1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the primary stateless implementation of the 11 // Alias Analysis interface that implements identities (two different 12 // globals cannot alias, etc), but does no stateful analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/Passes.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/CaptureTracking.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/TargetLibraryInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/GetElementPtrTypeIterator.h" 34 #include "llvm/IR/GlobalAlias.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include <algorithm> 43 using namespace llvm; 44 45 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 46 /// in a cycle. Because we are analysing 'through' phi nodes we need to be 47 /// careful with value equivalence. We use reachability to make sure a value 48 /// cannot be involved in a cycle. 49 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 50 51 // The max limit of the search depth in DecomposeGEPExpression() and 52 // GetUnderlyingObject(), both functions need to use the same search 53 // depth otherwise the algorithm in aliasGEP will assert. 54 static const unsigned MaxLookupSearchDepth = 6; 55 56 //===----------------------------------------------------------------------===// 57 // Useful predicates 58 //===----------------------------------------------------------------------===// 59 60 /// isNonEscapingLocalObject - Return true if the pointer is to a function-local 61 /// object that never escapes from the function. 62 static bool isNonEscapingLocalObject(const Value *V) { 63 // If this is a local allocation, check to see if it escapes. 64 if (isa<AllocaInst>(V) || isNoAliasCall(V)) 65 // Set StoreCaptures to True so that we can assume in our callers that the 66 // pointer is not the result of a load instruction. Currently 67 // PointerMayBeCaptured doesn't have any special analysis for the 68 // StoreCaptures=false case; if it did, our callers could be refined to be 69 // more precise. 70 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 71 72 // If this is an argument that corresponds to a byval or noalias argument, 73 // then it has not escaped before entering the function. Check if it escapes 74 // inside the function. 75 if (const Argument *A = dyn_cast<Argument>(V)) 76 if (A->hasByValAttr() || A->hasNoAliasAttr()) 77 // Note even if the argument is marked nocapture we still need to check 78 // for copies made inside the function. The nocapture attribute only 79 // specifies that there are no copies made that outlive the function. 80 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 81 82 return false; 83 } 84 85 /// isEscapeSource - Return true if the pointer is one which would have 86 /// been considered an escape by isNonEscapingLocalObject. 87 static bool isEscapeSource(const Value *V) { 88 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V)) 89 return true; 90 91 // The load case works because isNonEscapingLocalObject considers all 92 // stores to be escapes (it passes true for the StoreCaptures argument 93 // to PointerMayBeCaptured). 94 if (isa<LoadInst>(V)) 95 return true; 96 97 return false; 98 } 99 100 /// getObjectSize - Return the size of the object specified by V, or 101 /// UnknownSize if unknown. 102 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 103 const TargetLibraryInfo &TLI, 104 bool RoundToAlign = false) { 105 uint64_t Size; 106 if (getObjectSize(V, Size, &DL, &TLI, RoundToAlign)) 107 return Size; 108 return AliasAnalysis::UnknownSize; 109 } 110 111 /// isObjectSmallerThan - Return true if we can prove that the object specified 112 /// by V is smaller than Size. 113 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 114 const DataLayout &DL, 115 const TargetLibraryInfo &TLI) { 116 // Note that the meanings of the "object" are slightly different in the 117 // following contexts: 118 // c1: llvm::getObjectSize() 119 // c2: llvm.objectsize() intrinsic 120 // c3: isObjectSmallerThan() 121 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 122 // refers to the "entire object". 123 // 124 // Consider this example: 125 // char *p = (char*)malloc(100) 126 // char *q = p+80; 127 // 128 // In the context of c1 and c2, the "object" pointed by q refers to the 129 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 130 // 131 // However, in the context of c3, the "object" refers to the chunk of memory 132 // being allocated. So, the "object" has 100 bytes, and q points to the middle 133 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 134 // parameter, before the llvm::getObjectSize() is called to get the size of 135 // entire object, we should: 136 // - either rewind the pointer q to the base-address of the object in 137 // question (in this case rewind to p), or 138 // - just give up. It is up to caller to make sure the pointer is pointing 139 // to the base address the object. 140 // 141 // We go for 2nd option for simplicity. 142 if (!isIdentifiedObject(V)) 143 return false; 144 145 // This function needs to use the aligned object size because we allow 146 // reads a bit past the end given sufficient alignment. 147 uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/true); 148 149 return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size; 150 } 151 152 /// isObjectSize - Return true if we can prove that the object specified 153 /// by V has size Size. 154 static bool isObjectSize(const Value *V, uint64_t Size, 155 const DataLayout &DL, const TargetLibraryInfo &TLI) { 156 uint64_t ObjectSize = getObjectSize(V, DL, TLI); 157 return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size; 158 } 159 160 //===----------------------------------------------------------------------===// 161 // GetElementPtr Instruction Decomposition and Analysis 162 //===----------------------------------------------------------------------===// 163 164 namespace { 165 enum ExtensionKind { 166 EK_NotExtended, 167 EK_SignExt, 168 EK_ZeroExt 169 }; 170 171 struct VariableGEPIndex { 172 const Value *V; 173 ExtensionKind Extension; 174 int64_t Scale; 175 176 bool operator==(const VariableGEPIndex &Other) const { 177 return V == Other.V && Extension == Other.Extension && 178 Scale == Other.Scale; 179 } 180 181 bool operator!=(const VariableGEPIndex &Other) const { 182 return !operator==(Other); 183 } 184 }; 185 } 186 187 188 /// GetLinearExpression - Analyze the specified value as a linear expression: 189 /// "A*V + B", where A and B are constant integers. Return the scale and offset 190 /// values as APInts and return V as a Value*, and return whether we looked 191 /// through any sign or zero extends. The incoming Value is known to have 192 /// IntegerType and it may already be sign or zero extended. 193 /// 194 /// Note that this looks through extends, so the high bits may not be 195 /// represented in the result. 196 static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset, 197 ExtensionKind &Extension, 198 const DataLayout &DL, unsigned Depth, 199 AssumptionCache *AC, DominatorTree *DT) { 200 assert(V->getType()->isIntegerTy() && "Not an integer value"); 201 202 // Limit our recursion depth. 203 if (Depth == 6) { 204 Scale = 1; 205 Offset = 0; 206 return V; 207 } 208 209 if (ConstantInt *Const = dyn_cast<ConstantInt>(V)) { 210 // if it's a constant, just convert it to an offset 211 // and remove the variable. 212 Offset += Const->getValue(); 213 assert(Scale == 0 && "Constant values don't have a scale"); 214 return V; 215 } 216 217 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 218 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 219 switch (BOp->getOpcode()) { 220 default: break; 221 case Instruction::Or: 222 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 223 // analyze it. 224 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &DL, 0, AC, 225 BOp, DT)) 226 break; 227 // FALL THROUGH. 