumIncomingValues() > MaxLookup) {
693         Visited.clear();
694         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
695       }
696       append_range(Worklist, PN->incoming_values());
697       continue;
698     }
699 
700     // Otherwise be conservative.
701     Visited.clear();
702     return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
703   } while (!Worklist.empty() && --MaxLookup);
704 
705   Visited.clear();
706   return Worklist.empty();
707 }
708 
709 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
710   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
711   return II && II->getIntrinsicID() == IID;
712 }
713 
714 /// Returns the behavior when calling the given call site.
715 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) {
716   if (Call->doesNotAccessMemory())
717     // Can't do better than this.
718     return FMRB_DoesNotAccessMemory;
719 
720   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
721 
722   // If the callsite knows it only reads memory, don't return worse
723   // than that.
724   if (Call->onlyReadsMemory())
725     Min = FMRB_OnlyReadsMemory;
726   else if (Call->doesNotReadMemory())
727     Min = FMRB_OnlyWritesMemory;
728 
729   if (Call->onlyAccessesArgMemory())
730     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
731   else if (Call->onlyAccessesInaccessibleMemory())
732     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
733   else if (Call->onlyAccessesInaccessibleMemOrArgMem())
734     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
735 
736   // If the call has operand bundles then aliasing attributes from the function
737   // it calls do not directly apply to the call.  This can be made more precise
738   // in the future.
739   if (!Call->hasOperandBundles())
740     if (const Function *F = Call->getCalledFunction())
741       Min =
742           FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
743 
744   return Min;
745 }
746 
747 /// Returns the behavior when calling the given function. For use when the call
748 /// site is not known.
749 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
750   // If the function declares it doesn't access memory, we can't do better.
751   if (F->doesNotAccessMemory())
752     return FMRB_DoesNotAccessMemory;
753 
754   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
755 
756   // If the function declares it only reads memory, go with that.
757   if (F->onlyReadsMemory())
758     Min = FMRB_OnlyReadsMemory;
759   else if (F->doesNotReadMemory())
760     Min = FMRB_OnlyWritesMemory;
761 
762   if (F->onlyAccessesArgMemory())
763     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
764   else if (F->onlyAccessesInaccessibleMemory())
765     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
766   else if (F->onlyAccessesInaccessibleMemOrArgMem())
767     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
768 
769   return Min;
770 }
771 
772 /// Returns true if this is a writeonly (i.e Mod only) parameter.
773 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx,
774                              const TargetLibraryInfo &TLI) {
775   if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly))
776     return true;
777 
778   // We can bound the aliasing properties of memset_pattern16 just as we can
779   // for memcpy/memset.  This is particularly important because the
780   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
781   // whenever possible.
782   // FIXME Consider handling this in InferFunctionAttr.cpp together with other
783   // attributes.
784   LibFunc F;
785   if (Call->getCalledFunction() &&
786       TLI.getLibFunc(*Call->getCalledFunction(), F) &&
787       F == LibFunc_memset_pattern16 && TLI.has(F))
788     if (ArgIdx == 0)
789       return true;
790 
791   // TODO: memset_pattern4, memset_pattern8
792   // TODO: _chk variants
793   // TODO: strcmp, strcpy
794 
795   return false;
796 }
797 
798 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
799                                            unsigned ArgIdx) {
800   // Checking for known builtin intrinsics and target library functions.
801   if (isWriteOnlyParam(Call, ArgIdx, TLI))
802     return ModRefInfo::Mod;
803 
804   if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly))
805     return ModRefInfo::Ref;
806 
807   if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone))
808     return ModRefInfo::NoModRef;
809 
810   return AAResultBase::getArgModRefInfo(Call, ArgIdx);
811 }
812 
813 #ifndef NDEBUG
814 static const Function *getParent(const Value *V) {
815   if (const Instruction *inst = dyn_cast<Instruction>(V)) {
816     if (!inst->getParent())
817       return nullptr;
818     return inst->getParent()->getParent();
819   }
820 
821   if (const Argument *arg = dyn_cast<Argument>(V))
822     return arg->getParent();
823 
824   return nullptr;
825 }
826 
827 static bool notDifferentParent(const Value *O1, const Value *O2) {
828 
829   const Function *F1 = getParent(O1);
830   const Function *F2 = getParent(O2);
831 
832   return !F1 || !F2 || F1 == F2;
833 }
834 #endif
835 
836 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
837                                  const MemoryLocation &LocB,
838                                  AAQueryInfo &AAQI) {
839   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
840          "BasicAliasAnalysis doesn't support interprocedural queries.");
841   return aliasCheck(LocA.Ptr, LocA.Size, LocB.Ptr, LocB.Size, AAQI);
842 }
843 
844 /// Checks to see if the specified callsite can clobber the specified memory
845 /// object.
846 ///
847 /// Since we only look at local properties of this function, we really can't
848 /// say much about this query.  We do, however, use simple "address taken"
849 /// analysis on local objects.
850 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
851                                         const MemoryLocation &Loc,
852                                         AAQueryInfo &AAQI) {
853   assert(notDifferentParent(Call, Loc.Ptr) &&
854          "AliasAnalysis query involving multiple functions!");
855 
856   const Value *Object = getUnderlyingObject(Loc.Ptr);
857 
858   // Calls marked 'tail' cannot read or write allocas from the current frame
859   // because the current frame might be destroyed by the time they run. However,
860   // a tail call may use an alloca with byval. Calling with byval copies the
861   // contents of the alloca into argument registers or stack slots, so there is
862   // no lifetime issue.
863   if (isa<AllocaInst>(Object))
864     if (const CallInst *CI = dyn_cast<CallInst>(Call))
865       if (CI->isTailCall() &&
866           !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal))
867         return ModRefInfo::NoModRef;
868 
869   // Stack restore is able to modify unescaped dynamic allocas. Assume it may
870   // modify them even though the alloca is not escaped.
871   if (auto *AI = dyn_cast<AllocaInst>(Object))
872     if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore))
873       return ModRefInfo::Mod;
874 
875   // If the pointer is to a locally allocated object that does not escape,
876   // then the call can not mod/ref the pointer unless the call takes the pointer
877   // as an argument, and itself doesn't capture it.
