1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the primary stateless implementation of the 11 // Alias Analysis interface that implements identities (two different 12 // globals cannot alias, etc), but does no stateful analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/Passes.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/CFG.h" 21 #include "llvm/Analysis/CaptureTracking.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GetElementPtrTypeIterator.h" 32 #include "llvm/IR/GlobalAlias.h" 33 #include "llvm/IR/GlobalVariable.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Target/TargetLibraryInfo.h" 41 #include <algorithm> 42 using namespace llvm; 43 44 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 45 /// in a cycle. Because we are analysing 'through' phi nodes we need to be 46 /// careful with value equivalence. We use reachability to make sure a value 47 /// cannot be involved in a cycle. 48 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 49 50 // The max limit of the search depth in DecomposeGEPExpression() and 51 // GetUnderlyingObject(), both functions need to use the same search 52 // depth otherwise the algorithm in aliasGEP will assert. 53 static const unsigned MaxLookupSearchDepth = 6; 54 55 //===----------------------------------------------------------------------===// 56 // Useful predicates 57 //===----------------------------------------------------------------------===// 58 59 /// isNonEscapingLocalObject - Return true if the pointer is to a function-local 60 /// object that never escapes from the function. 61 static bool isNonEscapingLocalObject(const Value *V) { 62 // If this is a local allocation, check to see if it escapes. 63 if (isa<AllocaInst>(V) || isNoAliasCall(V)) 64 // Set StoreCaptures to True so that we can assume in our callers that the 65 // pointer is not the result of a load instruction. Currently 66 // PointerMayBeCaptured doesn't have any special analysis for the 67 // StoreCaptures=false case; if it did, our callers could be refined to be 68 // more precise. 69 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 70 71 // If this is an argument that corresponds to a byval or noalias argument, 72 // then it has not escaped before entering the function. Check if it escapes 73 // inside the function. 74 if (const Argument *A = dyn_cast<Argument>(V)) 75 if (A->hasByValAttr() || A->hasNoAliasAttr()) 76 // Note even if the argument is marked nocapture we still need to check 77 // for copies made inside the function. The nocapture attribute only 78 // specifies that there are no copies made that outlive the function. 79 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 80 81 return false; 82 } 83 84 /// isEscapeSource - Return true if the pointer is one which would have 85 /// been considered an escape by isNonEscapingLocalObject. 86 static bool isEscapeSource(const Value *V) { 87 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V)) 88 return true; 89 90 // The load case works because isNonEscapingLocalObject considers all 91 // stores to be escapes (it passes true for the StoreCaptures argument 92 // to PointerMayBeCaptured). 93 if (isa<LoadInst>(V)) 94 return true; 95 96 return false; 97 } 98 99 /// getObjectSize - Return the size of the object specified by V, or 100 /// UnknownSize if unknown. 101 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 102 const TargetLibraryInfo &TLI, 103 bool RoundToAlign = false) { 104 uint64_t Size; 105 if (getObjectSize(V, Size, &DL, &TLI, RoundToAlign)) 106 return Size; 107 return AliasAnalysis::UnknownSize; 108 } 109 110 /// isObjectSmallerThan - Return true if we can prove that the object specified 111 /// by V is smaller than Size. 112 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 113 const DataLayout &DL, 114 const TargetLibraryInfo &TLI) { 115 // Note that the meanings of the "object" are slightly different in the 116 // following contexts: 117 // c1: llvm::getObjectSize() 118 // c2: llvm.objectsize() intrinsic 119 // c3: isObjectSmallerThan() 120 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 121 // refers to the "entire object". 122 // 123 // Consider this example: 124 // char *p = (char*)malloc(100) 125 // char *q = p+80; 126 // 127 // In the context of c1 and c2, the "object" pointed by q refers to the 128 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 129 // 130 // However, in the context of c3, the "object" refers to the chunk of memory 131 // being allocated. So, the "object" has 100 bytes, and q points to the middle 132 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 133 // parameter, before the llvm::getObjectSize() is called to get the size of 134 // entire object, we should: 135 // - either rewind the pointer q to the base-address of the object in 136 // question (in this case rewind to p), or 137 // - just give up. It is up to caller to make sure the pointer is pointing 138 // to the base address the object. 139 // 140 // We go for 2nd option for simplicity. 141 if (!isIdentifiedObject(V)) 142 return false; 143 144 // This function needs to use the aligned object size because we allow 145 // reads a bit past the end given sufficient alignment. 146 uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/true); 147 148 return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size; 149 } 150 151 /// isObjectSize - Return true if we can prove that the object specified 152 /// by V has size Size. 153 static bool isObjectSize(const Value *V, uint64_t Size, 154 const DataLayout &DL, const TargetLibraryInfo &TLI) { 155 uint64_t ObjectSize = getObjectSize(V, DL, TLI); 156 return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size; 157 } 158 159 /// isIdentifiedFunctionLocal - Return true if V is umabigously identified 160 /// at the function-level. Different IdentifiedFunctionLocals can't alias. 161 /// Further, an IdentifiedFunctionLocal can not alias with any function 162 /// arguments other than itself, which is not necessarily true for 163 /// IdentifiedObjects. 164 static bool isIdentifiedFunctionLocal(const Value *V) 165 { 166 return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V); 167 } 168 169 170 //===----------------------------------------------------------------------===// 171 // GetElementPtr Instruction Decomposition and Analysis 172 //===----------------------------------------------------------------------===// 173 174 namespace { 175 enum ExtensionKind { 176 EK_NotExtended, 177 EK_SignExt, 178 EK_ZeroExt 179 }; 180 181 struct VariableGEPIndex { 182 const Value *V; 183 ExtensionKind Extension; 184 int64_t Scale; 185 186 bool operator==(const VariableGEPIndex &Other) const { 187 return V == Other.V && Extension == Other.Extension && 188 Scale == Other.Scale; 189 } 190 191 bool operator!