228 case Instruction::Add: 229 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 230 DL, Depth + 1, AC, DT); 231 Offset += RHSC->getValue(); 232 return V; 233 case Instruction::Mul: 234 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 235 DL, Depth + 1, AC, DT); 236 Offset *= RHSC->getValue(); 237 Scale *= RHSC->getValue(); 238 return V; 239 case Instruction::Shl: 240 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 241 DL, Depth + 1, AC, DT); 242 Offset <<= RHSC->getValue().getLimitedValue(); 243 Scale <<= RHSC->getValue().getLimitedValue(); 244 return V; 245 } 246 } 247 } 248 249 // Since GEP indices are sign extended anyway, we don't care about the high 250 // bits of a sign or zero extended value - just scales and offsets. The 251 // extensions have to be consistent though. 252 if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) || 253 (isa<ZExtInst>(V) && Extension != EK_SignExt)) { 254 Value *CastOp = cast<CastInst>(V)->getOperand(0); 255 unsigned OldWidth = Scale.getBitWidth(); 256 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 257 Scale = Scale.trunc(SmallWidth); 258 Offset = Offset.trunc(SmallWidth); 259 Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt; 260 261 Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension, DL, 262 Depth + 1, AC, DT); 263 Scale = Scale.zext(OldWidth); 264 265 // We have to sign-extend even if Extension == EK_ZeroExt as we can't 266 // decompose a sign extension (i.e. zext(x - 1) != zext(x) - zext(-1)). 267 Offset = Offset.sext(OldWidth); 268 269 return Result; 270 } 271 272 Scale = 1; 273 Offset = 0; 274 return V; 275 } 276 277 /// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it 278 /// into a base pointer with a constant offset and a number of scaled symbolic 279 /// offsets. 280 /// 281 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale in 282 /// the VarIndices vector) are Value*'s that are known to be scaled by the 283 /// specified amount, but which may have other unrepresented high bits. As such, 284 /// the gep cannot necessarily be reconstructed from its decomposed form. 285 /// 286 /// When DataLayout is around, this function is capable of analyzing everything 287 /// that GetUnderlyingObject can look through. To be able to do that 288 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search 289 /// depth (MaxLookupSearchDepth). 290 /// When DataLayout not is around, it just looks through pointer casts. 291 /// 292 static const Value * 293 DecomposeGEPExpression(const Value *V, int64_t &BaseOffs, 294 SmallVectorImpl<VariableGEPIndex> &VarIndices, 295 bool &MaxLookupReached, const DataLayout *DL, 296 AssumptionCache *AC, DominatorTree *DT) { 297 // Limit recursion depth to limit compile time in crazy cases. 298 unsigned MaxLookup = MaxLookupSearchDepth; 299 MaxLookupReached = false; 300 301 BaseOffs = 0; 302 do { 303 // See if this is a bitcast or GEP. 304 const Operator *Op = dyn_cast<Operator>(V); 305 if (!Op) { 306 // The only non-operator case we can handle are GlobalAliases. 307 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 308 if (!GA->mayBeOverridden()) { 309 V = GA->getAliasee(); 310 continue; 311 } 312 } 313 return V; 314 } 315 316 if (Op->getOpcode() == Instruction::BitCast || 317 Op->getOpcode() == Instruction::AddrSpaceCast) { 318 V = Op->getOperand(0); 319 continue; 320 } 321 322 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 323 if (!GEPOp) { 324 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 325 // can come up with something. This matches what GetUnderlyingObject does. 326 if (const Instruction *I = dyn_cast<Instruction>(V)) 327 // TODO: Get a DominatorTree and AssumptionCache and use them here 328 // (these are both now available in this function, but this should be 329 // updated when GetUnderlyingObject is updated). TLI should be 330 // provided also. 331 if (const Value *Simplified = 332 SimplifyInstruction(const_cast<Instruction *>(I), DL)) { 333 V = Simplified; 334 continue; 335 } 336 337 return V; 338 } 339 340 // Don't attempt to analyze GEPs over unsized objects. 341 if (!GEPOp->getOperand(0)->getType()->getPointerElementType()->isSized()) 342 return V; 343 344 // If we are lacking DataLayout information, we can't compute the offets of 345 // elements computed by GEPs. However, we can handle bitcast equivalent 346 // GEPs. 347 if (!DL) { 348 if (!GEPOp->hasAllZeroIndices()) 349 return V; 350 V = GEPOp->getOperand(0); 351 continue; 352 } 353 354 unsigned AS = GEPOp->getPointerAddressSpace(); 355 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 356 gep_type_iterator GTI = gep_type_begin(GEPOp); 357 for (User::const_op_iterator I = GEPOp->op_begin()+1, 358 E = GEPOp->op_end(); I != E; ++I) { 359 Value *Index = *I; 360 // Compute the (potentially symbolic) offset in bytes for this index. 361 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 362 // For a struct, add the member offset. 363 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 364 if (FieldNo == 0) continue; 365 366 BaseOffs += DL->getStructLayout(STy)->getElementOffset(FieldNo); 367 continue; 368 } 369 370 // For an array/pointer, add the element offset, explicitly scaled. 371 if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 372 if (CIdx->isZero()) continue; 373 BaseOffs += DL->getTypeAllocSize(*GTI)*CIdx->getSExtValue(); 374 continue; 375 } 376 377 uint64_t Scale = DL->getTypeAllocSize(*GTI); 378 ExtensionKind Extension = EK_NotExtended; 379 380 // If the integer type is smaller than the pointer size, it is implicitly 381 // sign extended to pointer size. 382 unsigned Width = Index->getType()->getIntegerBitWidth(); 383 if (DL->getPointerSizeInBits(AS) > Width) 384 Extension = EK_SignExt; 385 386 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 387 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 388 Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension, 389 *DL, 0, AC, DT); 390 391 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 392 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 393 BaseOffs += IndexOffset.getSExtValue()*Scale; 394 Scale *= IndexScale.getSExtValue(); 395 396 // If we already had an occurrence of this index variable, merge this 397 // scale into it. For example, we want to handle: 398 // A[x][x] -> x*16 + x*4 -> x*20 399 // This also ensures that 'x' only appears in the index list once. 400 for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) { 401 if (VarIndices[i].V == Index && 402 VarIndices[i].Extension == Extension) { 403 Scale += VarIndices[i].Scale; 404 VarIndices.erase(VarIndices.begin()+i); 405 break; 406 } 407 } 408 409 // Make sure that we have a scale that makes sense for this target's 410 // pointer size. 411 if (unsigned ShiftBits = 64 - DL->getPointerSizeInBits(AS)) { 412 Scale <<= ShiftBits; 413 Scale = (int64_t)Scale >> ShiftBits; 414 } 415 416 if (Scale) { 417 VariableGEPIndex Entry = {Index, Extension, 418 static_cast<int64_t>(Scale)}; 419 VarIndices.push_back(Entry); 420 } 421 } 422 423 // Analyze the base pointer next. 424 V = GEPOp->getOperand(0); 425 } while (--MaxLookup); 426 427 // If the chain of expressions is too deep, just return early. 