878   if (!isa<Constant>(Object) && Call != Object &&
879       AAQI.CI->isNotCapturedBeforeOrAt(Object, Call)) {
880 
881     // Optimistically assume that call doesn't touch Object and check this
882     // assumption in the following loop.
883     ModRefInfo Result = ModRefInfo::NoModRef;
884     bool IsMustAlias = true;
885 
886     unsigned OperandNo = 0;
887     for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
888          CI != CE; ++CI, ++OperandNo) {
889       // Only look at the no-capture or byval pointer arguments.  If this
890       // pointer were passed to arguments that were neither of these, then it
891       // couldn't be no-capture.
892       if (!(*CI)->getType()->isPointerTy() ||
893           (!Call->doesNotCapture(OperandNo) &&
894            OperandNo < Call->getNumArgOperands() &&
895            !Call->isByValArgument(OperandNo)))
896         continue;
897 
898       // Call doesn't access memory through this operand, so we don't care
899       // if it aliases with Object.
900       if (Call->doesNotAccessMemory(OperandNo))
901         continue;
902 
903       // If this is a no-capture pointer argument, see if we can tell that it
904       // is impossible to alias the pointer we're checking.
905       AliasResult AR = getBestAAResults().alias(
906           MemoryLocation::getBeforeOrAfter(*CI),
907           MemoryLocation::getBeforeOrAfter(Object), AAQI);
908       if (AR != AliasResult::MustAlias)
909         IsMustAlias = false;
910       // Operand doesn't alias 'Object', continue looking for other aliases
911       if (AR == AliasResult::NoAlias)
912         continue;
913       // Operand aliases 'Object', but call doesn't modify it. Strengthen
914       // initial assumption and keep looking in case if there are more aliases.
915       if (Call->onlyReadsMemory(OperandNo)) {
916         Result = setRef(Result);
917         continue;
918       }
919       // Operand aliases 'Object' but call only writes into it.
920       if (Call->doesNotReadMemory(OperandNo)) {
921         Result = setMod(Result);
922         continue;
923       }
924       // This operand aliases 'Object' and call reads and writes into it.
925       // Setting ModRef will not yield an early return below, MustAlias is not
926       // used further.
927       Result = ModRefInfo::ModRef;
928       break;
929     }
930 
931     // No operand aliases, reset Must bit. Add below if at least one aliases
932     // and all aliases found are MustAlias.
933     if (isNoModRef(Result))
934       IsMustAlias = false;
935 
936     // Early return if we improved mod ref information
937     if (!isModAndRefSet(Result)) {
938       if (isNoModRef(Result))
939         return ModRefInfo::NoModRef;
940       return IsMustAlias ? setMust(Result) : clearMust(Result);
941     }
942   }
943 
944   // If the call is malloc/calloc like, we can assume that it doesn't
945   // modify any IR visible value.  This is only valid because we assume these
946   // routines do not read values visible in the IR.  TODO: Consider special
947   // casing realloc and strdup routines which access only their arguments as
948   // well.  Or alternatively, replace all of this with inaccessiblememonly once
949   // that's implemented fully.
950   if (isMallocOrCallocLikeFn(Call, &TLI)) {
951     // Be conservative if the accessed pointer may alias the allocation -
952     // fallback to the generic handling below.
953     if (getBestAAResults().alias(MemoryLocation::getBeforeOrAfter(Call), Loc,
954                                  AAQI) == AliasResult::NoAlias)
955       return ModRefInfo::NoModRef;
956   }
957 
958   // The semantics of memcpy intrinsics either exactly overlap or do not
959   // overlap, i.e., source and destination of any given memcpy are either
960   // no-alias or must-alias.
961   if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) {
962     AliasResult SrcAA =
963         getBestAAResults().alias(MemoryLocation::getForSource(Inst), Loc, AAQI);
964     AliasResult DestAA =
965         getBestAAResults().alias(MemoryLocation::getForDest(Inst), Loc, AAQI);
966     // It's also possible for Loc to alias both src and dest, or neither.
967     ModRefInfo rv = ModRefInfo::NoModRef;
968     if (SrcAA != AliasResult::NoAlias)
969       rv = setRef(rv);
970     if (DestAA != AliasResult::NoAlias)
971       rv = setMod(rv);
972     return rv;
973   }
974 
975   // Guard intrinsics are marked as arbitrarily writing so that proper control
976   // dependencies are maintained but they never mods any particular memory
977   // location.
978   //
979   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
980   // heap state at the point the guard is issued needs to be consistent in case
981   // the guard invokes the "deopt" continuation.
982   if (isIntrinsicCall(Call, Intrinsic::experimental_guard))
983     return ModRefInfo::Ref;
984   // The same applies to deoptimize which is essentially a guard(false).
985   if (isIntrinsicCall(Call, Intrinsic::experimental_deoptimize))
986     return ModRefInfo::Ref;
987 
988   // Like assumes, invariant.start intrinsics were also marked as arbitrarily
989   // writing so that proper control dependencies are maintained but they never
990   // mod any particular memory location visible to the IR.
991   // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
992   // intrinsic is now modeled as reading memory. This prevents hoisting the
993   // invariant.start intrinsic over stores. Consider:
994   // *ptr = 40;
995   // *ptr = 50;
996   // invariant_start(ptr)
997   // int val = *ptr;
998   // print(val);
999   //
1000   // This cannot be transformed to:
1001   //
1002   // *ptr = 40;
1003   // invariant_start(ptr)
1004   // *ptr = 50;
1005   // int val = *ptr;
1006   // print(val);
1007   //
1008   // The transformation will cause the second store to be ignored (based on
1009   // rules of invariant.start)  and print 40, while the first program always
1010   // prints 50.
1011   if (isIntrinsicCall(Call, Intrinsic::invariant_start))
1012     return ModRefInfo::Ref;
1013 
1014   // The AAResultBase base class has some smarts, lets use them.
1015   return AAResultBase::getModRefInfo(Call, Loc, AAQI);
1016 }
1017 
1018 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
1019                                         const CallBase *Call2,
1020                                         AAQueryInfo &AAQI) {
1021   // Guard intrinsics are marked as arbitrarily writing so that proper control
1022   // dependencies are maintained but they never mods any particular memory
1023   // location.