=(const VariableGEPIndex &Other) const { 192 return !operator==(Other); 193 } 194 }; 195 } 196 197 198 /// GetLinearExpression - Analyze the specified value as a linear expression: 199 /// "A*V + B", where A and B are constant integers. Return the scale and offset 200 /// values as APInts and return V as a Value*, and return whether we looked 201 /// through any sign or zero extends. The incoming Value is known to have 202 /// IntegerType and it may already be sign or zero extended. 203 /// 204 /// Note that this looks through extends, so the high bits may not be 205 /// represented in the result. 206 static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset, 207 ExtensionKind &Extension, 208 const DataLayout &DL, unsigned Depth) { 209 assert(V->getType()->isIntegerTy() && "Not an integer value"); 210 211 // Limit our recursion depth. 212 if (Depth == 6) { 213 Scale = 1; 214 Offset = 0; 215 return V; 216 } 217 218 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 219 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 220 switch (BOp->getOpcode()) { 221 default: break; 222 case Instruction::Or: 223 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 224 // analyze it. 225 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &DL)) 226 break; 227 // FALL THROUGH. 228 case Instruction::Add: 229 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 230 DL, Depth+1); 231 Offset += RHSC->getValue(); 232 return V; 233 case Instruction::Mul: 234 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 235 DL, Depth+1); 236 Offset *= RHSC->getValue(); 237 Scale *= RHSC->getValue(); 238 return V; 239 case Instruction::Shl: 240 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 241 DL, Depth+1); 242 Offset <<= RHSC->getValue().getLimitedValue(); 243 Scale <<= RHSC->getValue().getLimitedValue(); 244 return V; 245 } 246 } 247 } 248 249 // Since GEP indices are sign extended anyway, we don't care about the high 250 // bits of a sign or zero extended value - just scales and offsets. The 251 // extensions have to be consistent though. 252 if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) || 253 (isa<ZExtInst>(V) && Extension != EK_SignExt)) { 254 Value *CastOp = cast<CastInst>(V)->getOperand(0); 255 unsigned OldWidth = Scale.getBitWidth(); 256 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 257 Scale = Scale.trunc(SmallWidth); 258 Offset = Offset.trunc(SmallWidth); 259 Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt; 260 261 Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension, 262 DL, Depth+1); 263 Scale = Scale.zext(OldWidth); 264 Offset = Offset.zext(OldWidth); 265 266 return Result; 267 } 268 269 Scale = 1; 270 Offset = 0; 271 return V; 272 } 273 274 /// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it 275 /// into a base pointer with a constant offset and a number of scaled symbolic 276 /// offsets. 277 /// 278 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale in 279 /// the VarIndices vector) are Value*'s that are known to be scaled by the 280 /// specified amount, but which may have other unrepresented high bits. As such, 281 /// the gep cannot necessarily be reconstructed from its decomposed form. 282 /// 283 /// When DataLayout is around, this function is capable of analyzing everything 284 /// that GetUnderlyingObject can look through. To be able to do that 285 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search 286 /// depth (MaxLookupSearchDepth). 287 /// When DataLayout not is around, it just looks through pointer casts. 288 /// 289 static const Value * 290 DecomposeGEPExpression(const Value *V, int64_t &BaseOffs, 291 SmallVectorImpl<VariableGEPIndex> &VarIndices, 292 bool &MaxLookupReached, const DataLayout *DL) { 293 // Limit recursion depth to limit compile time in crazy cases. 294 unsigned MaxLookup = MaxLookupSearchDepth; 295 MaxLookupReached = false; 296 297 BaseOffs = 0; 298 do { 299 // See if this is a bitcast or GEP. 300 const Operator *Op = dyn_cast<Operator>(V); 301 if (Op == 0) { 302 // The only non-operator case we can handle are GlobalAliases. 303 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 304 if (!GA->mayBeOverridden()) { 305 V = GA->getAliasee(); 306 continue; 307 } 308 } 309 return V; 310 } 311 312 if (Op->getOpcode() == Instruction::BitCast) { 313 V = Op->getOperand(0); 314 continue; 315 } 316 317 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 318 if (GEPOp == 0) { 319 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 320 // can come up with something. This matches what GetUnderlyingObject does. 321 if (const Instruction *I = dyn_cast<Instruction>(V)) 322 // TODO: Get a DominatorTree and use it here. 323 if (const Value *Simplified = 324 SimplifyInstruction(const_cast<Instruction *>(I), DL)) { 325 V = Simplified; 326 continue; 327 } 328 329 return V; 330 } 331 332 // Don't attempt to analyze GEPs over unsized objects. 333 if (!GEPOp->getOperand(0)->getType()->getPointerElementType()->isSized()) 334 return V; 335 336 // If we are lacking DataLayout information, we can't compute the offets of 337 // elements computed by GEPs. However, we can handle bitcast equivalent 338 // GEPs. 339 if (DL == 0) { 340 if (!GEPOp->hasAllZeroIndices()) 341 return V; 342 V = GEPOp->getOperand(0); 343 continue; 344 } 345 346 unsigned AS = GEPOp->getPointerAddressSpace(); 347 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 348 gep_type_iterator GTI = gep_type_begin(GEPOp); 349 for (User::const_op_iterator I = GEPOp->op_begin()+1, 350 E = GEPOp->op_end(); I != E; ++I) { 351 Value *Index = *I; 352 // Compute the (potentially symbolic) offset in bytes for this index. 353 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 354 // For a struct, add the member offset. 355 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 356 if (FieldNo == 0) continue; 357 358 BaseOffs += DL->getStructLayout(STy)->getElementOffset(FieldNo); 359 continue; 360 } 361 362 // For an array/pointer, add the element offset, explicitly scaled. 