428 MaxLookupReached = true; 429 return V; 430 } 431 432 //===----------------------------------------------------------------------===// 433 // BasicAliasAnalysis Pass 434 //===----------------------------------------------------------------------===// 435 436 #ifndef NDEBUG 437 static const Function *getParent(const Value *V) { 438 if (const Instruction *inst = dyn_cast<Instruction>(V)) 439 return inst->getParent()->getParent(); 440 441 if (const Argument *arg = dyn_cast<Argument>(V)) 442 return arg->getParent(); 443 444 return nullptr; 445 } 446 447 static bool notDifferentParent(const Value *O1, const Value *O2) { 448 449 const Function *F1 = getParent(O1); 450 const Function *F2 = getParent(O2); 451 452 return !F1 || !F2 || F1 == F2; 453 } 454 #endif 455 456 namespace { 457 /// BasicAliasAnalysis - This is the primary alias analysis implementation. 458 struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis { 459 static char ID; // Class identification, replacement for typeinfo 460 BasicAliasAnalysis() : ImmutablePass(ID) { 461 initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry()); 462 } 463 464 bool doInitialization(Module &M) override; 465 466 void getAnalysisUsage(AnalysisUsage &AU) const override { 467 AU.addRequired<AliasAnalysis>(); 468 AU.addRequired<AssumptionCacheTracker>(); 469 AU.addRequired<TargetLibraryInfoWrapperPass>(); 470 } 471 472 AliasResult alias(const Location &LocA, const Location &LocB) override { 473 assert(AliasCache.empty() && "AliasCache must be cleared after use!"); 474 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 475 "BasicAliasAnalysis doesn't support interprocedural queries."); 476 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, 477 LocB.Ptr, LocB.Size, LocB.AATags); 478 // AliasCache rarely has more than 1 or 2 elements, always use 479 // shrink_and_clear so it quickly returns to the inline capacity of the 480 // SmallDenseMap if it ever grows larger. 481 // FIXME: This should really be shrink_to_inline_capacity_and_clear(). 482 AliasCache.shrink_and_clear(); 483 VisitedPhiBBs.clear(); 484 return Alias; 485 } 486 487 ModRefResult getModRefInfo(ImmutableCallSite CS, 488 const Location &Loc) override; 489 490 ModRefResult getModRefInfo(ImmutableCallSite CS1, 491 ImmutableCallSite CS2) override; 492 493 /// pointsToConstantMemory - Chase pointers until we find a (constant 494 /// global) or not. 495 bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override; 496 497 /// Get the location associated with a pointer argument of a callsite. 498 Location getArgLocation(ImmutableCallSite CS, unsigned ArgIdx, 499 ModRefResult &Mask) override; 500 501 /// getModRefBehavior - Return the behavior when calling the given 502 /// call site. 503 ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override; 504 505 /// getModRefBehavior - Return the behavior when calling the given function. 506 /// For use when the call site is not known. 507 ModRefBehavior getModRefBehavior(const Function *F) override; 508 509 /// getAdjustedAnalysisPointer - This method is used when a pass implements 510 /// an analysis interface through multiple inheritance. If needed, it 511 /// should override this to adjust the this pointer as needed for the 512 /// specified pass info. 513 void *getAdjustedAnalysisPointer(const void *ID) override { 514 if (ID == &AliasAnalysis::ID) 515 return (AliasAnalysis*)this; 516 return this; 517 } 518 519 private: 520 // AliasCache - Track alias queries to guard against recursion. 521 typedef std::pair<Location, Location> LocPair; 522 typedef SmallDenseMap<LocPair, AliasResult, 8> AliasCacheTy; 523 AliasCacheTy AliasCache; 524 525 /// \brief Track phi nodes we have visited. When interpret "Value" pointer 526 /// equality as value equality we need to make sure that the "Value" is not 527 /// part of a cycle. Otherwise, two uses could come from different 528 /// "iterations" of a cycle and see different values for the same "Value" 529 /// pointer. 530 /// The following example shows the problem: 531 /// %p = phi(%alloca1, %addr2) 532 /// %l = load %ptr 533 /// %addr1 = gep, %alloca2, 0, %l 534 /// %addr2 = gep %alloca2, 0, (%l + 1) 535 /// alias(%p, %addr1) -> MayAlias ! 536 /// store %l, ... 537 SmallPtrSet<const BasicBlock*, 8> VisitedPhiBBs; 538 539 // Visited - Track instructions visited by pointsToConstantMemory. 540 SmallPtrSet<const Value*, 16> Visited; 541 542 /// \brief Check whether two Values can be considered equivalent. 543 /// 544 /// In addition to pointer equivalence of \p V1 and \p V2 this checks 545 /// whether they can not be part of a cycle in the value graph by looking at 546 /// all visited phi nodes an making sure that the phis cannot reach the 547 /// value. We have to do this because we are looking through phi nodes (That 548 /// is we say noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 549 bool isValueEqualInPotentialCycles(const Value *V1, const Value *V2); 550 551 /// \brief Dest and Src are the variable indices from two decomposed 552 /// GetElementPtr instructions GEP1 and GEP2 which have common base 553 /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic 554 /// difference between the two pointers. 555 void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest, 556 const SmallVectorImpl<VariableGEPIndex> &Src); 557 558 // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP 559 // instruction against another. 560 AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size, 561 const AAMDNodes &V1AAInfo, 562 const Value *V2, uint64_t V2Size, 563 const AAMDNodes &V2AAInfo, 564 const Value *UnderlyingV1, const Value *UnderlyingV2); 565 566 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI 567 // instruction against another. 568 AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize, 569 const AAMDNodes &PNAAInfo, 570 const Value *V2, uint64_t V2Size, 571 const AAMDNodes &V2AAInfo); 572 573 /// aliasSelect - Disambiguate a Select instruction against another value. 574 AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize, 575 const AAMDNodes &SIAAInfo, 576 const Value *V2, uint64_t V2Size, 577 const AAMDNodes &V2AAInfo); 578 579 AliasResult aliasCheck(const Value *V1, uint64_t V1Size, 580 AAMDNodes V1AATag, 581 const Value *V2, uint64_t V2Size, 582 AAMDNodes V2AATag); 583 }; 584 } // End of anonymous namespace 585 586 // Register this pass... 587 char BasicAliasAnalysis::ID = 0; 588 INITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa", 589 "Basic Alias Analysis (stateless AA impl)", 590 false, true, false) 591 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 592 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 593 INITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa", 594 "Basic Alias Analysis (stateless AA impl)", 595 false, true, false) 596 597 598 ImmutablePass *llvm::createBasicAliasAnalysisPass() { 599 return new BasicAliasAnalysis(); 600 } 601 602 /// pointsToConstantMemory - Returns whether the given pointer value 603 /// points to memory that is local to the function, with global constants being 604 /// considered local to all functions. 605 bool 606 BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) { 607 assert(Visited.empty() && "Visited must be cleared after use!"); 608 609 unsigned MaxLookup = 8; 610 SmallVector<const Value *, 16> Worklist; 611 Worklist.push_back(Loc.Ptr); 612 do { 613 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL); 614 if (!Visited.insert(V).second) { 615 Visited.clear(); 616 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 617 } 618 619 // An alloca instruction defines local memory. 620 if (OrLocal && isa<AllocaInst>(V)) 621 continue; 622 623 // A global constant counts as local memory for our purposes. 624 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 625 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 626 // global to be marked constant in some modules and non-constant in 627 // others. GV may even be a declaration, not a definition. 