1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the primary stateless implementation of the
10 // Alias Analysis interface that implements identities (two different
11 // globals cannot alias, etc), but does no stateful analysis.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/BasicAliasAnalysis.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/Analysis/CaptureTracking.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/PhiValues.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/ConstantRange.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GetElementPtrTypeIterator.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/Metadata.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/User.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/KnownBits.h"
59 #include <cassert>
60 #include <cstdint>
61 #include <cstdlib>
62 #include <utility>
63 
64 #define DEBUG_TYPE "basicaa"
65 
66 using namespace llvm;
67 
68 /// Enable analysis of recursive PHI nodes.
69 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden,
70                                           cl::init(false));
71 
72 /// By default, even on 32-bit architectures we use 64-bit integers for
73 /// calculations. This will allow us to more-aggressively decompose indexing
74 /// expressions calculated using i64 values (e.g., long long in C) which is
75 /// common enough to worry about.
76 static cl::opt<bool> ForceAtLeast64Bits("basicaa-force-at-least-64b",
77                                         cl::Hidden, cl::init(true));
78 static cl::opt<bool> DoubleCalcBits("basicaa-double-calc-bits",
79                                     cl::Hidden, cl::init(false));
80 
81 /// SearchLimitReached / SearchTimes shows how often the limit of
82 /// to decompose GEPs is reached. It will affect the precision
83 /// of basic alias analysis.
84 STATISTIC(SearchLimitReached, "Number of times the limit to "
85                               "decompose GEPs is reached");
86 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
87 
88 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
89 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
90 /// careful with value equivalence. We use reachability to make sure a value
91 /// cannot be involved in a cycle.
92 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
93 
94 // The max limit of the search depth in DecomposeGEPExpression() and
95 // GetUnderlyingObject(), both functions need to use the same search
96 // depth otherwise the algorithm in aliasGEP will assert.
97 static const unsigned MaxLookupSearchDepth = 6;
98 
99 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
100                                FunctionAnalysisManager::Invalidator &Inv) {
101   // We don't care if this analysis itself is preserved, it has no state. But
102   // we need to check that the analyses it depends on have been. Note that we
103   // may be created without handles to some analyses and in that case don't
104   // depend on them.
105   if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
106       (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) ||
107       (LI && Inv.invalidate<LoopAnalysis>(Fn, PA)) ||
108       (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA)))
109     return true;
110 
111   // Otherwise this analysis result remains valid.
112   return false;
113 }
114 
115 //===----------------------------------------------------------------------===//
116 // Useful predicates
117 //===----------------------------------------------------------------------===//
118 
119 /// Returns true if the pointer is to a function-local object that never
120 /// escapes from the function.
121 static bool isNonEscapingLocalObject(
122     const Value *V,
123     SmallDenseMap<const Value *, bool, 8> *IsCapturedCache = nullptr) {
124   SmallDenseMap<const Value *, bool, 8>::iterator CacheIt;
125   if (IsCapturedCache) {
126     bool Inserted;
127     std::tie(CacheIt, Inserted) = IsCapturedCache->insert({V, false});
128     if (!Inserted)
129       // Found cached result, return it!
130       return CacheIt->second;
131   }
132 
133   // If this is a local allocation, check to see if it escapes.
134   if (isa<AllocaInst>(V) || isNoAliasCall(V)) {
135     // Set StoreCaptures to True so that we can assume in our callers that the
136     // pointer is not the result of a load instruction. Currently
137     // PointerMayBeCaptured doesn't have any special analysis for the
138     // StoreCaptures=false case; if it did, our callers could be refined to be
139     // more precise.
140     auto Ret = !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
141     if (IsCapturedCache)
142       CacheIt->second = Ret;
143     return Ret;
144   }
145 
146   // If this is an argument that corresponds to a byval or noalias argument,
147   // then it has not escaped before entering the function.  Check if it escapes
148   // inside the function.
149   if (const Argument *A = dyn_cast<Argument>(V))
150     if (A->hasByValAttr() || A->hasNoAliasAttr()) {
151       // Note even if the argument is marked nocapture, we still need to check
152       // for copies made inside the function. The nocapture attribute only
153       // specifies that there are no copies made that outlive the function.
154       auto Ret = !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
155       if (IsCapturedCache)
156         CacheIt->second = Ret;
157       return Ret;
158     }
159 
160   return false;
161 }
162 
163 /// Returns true if the pointer is one which would have been considered an
164 /// escape by isNonEscapingLocalObject.
165 static bool isEscapeSource(const Value *V) {
166   if (isa<CallBase>(V))
167     return true;
168 
169   if (isa<Argument>(V))
170     return true;
171 
172   // The load case works because isNonEscapingLocalObject considers all
173   // stores to be escapes (it passes true for the StoreCaptures argument
174   // to PointerMayBeCaptured).
175   if (isa<LoadInst>(V))
176     return true;
177 
178   return false;
179 }
180 
181 /// Returns the size of the object specified by V or UnknownSize if unknown.
182 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
183                               const TargetLibraryInfo &TLI,
184                               bool NullIsValidLoc,
185                               bool RoundToAlign = false) {
186   uint64_t Size;
187   ObjectSizeOpts Opts;
188   Opts.RoundToAlign = RoundToAlign;
189   Opts.NullIsUnknownSize = NullIsValidLoc;
190   if (getObjectSize(V, Size, DL, &TLI, Opts))
191     return Size;
192   return MemoryLocation::UnknownSize;
193 }
194 
195 /// Returns true if we can prove that the object specified by V is smaller than
196 /// Size.
197 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
198                                 const DataLayout &DL,
199                                 const TargetLibraryInfo &TLI,
200                                 bool NullIsValidLoc) {
201   // Note that the meanings of the "object" are slightly different in the
202   // following contexts:
203   //    c1: llvm::getObjectSize()
204   //    c2: llvm.objectsize() intrinsic
205   //    c3: isObjectSmallerThan()
206   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
207   // refers to the "entire object".
208   //
209   //  Consider this example:
210   //     char *p = (char*)malloc(100)
211   //     char *q = p+80;
212   //
213   //  In the context of c1 and c2, the "object" pointed by q refers to the
214   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
215   //
216   //  However, in the context of c3, the "object" refers to the chunk of memory
217   // being allocated. So, the "object" has 100 bytes, and q points to the middle
218   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
219   // parameter, before the llvm::getObjectSize() is called to get the size of
220   // entire object, we should:
221   //    - either rewind the pointer q to the base-address of the object in
222   //      question (in this case rewind to p), or
223   //    - just give up. It is up to caller to make sure the pointer is pointing
224   //      to the base address the object.
225   //
226   // We go for 2nd option for simplicity.
227   if (!isIdentifiedObject(V))
228     return false;
229 
230   // This function needs to use the aligned object size because we allow
231   // reads a bit past the end given sufficient alignment.
232   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
233                                       /*RoundToAlign*/ true);
234 
235   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
236 }
237 
238 /// Return the minimal extent from \p V to the end of the underlying object,
239 /// assuming the result is used in an aliasing query. E.g., we do use the query
240 /// location size and the fact that null pointers cannot alias here.
241 static uint64_t getMinimalExtentFrom(const Value &V,
242                                      const LocationSize &LocSize,
243                                      const DataLayout &DL,
244                                      bool NullIsValidLoc) {
245   // If we have dereferenceability information we know a lower bound for the
246   // extent as accesses for a lower offset would be valid. We need to exclude
247   // the "or null" part if null is a valid pointer.
248   bool CanBeNull;
249   uint64_t DerefBytes = V.getPointerDereferenceableBytes(DL, CanBeNull);
250   DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes;
251   // If queried with a precise location size, we assume that location size to be
252   // accessed, thus valid.
253   if (LocSize.isPrecise())
254     DerefBytes = std::max(DerefBytes, LocSize.getValue());
255   return DerefBytes;
256 }
257 
258 /// Returns true if we can prove that the object specified by V has size Size.
259 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
260                          const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
261   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc);
262   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
263 }
264 
265 //===----------------------------------------------------------------------===//
266 // GetElementPtr Instruction Decomposition and Analysis
267 //===----------------------------------------------------------------------===//
268 
269 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
270 /// B are constant integers.
271 ///
272 /// Returns the scale and offset values as APInts and return V as a Value*, and
273 /// return whether we looked through any sign or zero extends.  The incoming
274 /// Value is known to have IntegerType, and it may already be sign or zero
275 /// extended.
276 ///
277 /// Note that this looks through extends, so the high bits may not be
278 /// represented in the result.
279 /*static*/ const Value *BasicAAResult::GetLinearExpression(
280     const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
281     unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
282     AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
283   assert(V->getType()->isIntegerTy() && "Not an integer value");
284 
285   // Limit our recursion depth.