363 if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 364 if (CIdx->isZero()) continue; 365 BaseOffs += DL->getTypeAllocSize(*GTI)*CIdx->getSExtValue(); 366 continue; 367 } 368 369 uint64_t Scale = DL->getTypeAllocSize(*GTI); 370 ExtensionKind Extension = EK_NotExtended; 371 372 // If the integer type is smaller than the pointer size, it is implicitly 373 // sign extended to pointer size. 374 unsigned Width = Index->getType()->getIntegerBitWidth(); 375 if (DL->getPointerSizeInBits(AS) > Width) 376 Extension = EK_SignExt; 377 378 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 379 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 380 Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension, 381 *DL, 0); 382 383 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 384 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 385 BaseOffs += IndexOffset.getSExtValue()*Scale; 386 Scale *= IndexScale.getSExtValue(); 387 388 // If we already had an occurrence of this index variable, merge this 389 // scale into it. For example, we want to handle: 390 // A[x][x] -> x*16 + x*4 -> x*20 391 // This also ensures that 'x' only appears in the index list once. 392 for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) { 393 if (VarIndices[i].V == Index && 394 VarIndices[i].Extension == Extension) { 395 Scale += VarIndices[i].Scale; 396 VarIndices.erase(VarIndices.begin()+i); 397 break; 398 } 399 } 400 401 // Make sure that we have a scale that makes sense for this target's 402 // pointer size. 403 if (unsigned ShiftBits = 64 - DL->getPointerSizeInBits(AS)) { 404 Scale <<= ShiftBits; 405 Scale = (int64_t)Scale >> ShiftBits; 406 } 407 408 if (Scale) { 409 VariableGEPIndex Entry = {Index, Extension, 410 static_cast<int64_t>(Scale)}; 411 VarIndices.push_back(Entry); 412 } 413 } 414 415 // Analyze the base pointer next. 416 V = GEPOp->getOperand(0); 417 } while (--MaxLookup); 418 419 // If the chain of expressions is too deep, just return early. 420 MaxLookupReached = true; 421 return V; 422 } 423 424 //===----------------------------------------------------------------------===// 425 // BasicAliasAnalysis Pass 426 //===----------------------------------------------------------------------===// 427 428 #ifndef NDEBUG 429 static const Function *getParent(const Value *V) { 430 if (const Instruction *inst = dyn_cast<Instruction>(V)) 431 return inst->getParent()->getParent(); 432 433 if (const Argument *arg = dyn_cast<Argument>(V)) 434 return arg->getParent(); 435 436 return NULL; 437 } 438 439 static bool notDifferentParent(const Value *O1, const Value *O2) { 440 441 const Function *F1 = getParent(O1); 442 const Function *F2 = getParent(O2); 443 444 return !F1 || !F2 || F1 == F2; 445 } 446 #endif 447 448 namespace { 449 /// BasicAliasAnalysis - This is the primary alias analysis implementation. 450 struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis { 451 static char ID; // Class identification, replacement for typeinfo 452 BasicAliasAnalysis() : ImmutablePass(ID) { 453 initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry()); 454 } 455 456 void initializePass() override { 457 InitializeAliasAnalysis(this); 458 } 459 460 void getAnalysisUsage(AnalysisUsage &AU) const override { 461 AU.addRequired<AliasAnalysis>(); 462 AU.addRequired<TargetLibraryInfo>(); 463 } 464 465 AliasResult alias(const Location &LocA, const Location &LocB) override { 466 assert(AliasCache.empty() && "AliasCache must be cleared after use!"); 467 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 468 "BasicAliasAnalysis doesn't support interprocedural queries."); 469 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.TBAATag, 470 LocB.Ptr, LocB.Size, LocB.TBAATag); 471 // AliasCache rarely has more than 1 or 2 elements, always use 472 // shrink_and_clear so it quickly returns to the inline capacity of the 473 // SmallDenseMap if it ever grows larger. 474 // FIXME: This should really be shrink_to_inline_capacity_and_clear(). 475 AliasCache.shrink_and_clear(); 476 VisitedPhiBBs.clear(); 477 return Alias; 478 } 479 480 ModRefResult getModRefInfo(ImmutableCallSite CS, 481 const Location &Loc) override; 482 483 ModRefResult getModRefInfo(ImmutableCallSite CS1, 484 ImmutableCallSite CS2) override { 485 // The AliasAnalysis base class has some smarts, lets use them. 486 return AliasAnalysis::getModRefInfo(CS1, CS2); 487 } 488 489 /// pointsToConstantMemory - Chase pointers until we find a (constant 490 /// global) or not. 491 bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override; 492 493 /// getModRefBehavior - Return the behavior when calling the given 494 /// call site. 495 ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override; 496 497 /// getModRefBehavior - Return the behavior when calling the given function. 498 /// For use when the call site is not known. 499 ModRefBehavior getModRefBehavior(const Function *F) override; 500 501 /// getAdjustedAnalysisPointer - This method is used when a pass implements 502 /// an analysis interface through multiple inheritance. If needed, it 503 /// should override this to adjust the this pointer as needed for the 504 /// specified pass info. 505 void *getAdjustedAnalysisPointer(const void *ID) override { 506 if (ID == &AliasAnalysis::ID) 507 return (AliasAnalysis*)this; 508 return this; 509 } 510 511 private: 512 // AliasCache - Track alias queries to guard against recursion. 513 typedef std::pair<Location, Location> LocPair; 514 typedef SmallDenseMap<LocPair, AliasResult, 8> AliasCacheTy; 515 AliasCacheTy AliasCache; 516 517 /// \brief Track phi nodes we have visited. When interpret "Value" pointer 518 /// equality as value equality we need to make sure that the "Value" is not 519 /// part of a cycle. Otherwise, two uses could come from different 520 /// "iterations" of a cycle and see different values for the same "Value" 521 /// pointer. 522 /// The following example shows the problem: 523 /// %p = phi(%alloca1, %addr2) 524 /// %l = load %ptr 525 /// %addr1 = gep, %alloca2, 0, %l 526 /// %addr2 = gep %alloca2, 0, (%l + 1) 527 /// alias(%p, %addr1) -> MayAlias ! 528 /// store %l, ... 529 SmallPtrSet<const BasicBlock*, 8> VisitedPhiBBs; 530 531 // Visited - Track instructions visited by pointsToConstantMemory. 532 SmallPtrSet<const Value*, 16> Visited; 533 534 /// \brief Check whether two Values can be considered equivalent. 535 /// 536 /// In addition to pointer equivalence of \p V1 and \p V2 this checks 537 /// whether they can not be part of a cycle in the value graph by looking at 538 /// all visited phi nodes an making sure that the phis cannot reach the 539 /// value. We have to do this because we are looking through phi nodes (That 540 /// is we say noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 541 bool isValueEqualInPotentialCycles(const Value *V1, const Value *V2); 542 543 /// \brief Dest and Src are the variable indices from two decomposed 544 /// GetElementPtr instructions GEP1 and GEP2 which have common base 545 /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic 546 /// difference between the two pointers. 547 void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest, 548 const SmallVectorImpl<VariableGEPIndex> &Src); 549 550 // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP 551 // instruction against another. 