628 if (!GV->isConstant()) { 629 Visited.clear(); 630 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 631 } 632 continue; 633 } 634 635 // If both select values point to local memory, then so does the select. 636 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 637 Worklist.push_back(SI->getTrueValue()); 638 Worklist.push_back(SI->getFalseValue()); 639 continue; 640 } 641 642 // If all values incoming to a phi node point to local memory, then so does 643 // the phi. 644 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 645 // Don't bother inspecting phi nodes with many operands. 646 if (PN->getNumIncomingValues() > MaxLookup) { 647 Visited.clear(); 648 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 649 } 650 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 651 Worklist.push_back(PN->getIncomingValue(i)); 652 continue; 653 } 654 655 // Otherwise be conservative. 656 Visited.clear(); 657 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 658 659 } while (!Worklist.empty() && --MaxLookup); 660 661 Visited.clear(); 662 return Worklist.empty(); 663 } 664 665 static bool isMemsetPattern16(const Function *MS, 666 const TargetLibraryInfo &TLI) { 667 if (TLI.has(LibFunc::memset_pattern16) && 668 MS->getName() == "memset_pattern16") { 669 FunctionType *MemsetType = MS->getFunctionType(); 670 if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 && 671 isa<PointerType>(MemsetType->getParamType(0)) && 672 isa<PointerType>(MemsetType->getParamType(1)) && 673 isa<IntegerType>(MemsetType->getParamType(2))) 674 return true; 675 } 676 677 return false; 678 } 679 680 /// getModRefBehavior - Return the behavior when calling the given call site. 681 AliasAnalysis::ModRefBehavior 682 BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) { 683 if (CS.doesNotAccessMemory()) 684 // Can't do better than this. 685 return DoesNotAccessMemory; 686 687 ModRefBehavior Min = UnknownModRefBehavior; 688 689 // If the callsite knows it only reads memory, don't return worse 690 // than that. 691 if (CS.onlyReadsMemory()) 692 Min = OnlyReadsMemory; 693 694 // The AliasAnalysis base class has some smarts, lets use them. 695 return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min); 696 } 697 698 /// getModRefBehavior - Return the behavior when calling the given function. 699 /// For use when the call site is not known. 700 AliasAnalysis::ModRefBehavior 701 BasicAliasAnalysis::getModRefBehavior(const Function *F) { 702 // If the function declares it doesn't access memory, we can't do better. 703 if (F->doesNotAccessMemory()) 704 return DoesNotAccessMemory; 705 706 // For intrinsics, we can check the table. 707 if (unsigned iid = F->getIntrinsicID()) { 708 #define GET_INTRINSIC_MODREF_BEHAVIOR 709 #include "llvm/IR/Intrinsics.gen" 710 #undef GET_INTRINSIC_MODREF_BEHAVIOR 711 } 712 713 ModRefBehavior Min = UnknownModRefBehavior; 714 715 // If the function declares it only reads memory, go with that. 716 if (F->onlyReadsMemory()) 717 Min = OnlyReadsMemory; 718 719 const TargetLibraryInfo &TLI = 720 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 721 if (isMemsetPattern16(F, TLI)) 722 Min = OnlyAccessesArgumentPointees; 723 724 // Otherwise be conservative. 725 return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min); 726 } 727 728 AliasAnalysis::Location 729 BasicAliasAnalysis::getArgLocation(ImmutableCallSite CS, unsigned ArgIdx, 730 ModRefResult &Mask) { 731 Location Loc = AliasAnalysis::getArgLocation(CS, ArgIdx, Mask); 732 const TargetLibraryInfo &TLI = 733 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 734 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 735 if (II != nullptr) 736 switch (II->getIntrinsicID()) { 737 default: break; 738 case Intrinsic::memset: 739 case Intrinsic::memcpy: 740 case Intrinsic::memmove: { 741 assert((ArgIdx == 0 || ArgIdx == 1) && 742 "Invalid argument index for memory intrinsic"); 743 if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) 744 Loc.Size = LenCI->getZExtValue(); 745 assert(Loc.Ptr == II->getArgOperand(ArgIdx) && 746 "Memory intrinsic location pointer not argument?"); 747 Mask = ArgIdx ? Ref : Mod; 748 break; 749 } 750 case Intrinsic::lifetime_start: 751 case Intrinsic::lifetime_end: 752 case Intrinsic::invariant_start: { 753 assert(ArgIdx == 1 && "Invalid argument index"); 754 assert(Loc.Ptr == II->getArgOperand(ArgIdx) && 755 "Intrinsic location pointer not argument?"); 756 Loc.Size = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(); 757 break; 758 } 759 case Intrinsic::invariant_end: { 760 assert(ArgIdx == 2 && "Invalid argument index"); 761 assert(Loc.Ptr == II->getArgOperand(ArgIdx) && 762 "Intrinsic location pointer not argument?"); 763 Loc.Size = cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(); 764 break; 765 } 766 case Intrinsic::arm_neon_vld1: { 767 assert(ArgIdx == 0 && "Invalid argument index"); 768 assert(Loc.Ptr == II->getArgOperand(ArgIdx) && 769 "Intrinsic location pointer not argument?"); 770 // LLVM's vld1 and vst1 intrinsics currently only support a single 771 // vector register. 772 if (DL) 773 Loc.Size = DL->getTypeStoreSize(II->getType()); 774 break; 775 } 776 case Intrinsic::arm_neon_vst1: { 777 assert(ArgIdx == 0 && "Invalid argument index"); 778 assert(Loc.Ptr == II->getArgOperand(ArgIdx) && 779 "Intrinsic location pointer not argument?"); 780 if (DL) 781 Loc.Size = DL->getTypeStoreSize(II->getArgOperand(1)->getType()); 782 break; 783 } 784 } 785 786 // We can bound the aliasing properties of memset_pattern16 just as we can 787 // for memcpy/memset. This is particularly important because the 788 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 789 // whenever possible. 790 else if (CS.getCalledFunction() && 791 isMemsetPattern16(CS.getCalledFunction(), TLI)) { 792 assert((ArgIdx == 0 || ArgIdx == 1) && 793 "Invalid argument index for memset_pattern16"); 794 if (ArgIdx == 1) 795 Loc.Size = 16; 796 else if (const ConstantInt *LenCI = 797 dyn_cast<ConstantInt>(CS.getArgument(2))) 798 Loc.Size = LenCI->getZExtValue(); 799 assert(Loc.Ptr == CS.getArgument(ArgIdx) && 800 "memset_pattern16 location pointer not argument?"); 801 Mask = ArgIdx ? Ref : Mod; 802 } 803 // FIXME: Handle memset_pattern4 and memset_pattern8 also. 804 805 return Loc; 806 } 807 808 static bool isAssumeIntrinsic(ImmutableCallSite CS) { 809 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 810 if (II && II->getIntrinsicID() == Intrinsic::assume) 811 return true; 812 813 return false; 814 } 815 816 bool BasicAliasAnalysis::doInitialization(Module &M) { 817 InitializeAliasAnalysis(this, &M.getDataLayout()); 818 return true; 819 } 820 821 /// getModRefInfo - Check to see if the specified callsite can clobber the 822 /// specified memory object. Since we only look at local properties of this 823 /// function, we really can't say much about this query. We do, however, use 824 /// simple "address taken" analysis on local objects. 825 AliasAnalysis::ModRefResult 826 BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS, 827 const Location &Loc) { 828 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && 829 "AliasAnalysis query involving multiple functions!"); 830 831 const Value *Object = GetUnderlyingObject(Loc.Ptr, DL); 832 833 // If this is a tail call and Loc.Ptr points to a stack location, we know that 834 // the tail call cannot access or modify the local stack. 