286   if (Depth == 6) {
287     Scale = 1;
288     Offset = 0;
289     return V;
290   }
291 
292   if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
293     // If it's a constant, just convert it to an offset and remove the variable.
294     // If we've been called recursively, the Offset bit width will be greater
295     // than the constant's (the Offset's always as wide as the outermost call),
296     // so we'll zext here and process any extension in the isa<SExtInst> &
297     // isa<ZExtInst> cases below.
298     Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
299     assert(Scale == 0 && "Constant values don't have a scale");
300     return V;
301   }
302 
303   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
304     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
305       // If we've been called recursively, then Offset and Scale will be wider
306       // than the BOp operands. We'll always zext it here as we'll process sign
307       // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
308       APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
309 
310       switch (BOp->getOpcode()) {
311       default:
312         // We don't understand this instruction, so we can't decompose it any
313         // further.
314         Scale = 1;
315         Offset = 0;
316         return V;
317       case Instruction::Or:
318         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
319         // analyze it.
320         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
321                                BOp, DT)) {
322           Scale = 1;
323           Offset = 0;
324           return V;
325         }
326         LLVM_FALLTHROUGH;
327       case Instruction::Add:
328         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
329                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
330         Offset += RHS;
331         break;
332       case Instruction::Sub:
333         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
334                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
335         Offset -= RHS;
336         break;
337       case Instruction::Mul:
338         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
339                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
340         Offset *= RHS;
341         Scale *= RHS;
342         break;
343       case Instruction::Shl:
344         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
345                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
346 
347         // We're trying to linearize an expression of the kind:
348         //   shl i8 -128, 36
349         // where the shift count exceeds the bitwidth of the type.
350         // We can't decompose this further (the expression would return
351         // a poison value).
352         if (Offset.getBitWidth() < RHS.getLimitedValue() ||
353             Scale.getBitWidth() < RHS.getLimitedValue()) {
354           Scale = 1;
355           Offset = 0;
356           return V;
357         }
358 
359         Offset <<= RHS.getLimitedValue();
360         Scale <<= RHS.getLimitedValue();
361         // the semantics of nsw and nuw for left shifts don't match those of
362         // multiplications, so we won't propagate them.
363         NSW = NUW = false;
364         return V;
365       }
366 
367       if (isa<OverflowingBinaryOperator>(BOp)) {
368         NUW &= BOp->hasNoUnsignedWrap();
369         NSW &= BOp->hasNoSignedWrap();
370       }
371       return V;
372     }
373   }
374 
375   // Since GEP indices are sign extended anyway, we don't care about the high
376   // bits of a sign or zero extended value - just scales and offsets.  The
377   // extensions have to be consistent though.
378   if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
379     Value *CastOp = cast<CastInst>(V)->getOperand(0);
380     unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
381     unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
382     unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
383     const Value *Result =
384         GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
385                             Depth + 1, AC, DT, NSW, NUW);
386 
387     // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this
388     // by just incrementing the number of bits we've extended by.
389     unsigned ExtendedBy = NewWidth - SmallWidth;
390 
391     if (isa<SExtInst>(V) && ZExtBits == 0) {
392       // sext(sext(%x, a), b) == sext(%x, a + b)
393 
394       if (NSW) {
395         // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
396         // into sext(%x) + sext(c). We'll sext the Offset ourselves:
397         unsigned OldWidth = Offset.getBitWidth();
398         Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
399       } else {
400         // We may have signed-wrapped, so don't decompose sext(%x + c) into
401         // sext(%x) + sext(c)
402         Scale = 1;
403         Offset = 0;
404         Result = CastOp;
405         ZExtBits = OldZExtBits;
406         SExtBits = OldSExtBits;
407       }
408       SExtBits += ExtendedBy;
409     } else {
410       // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
411 
412       if (!NUW) {
413         // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
414         // zext(%x) + zext(c)
415         Scale = 1;
416         Offset = 0;
417         Result = CastOp;
418         ZExtBits = OldZExtBits;
419         SExtBits = OldSExtBits;
420       }
421       ZExtBits += ExtendedBy;
422     }
423 
424     return Result;
425   }
426 
427   Scale = 1;
428   Offset = 0;
429   return V;
430 }
431 
432 /// To ensure a pointer offset fits in an integer of size PointerSize
433 /// (in bits) when that size is smaller than the maximum pointer size. This is
434 /// an issue, for example, in particular for 32b pointers with negative indices
435 /// that rely on two's complement wrap-arounds for precise alias information
436 /// where the maximum pointer size is 64b.
437 static APInt adjustToPointerSize(APInt Offset, unsigned PointerSize) {
438   assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!");
439   unsigned ShiftBits = Offset.getBitWidth() - PointerSize;
440   return (Offset << ShiftBits).ashr(ShiftBits);
441 }
442 
443 static unsigned getMaxPointerSize(const DataLayout &DL) {
444   unsigned MaxPointerSize = DL.getMaxPointerSizeInBits();
445   if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64;
446   if (DoubleCalcBits) MaxPointerSize *= 2;
447 
448   return MaxPointerSize;
449 }
450 
451 /// If V is a symbolic pointer expression, decompose it into a base pointer
452 /// with a constant offset and a number of scaled symbolic offsets.
453 ///
454 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
455 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
456 /// specified amount, but which may have other unrepresented high bits. As
457 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
458 ///
459 /// When DataLayout is around, this function is capable of analyzing everything
460 /// that GetUnderlyingObject can look through. To be able to do that
461 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search
462 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks
463 /// through pointer casts.
464 bool BasicAAResult::DecomposeGEPExpression(const Value *V,
465        DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC,
466        DominatorTree *DT) {
467   // Limit recursion depth to limit compile time in crazy cases.
468   unsigned MaxLookup = MaxLookupSearchDepth;
469   SearchTimes++;
470 
471   unsigned MaxPointerSize = getMaxPointerSize(DL);
472   Decomposed.VarIndices.clear();
473   do {
474     // See if this is a bitcast or GEP.
475     const Operator *Op = dyn_cast<Operator>(V);
476     if (!Op) {
477       // The only non-operator case we can handle are GlobalAliases.
478       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
479         if (!GA->isInterposable()) {
480           V = GA->getAliasee();
481           continue;
482         }
483       }
484       Decomposed.Base = V;
485       return false;
486     }
487 
488     if (Op->getOpcode() == Instruction::BitCast ||
489         Op->getOpcode() == Instruction::AddrSpaceCast) {
490       V = Op->getOperand(0);
491       continue;
492     }
493 
494     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
495     if (!GEPOp) {
496       if (const auto *Call = dyn_cast<CallBase>(V)) {
497         // CaptureTracking can know about special capturing properties of some
498         // intrinsics like launder.invariant.group, that can't be expressed with
499         // the attributes, but have properties like returning aliasing pointer.
500         // Because some analysis may assume that nocaptured pointer is not
501         // returned from some special intrinsic (because function would have to
502         // be marked with returns attribute), it is crucial to use this function
503         // because it should be in sync with CaptureTracking. Not using it may
504         // cause weird miscompilations where 2 aliasing pointers are assumed to
505         // noalias.
506         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
507           V = RP;
508           continue;
509         }
510       }
511 
512       // If it's not a GEP, hand it off to SimplifyInstruction to see if it
513       // can come up with something. This matches what GetUnderlyingObject does.
514       if (const Instruction *I = dyn_cast<Instruction>(V))
515         // TODO: Get a DominatorTree and AssumptionCache and use them here
516         // (these are both now available in this function, but this should be
517         // updated when GetUnderlyingObject is updated). TLI should be
518         // provided also.
519         if (const Value *Simplified =
520                 SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
521           V = Simplified;
522           continue;
523         }
524 
525       Decomposed.Base = V;
526       return false;
527     }
528 
529     // Don't attempt to analyze GEPs over unsized objects.
530     if (!GEPOp->getSourceElementType()->isSized()) {
531       Decomposed.Base = V;
532       return false;
533     }
534 
535     // Don't attempt to analyze GEPs if index scale is not a compile-time
536     // constant.
537     if (isa<ScalableVectorType>(GEPOp->getSourceElementType())) {
538       Decomposed.Base = V;
539       Decomposed.HasCompileTimeConstantScale = false;
540       return false;
541     }
542 
543     unsigned AS = GEPOp->getPointerAddressSpace();
544     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
545     gep_type_iterator GTI = gep_type_begin(GEPOp);
546     unsigned PointerSize = DL.getPointerSizeInBits(AS);
547     // Assume all GEP operands are constants until proven otherwise.