552 AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size, 553 const MDNode *V1TBAAInfo, 554 const Value *V2, uint64_t V2Size, 555 const MDNode *V2TBAAInfo, 556 const Value *UnderlyingV1, const Value *UnderlyingV2); 557 558 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI 559 // instruction against another. 560 AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize, 561 const MDNode *PNTBAAInfo, 562 const Value *V2, uint64_t V2Size, 563 const MDNode *V2TBAAInfo); 564 565 /// aliasSelect - Disambiguate a Select instruction against another value. 566 AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize, 567 const MDNode *SITBAAInfo, 568 const Value *V2, uint64_t V2Size, 569 const MDNode *V2TBAAInfo); 570 571 AliasResult aliasCheck(const Value *V1, uint64_t V1Size, 572 const MDNode *V1TBAATag, 573 const Value *V2, uint64_t V2Size, 574 const MDNode *V2TBAATag); 575 }; 576 } // End of anonymous namespace 577 578 // Register this pass... 579 char BasicAliasAnalysis::ID = 0; 580 INITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa", 581 "Basic Alias Analysis (stateless AA impl)", 582 false, true, false) 583 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 584 INITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa", 585 "Basic Alias Analysis (stateless AA impl)", 586 false, true, false) 587 588 589 ImmutablePass *llvm::createBasicAliasAnalysisPass() { 590 return new BasicAliasAnalysis(); 591 } 592 593 /// pointsToConstantMemory - Returns whether the given pointer value 594 /// points to memory that is local to the function, with global constants being 595 /// considered local to all functions. 596 bool 597 BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) { 598 assert(Visited.empty() && "Visited must be cleared after use!"); 599 600 unsigned MaxLookup = 8; 601 SmallVector<const Value *, 16> Worklist; 602 Worklist.push_back(Loc.Ptr); 603 do { 604 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL); 605 if (!Visited.insert(V)) { 606 Visited.clear(); 607 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 608 } 609 610 // An alloca instruction defines local memory. 611 if (OrLocal && isa<AllocaInst>(V)) 612 continue; 613 614 // A global constant counts as local memory for our purposes. 615 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 616 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 617 // global to be marked constant in some modules and non-constant in 618 // others. GV may even be a declaration, not a definition. 619 if (!GV->isConstant()) { 620 Visited.clear(); 621 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 622 } 623 continue; 624 } 625 626 // If both select values point to local memory, then so does the select. 627 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 628 Worklist.push_back(SI->getTrueValue()); 629 Worklist.push_back(SI->getFalseValue()); 630 continue; 631 } 632 633 // If all values incoming to a phi node point to local memory, then so does 634 // the phi. 635 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 636 // Don't bother inspecting phi nodes with many operands. 637 if (PN->getNumIncomingValues() > MaxLookup) { 638 Visited.clear(); 639 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 640 } 641 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 642 Worklist.push_back(PN->getIncomingValue(i)); 643 continue; 644 } 645 646 // Otherwise be conservative. 647 Visited.clear(); 648 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 649 650 } while (!Worklist.empty() && --MaxLookup); 651 652 Visited.clear(); 653 return Worklist.empty(); 654 } 655 656 /// getModRefBehavior - Return the behavior when calling the given call site. 657 AliasAnalysis::ModRefBehavior 658 BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) { 659 if (CS.doesNotAccessMemory()) 660 // Can't do better than this. 661 return DoesNotAccessMemory; 662 663 ModRefBehavior Min = UnknownModRefBehavior; 664 665 // If the callsite knows it only reads memory, don't return worse 666 // than that. 667 if (CS.onlyReadsMemory()) 668 Min = OnlyReadsMemory; 669 670 // The AliasAnalysis base class has some smarts, lets use them. 671 return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min); 672 } 673 674 /// getModRefBehavior - Return the behavior when calling the given function. 675 /// For use when the call site is not known. 676 AliasAnalysis::ModRefBehavior 677 BasicAliasAnalysis::getModRefBehavior(const Function *F) { 678 // If the function declares it doesn't access memory, we can't do better. 679 if (F->doesNotAccessMemory()) 680 return DoesNotAccessMemory; 681 682 // For intrinsics, we can check the table. 683 if (unsigned iid = F->getIntrinsicID()) { 684 #define GET_INTRINSIC_MODREF_BEHAVIOR 685 #include "llvm/IR/Intrinsics.gen" 686 #undef GET_INTRINSIC_MODREF_BEHAVIOR 687 } 688 689 ModRefBehavior Min = UnknownModRefBehavior; 690 691 // If the function declares it only reads memory, go with that. 692 if (F->onlyReadsMemory()) 693 Min = OnlyReadsMemory; 694 695 // Otherwise be conservative. 696 return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min); 697 } 698 699 /// getModRefInfo - Check to see if the specified callsite can clobber the 700 /// specified memory object. Since we only look at local properties of this 701 /// function, we really can't say much about this query. We do, however, use 702 /// simple "address taken" analysis on local objects. 703 AliasAnalysis::ModRefResult 704 BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS, 705 const Location &Loc) { 706 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && 707 "AliasAnalysis query involving multiple functions!"); 708 709 const Value *Object = GetUnderlyingObject(Loc.Ptr, DL); 710 711 // If this is a tail call and Loc.Ptr points to a stack location, we know that 712 // the tail call cannot access or modify the local stack. 713 // We cannot exclude byval arguments here; these belong to the caller of 714 // the current function not to the current function, and a tail callee 715 // may reference them. 716 if (isa<AllocaInst>(Object)) 717 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) 718 if (CI->isTailCall()) 719 return NoModRef; 720 721 // If the pointer is to a locally allocated object that does not escape, 722 // then the call can not mod/ref the pointer unless the call takes the pointer 723 // as an argument, and itself doesn't capture it. 724 if (!isa<Constant>(Object) && CS.getInstruction() != Object && 725 isNonEscapingLocalObject(Object)) { 726 bool PassedAsArg = false; 727 unsigned ArgNo = 0; 728 for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end(); 729 CI != CE; ++CI, ++ArgNo) { 730 // Only look at the no-capture or byval pointer arguments. If this 731 // pointer were passed to arguments that were neither of these, then it 732 // couldn't be no-capture. 