1024   //
1025   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1026   // heap state at the point the guard is issued needs to be consistent in case
1027   // the guard invokes the "deopt" continuation.
1028 
1029   // NB! This function is *not* commutative, so we special case two
1030   // possibilities for guard intrinsics.
1031 
1032   if (isIntrinsicCall(Call1, Intrinsic::experimental_guard))
1033     return isModSet(createModRefInfo(getModRefBehavior(Call2)))
1034                ? ModRefInfo::Ref
1035                : ModRefInfo::NoModRef;
1036 
1037   if (isIntrinsicCall(Call2, Intrinsic::experimental_guard))
1038     return isModSet(createModRefInfo(getModRefBehavior(Call1)))
1039                ? ModRefInfo::Mod
1040                : ModRefInfo::NoModRef;
1041 
1042   // The AAResultBase base class has some smarts, lets use them.
1043   return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
1044 }
1045 
1046 /// Return true if we know V to the base address of the corresponding memory
1047 /// object.  This implies that any address less than V must be out of bounds
1048 /// for the underlying object.  Note that just being isIdentifiedObject() is
1049 /// not enough - For example, a negative offset from a noalias argument or call
1050 /// can be inbounds w.r.t the actual underlying object.
1051 static bool isBaseOfObject(const Value *V) {
1052   // TODO: We can handle other cases here
1053   // 1) For GC languages, arguments to functions are often required to be
1054   //    base pointers.
1055   // 2) Result of allocation routines are often base pointers.  Leverage TLI.
1056   return (isa<AllocaInst>(V) || isa<GlobalVariable>(V));
1057 }
1058 
1059 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1060 /// another pointer.
1061 ///
1062 /// We know that V1 is a GEP, but we don't know anything about V2.
1063 /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for
1064 /// V2.
1065 AliasResult BasicAAResult::aliasGEP(
1066     const GEPOperator *GEP1, LocationSize V1Size,
1067     const Value *V2, LocationSize V2Size,
1068     const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) {
1069   if (!V1Size.hasValue() && !V2Size.hasValue()) {
1070     // TODO: This limitation exists for compile-time reasons. Relax it if we
1071     // can avoid exponential pathological cases.
1072     if (!isa<GEPOperator>(V2))
1073       return AliasResult::MayAlias;
1074 
1075     // If both accesses have unknown size, we can only check whether the base
1076     // objects don't alias.
1077     AliasResult BaseAlias = getBestAAResults().alias(
1078         MemoryLocation::getBeforeOrAfter(UnderlyingV1),
1079         MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI);
1080     return BaseAlias == AliasResult::NoAlias ? AliasResult::NoAlias
1081                                              : AliasResult::MayAlias;
1082   }
1083 
1084   DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT);
1085   DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT);
1086 
1087   // Don't attempt to analyze the decomposed GEP if index scale is not a
1088   // compile-time constant.
1089   if (!DecompGEP1.HasCompileTimeConstantScale ||
1090       !DecompGEP2.HasCompileTimeConstantScale)
1091     return AliasResult::MayAlias;
1092 
1093   assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
1094          "DecomposeGEPExpression returned a result different from "
1095          "getUnderlyingObject");
1096 
1097   // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1098   // symbolic difference.
1099   DecompGEP1.Offset -= DecompGEP2.Offset;
1100   GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);
1101 
1102   // If an inbounds GEP would have to start from an out of bounds address
1103   // for the two to alias, then we can assume noalias.
1104   if (*DecompGEP1.InBounds && DecompGEP1.VarIndices.empty() &&
1105       V2Size.hasValue() && DecompGEP1.Offset.sge(V2Size.getValue()) &&
1106       isBaseOfObject(DecompGEP2.Base))
1107     return AliasResult::NoAlias;
1108 
1109   if (isa<GEPOperator>(V2)) {
1110     // Symmetric case to above.
1111     if (*DecompGEP2.InBounds && DecompGEP1.VarIndices.empty() &&
1112         V1Size.hasValue() && DecompGEP1.Offset.sle(-V1Size.getValue()) &&
1113         isBaseOfObject(DecompGEP1.Base))
1114       return AliasResult::NoAlias;
1115   }
1116 
1117   // For GEPs with identical offsets, we can preserve the size and AAInfo
1118   // when performing the alias check on the underlying objects.
1119   if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty())
1120     return getBestAAResults().alias(
1121         MemoryLocation(UnderlyingV1, V1Size),
1122         MemoryLocation(UnderlyingV2, V2Size), AAQI);
1123 
1124   // Do the base pointers alias?
1125   AliasResult BaseAlias = getBestAAResults().alias(
1126       MemoryLocation::getBeforeOrAfter(UnderlyingV1),
1127       MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI);
1128 
1129   // If we get a No or May, then return it immediately, no amount of analysis
1130   // will improve this situation.
1131   if (BaseAlias != AliasResult::MustAlias) {
1132     assert(BaseAlias == AliasResult::NoAlias ||
1133            BaseAlias == AliasResult::MayAlias);
1134     return BaseAlias;
1135   }
1136 
1137   // If there is a constant difference between the pointers, but the difference
1138   // is less than the size of the associated memory object, then we know
1139   // that the objects are partially overlapping.  If the difference is
1140   // greater, we know they do not overlap.
1141   if (DecompGEP1.Offset != 0 && DecompGEP1.VarIndices.empty()) {
1142     APInt &Off = DecompGEP1.Offset;
1143 
1144     // Initialize for Off >= 0 (V2 <= GEP1) case.
1145     const Value *LeftPtr = V2;
1146     const Value *RightPtr = GEP1;
1147     LocationSize VLeftSize = V2Size;
1148     LocationSize VRightSize = V1Size;
1149     const bool Swapped = Off.isNegative();
1150 
1151     if (Swapped) {
1152       // Swap if we have the situation where:
1153       // +                +
1154       // | BaseOffset     |
1155       // ---------------->|
1156       // |-->V1Size       |-------> V2Size
1157       // GEP1             V2
1158       std::swap(LeftPtr, RightPtr);
1159       std::swap(VLeftSize, VRightSize);
1160       Off = -Off;
1161     }
1162 
1163     if (VLeftSize.hasValue()) {
1164       const uint64_t LSize = VLeftSize.getValue();
1165       if (Off.ult(LSize)) {
1166         // Conservatively drop processing if a phi was visited and/or offset is
1167         // too big.