548     bool GepHasConstantOffset = true;
549     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
550          I != E; ++I, ++GTI) {
551       const Value *Index = *I;
552       // Compute the (potentially symbolic) offset in bytes for this index.
553       if (StructType *STy = GTI.getStructTypeOrNull()) {
554         // For a struct, add the member offset.
555         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
556         if (FieldNo == 0)
557           continue;
558 
559         Decomposed.StructOffset +=
560           DL.getStructLayout(STy)->getElementOffset(FieldNo);
561         continue;
562       }
563 
564       // For an array/pointer, add the element offset, explicitly scaled.
565       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
566         if (CIdx->isZero())
567           continue;
568         APInt Offset = (DL.getTypeAllocSize(GTI.getIndexedType()) *
569                         CIdx->getValue().sextOrSelf(MaxPointerSize))
570                            .sextOrTrunc(MaxPointerSize);
571         Decomposed.OtherOffset += Offset;
572         Decomposed.MinOtherOffset += Offset;
573         continue;
574       }
575 
576       GepHasConstantOffset = false;
577 
578       APInt Scale(MaxPointerSize,
579                   DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize());
580       unsigned ZExtBits = 0, SExtBits = 0;
581 
582       // If the integer type is smaller than the pointer size, it is implicitly
583       // sign extended to pointer size.
584       unsigned Width = Index->getType()->getIntegerBitWidth();
585       if (PointerSize > Width)
586         SExtBits += PointerSize - Width;
587 
588       // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
589       APInt IndexScale(Width, 0), IndexOffset(Width, 0);
590       bool NSW = true, NUW = true;
591       const Value *OrigIndex = Index;
592       Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
593                                   SExtBits, DL, 0, AC, DT, NSW, NUW);
594 
595       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
596       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
597 
598       // It can be the case that, even through C1*V+C2 does not overflow for
599       // relevant values of V, (C2*Scale) can overflow. In that case, we cannot
600       // decompose the expression in this way.
601       //
602       // FIXME: C1*Scale and the other operations in the decomposed
603       // (C1*Scale)*V+C2*Scale can also overflow. We should check for this
604       // possibility.
605       APInt WideScaledOffset = IndexOffset.sextOrTrunc(MaxPointerSize*2) *
606                                  Scale.sext(MaxPointerSize*2);
607       if (WideScaledOffset.getMinSignedBits() > MaxPointerSize) {
608         Index = OrigIndex;
609         IndexScale = 1;
610         IndexOffset = 0;
611 
612         ZExtBits = SExtBits = 0;
613         if (PointerSize > Width)
614           SExtBits += PointerSize - Width;
615       } else {
616         APInt Offset = IndexOffset.sextOrTrunc(MaxPointerSize) * Scale;
617         Decomposed.OtherOffset += Offset;
618         APInt IndexBound =
619             computeConstantRange(Index, true, AC, dyn_cast<Instruction>(GEPOp))
620                 .getLower()
621                 .sextOrTrunc(MaxPointerSize);
622         // If we find a non-negative lower bound for the index value, we can
623         // improve the known offset to include it. By just using non-negative
624         // lower bounds, we conveniently skip any index values for which we do
625         // not find a useful lower bound.
626         if (IndexBound.isNonNegative())
627           Decomposed.MinOtherOffset += Offset + IndexBound * Scale;
628         Scale *= IndexScale.sextOrTrunc(MaxPointerSize);
629       }
630 
631       // If we already had an occurrence of this index variable, merge this
632       // scale into it.  For example, we want to handle:
633       //   A[x][x] -> x*16 + x*4 -> x*20
634       // This also ensures that 'x' only appears in the index list once.
635       for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
636         if (Decomposed.VarIndices[i].V == Index &&
637             Decomposed.VarIndices[i].ZExtBits == ZExtBits &&
638             Decomposed.VarIndices[i].SExtBits == SExtBits) {
639           Scale += Decomposed.VarIndices[i].Scale;
640           Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
641           break;
642         }
643       }
644 
645       // Make sure that we have a scale that makes sense for this target's
646       // pointer size.
647       Scale = adjustToPointerSize(Scale, PointerSize);
648 
649       if (!!Scale) {
650         VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, Scale};
651         Decomposed.VarIndices.push_back(Entry);
652       }
653     }
654 
655     // Take care of wrap-arounds
656     if (GepHasConstantOffset) {
657       Decomposed.StructOffset =
658           adjustToPointerSize(Decomposed.StructOffset, PointerSize);
659       Decomposed.OtherOffset =
660           adjustToPointerSize(Decomposed.OtherOffset, PointerSize);
661     }
662 
663     // Analyze the base pointer next.
664     V = GEPOp->getOperand(0);
665   } while (--MaxLookup);
666 
667   // If the chain of expressions is too deep, just return early.
668   Decomposed.Base = V;
669   SearchLimitReached++;
670   return true;
671 }
672 
673 /// Returns whether the given pointer value points to memory that is local to
674 /// the function, with global constants being considered local to all
675 /// functions.
676 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
677                                            AAQueryInfo &AAQI, bool OrLocal) {
678   assert(Visited.empty() && "Visited must be cleared after use!");
679 
680   unsigned MaxLookup = 8;
681   SmallVector<const Value *, 16> Worklist;
682   Worklist.push_back(Loc.Ptr);
683   do {
684     const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
685     if (!Visited.insert(V).second) {
686       Visited.clear();
687       return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
688     }
689 
690     // An alloca instruction defines local memory.
691     if (OrLocal && isa<AllocaInst>(V))
692       continue;
693 
694     // A global constant counts as local memory for our purposes.
695     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
696       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
697       // global to be marked constant in some modules and non-constant in
698       // others.  GV may even be a declaration, not a definition.
699       if (!GV->isConstant()) {
700         Visited.clear();
701         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
702       }
703       continue;
704     }
705 
706     // If both select values point to local memory, then so does the select.
707     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
708       Worklist.push_back(SI->getTrueValue());
709       Worklist.push_back(SI->getFalseValue());
710       continue;
711     }
712 
713     // If all values incoming to a phi node point to local memory, then so does
714     // the phi.
715     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
716       // Don't bother inspecting phi nodes with many operands.
717       if (PN->getNumIncomingValues() > MaxLookup) {
718         Visited.clear();
719         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
720       }
721       for (Value *IncValue : PN->incoming_values())
722         Worklist.push_back(IncValue);
723       continue;
724     }
725 
726     // Otherwise be conservative.
727     Visited.clear();
728     return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
729   } while (!Worklist.empty() && --MaxLookup);
730 
731   Visited.clear();
732   return Worklist.empty();
733 }
734 
735 /// Returns the behavior when calling the given call site.
736 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) {
737   if (Call->doesNotAccessMemory())
738     // Can't do better than this.
739     return FMRB_DoesNotAccessMemory;
740 
741   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
742 
743   // If the callsite knows it only reads memory, don't return worse
744   // than that.
745   if (Call->onlyReadsMemory())
746     Min = FMRB_OnlyReadsMemory;
747   else if (Call->doesNotReadMemory())
748     Min = FMRB_OnlyWritesMemory;
749 
750   if (Call->onlyAccessesArgMemory())
751     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
752   else if (Call->onlyAccessesInaccessibleMemory())
753     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
754   else if (Call->onlyAccessesInaccessibleMemOrArgMem())
755     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
756 
757   // If the call has operand bundles then aliasing attributes from the function
758   // it calls do not directly apply to the call.  This can be made more precise
759   // in the future.
760   if (!Call->hasOperandBundles())
761     if (const Function *F = Call->getCalledFunction())
762       Min =
763           FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
764 
765   return Min;
766 }
767 
768 /// Returns the behavior when calling the given function. For use when the call
769 /// site is not known.
770 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
771   // If the function declares it doesn't access memory, we can't do better.
772   if (F->doesNotAccessMemory())
773     return FMRB_DoesNotAccessMemory;
774 
775   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
776 
777   // If the function declares it only reads memory, go with that.
778   if (F->onlyReadsMemory())
779     Min = FMRB_OnlyReadsMemory;
780   else if (F->doesNotReadMemory())
781     Min = FMRB_OnlyWritesMemory;
782 
783   if (F->onlyAccessesArgMemory())
784     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
785   else if (F->onlyAccessesInaccessibleMemory())
786     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
787   else if (F->onlyAccessesInaccessibleMemOrArgMem())
788     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
789 
790   return Min;
791 }
792 
793 /// Returns true if this is a writeonly (i.e Mod only) parameter.
794 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx,
795                              const TargetLibraryInfo &TLI) {
796   if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly))
797     return true;
798 
799   // We can bound the aliasing properties of memset_pattern16 just as we can
800   // for memcpy/memset.  This is particularly important because the
801   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
802   // whenever possible.