835 // We cannot exclude byval arguments here; these belong to the caller of 836 // the current function not to the current function, and a tail callee 837 // may reference them. 838 if (isa<AllocaInst>(Object)) 839 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) 840 if (CI->isTailCall()) 841 return NoModRef; 842 843 // If the pointer is to a locally allocated object that does not escape, 844 // then the call can not mod/ref the pointer unless the call takes the pointer 845 // as an argument, and itself doesn't capture it. 846 if (!isa<Constant>(Object) && CS.getInstruction() != Object && 847 isNonEscapingLocalObject(Object)) { 848 bool PassedAsArg = false; 849 unsigned ArgNo = 0; 850 for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end(); 851 CI != CE; ++CI, ++ArgNo) { 852 // Only look at the no-capture or byval pointer arguments. If this 853 // pointer were passed to arguments that were neither of these, then it 854 // couldn't be no-capture. 855 if (!(*CI)->getType()->isPointerTy() || 856 (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo))) 857 continue; 858 859 // If this is a no-capture pointer argument, see if we can tell that it 860 // is impossible to alias the pointer we're checking. If not, we have to 861 // assume that the call could touch the pointer, even though it doesn't 862 // escape. 863 if (!isNoAlias(Location(*CI), Location(Object))) { 864 PassedAsArg = true; 865 break; 866 } 867 } 868 869 if (!PassedAsArg) 870 return NoModRef; 871 } 872 873 // While the assume intrinsic is marked as arbitrarily writing so that 874 // proper control dependencies will be maintained, it never aliases any 875 // particular memory location. 876 if (isAssumeIntrinsic(CS)) 877 return NoModRef; 878 879 // The AliasAnalysis base class has some smarts, lets use them. 880 return AliasAnalysis::getModRefInfo(CS, Loc); 881 } 882 883 AliasAnalysis::ModRefResult 884 BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS1, 885 ImmutableCallSite CS2) { 886 // While the assume intrinsic is marked as arbitrarily writing so that 887 // proper control dependencies will be maintained, it never aliases any 888 // particular memory location. 889 if (isAssumeIntrinsic(CS1) || isAssumeIntrinsic(CS2)) 890 return NoModRef; 891 892 // The AliasAnalysis base class has some smarts, lets use them. 893 return AliasAnalysis::getModRefInfo(CS1, CS2); 894 } 895 896 /// \brief Provide ad-hoc rules to disambiguate accesses through two GEP 897 /// operators, both having the exact same pointer operand. 898 static AliasAnalysis::AliasResult 899 aliasSameBasePointerGEPs(const GEPOperator *GEP1, uint64_t V1Size, 900 const GEPOperator *GEP2, uint64_t V2Size, 901 const DataLayout &DL) { 902 903 assert(GEP1->getPointerOperand() == GEP2->getPointerOperand() && 904 "Expected GEPs with the same pointer operand"); 905 906 // Try to determine whether GEP1 and GEP2 index through arrays, into structs, 907 // such that the struct field accesses provably cannot alias. 908 // We also need at least two indices (the pointer, and the struct field). 909 if (GEP1->getNumIndices() != GEP2->getNumIndices() || 910 GEP1->getNumIndices() < 2) 911 return AliasAnalysis::MayAlias; 912 913 // If we don't know the size of the accesses through both GEPs, we can't 914 // determine whether the struct fields accessed can't alias. 915 if (V1Size == AliasAnalysis::UnknownSize || 916 V2Size == AliasAnalysis::UnknownSize) 917 return AliasAnalysis::MayAlias; 918 919 ConstantInt *C1 = 920 dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1)); 921 ConstantInt *C2 = 922 dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1)); 923 924 // If the last (struct) indices aren't constants, we can't say anything. 925 // If they're identical, the other indices might be also be dynamically 926 // equal, so the GEPs can alias. 927 if (!C1 || !C2 || C1 == C2) 928 return AliasAnalysis::MayAlias; 929 930 // Find the last-indexed type of the GEP, i.e., the type you'd get if 931 // you stripped the last index. 932 // On the way, look at each indexed type. If there's something other 933 // than an array, different indices can lead to different final types. 934 SmallVector<Value *, 8> IntermediateIndices; 935 936 // Insert the first index; we don't need to check the type indexed 937 // through it as it only drops the pointer indirection. 938 assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine"); 939 IntermediateIndices.push_back(GEP1->getOperand(1)); 940 941 // Insert all the remaining indices but the last one. 942 // Also, check that they all index through arrays. 943 for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) { 944 if (!isa<ArrayType>(GetElementPtrInst::getIndexedType( 945 GEP1->getPointerOperandType(), IntermediateIndices))) 946 return AliasAnalysis::MayAlias; 947 IntermediateIndices.push_back(GEP1->getOperand(i + 1)); 948 } 949 950 StructType *LastIndexedStruct = 951 dyn_cast<StructType>(GetElementPtrInst::getIndexedType( 952 GEP1->getPointerOperandType(), IntermediateIndices)); 953 954 if (!LastIndexedStruct) 955 return AliasAnalysis::MayAlias; 956 957 // We know that: 958 // - both GEPs begin indexing from the exact same pointer; 959 // - the last indices in both GEPs are constants, indexing into a struct; 960 // - said indices are different, hence, the pointed-to fields are different; 961 // - both GEPs only index through arrays prior to that. 962 // 963 // This lets us determine that the struct that GEP1 indexes into and the 964 // struct that GEP2 indexes into must either precisely overlap or be 965 // completely disjoint. Because they cannot partially overlap, indexing into 966 // different non-overlapping fields of the struct will never alias. 967 968 // Therefore, the only remaining thing needed to show that both GEPs can't 969 // alias is that the fields are not overlapping. 970 const StructLayout *SL = DL.getStructLayout(LastIndexedStruct); 971 const uint64_t StructSize = SL->getSizeInBytes(); 972 const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue()); 973 const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue()); 974 975 auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size, 976 uint64_t V2Off, uint64_t V2Size) { 977 return V1Off < V2Off && V1Off + V1Size <= V2Off && 978 ((V2Off + V2Size <= StructSize) || 979 (V2Off + V2Size - StructSize <= V1Off)); 980 }; 981 982 if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) || 983 EltsDontOverlap(V2Off, V2Size, V1Off, V1Size)) 984 return AliasAnalysis::NoAlias; 985 986 return AliasAnalysis::MayAlias; 987 } 988 989 /// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction 990 /// against another pointer. We know that V1 is a GEP, but we don't know 991 /// anything about V2. UnderlyingV1 is GetUnderlyingObject(GEP1, DL), 992 /// UnderlyingV2 is the same for V2. 993 /// 994 AliasAnalysis::AliasResult 995 BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, 996 const AAMDNodes &V1AAInfo, 997 const Value *V2, uint64_t V2Size, 998 const AAMDNodes &V2AAInfo, 999 const Value *UnderlyingV1, 1000 const Value *UnderlyingV2) { 1001 int64_t GEP1BaseOffset; 1002 bool GEP1MaxLookupReached; 1003 SmallVector<VariableGEPIndex, 4> GEP1VariableIndices; 1004 1005 // We have to get two AssumptionCaches here because GEP1 and V2 may be from 1006 // different functions. 1007 // FIXME: This really doesn't make any sense. We get a dominator tree below 1008 // that can only refer to a single function. But this function (aliasGEP) is 1009 // a method on an immutable pass that can be called when there *isn't* 1010 // a single function. The old pass management layer makes this "work", but 1011 // this isn't really a clean solution. 