1168         AliasResult AR = AliasResult::PartialAlias;
1169         if (VRightSize.hasValue() && Off.ule(INT32_MAX) &&
1170             (Off + VRightSize.getValue()).ule(LSize)) {
1171           // Memory referenced by right pointer is nested. Save the offset in
1172           // cache. Note that originally offset estimated as GEP1-V2, but
1173           // AliasResult contains the shift that represents GEP1+Offset=V2.
1174           AR.setOffset(-Off.getSExtValue());
1175           AR.swap(Swapped);
1176         }
1177         return AR;
1178       }
1179       return AliasResult::NoAlias;
1180     }
1181   }
1182 
1183   if (!DecompGEP1.VarIndices.empty()) {
1184     APInt GCD;
1185     bool AllNonNegative = DecompGEP1.Offset.isNonNegative();
1186     bool AllNonPositive = DecompGEP1.Offset.isNonPositive();
1187     for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1188       APInt Scale = DecompGEP1.VarIndices[i].Scale;
1189       APInt ScaleForGCD = DecompGEP1.VarIndices[i].Scale;
1190       if (!DecompGEP1.VarIndices[i].IsNSW)
1191         ScaleForGCD = APInt::getOneBitSet(Scale.getBitWidth(),
1192                                           Scale.countTrailingZeros());
1193 
1194       if (i == 0)
1195         GCD = ScaleForGCD.abs();
1196       else
1197         GCD = APIntOps::GreatestCommonDivisor(GCD, ScaleForGCD.abs());
1198 
1199       if (AllNonNegative || AllNonPositive) {
1200         // If the Value could change between cycles, then any reasoning about
1201         // the Value this cycle may not hold in the next cycle. We'll just
1202         // give up if we can't determine conditions that hold for every cycle:
1203         const Value *V = DecompGEP1.VarIndices[i].V;
1204         const Instruction *CxtI = DecompGEP1.VarIndices[i].CxtI;
1205 
1206         KnownBits Known = computeKnownBits(V, DL, 0, &AC, CxtI, DT);
1207         bool SignKnownZero = Known.isNonNegative();
1208         bool SignKnownOne = Known.isNegative();
1209 
1210         // Zero-extension widens the variable, and so forces the sign
1211         // bit to zero.
1212         bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
1213         SignKnownZero |= IsZExt;
1214         SignKnownOne &= !IsZExt;
1215 
1216         AllNonNegative &= (SignKnownZero && Scale.isNonNegative()) ||
1217                           (SignKnownOne && Scale.isNonPositive());
1218         AllNonPositive &= (SignKnownZero && Scale.isNonPositive()) ||
1219                           (SignKnownOne && Scale.isNonNegative());
1220       }
1221     }
1222 
1223     // We now have accesses at two offsets from the same base:
1224     //  1. (...)*GCD + DecompGEP1.Offset with size V1Size
1225     //  2. 0 with size V2Size
1226     // Using arithmetic modulo GCD, the accesses are at
1227     // [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits
1228     // into the range [V2Size..GCD), then we know they cannot overlap.
1229     APInt ModOffset = DecompGEP1.Offset.srem(GCD);
1230     if (ModOffset.isNegative())
1231       ModOffset += GCD; // We want mod, not rem.
1232     if (V1Size.hasValue() && V2Size.hasValue() &&
1233         ModOffset.uge(V2Size.getValue()) &&
1234         (GCD - ModOffset).uge(V1Size.getValue()))
1235       return AliasResult::NoAlias;
1236 
1237     // If we know all the variables are non-negative, then the total offset is
1238     // also non-negative and >= DecompGEP1.Offset. We have the following layout:
1239     // [0, V2Size) ... [TotalOffset, TotalOffer+V1Size]
1240     // If DecompGEP1.Offset >= V2Size, the accesses don't alias.
1241     if (AllNonNegative && V2Size.hasValue() &&
1242         DecompGEP1.Offset.uge(V2Size.getValue()))
1243       return AliasResult::NoAlias;
1244     // Similarly, if the variables are non-positive, then the total offset is
1245     // also non-positive and <= DecompGEP1.Offset. We have the following layout:
1246     // [TotalOffset, TotalOffset+V1Size) ... [0, V2Size)
1247     // If -DecompGEP1.Offset >= V1Size, the accesses don't alias.
1248     if (AllNonPositive && V1Size.hasValue() &&
1249         (-DecompGEP1.Offset).uge(V1Size.getValue()))
1250       return AliasResult::NoAlias;
1251 
1252     if (V1Size.hasValue() && V2Size.hasValue()) {
1253       // Try to determine whether abs(VarIndex) > 0.
1254       Optional<APInt> MinAbsVarIndex;
1255       if (DecompGEP1.VarIndices.size() == 1) {
1256         // VarIndex = Scale*V. If V != 0 then abs(VarIndex) >= abs(Scale).
1257         const VariableGEPIndex &Var = DecompGEP1.VarIndices[0];
1258         if (isKnownNonZero(Var.V, DL, 0, &AC, Var.CxtI, DT))
1259           MinAbsVarIndex = Var.Scale.abs();
1260       } else if (DecompGEP1.VarIndices.size() == 2) {
1261         // VarIndex = Scale*V0 + (-Scale)*V1.
1262         // If V0 != V1 then abs(VarIndex) >= abs(Scale).
1263         // Check that VisitedPhiBBs is empty, to avoid reasoning about
1264         // inequality of values across loop iterations.
1265         const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0];
1266         const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1];
1267         if (Var0.Scale == -Var1.Scale && Var0.ZExtBits == Var1.ZExtBits &&
1268             Var0.SExtBits == Var1.SExtBits && VisitedPhiBBs.empty() &&
1269             isKnownNonEqual(Var0.V, Var1.V, DL, &AC, /* CxtI */ nullptr, DT))
1270           MinAbsVarIndex = Var0.Scale.abs();
1271       }
1272 
1273       if (MinAbsVarIndex) {
1274         // The constant offset will have added at least +/-MinAbsVarIndex to it.