803   // FIXME Consider handling this in InferFunctionAttr.cpp together with other
804   // attributes.
805   LibFunc F;
806   if (Call->getCalledFunction() &&
807       TLI.getLibFunc(*Call->getCalledFunction(), F) &&
808       F == LibFunc_memset_pattern16 && TLI.has(F))
809     if (ArgIdx == 0)
810       return true;
811 
812   // TODO: memset_pattern4, memset_pattern8
813   // TODO: _chk variants
814   // TODO: strcmp, strcpy
815 
816   return false;
817 }
818 
819 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
820                                            unsigned ArgIdx) {
821   // Checking for known builtin intrinsics and target library functions.
822   if (isWriteOnlyParam(Call, ArgIdx, TLI))
823     return ModRefInfo::Mod;
824 
825   if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly))
826     return ModRefInfo::Ref;
827 
828   if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone))
829     return ModRefInfo::NoModRef;
830 
831   return AAResultBase::getArgModRefInfo(Call, ArgIdx);
832 }
833 
834 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
835   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
836   return II && II->getIntrinsicID() == IID;
837 }
838 
839 #ifndef NDEBUG
840 static const Function *getParent(const Value *V) {
841   if (const Instruction *inst = dyn_cast<Instruction>(V)) {
842     if (!inst->getParent())
843       return nullptr;
844     return inst->getParent()->getParent();
845   }
846 
847   if (const Argument *arg = dyn_cast<Argument>(V))
848     return arg->getParent();
849 
850   return nullptr;
851 }
852 
853 static bool notDifferentParent(const Value *O1, const Value *O2) {
854 
855   const Function *F1 = getParent(O1);
856   const Function *F2 = getParent(O2);
857 
858   return !F1 || !F2 || F1 == F2;
859 }
860 #endif
861 
862 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
863                                  const MemoryLocation &LocB,
864                                  AAQueryInfo &AAQI) {
865   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
866          "BasicAliasAnalysis doesn't support interprocedural queries.");
867 
868   // If we have a directly cached entry for these locations, we have recursed
869   // through this once, so just return the cached results. Notably, when this
870   // happens, we don't clear the cache.
871   auto CacheIt = AAQI.AliasCache.find(AAQueryInfo::LocPair(LocA, LocB));
872   if (CacheIt != AAQI.AliasCache.end())
873     return CacheIt->second;
874 
875   CacheIt = AAQI.AliasCache.find(AAQueryInfo::LocPair(LocB, LocA));
876   if (CacheIt != AAQI.AliasCache.end())
877     return CacheIt->second;
878 
879   AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
880                                  LocB.Size, LocB.AATags, AAQI);
881 
882   VisitedPhiBBs.clear();
883   return Alias;
884 }
885 
886 /// Checks to see if the specified callsite can clobber the specified memory
887 /// object.
888 ///
889 /// Since we only look at local properties of this function, we really can't
890 /// say much about this query.  We do, however, use simple "address taken"
891 /// analysis on local objects.
892 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
893                                         const MemoryLocation &Loc,
894                                         AAQueryInfo &AAQI) {
895   assert(notDifferentParent(Call, Loc.Ptr) &&
896          "AliasAnalysis query involving multiple functions!");
897 
898   const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);
899 
900   // Calls marked 'tail' cannot read or write allocas from the current frame
901   // because the current frame might be destroyed by the time they run. However,
902   // a tail call may use an alloca with byval. Calling with byval copies the
903   // contents of the alloca into argument registers or stack slots, so there is
904   // no lifetime issue.
905   if (isa<AllocaInst>(Object))
906     if (const CallInst *CI = dyn_cast<CallInst>(Call))
907       if (CI->isTailCall() &&
908           !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal))
909         return ModRefInfo::NoModRef;
910 
911   // Stack restore is able to modify unescaped dynamic allocas. Assume it may
912   // modify them even though the alloca is not escaped.
913   if (auto *AI = dyn_cast<AllocaInst>(Object))
914     if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore))
915       return ModRefInfo::Mod;
916 
917   // If the pointer is to a locally allocated object that does not escape,
918   // then the call can not mod/ref the pointer unless the call takes the pointer
919   // as an argument, and itself doesn't capture it.
920   if (!isa<Constant>(Object) && Call != Object &&
921       isNonEscapingLocalObject(Object, &AAQI.IsCapturedCache)) {
922 
923     // Optimistically assume that call doesn't touch Object and check this
924     // assumption in the following loop.
925     ModRefInfo Result = ModRefInfo::NoModRef;
926     bool IsMustAlias = true;
927 
928     unsigned OperandNo = 0;
929     for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
930          CI != CE; ++CI, ++OperandNo) {
931       // Only look at the no-capture or byval pointer arguments.  If this
932       // pointer were passed to arguments that were neither of these, then it
933       // couldn't be no-capture.
934       if (!(*CI)->getType()->isPointerTy() ||
935           (!Call->doesNotCapture(OperandNo) &&
936            OperandNo < Call->getNumArgOperands() &&
937            !Call->isByValArgument(OperandNo)))
938         continue;
939 
940       // Call doesn't access memory through this operand, so we don't care
941       // if it aliases with Object.
942       if (Call->doesNotAccessMemory(OperandNo))
943         continue;
944 
945       // If this is a no-capture pointer argument, see if we can tell that it
946       // is impossible to alias the pointer we're checking.
947       AliasResult AR = getBestAAResults().alias(MemoryLocation(*CI),
948                                                 MemoryLocation(Object), AAQI);
949       if (AR != MustAlias)
950         IsMustAlias = false;
951       // Operand doesn't alias 'Object', continue looking for other aliases
952       if (AR == NoAlias)
953         continue;
954       // Operand aliases 'Object', but call doesn't modify it. Strengthen
955       // initial assumption and keep looking in case if there are more aliases.
956       if (Call->onlyReadsMemory(OperandNo)) {
957         Result = setRef(Result);
958         continue;
959       }
960       // Operand aliases 'Object' but call only writes into it.
961       if (Call->doesNotReadMemory(OperandNo)) {
962         Result = setMod(Result);
963         continue;
964       }
965       // This operand aliases 'Object' and call reads and writes into it.
966       // Setting ModRef will not yield an early return below, MustAlias is not
967       // used further.
968       Result = ModRefInfo::ModRef;
969       break;
970     }
971 
972     // No operand aliases, reset Must bit. Add below if at least one aliases
973     // and all aliases found are MustAlias.
974     if (isNoModRef(Result))
975       IsMustAlias = false;
976 
977     // Early return if we improved mod ref information
978     if (!isModAndRefSet(Result)) {
979       if (isNoModRef(Result))
980         return ModRefInfo::NoModRef;
981       return IsMustAlias ? setMust(Result) : clearMust(Result);
982     }
983   }
984 
985   // If the call is malloc/calloc like, we can assume that it doesn't
986   // modify any IR visible value.  This is only valid because we assume these
987   // routines do not read values visible in the IR.  TODO: Consider special
988   // casing realloc and strdup routines which access only their arguments as
989   // well.  Or alternatively, replace all of this with inaccessiblememonly once
990   // that's implemented fully.
991   if (isMallocOrCallocLikeFn(Call, &TLI)) {
992     // Be conservative if the accessed pointer may alias the allocation -
993     // fallback to the generic handling below.
994     if (getBestAAResults().alias(MemoryLocation(Call), Loc, AAQI) == NoAlias)
995       return ModRefInfo::NoModRef;
996   }
997 
998   // The semantics of memcpy intrinsics forbid overlap between their respective
999   // operands, i.e., source and destination of any given memcpy must no-alias.
1000   // If Loc must-aliases either one of these two locations, then it necessarily
1001   // no-aliases the other.
1002   if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) {
1003     AliasResult SrcAA, DestAA;
1004 
1005     if ((SrcAA = getBestAAResults().alias(MemoryLocation::getForSource(Inst),
1006                                           Loc, AAQI)) == MustAlias)
1007       // Loc is exactly the memcpy source thus disjoint from memcpy dest.
1008       return ModRefInfo::Ref;
1009     if ((DestAA = getBestAAResults().alias(MemoryLocation::getForDest(Inst),
1010                                            Loc, AAQI)) == MustAlias)
1011       // The converse case.
1012       return ModRefInfo::Mod;
1013 
1014     // It's also possible for Loc to alias both src and dest, or neither.
1015     ModRefInfo rv = ModRefInfo::NoModRef;
1016     if (SrcAA != NoAlias)
1017       rv = setRef(rv);
1018     if (DestAA != NoAlias)
1019       rv = setMod(rv);
1020     return rv;
1021   }
1022 
1023   // While the assume intrinsic is marked as arbitrarily writing so that
1024   // proper control dependencies will be maintained, it never aliases any
1025   // particular memory location.