1012 AssumptionCacheTracker &ACT = getAnalysis<AssumptionCacheTracker>(); 1013 AssumptionCache *AC1 = nullptr, *AC2 = nullptr; 1014 if (auto *GEP1I = dyn_cast<Instruction>(GEP1)) 1015 AC1 = &ACT.getAssumptionCache( 1016 const_cast<Function &>(*GEP1I->getParent()->getParent())); 1017 if (auto *I2 = dyn_cast<Instruction>(V2)) 1018 AC2 = &ACT.getAssumptionCache( 1019 const_cast<Function &>(*I2->getParent()->getParent())); 1020 1021 DominatorTreeWrapperPass *DTWP = 1022 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1023 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 1024 1025 // If we have two gep instructions with must-alias or not-alias'ing base 1026 // pointers, figure out if the indexes to the GEP tell us anything about the 1027 // derived pointer. 1028 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 1029 // Do the base pointers alias? 1030 AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, AAMDNodes(), 1031 UnderlyingV2, UnknownSize, AAMDNodes()); 1032 1033 // Check for geps of non-aliasing underlying pointers where the offsets are 1034 // identical. 1035 if ((BaseAlias == MayAlias) && V1Size == V2Size) { 1036 // Do the base pointers alias assuming type and size. 1037 AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, 1038 V1AAInfo, UnderlyingV2, 1039 V2Size, V2AAInfo); 1040 if (PreciseBaseAlias == NoAlias) { 1041 // See if the computed offset from the common pointer tells us about the 1042 // relation of the resulting pointer. 1043 int64_t GEP2BaseOffset; 1044 bool GEP2MaxLookupReached; 1045 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 1046 const Value *GEP2BasePtr = 1047 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, 1048 GEP2MaxLookupReached, DL, AC2, DT); 1049 const Value *GEP1BasePtr = 1050 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 1051 GEP1MaxLookupReached, DL, AC1, DT); 1052 // DecomposeGEPExpression and GetUnderlyingObject should return the 1053 // same result except when DecomposeGEPExpression has no DataLayout. 1054 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 1055 assert(!DL && 1056 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 1057 return MayAlias; 1058 } 1059 // If the max search depth is reached the result is undefined 1060 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1061 return MayAlias; 1062 1063 // Same offsets. 1064 if (GEP1BaseOffset == GEP2BaseOffset && 1065 GEP1VariableIndices == GEP2VariableIndices) 1066 return NoAlias; 1067 GEP1VariableIndices.clear(); 1068 } 1069 } 1070 1071 // If we get a No or May, then return it immediately, no amount of analysis 1072 // will improve this situation. 1073 if (BaseAlias != MustAlias) return BaseAlias; 1074 1075 // Otherwise, we have a MustAlias. Since the base pointers alias each other 1076 // exactly, see if the computed offset from the common pointer tells us 1077 // about the relation of the resulting pointer. 1078 const Value *GEP1BasePtr = 1079 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 1080 GEP1MaxLookupReached, DL, AC1, DT); 1081 1082 int64_t GEP2BaseOffset; 1083 bool GEP2MaxLookupReached; 1084 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 1085 const Value *GEP2BasePtr = 1086 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, 1087 GEP2MaxLookupReached, DL, AC2, DT); 1088 1089 // DecomposeGEPExpression and GetUnderlyingObject should return the 1090 // same result except when DecomposeGEPExpression has no DataLayout. 1091 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 1092 assert(!DL && 1093 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 1094 return MayAlias; 1095 } 1096 1097 // If we know the two GEPs are based off of the exact same pointer (and not 1098 // just the same underlying object), see if that tells us anything about 1099 // the resulting pointers. 1100 if (DL && GEP1->getPointerOperand() == GEP2->getPointerOperand()) { 1101 AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, *DL); 1102 // If we couldn't find anything interesting, don't abandon just yet. 1103 if (R != MayAlias) 1104 return R; 1105 } 1106 1107 // If the max search depth is reached the result is undefined 1108 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1109 return MayAlias; 1110 1111 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1112 // symbolic difference. 1113 GEP1BaseOffset -= GEP2BaseOffset; 1114 GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices); 1115 1116 } else { 1117 // Check to see if these two pointers are related by the getelementptr 1118 // instruction. If one pointer is a GEP with a non-zero index of the other 1119 // pointer, we know they cannot alias. 1120 1121 // If both accesses are unknown size, we can't do anything useful here. 1122 if (V1Size == UnknownSize && V2Size == UnknownSize) 1123 return MayAlias; 1124 1125 AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, AAMDNodes(), 1126 V2, V2Size, V2AAInfo); 1127 if (R != MustAlias) 1128 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 1129 // If V2 is known not to alias GEP base pointer, then the two values 1130 // cannot alias per GEP semantics: "A pointer value formed from a 1131 // getelementptr instruction is associated with the addresses associated 1132 // with the first operand of the getelementptr". 1133 return R; 1134 1135 const Value *GEP1BasePtr = 1136 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 1137 GEP1MaxLookupReached, DL, AC1, DT); 1138 1139 // DecomposeGEPExpression and GetUnderlyingObject should return the 1140 // same result except when DecomposeGEPExpression has no DataLayout. 1141 if (GEP1BasePtr != UnderlyingV1) { 1142 assert(!DL && 1143 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 1144 return MayAlias; 1145 } 1146 // If the max search depth is reached the result is undefined 1147 if (GEP1MaxLookupReached) 1148 return MayAlias; 1149 } 1150 1151 // In the two GEP Case, if there is no difference in the offsets of the 1152 // computed pointers, the resultant pointers are a must alias. This 1153 // hapens when we have two lexically identical GEP's (for example). 1154 // 1155 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 1156 // must aliases the GEP, the end result is a must alias also. 1157 if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty()) 1158 return MustAlias; 1159 1160 // If there is a constant difference between the pointers, but the difference 1161 // is less than the size of the associated memory object, then we know 1162 // that the objects are partially overlapping. If the difference is 1163 // greater, we know they do not overlap. 1164 if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) { 1165 if (GEP1BaseOffset >= 0) { 1166 if (V2Size != UnknownSize) { 1167 if ((uint64_t)GEP1BaseOffset < V2Size) 1168 return PartialAlias; 1169 return NoAlias; 1170 } 1171 } else { 1172 // We have the situation where: 1173 // + + 1174 // | BaseOffset | 1175 // ---------------->| 1176 // |-->V1Size |-------> V2Size 1177 // GEP1 V2 1178 // We need to know that V2Size is not unknown, otherwise we might have 1179 // stripped a gep with negative index ('gep <ptr>, -1, ...). 1180 if (V1Size != UnknownSize && V2Size != UnknownSize) { 1181 if (-(uint64_t)GEP1BaseOffset < V1Size) 1182 return PartialAlias; 1183 return NoAlias; 1184 } 1185 } 1186 } 1187 1188 if (!GEP1VariableIndices.empty()) { 1189 uint64_t Modulo = 0; 1190 bool AllPositive = true; 1191 for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) { 1192 1193 // Try to distinguish something like &A[i][1] against &A[42][0]. 1194 // Grab the least significant bit set in any of the scales. We 1195 // don't need std::abs here (even if the scale's negative) as we'll 1196 // be ^'ing Modulo with itself later. 