733 if (!(*CI)->getType()->isPointerTy() || 734 (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo))) 735 continue; 736 737 // If this is a no-capture pointer argument, see if we can tell that it 738 // is impossible to alias the pointer we're checking. If not, we have to 739 // assume that the call could touch the pointer, even though it doesn't 740 // escape. 741 if (!isNoAlias(Location(*CI), Location(Object))) { 742 PassedAsArg = true; 743 break; 744 } 745 } 746 747 if (!PassedAsArg) 748 return NoModRef; 749 } 750 751 const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>(); 752 ModRefResult Min = ModRef; 753 754 // Finally, handle specific knowledge of intrinsics. 755 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 756 if (II != 0) 757 switch (II->getIntrinsicID()) { 758 default: break; 759 case Intrinsic::memcpy: 760 case Intrinsic::memmove: { 761 uint64_t Len = UnknownSize; 762 if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) 763 Len = LenCI->getZExtValue(); 764 Value *Dest = II->getArgOperand(0); 765 Value *Src = II->getArgOperand(1); 766 // If it can't overlap the source dest, then it doesn't modref the loc. 767 if (isNoAlias(Location(Dest, Len), Loc)) { 768 if (isNoAlias(Location(Src, Len), Loc)) 769 return NoModRef; 770 // If it can't overlap the dest, then worst case it reads the loc. 771 Min = Ref; 772 } else if (isNoAlias(Location(Src, Len), Loc)) { 773 // If it can't overlap the source, then worst case it mutates the loc. 774 Min = Mod; 775 } 776 break; 777 } 778 case Intrinsic::memset: 779 // Since memset is 'accesses arguments' only, the AliasAnalysis base class 780 // will handle it for the variable length case. 781 if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) { 782 uint64_t Len = LenCI->getZExtValue(); 783 Value *Dest = II->getArgOperand(0); 784 if (isNoAlias(Location(Dest, Len), Loc)) 785 return NoModRef; 786 } 787 // We know that memset doesn't load anything. 788 Min = Mod; 789 break; 790 case Intrinsic::lifetime_start: 791 case Intrinsic::lifetime_end: 792 case Intrinsic::invariant_start: { 793 uint64_t PtrSize = 794 cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(); 795 if (isNoAlias(Location(II->getArgOperand(1), 796 PtrSize, 797 II->getMetadata(LLVMContext::MD_tbaa)), 798 Loc)) 799 return NoModRef; 800 break; 801 } 802 case Intrinsic::invariant_end: { 803 uint64_t PtrSize = 804 cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(); 805 if (isNoAlias(Location(II->getArgOperand(2), 806 PtrSize, 807 II->getMetadata(LLVMContext::MD_tbaa)), 808 Loc)) 809 return NoModRef; 810 break; 811 } 812 case Intrinsic::arm_neon_vld1: { 813 // LLVM's vld1 and vst1 intrinsics currently only support a single 814 // vector register. 815 uint64_t Size = 816 DL ? DL->getTypeStoreSize(II->getType()) : UnknownSize; 817 if (isNoAlias(Location(II->getArgOperand(0), Size, 818 II->getMetadata(LLVMContext::MD_tbaa)), 819 Loc)) 820 return NoModRef; 821 break; 822 } 823 case Intrinsic::arm_neon_vst1: { 824 uint64_t Size = 825 DL ? DL->getTypeStoreSize(II->getArgOperand(1)->getType()) : UnknownSize; 826 if (isNoAlias(Location(II->getArgOperand(0), Size, 827 II->getMetadata(LLVMContext::MD_tbaa)), 828 Loc)) 829 return NoModRef; 830 break; 831 } 832 } 833 834 // We can bound the aliasing properties of memset_pattern16 just as we can 835 // for memcpy/memset. This is particularly important because the 836 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 837 // whenever possible. 838 else if (TLI.has(LibFunc::memset_pattern16) && 839 CS.getCalledFunction() && 840 CS.getCalledFunction()->getName() == "memset_pattern16") { 841 const Function *MS = CS.getCalledFunction(); 842 FunctionType *MemsetType = MS->getFunctionType(); 843 if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 && 844 isa<PointerType>(MemsetType->getParamType(0)) && 845 isa<PointerType>(MemsetType->getParamType(1)) && 846 isa<IntegerType>(MemsetType->getParamType(2))) { 847 uint64_t Len = UnknownSize; 848 if (const ConstantInt *LenCI = dyn_cast<ConstantInt>(CS.getArgument(2))) 849 Len = LenCI->getZExtValue(); 850 const Value *Dest = CS.getArgument(0); 851 const Value *Src = CS.getArgument(1); 852 // If it can't overlap the source dest, then it doesn't modref the loc. 853 if (isNoAlias(Location(Dest, Len), Loc)) { 854 // Always reads 16 bytes of the source. 855 if (isNoAlias(Location(Src, 16), Loc)) 856 return NoModRef; 857 // If it can't overlap the dest, then worst case it reads the loc. 858 Min = Ref; 859 // Always reads 16 bytes of the source. 860 } else if (isNoAlias(Location(Src, 16), Loc)) { 861 // If it can't overlap the source, then worst case it mutates the loc. 862 Min = Mod; 863 } 864 } 865 } 866 867 // The AliasAnalysis base class has some smarts, lets use them. 868 return ModRefResult(AliasAnalysis::getModRefInfo(CS, Loc) & Min); 869 } 870 871 static bool areVarIndicesEqual(SmallVectorImpl<VariableGEPIndex> &Indices1, 872 SmallVectorImpl<VariableGEPIndex> &Indices2) { 873 unsigned Size1 = Indices1.size(); 874 unsigned Size2 = Indices2.size(); 875 876 if (Size1 != Size2) 877 return false; 878 879 for (unsigned I = 0; I != Size1; ++I) 880 if (Indices1[I] != Indices2[I]) 881 return false; 882 883 return true; 884 } 885 886 /// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction 887 /// against another pointer. We know that V1 is a GEP, but we don't know 888 /// anything about V2. UnderlyingV1 is GetUnderlyingObject(GEP1, DL), 889 /// UnderlyingV2 is the same for V2. 890 /// 891 AliasAnalysis::AliasResult 892 BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, 893 const MDNode *V1TBAAInfo, 894 const Value *V2, uint64_t V2Size, 895 const MDNode *V2TBAAInfo, 896 const Value *UnderlyingV1, 897 const Value *UnderlyingV2) { 898 int64_t GEP1BaseOffset; 899 bool GEP1MaxLookupReached; 900 SmallVector<VariableGEPIndex, 4> GEP1VariableIndices; 901 902 // If we have two gep instructions with must-alias or not-alias'ing base 903 // pointers, figure out if the indexes to the GEP tell us anything about the 904 // derived pointer. 905 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 906 // Do the base pointers alias? 907 AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, 0, 908 UnderlyingV2, UnknownSize, 0); 909 910 // Check for geps of non-aliasing underlying pointers where the offsets are 911 // identical. 912 if ((BaseAlias == MayAlias) && V1Size == V2Size) { 913 // Do the base pointers alias assuming type and size. 914 AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, 915 V1TBAAInfo, UnderlyingV2, 916 V2Size, V2TBAAInfo); 917 if (PreciseBaseAlias == NoAlias) { 918 // See if the computed offset from the common pointer tells us about the 919 // relation of the resulting pointer. 