1026   if (isIntrinsicCall(Call, Intrinsic::assume))
1027     return ModRefInfo::NoModRef;
1028 
1029   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
1030   // that proper control dependencies are maintained but they never mods any
1031   // particular memory location.
1032   //
1033   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1034   // heap state at the point the guard is issued needs to be consistent in case
1035   // the guard invokes the "deopt" continuation.
1036   if (isIntrinsicCall(Call, Intrinsic::experimental_guard))
1037     return ModRefInfo::Ref;
1038 
1039   // Like assumes, invariant.start intrinsics were also marked as arbitrarily
1040   // writing so that proper control dependencies are maintained but they never
1041   // mod any particular memory location visible to the IR.
1042   // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
1043   // intrinsic is now modeled as reading memory. This prevents hoisting the
1044   // invariant.start intrinsic over stores. Consider:
1045   // *ptr = 40;
1046   // *ptr = 50;
1047   // invariant_start(ptr)
1048   // int val = *ptr;
1049   // print(val);
1050   //
1051   // This cannot be transformed to:
1052   //
1053   // *ptr = 40;
1054   // invariant_start(ptr)
1055   // *ptr = 50;
1056   // int val = *ptr;
1057   // print(val);
1058   //
1059   // The transformation will cause the second store to be ignored (based on
1060   // rules of invariant.start)  and print 40, while the first program always
1061   // prints 50.
1062   if (isIntrinsicCall(Call, Intrinsic::invariant_start))
1063     return ModRefInfo::Ref;
1064 
1065   // The AAResultBase base class has some smarts, lets use them.
1066   return AAResultBase::getModRefInfo(Call, Loc, AAQI);
1067 }
1068 
1069 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
1070                                         const CallBase *Call2,
1071                                         AAQueryInfo &AAQI) {
1072   // While the assume intrinsic is marked as arbitrarily writing so that
1073   // proper control dependencies will be maintained, it never aliases any
1074   // particular memory location.
1075   if (isIntrinsicCall(Call1, Intrinsic::assume) ||
1076       isIntrinsicCall(Call2, Intrinsic::assume))
1077     return ModRefInfo::NoModRef;
1078 
1079   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
1080   // that proper control dependencies are maintained but they never mod any
1081   // particular memory location.
1082   //
1083   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1084   // heap state at the point the guard is issued needs to be consistent in case
1085   // the guard invokes the "deopt" continuation.
1086 
1087   // NB! This function is *not* commutative, so we special case two
1088   // possibilities for guard intrinsics.
1089 
1090   if (isIntrinsicCall(Call1, Intrinsic::experimental_guard))
1091     return isModSet(createModRefInfo(getModRefBehavior(Call2)))
1092                ? ModRefInfo::Ref
1093                : ModRefInfo::NoModRef;
1094 
1095   if (isIntrinsicCall(Call2, Intrinsic::experimental_guard))
1096     return isModSet(createModRefInfo(getModRefBehavior(Call1)))
1097                ? ModRefInfo::Mod
1098                : ModRefInfo::NoModRef;
1099 
1100   // The AAResultBase base class has some smarts, lets use them.
1101   return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
1102 }
1103 
1104 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
1105 /// both having the exact same pointer operand.
1106 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
1107                                             LocationSize MaybeV1Size,
1108                                             const GEPOperator *GEP2,
1109                                             LocationSize MaybeV2Size,
1110                                             const DataLayout &DL) {
1111   assert(GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
1112              GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
1113          GEP1->getPointerOperandType() == GEP2->getPointerOperandType() &&
1114          "Expected GEPs with the same pointer operand");
1115 
1116   // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
1117   // such that the struct field accesses provably cannot alias.
1118   // We also need at least two indices (the pointer, and the struct field).
1119   if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
1120       GEP1->getNumIndices() < 2)
1121     return MayAlias;
1122 
1123   // If we don't know the size of the accesses through both GEPs, we can't
1124   // determine whether the struct fields accessed can't alias.
1125   if (MaybeV1Size == LocationSize::unknown() ||
1126       MaybeV2Size == LocationSize::unknown())
1127     return MayAlias;
1128 
1129   const uint64_t V1Size = MaybeV1Size.getValue();
1130   const uint64_t V2Size = MaybeV2Size.getValue();
1131 
1132   ConstantInt *C1 =
1133       dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
1134   ConstantInt *C2 =
1135       dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
1136 
1137   // If the last (struct) indices are constants and are equal, the other indices
1138   // might be also be dynamically equal, so the GEPs can alias.
1139   if (C1 && C2) {
1140     unsigned BitWidth = std::max(C1->getBitWidth(), C2->getBitWidth());
1141     if (C1->getValue().sextOrSelf(BitWidth) ==
1142         C2->getValue().sextOrSelf(BitWidth))
1143       return MayAlias;
1144   }
1145 
1146   // Find the last-indexed type of the GEP, i.e., the type you'd get if
1147   // you stripped the last index.
1148   // On the way, look at each indexed type.  If there's something other
1149   // than an array, different indices can lead to different final types.
1150   SmallVector<Value *, 8> IntermediateIndices;
1151 
1152   // Insert the first index; we don't need to check the type indexed
1153   // through it as it only drops the pointer indirection.
1154   assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
1155   IntermediateIndices.push_back(GEP1->getOperand(1));
1156 
1157   // Insert all the remaining indices but the last one.
1158   // Also, check that they all index through arrays.
1159   for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
1160     if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
1161             GEP1->getSourceElementType(), IntermediateIndices)))
1162       return MayAlias;
1163     IntermediateIndices.push_back(GEP1->getOperand(i + 1));
1164   }
1165 
1166   auto *Ty = GetElementPtrInst::getIndexedType(
1167     GEP1->getSourceElementType(), IntermediateIndices);
1168   StructType *LastIndexedStruct = dyn_cast<StructType>(Ty);
1169 
1170   if (isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
1171     // We know that:
1172     // - both GEPs begin indexing from the exact same pointer;
1173     // - the last indices in both GEPs are constants, indexing into a sequential
1174     //   type (array or vector);
1175     // - both GEPs only index through arrays prior to that.
1176     //
1177     // Because array indices greater than the number of elements are valid in
1178     // GEPs, unless we know the intermediate indices are identical between
1179     // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
1180     // partially overlap. We also need to check that the loaded size matches
1181     // the element size, otherwise we could still have overlap.
1182     Type *LastElementTy = GetElementPtrInst::getTypeAtIndex(Ty, (uint64_t)0);
1183     const uint64_t ElementSize =
1184         DL.getTypeStoreSize(LastElementTy).getFixedSize();
1185     if (V1Size != ElementSize || V2Size != ElementSize)
1186       return MayAlias;
1187 
1188     for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i)
1189       if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1))
1190         return MayAlias;
1191 
1192     // Now we know that the array/pointer that GEP1 indexes into and that
1193     // that GEP2 indexes into must either precisely overlap or be disjoint.
1194     // Because they cannot partially overlap and because fields in an array
1195     // cannot overlap, if we can prove the final indices are different between
1196     // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
1197 
1198     // If the last indices are constants, we've already checked they don't
1199     // equal each other so we can exit early.
1200     if (C1 && C2)
1201       return NoAlias;
1202     {
1203       Value *GEP1LastIdx = GEP1->getOperand(GEP1->getNumOperands() - 1);
1204       Value *GEP2LastIdx = GEP2->getOperand(GEP2->getNumOperands() - 1);
1205       if (isa<PHINode>(GEP1LastIdx) || isa<PHINode>(GEP2LastIdx)) {
1206         // If one of the indices is a PHI node, be safe and only use
1207         // computeKnownBits so we don't make any assumptions about the
1208         // relationships between the two indices. This is important if we're
1209         // asking about values from different loop iterations. See PR32314.
1210         // TODO: We may be able to change the check so we only do this when
1211         // we definitely looked through a PHINode.
1212         if (GEP1LastIdx != GEP2LastIdx &&
1213             GEP1LastIdx->getType() == GEP2LastIdx->getType()) {
1214           KnownBits Known1 = computeKnownBits(GEP1LastIdx, DL);
1215           KnownBits Known2 = computeKnownBits(GEP2LastIdx, DL);
1216           if (Known1.Zero.intersects(Known2.One) ||
1217               Known1.One.intersects(Known2.Zero))
1218             return NoAlias;
1219         }
1220       } else if (isKnownNonEqual(GEP1LastIdx, GEP2LastIdx, DL))
1221         return NoAlias;
1222     }
1223     return MayAlias;
1224   } else if (!LastIndexedStruct || !C1 || !C2) {
1225     return MayAlias;
1226   }
1227 
1228   if (C1->getValue().getActiveBits() > 64 ||
1229       C2->getValue().getActiveBits() > 64)
1230     return MayAlias;
1231 
1232   // We know that:
1233   // - both GEPs begin indexing from the exact same pointer;
1234   // - the last indices in both GEPs are constants, indexing into a struct;
1235   // - said indices are different, hence, the pointed-to fields are different;
1236   // - both GEPs only index through arrays prior to that.