1275         APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex;
1276         APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex;
1277         // Check that an access at OffsetLo or lower, and an access at OffsetHi
1278         // or higher both do not alias.
1279         if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) &&
1280             OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue()))
1281           return AliasResult::NoAlias;
1282       }
1283     }
1284 
1285     if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
1286                                 DecompGEP1.Offset, &AC, DT))
1287       return AliasResult::NoAlias;
1288   }
1289 
1290   // Statically, we can see that the base objects are the same, but the
1291   // pointers have dynamic offsets which we can't resolve. And none of our
1292   // little tricks above worked.
1293   return AliasResult::MayAlias;
1294 }
1295 
1296 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1297   // If the results agree, take it.
1298   if (A == B)
1299     return A;
1300   // A mix of PartialAlias and MustAlias is PartialAlias.
1301   if ((A == AliasResult::PartialAlias && B == AliasResult::MustAlias) ||
1302       (B == AliasResult::PartialAlias && A == AliasResult::MustAlias))
1303     return AliasResult::PartialAlias;
1304   // Otherwise, we don't know anything.
1305   return AliasResult::MayAlias;
1306 }
1307 
1308 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1309 /// against another.
1310 AliasResult
1311 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize,
1312                            const Value *V2, LocationSize V2Size,
1313                            AAQueryInfo &AAQI) {
1314   // If the values are Selects with the same condition, we can do a more precise
1315   // check: just check for aliases between the values on corresponding arms.
1316   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1317     if (SI->getCondition() == SI2->getCondition()) {
1318       AliasResult Alias = getBestAAResults().alias(
1319           MemoryLocation(SI->getTrueValue(), SISize),
1320           MemoryLocation(SI2->getTrueValue(), V2Size), AAQI);
1321       if (Alias == AliasResult::MayAlias)
1322         return AliasResult::MayAlias;
1323       AliasResult ThisAlias = getBestAAResults().alias(
1324           MemoryLocation(SI->getFalseValue(), SISize),
1325           MemoryLocation(SI2->getFalseValue(), V2Size), AAQI);
1326       return MergeAliasResults(ThisAlias, Alias);
1327     }
1328 
1329   // If both arms of the Select node NoAlias or MustAlias V2, then returns
1330   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1331   AliasResult Alias = getBestAAResults().alias(
1332       MemoryLocation(V2, V2Size),
1333       MemoryLocation(SI->getTrueValue(), SISize), AAQI);
1334   if (Alias == AliasResult::MayAlias)
1335     return AliasResult::MayAlias;
1336 
1337   AliasResult ThisAlias = getBestAAResults().alias(
1338       MemoryLocation(V2, V2Size),
1339       MemoryLocation(SI->getFalseValue(), SISize), AAQI);
1340   return MergeAliasResults(ThisAlias, Alias);
1341 }
1342 
1343 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1344 /// another.
1345 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
1346                                     const Value *V2, LocationSize V2Size,
1347                                     AAQueryInfo &AAQI) {
1348   if (!PN->getNumIncomingValues())
1349     return AliasResult::NoAlias;
1350   // If the values are PHIs in the same block, we can do a more precise
1351   // as well as efficient check: just check for aliases between the values
1352   // on corresponding edges.
1353   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1354     if (PN2->getParent() == PN->getParent()) {
1355       Optional<AliasResult> Alias;
1356       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1357         AliasResult ThisAlias = getBestAAResults().alias(
1358             MemoryLocation(PN->getIncomingValue(i), PNSize),
1359             MemoryLocation(
1360                 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size),
1361             AAQI);
1362         if (Alias)
1363           *Alias = MergeAliasResults(*Alias, ThisAlias);
1364         else
1365           Alias = ThisAlias;
1366         if (*Alias == AliasResult::MayAlias)
1367           break;
1368       }
1369       return *Alias;
1370     }
1371 
1372   SmallVector<Value *, 4> V1Srcs;
1373   // If a phi operand recurses back to the phi, we can still determine NoAlias
1374   // if we don't alias the underlying objects of the other phi operands, as we
1375   // know that the recursive phi needs to be based on them in some way.
1376   bool isRecursive = false;
1377   auto CheckForRecPhi = [&](Value *PV) {
1378     if (!EnableRecPhiAnalysis)
1379       return false;
1380     if (getUnderlyingObject(PV) == PN) {
1381       isRecursive = true;
1382       return true;
1383     }
1384     return false;
1385   };
1386 
1387   if (PV) {
1388     // If we have PhiValues then use it to get the underlying phi values.
1389     const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN);
1390     // If we have more phi values than the search depth then return MayAlias
1391     // conservatively to avoid compile time explosion. The worst possible case
1392     // is if both sides are PHI nodes. In which case, this is O(m x n) time
1393     // where 'm' and 'n' are the number of PHI sources.
1394     if (PhiValueSet.size() > MaxLookupSearchDepth)
1395       return AliasResult::MayAlias;
1396     // Add the values to V1Srcs
1397     for (Value *PV1 : PhiValueSet) {
1398       if (CheckForRecPhi(PV1))
1399         continue;
1400       V1Srcs.push_back(PV1);
1401     }
1402   } else {
1403     // If we don't have PhiInfo then just look at the operands of the phi itself
1404     // FIXME: Remove this once we can guarantee that we have PhiInfo always
1405     SmallPtrSet<Value *, 4> UniqueSrc;
1406     Value *OnePhi = nullptr;
1407     for (Value *PV1 : PN->incoming_values()) {
1408       if (isa<PHINode>(PV1)) {
1409         if (OnePhi && OnePhi != PV1) {
1410           // To control potential compile time explosion, we choose to be
1411           // conserviate when we have more than one Phi input.  It is important
1412           // that we handle the single phi case as that lets us handle LCSSA
1413           // phi nodes and (combined with the recursive phi handling) simple
1414           // pointer induction variable patterns.
1415           return AliasResult::MayAlias;
1416         }
1417         OnePhi = PV1;
1418       }
1419 
1420       if (CheckForRecPhi(PV1))
1421         continue;
1422 
1423       if (UniqueSrc.insert(PV1).second)
1424         V1Srcs.push_back(PV1);
1425     }
1426 
1427     if (OnePhi && UniqueSrc.size() > 1)
1428       // Out of an abundance of caution, allow only the trivial lcssa and
1429       // recursive phi cases.