1197 Modulo |= (uint64_t) GEP1VariableIndices[i].Scale; 1198 1199 if (AllPositive) { 1200 // If the Value could change between cycles, then any reasoning about 1201 // the Value this cycle may not hold in the next cycle. We'll just 1202 // give up if we can't determine conditions that hold for every cycle: 1203 const Value *V = GEP1VariableIndices[i].V; 1204 1205 bool SignKnownZero, SignKnownOne; 1206 ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, DL, 1207 0, AC1, nullptr, DT); 1208 1209 // Zero-extension widens the variable, and so forces the sign 1210 // bit to zero. 1211 bool IsZExt = GEP1VariableIndices[i].Extension == EK_ZeroExt; 1212 SignKnownZero |= IsZExt; 1213 SignKnownOne &= !IsZExt; 1214 1215 // If the variable begins with a zero then we know it's 1216 // positive, regardless of whether the value is signed or 1217 // unsigned. 1218 int64_t Scale = GEP1VariableIndices[i].Scale; 1219 AllPositive = 1220 (SignKnownZero && Scale >= 0) || 1221 (SignKnownOne && Scale < 0); 1222 } 1223 } 1224 1225 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1226 1227 // We can compute the difference between the two addresses 1228 // mod Modulo. Check whether that difference guarantees that the 1229 // two locations do not alias. 1230 uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1); 1231 if (V1Size != UnknownSize && V2Size != UnknownSize && 1232 ModOffset >= V2Size && V1Size <= Modulo - ModOffset) 1233 return NoAlias; 1234 1235 // If we know all the variables are positive, then GEP1 >= GEP1BasePtr. 1236 // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers 1237 // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr. 1238 if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t) GEP1BaseOffset) 1239 return NoAlias; 1240 } 1241 1242 // Statically, we can see that the base objects are the same, but the 1243 // pointers have dynamic offsets which we can't resolve. And none of our 1244 // little tricks above worked. 1245 // 1246 // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the 1247 // practical effect of this is protecting TBAA in the case of dynamic 1248 // indices into arrays of unions or malloc'd memory. 1249 return PartialAlias; 1250 } 1251 1252 static AliasAnalysis::AliasResult 1253 MergeAliasResults(AliasAnalysis::AliasResult A, AliasAnalysis::AliasResult B) { 1254 // If the results agree, take it. 1255 if (A == B) 1256 return A; 1257 // A mix of PartialAlias and MustAlias is PartialAlias. 1258 if ((A == AliasAnalysis::PartialAlias && B == AliasAnalysis::MustAlias) || 1259 (B == AliasAnalysis::PartialAlias && A == AliasAnalysis::MustAlias)) 1260 return AliasAnalysis::PartialAlias; 1261 // Otherwise, we don't know anything. 1262 return AliasAnalysis::MayAlias; 1263 } 1264 1265 /// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select 1266 /// instruction against another. 1267 AliasAnalysis::AliasResult 1268 BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize, 1269 const AAMDNodes &SIAAInfo, 1270 const Value *V2, uint64_t V2Size, 1271 const AAMDNodes &V2AAInfo) { 1272 // If the values are Selects with the same condition, we can do a more precise 1273 // check: just check for aliases between the values on corresponding arms. 1274 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1275 if (SI->getCondition() == SI2->getCondition()) { 1276 AliasResult Alias = 1277 aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, 1278 SI2->getTrueValue(), V2Size, V2AAInfo); 1279 if (Alias == MayAlias) 1280 return MayAlias; 1281 AliasResult ThisAlias = 1282 aliasCheck(SI->getFalseValue(), SISize, SIAAInfo, 1283 SI2->getFalseValue(), V2Size, V2AAInfo); 1284 return MergeAliasResults(ThisAlias, Alias); 1285 } 1286 1287 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1288 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1289 AliasResult Alias = 1290 aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), SISize, SIAAInfo); 1291 if (Alias == MayAlias) 1292 return MayAlias; 1293 1294 AliasResult ThisAlias = 1295 aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo); 1296 return MergeAliasResults(ThisAlias, Alias); 1297 } 1298 1299 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction 1300 // against another. 1301 AliasAnalysis::AliasResult 1302 BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize, 1303 const AAMDNodes &PNAAInfo, 1304 const Value *V2, uint64_t V2Size, 1305 const AAMDNodes &V2AAInfo) { 1306 // Track phi nodes we have visited. We use this information when we determine 1307 // value equivalence. 1308 VisitedPhiBBs.insert(PN->getParent()); 1309 1310 // If the values are PHIs in the same block, we can do a more precise 1311 // as well as efficient check: just check for aliases between the values 1312 // on corresponding edges. 1313 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1314 if (PN2->getParent() == PN->getParent()) { 1315 LocPair Locs(Location(PN, PNSize, PNAAInfo), 1316 Location(V2, V2Size, V2AAInfo)); 1317 if (PN > V2) 1318 std::swap(Locs.first, Locs.second); 1319 // Analyse the PHIs' inputs under the assumption that the PHIs are 1320 // NoAlias. 1321 // If the PHIs are May/MustAlias there must be (recursively) an input 1322 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1323 // there must be an operation on the PHIs within the PHIs' value cycle 1324 // that causes a MayAlias. 1325 // Pretend the phis do not alias. 1326 AliasResult Alias = NoAlias; 1327 assert(AliasCache.count(Locs) && 1328 "There must exist an entry for the phi node"); 1329 AliasResult OrigAliasResult = AliasCache[Locs]; 1330 AliasCache[Locs] = NoAlias; 1331 1332 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1333 AliasResult ThisAlias = 1334 aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo, 1335 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1336 V2Size, V2AAInfo); 1337 Alias = MergeAliasResults(ThisAlias, Alias); 1338 if (Alias == MayAlias) 1339 break; 1340 } 1341 1342 // Reset if speculation failed. 1343 if (Alias != NoAlias) 1344 AliasCache[Locs] = OrigAliasResult; 1345 1346 return Alias; 1347 } 1348 1349 SmallPtrSet<Value*, 4> UniqueSrc; 1350 SmallVector<Value*, 4> V1Srcs; 1351 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1352 Value *PV1 = PN->getIncomingValue(i); 1353 if (isa<PHINode>(PV1)) 1354 // If any of the source itself is a PHI, return MayAlias conservatively 1355 // to avoid compile time explosion. The worst possible case is if both 1356 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1357 // and 'n' are the number of PHI sources. 1358 return MayAlias; 1359 if (UniqueSrc.insert(PV1).second) 1360 V1Srcs.push_back(PV1); 1361 } 1362 1363 AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, 1364 V1Srcs[0], PNSize, PNAAInfo); 1365 // Early exit if the check of the first PHI source against V2 is MayAlias. 1366 // Other results are not possible. 1367 if (Alias == MayAlias) 1368 return MayAlias; 1369 1370 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1371 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1372 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1373 Value *V = V1Srcs[i]; 1374 1375 AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo, 1376 V, PNSize, PNAAInfo); 1377 Alias = MergeAliasResults(ThisAlias, Alias); 1378 if (Alias == MayAlias) 1379 break; 1380 } 1381 1382 return Alias; 1383 } 1384 1385 // aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases, 1386 // such as array references. 1387 // 1388 AliasAnalysis::AliasResult 1389 BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size, 1390 AAMDNodes V1AAInfo, 1391 const Value *V2, uint64_t V2Size, 1392 AAMDNodes V2AAInfo) { 1393 // If either of the memory references is empty, it doesn't matter what the 1394 // pointer values are. 1395 if (V1Size == 0 || V2Size == 0) 1396 return NoAlias; 1397 1398 // Strip off any casts if they exist. 1399 V1 = V1->stripPointerCasts(); 1400 V2 = V2->stripPointerCasts(); 1401 1402 // Are we checking for alias of the same value? 