1237   //
1238   // This lets us determine that the struct that GEP1 indexes into and the
1239   // struct that GEP2 indexes into must either precisely overlap or be
1240   // completely disjoint.  Because they cannot partially overlap, indexing into
1241   // different non-overlapping fields of the struct will never alias.
1242 
1243   // Therefore, the only remaining thing needed to show that both GEPs can't
1244   // alias is that the fields are not overlapping.
1245   const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
1246   const uint64_t StructSize = SL->getSizeInBytes();
1247   const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
1248   const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
1249 
1250   auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
1251                                       uint64_t V2Off, uint64_t V2Size) {
1252     return V1Off < V2Off && V1Off + V1Size <= V2Off &&
1253            ((V2Off + V2Size <= StructSize) ||
1254             (V2Off + V2Size - StructSize <= V1Off));
1255   };
1256 
1257   if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
1258       EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
1259     return NoAlias;
1260 
1261   return MayAlias;
1262 }
1263 
1264 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the
1265 // beginning of the object the GEP points would have a negative offset with
1266 // repsect to the alloca, that means the GEP can not alias pointer (b).
1267 // Note that the pointer based on the alloca may not be a GEP. For
1268 // example, it may be the alloca itself.
1269 // The same applies if (b) is based on a GlobalVariable. Note that just being
1270 // based on isIdentifiedObject() is not enough - we need an identified object
1271 // that does not permit access to negative offsets. For example, a negative
1272 // offset from a noalias argument or call can be inbounds w.r.t the actual
1273 // underlying object.
1274 //
1275 // For example, consider:
1276 //
1277 //   struct { int f0, int f1, ...} foo;
1278 //   foo alloca;
1279 //   foo* random = bar(alloca);
1280 //   int *f0 = &alloca.f0
1281 //   int *f1 = &random->f1;
1282 //
1283 // Which is lowered, approximately, to:
1284 //
1285 //  %alloca = alloca %struct.foo
1286 //  %random = call %struct.foo* @random(%struct.foo* %alloca)
1287 //  %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0
1288 //  %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1
1289 //
1290 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated
1291 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also
1292 // point into the same object. But since %f0 points to the beginning of %alloca,
1293 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher
1294 // than (%alloca - 1), and so is not inbounds, a contradiction.
1295 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp,
1296       const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject,
1297       LocationSize MaybeObjectAccessSize) {
1298   // If the object access size is unknown, or the GEP isn't inbounds, bail.
1299   if (MaybeObjectAccessSize == LocationSize::unknown() || !GEPOp->isInBounds())
1300     return false;
1301 
1302   const uint64_t ObjectAccessSize = MaybeObjectAccessSize.getValue();
1303 
1304   // We need the object to be an alloca or a globalvariable, and want to know
1305   // the offset of the pointer from the object precisely, so no variable
1306   // indices are allowed.
1307   if (!(isa<AllocaInst>(DecompObject.Base) ||
1308         isa<GlobalVariable>(DecompObject.Base)) ||
1309       !DecompObject.VarIndices.empty())
1310     return false;
1311 
1312   APInt ObjectBaseOffset = DecompObject.StructOffset +
1313                            DecompObject.OtherOffset;
1314 
1315   // If the GEP has no variable indices, we know the precise offset
1316   // from the base, then use it. If the GEP has variable indices,
1317   // we can't get exact GEP offset to identify pointer alias. So return
1318   // false in that case.
1319   if (!DecompGEP.VarIndices.empty())
1320     return false;
1321 
1322   APInt GEPBaseOffset = DecompGEP.StructOffset;
1323   GEPBaseOffset += DecompGEP.OtherOffset;
1324 
1325   return GEPBaseOffset.sge(ObjectBaseOffset + (int64_t)ObjectAccessSize);
1326 }
1327 
1328 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1329 /// another pointer.
1330 ///
1331 /// We know that V1 is a GEP, but we don't know anything about V2.
1332 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for
1333 /// V2.
1334 AliasResult BasicAAResult::aliasGEP(
1335     const GEPOperator *GEP1, LocationSize V1Size, const AAMDNodes &V1AAInfo,
1336     const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo,
1337     const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) {
1338   DecomposedGEP DecompGEP1, DecompGEP2;
1339   unsigned MaxPointerSize = getMaxPointerSize(DL);
1340   DecompGEP1.StructOffset = DecompGEP1.OtherOffset = APInt(MaxPointerSize, 0);
1341   DecompGEP2.StructOffset = DecompGEP2.OtherOffset = APInt(MaxPointerSize, 0);
1342   DecompGEP1.HasCompileTimeConstantScale =
1343       DecompGEP2.HasCompileTimeConstantScale = true;
1344   DecompGEP1.MinOtherOffset = APInt(MaxPointerSize, 0);
1345   DecompGEP2.MinOtherOffset = APInt(MaxPointerSize, 0);
1346 
1347   bool GEP1MaxLookupReached =
1348     DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT);
1349   bool GEP2MaxLookupReached =
1350     DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT);
1351 
1352   // Don't attempt to analyze the decomposed GEP if index scale is not a
1353   // compile-time constant.
1354   if (!DecompGEP1.HasCompileTimeConstantScale ||
1355       !DecompGEP2.HasCompileTimeConstantScale)
1356     return MayAlias;
1357 
1358   APInt GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset;
1359   APInt GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset;
1360   APInt GEP1BaseOffsetMin = DecompGEP1.StructOffset + DecompGEP1.MinOtherOffset;
1361   APInt GEP2BaseOffsetMin = DecompGEP2.StructOffset + DecompGEP2.MinOtherOffset;
1362 
1363   assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
1364          "DecomposeGEPExpression returned a result different from "
1365          "GetUnderlyingObject");
1366 
1367   // If the GEP's offset relative to its base is such that the base would
1368   // fall below the start of the object underlying V2, then the GEP and V2
1369   // cannot alias.
1370   if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1371       isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size))
1372     return NoAlias;
1373   // If we have two gep instructions with must-alias or not-alias'ing base
1374   // pointers, figure out if the indexes to the GEP tell us anything about the
1375   // derived pointer.
1376   if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
1377     // Check for the GEP base being at a negative offset, this time in the other
1378     // direction.
1379     if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1380         isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size))
1381       return NoAlias;
1382     // Do the base pointers alias?
1383     AliasResult BaseAlias =
1384         aliasCheck(UnderlyingV1, LocationSize::unknown(), AAMDNodes(),
1385                    UnderlyingV2, LocationSize::unknown(), AAMDNodes(), AAQI);
1386 
1387     // Check for geps of non-aliasing underlying pointers where the offsets are
1388     // identical.
1389     if ((BaseAlias == MayAlias) && V1Size == V2Size) {
1390       // Do the base pointers alias assuming type and size.
1391       AliasResult PreciseBaseAlias = aliasCheck(
1392           UnderlyingV1, V1Size, V1AAInfo, UnderlyingV2, V2Size, V2AAInfo, AAQI);
1393       if (PreciseBaseAlias == NoAlias) {
1394         // See if the computed offset from the common pointer tells us about the
1395         // relation of the resulting pointer.
1396         // If the max search depth is reached the result is undefined
1397         if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1398           return MayAlias;
1399 
1400         // Same offsets.
1401         if (GEP1BaseOffset == GEP2BaseOffset &&
1402             DecompGEP1.VarIndices == DecompGEP2.VarIndices)
1403           return NoAlias;
1404       }
1405     }
1406 
1407     // If we get a No or May, then return it immediately, no amount of analysis
1408     // will improve this situation.
1409     if (BaseAlias != MustAlias) {
1410       assert(BaseAlias == NoAlias || BaseAlias == MayAlias);
1411       return BaseAlias;
1412     }
1413 
1414     // Otherwise, we have a MustAlias.  Since the base pointers alias each other
1415     // exactly, see if the computed offset from the common pointer tells us
1416     // about the relation of the resulting pointer.
1417     // If we know the two GEPs are based off of the exact same pointer (and not
1418     // just the same underlying object), see if that tells us anything about
1419     // the resulting pointers.
1420     if (GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
1421             GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
1422         GEP1->getPointerOperandType() == GEP2->getPointerOperandType()) {
1423       AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL);
1424       // If we couldn't find anything interesting, don't abandon just yet.