1430       return AliasResult::MayAlias;
1431   }
1432 
1433   // If V1Srcs is empty then that means that the phi has no underlying non-phi
1434   // value. This should only be possible in blocks unreachable from the entry
1435   // block, but return MayAlias just in case.
1436   if (V1Srcs.empty())
1437     return AliasResult::MayAlias;
1438 
1439   // If this PHI node is recursive, indicate that the pointer may be moved
1440   // across iterations. We can only prove NoAlias if different underlying
1441   // objects are involved.
1442   if (isRecursive)
1443     PNSize = LocationSize::beforeOrAfterPointer();
1444 
1445   // In the recursive alias queries below, we may compare values from two
1446   // different loop iterations. Keep track of visited phi blocks, which will
1447   // be used when determining value equivalence.
1448   bool BlockInserted = VisitedPhiBBs.insert(PN->getParent()).second;
1449   auto _ = make_scope_exit([&]() {
1450     if (BlockInserted)
1451       VisitedPhiBBs.erase(PN->getParent());
1452   });
1453 
1454   // If we inserted a block into VisitedPhiBBs, alias analysis results that
1455   // have been cached earlier may no longer be valid. Perform recursive queries
1456   // with a new AAQueryInfo.
1457   AAQueryInfo NewAAQI = AAQI.withEmptyCache();
1458   AAQueryInfo *UseAAQI = BlockInserted ? &NewAAQI : &AAQI;
1459 
1460   AliasResult Alias = getBestAAResults().alias(
1461       MemoryLocation(V2, V2Size),
1462       MemoryLocation(V1Srcs[0], PNSize), *UseAAQI);
1463 
1464   // Early exit if the check of the first PHI source against V2 is MayAlias.
1465   // Other results are not possible.
1466   if (Alias == AliasResult::MayAlias)
1467     return AliasResult::MayAlias;
1468   // With recursive phis we cannot guarantee that MustAlias/PartialAlias will
1469   // remain valid to all elements and needs to conservatively return MayAlias.
1470   if (isRecursive && Alias != AliasResult::NoAlias)
1471     return AliasResult::MayAlias;
1472 
1473   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1474   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1475   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1476     Value *V = V1Srcs[i];
1477 
1478     AliasResult ThisAlias = getBestAAResults().alias(
1479         MemoryLocation(V2, V2Size), MemoryLocation(V, PNSize), *UseAAQI);
1480     Alias = MergeAliasResults(ThisAlias, Alias);
1481     if (Alias == AliasResult::MayAlias)
1482       break;
1483   }
1484 
1485   return Alias;
1486 }
1487 
1488 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1489 /// array references.
1490 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
1491                                       const Value *V2, LocationSize V2Size,
1492                                       AAQueryInfo &AAQI) {
1493   // If either of the memory references is empty, it doesn't matter what the
1494   // pointer values are.
1495   if (V1Size.isZero() || V2Size.isZero())
1496     return AliasResult::NoAlias;
1497 
1498   // Strip off any casts if they exist.
1499   V1 = V1->stripPointerCastsForAliasAnalysis();
1500   V2 = V2->stripPointerCastsForAliasAnalysis();
1501 
1502   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1503   // value for undef that aliases nothing in the program.
1504   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1505     return AliasResult::NoAlias;
1506 
1507   // Are we checking for alias of the same value?
1508   // Because we look 'through' phi nodes, we could look at "Value" pointers from
1509   // different iterations. We must therefore make sure that this is not the
1510   // case. The function isValueEqualInPotentialCycles ensures that this cannot
1511   // happen by looking at the visited phi nodes and making sure they cannot
1512   // reach the value.
1513   if (isValueEqualInPotentialCycles(V1, V2))
1514     return AliasResult::MustAlias;
1515 
1516   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1517     return AliasResult::NoAlias; // Scalars cannot alias each other
1518 
1519   // Figure out what objects these things are pointing to if we can.
1520   const Value *O1 = getUnderlyingObject(V1, MaxLookupSearchDepth);
1521   const Value *O2 = getUnderlyingObject(V2, MaxLookupSearchDepth);
1522 
1523   // Null values in the default address space don't point to any object, so they
1524   // don't alias any other pointer.
1525   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1526     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1527       return AliasResult::NoAlias;
1528   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1529     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1530       return AliasResult::NoAlias;
1531 
1532   if (O1 != O2) {
1533     // If V1/V2 point to two different objects, we know that we have no alias.
1534     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1535       return AliasResult::NoAlias;
1536 
1537     // Constant pointers can't alias with non-const isIdentifiedObject objects.
1538     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1539         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1540       return AliasResult::NoAlias;
1541 
1542     // Function arguments can't alias with things that are known to be
1543     // unambigously identified at the function level.
1544     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1545         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1546       return AliasResult::NoAlias;
1547 
1548     // If one pointer is the result of a call/invoke or load and the other is a
1549     // non-escaping local object within the same function, then we know the
1550     // object couldn't escape to a point where the call could return it.
1551     //
1552     // Note that if the pointers are in different functions, there are a
1553     // variety of complications. A call with a nocapture argument may still
1554     // temporary store the nocapture argument's value in a temporary memory
1555     // location if that memory location doesn't escape. Or it may pass a
1556     // nocapture value to other functions as long as they don't capture it.
1557     if (isEscapeSource(O1) &&
1558         AAQI.CI->isNotCapturedBeforeOrAt(O2, cast<Instruction>(O1)))
1559       return AliasResult::NoAlias;
1560     if (isEscapeSource(O2) &&
1561         AAQI.CI->isNotCapturedBeforeOrAt(O1, cast<Instruction>(O2)))
1562       return AliasResult::NoAlias;
1563   }
1564 
1565   // If the size of one access is larger than the entire object on the other
1566   // side, then we know such behavior is undefined and can assume no alias.