920 int64_t GEP2BaseOffset; 921 bool GEP2MaxLookupReached; 922 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 923 const Value *GEP2BasePtr = 924 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, 925 GEP2MaxLookupReached, DL); 926 const Value *GEP1BasePtr = 927 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 928 GEP1MaxLookupReached, DL); 929 // DecomposeGEPExpression and GetUnderlyingObject should return the 930 // same result except when DecomposeGEPExpression has no DataLayout. 931 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 932 assert(DL == 0 && 933 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 934 return MayAlias; 935 } 936 // If the max search depth is reached the result is undefined 937 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 938 return MayAlias; 939 940 // Same offsets. 941 if (GEP1BaseOffset == GEP2BaseOffset && 942 areVarIndicesEqual(GEP1VariableIndices, GEP2VariableIndices)) 943 return NoAlias; 944 GEP1VariableIndices.clear(); 945 } 946 } 947 948 // If we get a No or May, then return it immediately, no amount of analysis 949 // will improve this situation. 950 if (BaseAlias != MustAlias) return BaseAlias; 951 952 // Otherwise, we have a MustAlias. Since the base pointers alias each other 953 // exactly, see if the computed offset from the common pointer tells us 954 // about the relation of the resulting pointer. 955 const Value *GEP1BasePtr = 956 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 957 GEP1MaxLookupReached, DL); 958 959 int64_t GEP2BaseOffset; 960 bool GEP2MaxLookupReached; 961 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 962 const Value *GEP2BasePtr = 963 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, 964 GEP2MaxLookupReached, DL); 965 966 // DecomposeGEPExpression and GetUnderlyingObject should return the 967 // same result except when DecomposeGEPExpression has no DataLayout. 968 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 969 assert(DL == 0 && 970 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 971 return MayAlias; 972 } 973 // If the max search depth is reached the result is undefined 974 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 975 return MayAlias; 976 977 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 978 // symbolic difference. 979 GEP1BaseOffset -= GEP2BaseOffset; 980 GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices); 981 982 } else { 983 // Check to see if these two pointers are related by the getelementptr 984 // instruction. If one pointer is a GEP with a non-zero index of the other 985 // pointer, we know they cannot alias. 986 987 // If both accesses are unknown size, we can't do anything useful here. 988 if (V1Size == UnknownSize && V2Size == UnknownSize) 989 return MayAlias; 990 991 AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, 0, 992 V2, V2Size, V2TBAAInfo); 993 if (R != MustAlias) 994 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 995 // If V2 is known not to alias GEP base pointer, then the two values 996 // cannot alias per GEP semantics: "A pointer value formed from a 997 // getelementptr instruction is associated with the addresses associated 998 // with the first operand of the getelementptr". 999 return R; 1000 1001 const Value *GEP1BasePtr = 1002 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 1003 GEP1MaxLookupReached, DL); 1004 1005 // DecomposeGEPExpression and GetUnderlyingObject should return the 1006 // same result except when DecomposeGEPExpression has no DataLayout. 1007 if (GEP1BasePtr != UnderlyingV1) { 1008 assert(DL == 0 && 1009 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 1010 return MayAlias; 1011 } 1012 // If the max search depth is reached the result is undefined 1013 if (GEP1MaxLookupReached) 1014 return MayAlias; 1015 } 1016 1017 // In the two GEP Case, if there is no difference in the offsets of the 1018 // computed pointers, the resultant pointers are a must alias. This 1019 // hapens when we have two lexically identical GEP's (for example). 1020 // 1021 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 1022 // must aliases the GEP, the end result is a must alias also. 1023 if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty()) 1024 return MustAlias; 1025 1026 // If there is a constant difference between the pointers, but the difference 1027 // is less than the size of the associated memory object, then we know 1028 // that the objects are partially overlapping. If the difference is 1029 // greater, we know they do not overlap. 1030 if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) { 1031 if (GEP1BaseOffset >= 0) { 1032 if (V2Size != UnknownSize) { 1033 if ((uint64_t)GEP1BaseOffset < V2Size) 1034 return PartialAlias; 1035 return NoAlias; 1036 } 1037 } else { 1038 // We have the situation where: 1039 // + + 1040 // | BaseOffset | 1041 // ---------------->| 1042 // |-->V1Size |-------> V2Size 1043 // GEP1 V2 1044 // We need to know that V2Size is not unknown, otherwise we might have 1045 // stripped a gep with negative index ('gep <ptr>, -1, ...). 1046 if (V1Size != UnknownSize && V2Size != UnknownSize) { 1047 if (-(uint64_t)GEP1BaseOffset < V1Size) 1048 return PartialAlias; 1049 return NoAlias; 1050 } 1051 } 1052 } 1053 1054 // Try to distinguish something like &A[i][1] against &A[42][0]. 1055 // Grab the least significant bit set in any of the scales. 1056 if (!GEP1VariableIndices.empty()) { 1057 uint64_t Modulo = 0; 1058 for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) 1059 Modulo |= (uint64_t)GEP1VariableIndices[i].Scale; 1060 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1061 1062 // We can compute the difference between the two addresses 1063 // mod Modulo. Check whether that difference guarantees that the 1064 // two locations do not alias. 1065 uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1); 1066 if (V1Size != UnknownSize && V2Size != UnknownSize && 1067 ModOffset >= V2Size && V1Size <= Modulo - ModOffset) 1068 return NoAlias; 1069 } 1070 1071 // Statically, we can see that the base objects are the same, but the 1072 // pointers have dynamic offsets which we can't resolve. And none of our 1073 // little tricks above worked. 1074 // 1075 // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the 1076 // practical effect of this is protecting TBAA in the case of dynamic 1077 // indices into arrays of unions or malloc'd memory. 1078 return PartialAlias; 1079 } 1080 1081 static AliasAnalysis::AliasResult 1082 MergeAliasResults(AliasAnalysis::AliasResult A, AliasAnalysis::AliasResult B) { 1083 // If the results agree, take it. 1084 if (A == B) 1085 return A; 1086 // A mix of PartialAlias and MustAlias is PartialAlias. 