1425       if (R != MayAlias)
1426         return R;
1427     }
1428 
1429     // If the max search depth is reached, the result is undefined
1430     if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1431       return MayAlias;
1432 
1433     // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1434     // symbolic difference.
1435     GEP1BaseOffset -= GEP2BaseOffset;
1436     GEP1BaseOffsetMin -= GEP2BaseOffsetMin;
1437     GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);
1438 
1439   } else {
1440     // Check to see if these two pointers are related by the getelementptr
1441     // instruction.  If one pointer is a GEP with a non-zero index of the other
1442     // pointer, we know they cannot alias.
1443 
1444     // If both accesses are unknown size, we can't do anything useful here.
1445     if (V1Size == LocationSize::unknown() && V2Size == LocationSize::unknown())
1446       return MayAlias;
1447 
1448     AliasResult R = aliasCheck(UnderlyingV1, LocationSize::unknown(),
1449                                AAMDNodes(), V2, LocationSize::unknown(),
1450                                V2AAInfo, AAQI, nullptr, UnderlyingV2);
1451     if (R != MustAlias) {
1452       // If V2 may alias GEP base pointer, conservatively returns MayAlias.
1453       // If V2 is known not to alias GEP base pointer, then the two values
1454       // cannot alias per GEP semantics: "Any memory access must be done through
1455       // a pointer value associated with an address range of the memory access,
1456       // otherwise the behavior is undefined.".
1457       assert(R == NoAlias || R == MayAlias);
1458       return R;
1459     }
1460 
1461     // If the max search depth is reached the result is undefined
1462     if (GEP1MaxLookupReached)
1463       return MayAlias;
1464   }
1465 
1466   // In the two GEP Case, if there is no difference in the offsets of the
1467   // computed pointers, the resultant pointers are a must alias.  This
1468   // happens when we have two lexically identical GEP's (for example).
1469   //
1470   // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
1471   // must aliases the GEP, the end result is a must alias also.
1472   if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty())
1473     return MustAlias;
1474 
1475   // If there is a constant difference between the pointers, but the difference
1476   // is less than the size of the associated memory object, then we know
1477   // that the objects are partially overlapping.  If the difference is
1478   // greater, we know they do not overlap.
1479   if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) {
1480     if (GEP1BaseOffset.sge(0)) {
1481       if (V2Size != LocationSize::unknown()) {
1482         if (GEP1BaseOffset.ult(V2Size.getValue()))
1483           return PartialAlias;
1484         return NoAlias;
1485       }
1486     } else {
1487       // We have the situation where:
1488       // +                +
1489       // | BaseOffset     |
1490       // ---------------->|
1491       // |-->V1Size       |-------> V2Size
1492       // GEP1             V2
1493       // We need to know that V2Size is not unknown, otherwise we might have
1494       // stripped a gep with negative index ('gep <ptr>, -1, ...).
1495       if (V1Size != LocationSize::unknown() &&
1496           V2Size != LocationSize::unknown()) {
1497         if ((-GEP1BaseOffset).ult(V1Size.getValue()))
1498           return PartialAlias;
1499         return NoAlias;
1500       }
1501     }
1502   }
1503 
1504   if (!DecompGEP1.VarIndices.empty()) {
1505     APInt Modulo(MaxPointerSize, 0);
1506     bool AllPositive = true;
1507     for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1508 
1509       // Try to distinguish something like &A[i][1] against &A[42][0].
1510       // Grab the least significant bit set in any of the scales. We
1511       // don't need std::abs here (even if the scale's negative) as we'll
1512       // be ^'ing Modulo with itself later.
1513       Modulo |= DecompGEP1.VarIndices[i].Scale;
1514 
1515       if (AllPositive) {
1516         // If the Value could change between cycles, then any reasoning about
1517         // the Value this cycle may not hold in the next cycle. We'll just
1518         // give up if we can't determine conditions that hold for every cycle:
1519         const Value *V = DecompGEP1.VarIndices[i].V;
1520 
1521         KnownBits Known =
1522             computeKnownBits(V, DL, 0, &AC, dyn_cast<Instruction>(GEP1), DT);
1523         bool SignKnownZero = Known.isNonNegative();
1524         bool SignKnownOne = Known.isNegative();
1525 
1526         // Zero-extension widens the variable, and so forces the sign
1527         // bit to zero.
1528         bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
1529         SignKnownZero |= IsZExt;
1530         SignKnownOne &= !IsZExt;
1531 
1532         // If the variable begins with a zero then we know it's
1533         // positive, regardless of whether the value is signed or
1534         // unsigned.
1535         APInt Scale = DecompGEP1.VarIndices[i].Scale;
1536         AllPositive =
1537             (SignKnownZero && Scale.sge(0)) || (SignKnownOne && Scale.slt(0));
1538       }
1539     }
1540 
1541     Modulo = Modulo ^ (Modulo & (Modulo - 1));
1542 
1543     // We can compute the difference between the two addresses
1544     // mod Modulo. Check whether that difference guarantees that the
1545     // two locations do not alias.
1546     APInt ModOffset = GEP1BaseOffset & (Modulo - 1);
1547     if (V1Size != LocationSize::unknown() &&
1548         V2Size != LocationSize::unknown() && ModOffset.uge(V2Size.getValue()) &&
1549         (Modulo - ModOffset).uge(V1Size.getValue()))
1550       return NoAlias;
1551 
1552     // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
1553     // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
1554     // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
1555     if (AllPositive && GEP1BaseOffsetMin.sgt(0) &&
1556         V2Size != LocationSize::unknown() &&
1557         GEP1BaseOffsetMin.uge(V2Size.getValue())) {
1558       return NoAlias;
1559     }
1560 
1561     if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
1562                                 GEP1BaseOffset, &AC, DT))
1563       return NoAlias;
1564   }
1565 
1566   // Statically, we can see that the base objects are the same, but the
1567   // pointers have dynamic offsets which we can't resolve. And none of our
1568   // little tricks above worked.
1569   return MayAlias;
1570 }
1571 
1572 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1573   // If the results agree, take it.
1574   if (A == B)
1575     return A;
1576   // A mix of PartialAlias and MustAlias is PartialAlias.
1577   if ((A == PartialAlias && B == MustAlias) ||
1578       (B == PartialAlias && A == MustAlias))
1579     return PartialAlias;
1580   // Otherwise, we don't know anything.
1581   return MayAlias;
1582 }
1583 
1584 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1585 /// against another.
1586 AliasResult
1587 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize,
1588                            const AAMDNodes &SIAAInfo, const Value *V2,
1589                            LocationSize V2Size, const AAMDNodes &V2AAInfo,
1590                            const Value *UnderV2, AAQueryInfo &AAQI) {
1591   // If the values are Selects with the same condition, we can do a more precise
1592   // check: just check for aliases between the values on corresponding arms.
1593   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1594     if (SI->getCondition() == SI2->getCondition()) {
1595       AliasResult Alias =
1596           aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, SI2->getTrueValue(),
1597                      V2Size, V2AAInfo, AAQI);
1598       if (Alias == MayAlias)
1599         return MayAlias;
1600       AliasResult ThisAlias =
1601           aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
1602                      SI2->getFalseValue(), V2Size, V2AAInfo, AAQI);
1603       return MergeAliasResults(ThisAlias, Alias);
1604     }
1605 
1606   // If both arms of the Select node NoAlias or MustAlias V2, then returns
1607   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1608   AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(),
1609                                  SISize, SIAAInfo, AAQI, UnderV2);
1610   if (Alias == MayAlias)
1611     return MayAlias;
1612 
1613   AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(),
1614                                      SISize, SIAAInfo, AAQI, UnderV2);
1615   return MergeAliasResults(ThisAlias, Alias);
1616 }
1617 
1618 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1619 /// another.
1620 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
1621                                     const AAMDNodes &PNAAInfo, const Value *V2,
1622                                     LocationSize V2Size,
1623                                     const AAMDNodes &V2AAInfo,
1624                                     const Value *UnderV2, AAQueryInfo &AAQI) {
1625   // Track phi nodes we have visited. We use this information when we determine
1626   // value equivalence.
1627   VisitedPhiBBs.insert(PN->getParent());
1628 
1629   // If the values are PHIs in the same block, we can do a more precise
1630   // as well as efficient check: just check for aliases between the values
1631   // on corresponding edges.
1632   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1633     if (PN2->getParent() == PN->getParent()) {
1634       AAQueryInfo::LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
1635                                 MemoryLocation(V2, V2Size, V2AAInfo));
1636       if (PN > V2)
1637         std::swap(Locs.first, Locs.second);
1638       // Analyse the PHIs' inputs under the assumption that the PHIs are
1639       // NoAlias.