1567   bool NullIsValidLocation = NullPointerIsDefined(&F);
1568   if ((isObjectSmallerThan(
1569           O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL,
1570           TLI, NullIsValidLocation)) ||
1571       (isObjectSmallerThan(
1572           O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL,
1573           TLI, NullIsValidLocation)))
1574     return AliasResult::NoAlias;
1575 
1576   // If one the accesses may be before the accessed pointer, canonicalize this
1577   // by using unknown after-pointer sizes for both accesses. This is
1578   // equivalent, because regardless of which pointer is lower, one of them
1579   // will always came after the other, as long as the underlying objects aren't
1580   // disjoint. We do this so that the rest of BasicAA does not have to deal
1581   // with accesses before the base pointer, and to improve cache utilization by
1582   // merging equivalent states.
1583   if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) {
1584     V1Size = LocationSize::afterPointer();
1585     V2Size = LocationSize::afterPointer();
1586   }
1587 
1588   // FIXME: If this depth limit is hit, then we may cache sub-optimal results
1589   // for recursive queries. For this reason, this limit is chosen to be large
1590   // enough to be very rarely hit, while still being small enough to avoid
1591   // stack overflows.
1592   if (AAQI.Depth >= 512)
1593     return AliasResult::MayAlias;
1594 
1595   // Check the cache before climbing up use-def chains. This also terminates
1596   // otherwise infinitely recursive queries.
1597   AAQueryInfo::LocPair Locs({V1, V1Size}, {V2, V2Size});
1598   const bool Swapped = V1 > V2;
1599   if (Swapped)
1600     std::swap(Locs.first, Locs.second);
1601   const auto &Pair = AAQI.AliasCache.try_emplace(
1602       Locs, AAQueryInfo::CacheEntry{AliasResult::NoAlias, 0});
1603   if (!Pair.second) {
1604     auto &Entry = Pair.first->second;
1605     if (!Entry.isDefinitive()) {
1606       // Remember that we used an assumption.
1607       ++Entry.NumAssumptionUses;
1608       ++AAQI.NumAssumptionUses;
1609     }
1610     // Cache contains sorted {V1,V2} pairs but we should return original order.
1611     auto Result = Entry.Result;
1612     Result.swap(Swapped);
1613     return Result;
1614   }
1615 
1616   int OrigNumAssumptionUses = AAQI.NumAssumptionUses;
1617   unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size();
1618   AliasResult Result =
1619       aliasCheckRecursive(V1, V1Size, V2, V2Size, AAQI, O1, O2);
1620 
1621   auto It = AAQI.AliasCache.find(Locs);
1622   assert(It != AAQI.AliasCache.end() && "Must be in cache");
1623   auto &Entry = It->second;
1624 
1625   // Check whether a NoAlias assumption has been used, but disproven.
1626   bool AssumptionDisproven =
1627       Entry.NumAssumptionUses > 0 && Result != AliasResult::NoAlias;
1628   if (AssumptionDisproven)
1629     Result = AliasResult::MayAlias;
1630 
1631   // This is a definitive result now, when considered as a root query.
1632   AAQI.NumAssumptionUses -= Entry.NumAssumptionUses;
1633   Entry.Result = Result;
1634   // Cache contains sorted {V1,V2} pairs.
1635   Entry.Result.swap(Swapped);
1636   Entry.NumAssumptionUses = -1;
1637 
1638   // If the assumption has been disproven, remove any results that may have
1639   // been based on this assumption. Do this after the Entry updates above to
1640   // avoid iterator invalidation.
1641   if (AssumptionDisproven)
1642     while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults)
1643       AAQI.AliasCache.erase(AAQI.AssumptionBasedResults.pop_back_val());
1644 
1645   // The result may still be based on assumptions higher up in the chain.
1646   // Remember it, so it can be purged from the cache later.
1647   if (OrigNumAssumptionUses != AAQI.NumAssumptionUses &&
1648       Result != AliasResult::MayAlias)
1649     AAQI.AssumptionBasedResults.push_back(Locs);
1650   return Result;
1651 }
1652 
1653 AliasResult BasicAAResult::aliasCheckRecursive(
1654     const Value *V1, LocationSize V1Size,
1655     const Value *V2, LocationSize V2Size,
1656     AAQueryInfo &AAQI, const Value *O1, const Value *O2) {
1657   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1658     AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, O1, O2, AAQI);
1659     if (Result != AliasResult::MayAlias)
1660       return Result;
1661   } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) {
1662     AliasResult Result = aliasGEP(GV2, V2Size, V1, V1Size, O2, O1, AAQI);
1663     if (Result != AliasResult::MayAlias)
1664       return Result;
1665   }
1666 
1667   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1668     AliasResult Result = aliasPHI(PN, V1Size, V2, V2Size, AAQI);
1669     if (Result != AliasResult::MayAlias)
1670       return Result;
1671   } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) {
1672     AliasResult Result = aliasPHI(PN, V2Size, V1, V1Size, AAQI);
1673     if (Result != AliasResult::MayAlias)
1674       return Result;
1675   }
1676 
1677   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1678     AliasResult Result = aliasSelect(S1, V1Size, V2, V2Size, AAQI);
1679     if (Result != AliasResult::MayAlias)
1680       return Result;
1681   } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) {
1682     AliasResult Result = aliasSelect(S2, V2Size, V1, V1Size, AAQI);
1683     if (Result != AliasResult::MayAlias)
1684       return Result;
1685   }
1686 
1687   // If both pointers are pointing into the same object and one of them
1688   // accesses the entire object, then the accesses must overlap in some way.
1689   if (O1 == O2) {
1690     bool NullIsValidLocation = NullPointerIsDefined(&F);
1691     if (V1Size.isPrecise() && V2Size.isPrecise() &&
1692         (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
1693          isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation)))
1694       return AliasResult::PartialAlias;
1695   }
1696 
1697   return AliasResult::MayAlias;
1698 }
1699 
1700 /// Check whether two Values can be considered equivalent.
1701 ///
1702 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1703 /// they can not be part of a cycle in the value graph by looking at all
1704 /// visited phi nodes an making sure that the phis cannot reach the value. We
1705 /// have to do this because we are looking through phi nodes (That is we say
1706 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1707 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1708                                                   const Value *V2) {
1709   if (V != V2)
1710     return false;
1711 
1712   const Instruction *Inst = dyn_cast<Instruction>(V);
1713   if (!Inst)
1714     return true;
1715 
1716   if (VisitedPhiBBs.empty())
1717     return true;
1718 
1719   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1720     return false;
1721 
1722   // Make sure that the visited phis cannot reach the Value. This ensures that
1723   // the Values cannot come from different iterations of a potential cycle the
1724   // phi nodes could be involved in.