1087 if ((A == AliasAnalysis::PartialAlias && B == AliasAnalysis::MustAlias) || 1088 (B == AliasAnalysis::PartialAlias && A == AliasAnalysis::MustAlias)) 1089 return AliasAnalysis::PartialAlias; 1090 // Otherwise, we don't know anything. 1091 return AliasAnalysis::MayAlias; 1092 } 1093 1094 /// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select 1095 /// instruction against another. 1096 AliasAnalysis::AliasResult 1097 BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize, 1098 const MDNode *SITBAAInfo, 1099 const Value *V2, uint64_t V2Size, 1100 const MDNode *V2TBAAInfo) { 1101 // If the values are Selects with the same condition, we can do a more precise 1102 // check: just check for aliases between the values on corresponding arms. 1103 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1104 if (SI->getCondition() == SI2->getCondition()) { 1105 AliasResult Alias = 1106 aliasCheck(SI->getTrueValue(), SISize, SITBAAInfo, 1107 SI2->getTrueValue(), V2Size, V2TBAAInfo); 1108 if (Alias == MayAlias) 1109 return MayAlias; 1110 AliasResult ThisAlias = 1111 aliasCheck(SI->getFalseValue(), SISize, SITBAAInfo, 1112 SI2->getFalseValue(), V2Size, V2TBAAInfo); 1113 return MergeAliasResults(ThisAlias, Alias); 1114 } 1115 1116 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1117 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1118 AliasResult Alias = 1119 aliasCheck(V2, V2Size, V2TBAAInfo, SI->getTrueValue(), SISize, SITBAAInfo); 1120 if (Alias == MayAlias) 1121 return MayAlias; 1122 1123 AliasResult ThisAlias = 1124 aliasCheck(V2, V2Size, V2TBAAInfo, SI->getFalseValue(), SISize, SITBAAInfo); 1125 return MergeAliasResults(ThisAlias, Alias); 1126 } 1127 1128 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction 1129 // against another. 1130 AliasAnalysis::AliasResult 1131 BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize, 1132 const MDNode *PNTBAAInfo, 1133 const Value *V2, uint64_t V2Size, 1134 const MDNode *V2TBAAInfo) { 1135 // Track phi nodes we have visited. We use this information when we determine 1136 // value equivalence. 1137 VisitedPhiBBs.insert(PN->getParent()); 1138 1139 // If the values are PHIs in the same block, we can do a more precise 1140 // as well as efficient check: just check for aliases between the values 1141 // on corresponding edges. 1142 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1143 if (PN2->getParent() == PN->getParent()) { 1144 LocPair Locs(Location(PN, PNSize, PNTBAAInfo), 1145 Location(V2, V2Size, V2TBAAInfo)); 1146 if (PN > V2) 1147 std::swap(Locs.first, Locs.second); 1148 // Analyse the PHIs' inputs under the assumption that the PHIs are 1149 // NoAlias. 1150 // If the PHIs are May/MustAlias there must be (recursively) an input 1151 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1152 // there must be an operation on the PHIs within the PHIs' value cycle 1153 // that causes a MayAlias. 1154 // Pretend the phis do not alias. 1155 AliasResult Alias = NoAlias; 1156 assert(AliasCache.count(Locs) && 1157 "There must exist an entry for the phi node"); 1158 AliasResult OrigAliasResult = AliasCache[Locs]; 1159 AliasCache[Locs] = NoAlias; 1160 1161 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1162 AliasResult ThisAlias = 1163 aliasCheck(PN->getIncomingValue(i), PNSize, PNTBAAInfo, 1164 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1165 V2Size, V2TBAAInfo); 1166 Alias = MergeAliasResults(ThisAlias, Alias); 1167 if (Alias == MayAlias) 1168 break; 1169 } 1170 1171 // Reset if speculation failed. 1172 if (Alias != NoAlias) 1173 AliasCache[Locs] = OrigAliasResult; 1174 1175 return Alias; 1176 } 1177 1178 SmallPtrSet<Value*, 4> UniqueSrc; 1179 SmallVector<Value*, 4> V1Srcs; 1180 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1181 Value *PV1 = PN->getIncomingValue(i); 1182 if (isa<PHINode>(PV1)) 1183 // If any of the source itself is a PHI, return MayAlias conservatively 1184 // to avoid compile time explosion. The worst possible case is if both 1185 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1186 // and 'n' are the number of PHI sources. 1187 return MayAlias; 1188 if (UniqueSrc.insert(PV1)) 1189 V1Srcs.push_back(PV1); 1190 } 1191 1192 AliasResult Alias = aliasCheck(V2, V2Size, V2TBAAInfo, 1193 V1Srcs[0], PNSize, PNTBAAInfo); 1194 // Early exit if the check of the first PHI source against V2 is MayAlias. 1195 // Other results are not possible. 1196 if (Alias == MayAlias) 1197 return MayAlias; 1198 1199 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1200 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1201 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1202 Value *V = V1Srcs[i]; 1203 1204 AliasResult ThisAlias = aliasCheck(V2, V2Size, V2TBAAInfo, 1205 V, PNSize, PNTBAAInfo); 1206 Alias = MergeAliasResults(ThisAlias, Alias); 1207 if (Alias == MayAlias) 1208 break; 1209 } 1210 1211 return Alias; 1212 } 1213 1214 // aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases, 1215 // such as array references. 1216 // 1217 AliasAnalysis::AliasResult 1218 BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size, 1219 const MDNode *V1TBAAInfo, 1220 const Value *V2, uint64_t V2Size, 1221 const MDNode *V2TBAAInfo) { 1222 // If either of the memory references is empty, it doesn't matter what the 1223 // pointer values are. 1224 if (V1Size == 0 || V2Size == 0) 1225 return NoAlias; 1226 1227 // Strip off any casts if they exist. 1228 V1 = V1->stripPointerCasts(); 1229 V2 = V2->stripPointerCasts(); 1230 1231 // Are we checking for alias of the same value? 1232 // Because we look 'through' phi nodes we could look at "Value" pointers from 1233 // different iterations. We must therefore make sure that this is not the 1234 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1235 // happen by looking at the visited phi nodes and making sure they cannot 1236 // reach the value. 1237 if (isValueEqualInPotentialCycles(V1, V2)) 1238 return MustAlias; 1239 1240 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1241 return NoAlias; // Scalars cannot alias each other 1242 1243 // Figure out what objects these things are pointing to if we can. 1244 const Value *O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth); 1245 const Value *O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth); 1246 1247 // Null values in the default address space don't point to any object, so they 1248 // don't alias any other pointer. 1249 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1250 if (CPN->getType()->getAddressSpace() == 0) 1251 return NoAlias; 1252 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1253 if (CPN->getType()->getAddressSpace() == 0) 1254 return NoAlias; 1255 1256 if (O1 != O2) { 1257 // If V1/V2 point to two different objects we know that we have no alias. 