1403 // Because we look 'through' phi nodes we could look at "Value" pointers from 1404 // different iterations. We must therefore make sure that this is not the 1405 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1406 // happen by looking at the visited phi nodes and making sure they cannot 1407 // reach the value. 1408 if (isValueEqualInPotentialCycles(V1, V2)) 1409 return MustAlias; 1410 1411 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1412 return NoAlias; // Scalars cannot alias each other 1413 1414 // Figure out what objects these things are pointing to if we can. 1415 const Value *O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth); 1416 const Value *O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth); 1417 1418 // Null values in the default address space don't point to any object, so they 1419 // don't alias any other pointer. 1420 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1421 if (CPN->getType()->getAddressSpace() == 0) 1422 return NoAlias; 1423 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1424 if (CPN->getType()->getAddressSpace() == 0) 1425 return NoAlias; 1426 1427 if (O1 != O2) { 1428 // If V1/V2 point to two different objects we know that we have no alias. 1429 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1430 return NoAlias; 1431 1432 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1433 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1434 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1435 return NoAlias; 1436 1437 // Function arguments can't alias with things that are known to be 1438 // unambigously identified at the function level. 1439 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1440 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1441 return NoAlias; 1442 1443 // Most objects can't alias null. 1444 if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) || 1445 (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2))) 1446 return NoAlias; 1447 1448 // If one pointer is the result of a call/invoke or load and the other is a 1449 // non-escaping local object within the same function, then we know the 1450 // object couldn't escape to a point where the call could return it. 1451 // 1452 // Note that if the pointers are in different functions, there are a 1453 // variety of complications. A call with a nocapture argument may still 1454 // temporary store the nocapture argument's value in a temporary memory 1455 // location if that memory location doesn't escape. Or it may pass a 1456 // nocapture value to other functions as long as they don't capture it. 1457 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) 1458 return NoAlias; 1459 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) 1460 return NoAlias; 1461 } 1462 1463 // If the size of one access is larger than the entire object on the other 1464 // side, then we know such behavior is undefined and can assume no alias. 1465 if (DL) 1466 if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *DL, *TLI)) || 1467 (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *DL, *TLI))) 1468 return NoAlias; 1469 1470 // Check the cache before climbing up use-def chains. This also terminates 1471 // otherwise infinitely recursive queries. 1472 LocPair Locs(Location(V1, V1Size, V1AAInfo), 1473 Location(V2, V2Size, V2AAInfo)); 1474 if (V1 > V2) 1475 std::swap(Locs.first, Locs.second); 1476 std::pair<AliasCacheTy::iterator, bool> Pair = 1477 AliasCache.insert(std::make_pair(Locs, MayAlias)); 1478 if (!Pair.second) 1479 return Pair.first->second; 1480 1481 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1482 // GEP can't simplify, we don't even look at the PHI cases. 1483 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1484 std::swap(V1, V2); 1485 std::swap(V1Size, V2Size); 1486 std::swap(O1, O2); 1487 std::swap(V1AAInfo, V2AAInfo); 1488 } 1489 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1490 AliasResult Result = aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2); 1491 if (Result != MayAlias) return AliasCache[Locs] = Result; 1492 } 1493 1494 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1495 std::swap(V1, V2); 1496 std::swap(V1Size, V2Size); 1497 std::swap(V1AAInfo, V2AAInfo); 1498 } 1499 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1500 AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, 1501 V2, V2Size, V2AAInfo); 1502 if (Result != MayAlias) return AliasCache[Locs] = Result; 1503 } 1504 1505 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1506 std::swap(V1, V2); 1507 std::swap(V1Size, V2Size); 1508 std::swap(V1AAInfo, V2AAInfo); 1509 } 1510 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1511 AliasResult Result = aliasSelect(S1, V1Size, V1AAInfo, 1512 V2, V2Size, V2AAInfo); 1513 if (Result != MayAlias) return AliasCache[Locs] = Result; 1514 } 1515 1516 // If both pointers are pointing into the same object and one of them 1517 // accesses is accessing the entire object, then the accesses must 1518 // overlap in some way. 1519 if (DL && O1 == O2) 1520 if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *DL, *TLI)) || 1521 (V2Size != UnknownSize && isObjectSize(O2, V2Size, *DL, *TLI))) 1522 return AliasCache[Locs] = PartialAlias; 1523 1524 AliasResult Result = 1525 AliasAnalysis::alias(Location(V1, V1Size, V1AAInfo), 1526 Location(V2, V2Size, V2AAInfo)); 1527 return AliasCache[Locs] = Result; 1528 } 1529 1530 bool BasicAliasAnalysis::isValueEqualInPotentialCycles(const Value *V, 1531 const Value *V2) { 1532 if (V != V2) 1533 return false; 1534 1535 const Instruction *Inst = dyn_cast<Instruction>(V); 1536 if (!Inst) 1537 return true; 1538 1539 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1540 return false; 1541 1542 // Use dominance or loop info if available. 1543 DominatorTreeWrapperPass *DTWP = 1544 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1545 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 1546 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 1547 LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 1548 1549 // Make sure that the visited phis cannot reach the Value. This ensures that 1550 // the Values cannot come from different iterations of a potential cycle the 1551 // phi nodes could be involved in. 1552 for (auto *P : VisitedPhiBBs) 1553 if (isPotentiallyReachable(P->begin(), Inst, DT, LI)) 1554 return false; 1555 1556 return true; 1557 } 1558 1559 /// GetIndexDifference - Dest and Src are the variable indices from two 1560 /// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base 1561 /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic 1562 /// difference between the two pointers. 1563 void BasicAliasAnalysis::GetIndexDifference( 1564 SmallVectorImpl<VariableGEPIndex> &Dest, 1565 const SmallVectorImpl<VariableGEPIndex> &Src) { 1566 if (Src.empty()) 1567 return; 1568 1569 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1570 const Value *V = Src[i].V; 1571 ExtensionKind Extension = Src[i].Extension; 1572 int64_t Scale = Src[i].Scale; 1573 1574 // Find V in Dest. This is N^2, but pointer indices almost never have more 1575 // than a few variable indexes. 1576 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1577 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1578 Dest[j].Extension != Extension) 1579 continue; 1580 1581 // If we found it, subtract off Scale V's from the entry in Dest. If it 1582 // goes to zero, remove the entry. 1583 if (Dest[j].Scale != Scale) 1584 Dest[j].Scale -= Scale; 1585 else 1586 Dest.erase(Dest.begin() + j); 1587 Scale = 0; 1588 break; 1589 } 1590 1591 // If we didn't consume this entry, add it to the end of the Dest list. 1592 if (Scale) { 1593 VariableGEPIndex Entry = { V, Extension, -Scale }; 1594 Dest.push_back(Entry); 1595 } 1596 } 1597 } 1598