1725   for (auto *P : VisitedPhiBBs)
1726     if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT))
1727       return false;
1728 
1729   return true;
1730 }
1731 
1732 /// Computes the symbolic difference between two de-composed GEPs.
1733 ///
1734 /// Dest and Src are the variable indices from two decomposed GetElementPtr
1735 /// instructions GEP1 and GEP2 which have common base pointers.
1736 void BasicAAResult::GetIndexDifference(
1737     SmallVectorImpl<VariableGEPIndex> &Dest,
1738     const SmallVectorImpl<VariableGEPIndex> &Src) {
1739   if (Src.empty())
1740     return;
1741 
1742   for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1743     const Value *V = Src[i].V;
1744     unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
1745     APInt Scale = Src[i].Scale;
1746 
1747     // Find V in Dest.  This is N^2, but pointer indices almost never have more
1748     // than a few variable indexes.
1749     for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1750       if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1751           Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
1752         continue;
1753 
1754       // If we found it, subtract off Scale V's from the entry in Dest.  If it
1755       // goes to zero, remove the entry.
1756       if (Dest[j].Scale != Scale) {
1757         Dest[j].Scale -= Scale;
1758         Dest[j].IsNSW = false;
1759       } else
1760         Dest.erase(Dest.begin() + j);
1761       Scale = 0;
1762       break;
1763     }
1764 
1765     // If we didn't consume this entry, add it to the end of the Dest list.
1766     if (!!Scale) {
1767       VariableGEPIndex Entry = {V,      ZExtBits,    SExtBits,
1768                                 -Scale, Src[i].CxtI, Src[i].IsNSW};
1769       Dest.push_back(Entry);
1770     }
1771   }
1772 }
1773 
1774 bool BasicAAResult::constantOffsetHeuristic(
1775     const SmallVectorImpl<VariableGEPIndex> &VarIndices,
1776     LocationSize MaybeV1Size, LocationSize MaybeV2Size, const APInt &BaseOffset,
1777     AssumptionCache *AC, DominatorTree *DT) {
1778   if (VarIndices.size() != 2 || !MaybeV1Size.hasValue() ||
1779       !MaybeV2Size.hasValue())
1780     return false;
1781 
1782   const uint64_t V1Size = MaybeV1Size.getValue();
1783   const uint64_t V2Size = MaybeV2Size.getValue();
1784 
1785   const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
1786 
1787   if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
1788       Var0.Scale != -Var1.Scale || Var0.V->getType() != Var1.V->getType())
1789     return false;
1790 
1791   // We'll strip off the Extensions of Var0 and Var1 and do another round
1792   // of GetLinearExpression decomposition. In the example above, if Var0
1793   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1794 
1795   LinearExpression E0 =
1796       GetLinearExpression(ExtendedValue(Var0.V), DL, 0, AC, DT);
1797   LinearExpression E1 =
1798       GetLinearExpression(ExtendedValue(Var1.V), DL, 0, AC, DT);
1799   if (E0.Scale != E1.Scale || E0.Val.ZExtBits != E1.Val.ZExtBits ||
1800       E0.Val.SExtBits != E1.Val.SExtBits ||
1801       !isValueEqualInPotentialCycles(E0.Val.V, E1.Val.V))
1802     return false;
1803 
1804   // We have a hit - Var0 and Var1 only differ by a constant offset!
1805 
1806   // If we've been sext'ed then zext'd the maximum difference between Var0 and
1807   // Var1 is possible to calculate, but we're just interested in the absolute
1808   // minimum difference between the two. The minimum distance may occur due to
1809   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1810   // the minimum distance between %i and %i + 5 is 3.
1811   APInt MinDiff = E0.Offset - E1.Offset, Wrapped = -MinDiff;
1812   MinDiff = APIntOps::umin(MinDiff, Wrapped);
1813   APInt MinDiffBytes =
1814     MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs();
1815 
1816   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
1817   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
1818   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
1819   // V2Size can fit in the MinDiffBytes gap.
1820   return MinDiffBytes.uge(V1Size + BaseOffset.abs()) &&
1821          MinDiffBytes.uge(V2Size + BaseOffset.abs());
1822 }
1823 
1824 //===----------------------------------------------------------------------===//
1825 // BasicAliasAnalysis Pass
1826 //===----------------------------------------------------------------------===//
1827 
1828 AnalysisKey BasicAA::Key;
1829 
1830 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
1831   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1832   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1833   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1834   auto *PV = AM.getCachedResult<PhiValuesAnalysis>(F);
1835   return BasicAAResult(F.getParent()->getDataLayout(), F, TLI, AC, DT, PV);
1836 }
1837 
1838 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
1839   initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
1840 }
1841 
1842 char BasicAAWrapperPass::ID = 0;
1843 
1844 void BasicAAWrapperPass::anchor() {}
1845 
1846 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa",
1847                       "Basic Alias Analysis (stateless AA impl)", true, true)
1848 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1849 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1850 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1851 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
1852 INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa",
1853                     "Basic Alias Analysis (stateless AA impl)", true, true)
1854 
1855 FunctionPass *llvm::createBasicAAWrapperPass() {
1856   return new BasicAAWrapperPass();
1857 }
1858 
1859 bool BasicAAWrapperPass::runOnFunction(Function &F) {
1860   auto &ACT = getAnalysis<AssumptionCacheTracker>();
1861   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
1862   auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
1863   auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>();
1864 
1865   Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F,
1866                                  TLIWP.getTLI(F), ACT.getAssumptionCache(F),
1867                                  &DTWP.getDomTree(),
1868                                  PVWP ? &PVWP->getResult() : nullptr));
1869 
1870   return false;
1871 }
1872 
1873 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1874   AU.setPreservesAll();
1875   AU.addRequiredTransitive<AssumptionCacheTracker>();
1876   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
1877   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1878   AU.addUsedIfAvailable<PhiValuesWrapperPass>();
1879 }
1880 
1881 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
1882   return BasicAAResult(
1883       F.getParent()->getDataLayout(), F,
1884       P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
1885       P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
1886 }
1887