1258 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1259 return NoAlias; 1260 1261 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1262 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1263 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1264 return NoAlias; 1265 1266 // Function arguments can't alias with things that are known to be 1267 // unambigously identified at the function level. 1268 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1269 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1270 return NoAlias; 1271 1272 // Most objects can't alias null. 1273 if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) || 1274 (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2))) 1275 return NoAlias; 1276 1277 // If one pointer is the result of a call/invoke or load and the other is a 1278 // non-escaping local object within the same function, then we know the 1279 // object couldn't escape to a point where the call could return it. 1280 // 1281 // Note that if the pointers are in different functions, there are a 1282 // variety of complications. A call with a nocapture argument may still 1283 // temporary store the nocapture argument's value in a temporary memory 1284 // location if that memory location doesn't escape. Or it may pass a 1285 // nocapture value to other functions as long as they don't capture it. 1286 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) 1287 return NoAlias; 1288 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) 1289 return NoAlias; 1290 } 1291 1292 // If the size of one access is larger than the entire object on the other 1293 // side, then we know such behavior is undefined and can assume no alias. 1294 if (DL) 1295 if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *DL, *TLI)) || 1296 (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *DL, *TLI))) 1297 return NoAlias; 1298 1299 // Check the cache before climbing up use-def chains. This also terminates 1300 // otherwise infinitely recursive queries. 1301 LocPair Locs(Location(V1, V1Size, V1TBAAInfo), 1302 Location(V2, V2Size, V2TBAAInfo)); 1303 if (V1 > V2) 1304 std::swap(Locs.first, Locs.second); 1305 std::pair<AliasCacheTy::iterator, bool> Pair = 1306 AliasCache.insert(std::make_pair(Locs, MayAlias)); 1307 if (!Pair.second) 1308 return Pair.first->second; 1309 1310 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1311 // GEP can't simplify, we don't even look at the PHI cases. 1312 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1313 std::swap(V1, V2); 1314 std::swap(V1Size, V2Size); 1315 std::swap(O1, O2); 1316 std::swap(V1TBAAInfo, V2TBAAInfo); 1317 } 1318 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1319 AliasResult Result = aliasGEP(GV1, V1Size, V1TBAAInfo, V2, V2Size, V2TBAAInfo, O1, O2); 1320 if (Result != MayAlias) return AliasCache[Locs] = Result; 1321 } 1322 1323 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1324 std::swap(V1, V2); 1325 std::swap(V1Size, V2Size); 1326 std::swap(V1TBAAInfo, V2TBAAInfo); 1327 } 1328 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1329 AliasResult Result = aliasPHI(PN, V1Size, V1TBAAInfo, 1330 V2, V2Size, V2TBAAInfo); 1331 if (Result != MayAlias) return AliasCache[Locs] = Result; 1332 } 1333 1334 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1335 std::swap(V1, V2); 1336 std::swap(V1Size, V2Size); 1337 std::swap(V1TBAAInfo, V2TBAAInfo); 1338 } 1339 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1340 AliasResult Result = aliasSelect(S1, V1Size, V1TBAAInfo, 1341 V2, V2Size, V2TBAAInfo); 1342 if (Result != MayAlias) return AliasCache[Locs] = Result; 1343 } 1344 1345 // If both pointers are pointing into the same object and one of them 1346 // accesses is accessing the entire object, then the accesses must 1347 // overlap in some way. 1348 if (DL && O1 == O2) 1349 if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *DL, *TLI)) || 1350 (V2Size != UnknownSize && isObjectSize(O2, V2Size, *DL, *TLI))) 1351 return AliasCache[Locs] = PartialAlias; 1352 1353 AliasResult Result = 1354 AliasAnalysis::alias(Location(V1, V1Size, V1TBAAInfo), 1355 Location(V2, V2Size, V2TBAAInfo)); 1356 return AliasCache[Locs] = Result; 1357 } 1358 1359 bool BasicAliasAnalysis::isValueEqualInPotentialCycles(const Value *V, 1360 const Value *V2) { 1361 if (V != V2) 1362 return false; 1363 1364 const Instruction *Inst = dyn_cast<Instruction>(V); 1365 if (!Inst) 1366 return true; 1367 1368 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1369 return false; 1370 1371 // Use dominance or loop info if available. 1372 DominatorTreeWrapperPass *DTWP = 1373 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1374 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : 0; 1375 LoopInfo *LI = getAnalysisIfAvailable<LoopInfo>(); 1376 1377 // Make sure that the visited phis cannot reach the Value. This ensures that 1378 // the Values cannot come from different iterations of a potential cycle the 1379 // phi nodes could be involved in. 1380 for (SmallPtrSet<const BasicBlock *, 8>::iterator PI = VisitedPhiBBs.begin(), 1381 PE = VisitedPhiBBs.end(); 1382 PI != PE; ++PI) 1383 if (isPotentiallyReachable((*PI)->begin(), Inst, DT, LI)) 1384 return false; 1385 1386 return true; 1387 } 1388 1389 /// GetIndexDifference - Dest and Src are the variable indices from two 1390 /// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base 1391 /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic 1392 /// difference between the two pointers. 1393 void BasicAliasAnalysis::GetIndexDifference( 1394 SmallVectorImpl<VariableGEPIndex> &Dest, 1395 const SmallVectorImpl<VariableGEPIndex> &Src) { 1396 if (Src.empty()) 1397 return; 1398 1399 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1400 const Value *V = Src[i].V; 1401 ExtensionKind Extension = Src[i].Extension; 1402 int64_t Scale = Src[i].Scale; 1403 1404 // Find V in Dest. This is N^2, but pointer indices almost never have more 1405 // than a few variable indexes. 1406 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1407 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1408 Dest[j].Extension != Extension) 1409 continue; 1410 1411 // If we found it, subtract off Scale V's from the entry in Dest. If it 1412 // goes to zero, remove the entry. 1413 if (Dest[j].Scale != Scale) 1414 Dest[j].Scale -= Scale; 1415 else 1416 Dest.erase(Dest.begin() + j); 1417 Scale = 0; 1418 break; 1419 } 1420 1421 // If we didn't consume this entry, add it to the end of the Dest list. 1422 if (Scale) { 1423 VariableGEPIndex Entry = { V, Extension, -Scale }; 1424 Dest.push_back(Entry); 1425 } 1426 } 1427 } 1428