1640       // If the PHIs are May/MustAlias there must be (recursively) an input
1641       // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1642       // there must be an operation on the PHIs within the PHIs' value cycle
1643       // that causes a MayAlias.
1644       // Pretend the phis do not alias.
1645       AliasResult Alias = NoAlias;
1646       AliasResult OrigAliasResult;
1647       {
1648         // Limited lifetime iterator invalidated by the aliasCheck call below.
1649         auto CacheIt = AAQI.AliasCache.find(Locs);
1650         assert((CacheIt != AAQI.AliasCache.end()) &&
1651                "There must exist an entry for the phi node");
1652         OrigAliasResult = CacheIt->second;
1653         CacheIt->second = NoAlias;
1654       }
1655 
1656       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1657         AliasResult ThisAlias =
1658             aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
1659                        PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1660                        V2Size, V2AAInfo, AAQI);
1661         Alias = MergeAliasResults(ThisAlias, Alias);
1662         if (Alias == MayAlias)
1663           break;
1664       }
1665 
1666       // Reset if speculation failed.
1667       if (Alias != NoAlias) {
1668         auto Pair =
1669             AAQI.AliasCache.insert(std::make_pair(Locs, OrigAliasResult));
1670         assert(!Pair.second && "Entry must have existed");
1671         Pair.first->second = OrigAliasResult;
1672       }
1673       return Alias;
1674     }
1675 
1676   SmallVector<Value *, 4> V1Srcs;
1677   bool isRecursive = false;
1678   if (PV)  {
1679     // If we have PhiValues then use it to get the underlying phi values.
1680     const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN);
1681     // If we have more phi values than the search depth then return MayAlias
1682     // conservatively to avoid compile time explosion. The worst possible case
1683     // is if both sides are PHI nodes. In which case, this is O(m x n) time
1684     // where 'm' and 'n' are the number of PHI sources.
1685     if (PhiValueSet.size() > MaxLookupSearchDepth)
1686       return MayAlias;
1687     // Add the values to V1Srcs
1688     for (Value *PV1 : PhiValueSet) {
1689       if (EnableRecPhiAnalysis) {
1690         if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
1691           // Check whether the incoming value is a GEP that advances the pointer
1692           // result of this PHI node (e.g. in a loop). If this is the case, we
1693           // would recurse and always get a MayAlias. Handle this case specially
1694           // below.
1695           if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
1696               isa<ConstantInt>(PV1GEP->idx_begin())) {
1697             isRecursive = true;
1698             continue;
1699           }
1700         }
1701       }
1702       V1Srcs.push_back(PV1);
1703     }
1704   } else {
1705     // If we don't have PhiInfo then just look at the operands of the phi itself
1706     // FIXME: Remove this once we can guarantee that we have PhiInfo always
1707     SmallPtrSet<Value *, 4> UniqueSrc;
1708     for (Value *PV1 : PN->incoming_values()) {
1709       if (isa<PHINode>(PV1))
1710         // If any of the source itself is a PHI, return MayAlias conservatively
1711         // to avoid compile time explosion. The worst possible case is if both
1712         // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1713         // and 'n' are the number of PHI sources.
1714         return MayAlias;
1715 
1716       if (EnableRecPhiAnalysis)
1717         if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
1718           // Check whether the incoming value is a GEP that advances the pointer
1719           // result of this PHI node (e.g. in a loop). If this is the case, we
1720           // would recurse and always get a MayAlias. Handle this case specially
1721           // below.
1722           if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
1723               isa<ConstantInt>(PV1GEP->idx_begin())) {
1724             isRecursive = true;
1725             continue;
1726           }
1727         }
1728 
1729       if (UniqueSrc.insert(PV1).second)
1730         V1Srcs.push_back(PV1);
1731     }
1732   }
1733 
1734   // If V1Srcs is empty then that means that the phi has no underlying non-phi
1735   // value. This should only be possible in blocks unreachable from the entry
1736   // block, but return MayAlias just in case.
1737   if (V1Srcs.empty())
1738     return MayAlias;
1739 
1740   // If this PHI node is recursive, set the size of the accessed memory to
1741   // unknown to represent all the possible values the GEP could advance the
1742   // pointer to.
1743   if (isRecursive)
1744     PNSize = LocationSize::unknown();
1745 
1746   AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize,
1747                                  PNAAInfo, AAQI, UnderV2);
1748 
1749   // Early exit if the check of the first PHI source against V2 is MayAlias.
1750   // Other results are not possible.
1751   if (Alias == MayAlias)
1752     return MayAlias;
1753 
1754   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1755   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1756   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1757     Value *V = V1Srcs[i];
1758 
1759     AliasResult ThisAlias =
1760         aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, AAQI, UnderV2);
1761     Alias = MergeAliasResults(ThisAlias, Alias);
1762     if (Alias == MayAlias)
1763       break;
1764   }
1765 
1766   return Alias;
1767 }
1768 
1769 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1770 /// array references.
1771 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
1772                                       AAMDNodes V1AAInfo, const Value *V2,
1773                                       LocationSize V2Size, AAMDNodes V2AAInfo,
1774                                       AAQueryInfo &AAQI, const Value *O1,
1775                                       const Value *O2) {
1776   // If either of the memory references is empty, it doesn't matter what the
1777   // pointer values are.
1778   if (V1Size.isZero() || V2Size.isZero())
1779     return NoAlias;
1780 
1781   // Strip off any casts if they exist.
1782   V1 = V1->stripPointerCastsAndInvariantGroups();
1783   V2 = V2->stripPointerCastsAndInvariantGroups();
1784 
1785   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1786   // value for undef that aliases nothing in the program.
1787   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1788     return NoAlias;
1789 
1790   // Are we checking for alias of the same value?
1791   // Because we look 'through' phi nodes, we could look at "Value" pointers from
1792   // different iterations. We must therefore make sure that this is not the
1793   // case. The function isValueEqualInPotentialCycles ensures that this cannot
1794   // happen by looking at the visited phi nodes and making sure they cannot
1795   // reach the value.
1796   if (isValueEqualInPotentialCycles(V1, V2))
1797     return MustAlias;
1798 
1799   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1800     return NoAlias; // Scalars cannot alias each other
1801 
1802   // Figure out what objects these things are pointing to if we can.
1803   if (O1 == nullptr)
1804     O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
1805 
1806   if (O2 == nullptr)
1807     O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);
1808 
1809   // Null values in the default address space don't point to any object, so they
1810   // don't alias any other pointer.
1811   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1812     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1813       return NoAlias;
1814   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1815     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1816       return NoAlias;
1817 
1818   if (O1 != O2) {
1819     // If V1/V2 point to two different objects, we know that we have no alias.
1820     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1821       return NoAlias;
1822 
1823     // Constant pointers can't alias with non-const isIdentifiedObject objects.
1824     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1825         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1826       return NoAlias;
1827 
1828     // Function arguments can't alias with things that are known to be
1829     // unambigously identified at the function level.
1830     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1831         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1832       return NoAlias;
1833 
1834     // If one pointer is the result of a call/invoke or load and the other is a
1835     // non-escaping local object within the same function, then we know the
1836     // object couldn't escape to a point where the call could return it.
1837     //
1838     // Note that if the pointers are in different functions, there are a
1839     // variety of complications. A call with a nocapture argument may still
1840     // temporary store the nocapture argument's value in a temporary memory
1841     // location if that memory location doesn't escape. Or it may pass a
1842     // nocapture value to other functions as long as they don't capture it.
1843     if (isEscapeSource(O1) &&
1844         isNonEscapingLocalObject(O2, &AAQI.IsCapturedCache))
1845       return NoAlias;
1846     if (isEscapeSource(O2) &&
1847         isNonEscapingLocalObject(O1, &AAQI.IsCapturedCache))
1848       return NoAlias;
1849   }
1850 
1851   // If the size of one access is larger than the entire object on the other
1852   // side, then we know such behavior is undefined and can assume no alias.
1853   bool NullIsValidLocation = NullPointerIsDefined(&F);
1854   if ((isObjectSmallerThan(
1855           O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL,
1856           TLI, NullIsValidLocation)) ||
1857       (isObjectSmallerThan(
1858           O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL,
1859           TLI, NullIsValidLocation)))
1860     return NoAlias;
1861 
1862   // Check the cache before climbing up use-def chains. This also terminates
1863   // otherwise infinitely recursive queries.
1864   AAQueryInfo::LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
1865                             MemoryLocation(V2, V2Size, V2AAInfo));
1866   if (V1 > V2)
1867     std::swap(Locs.first, Locs.second);
1868   std::pair<AAQueryInfo::AliasCacheT::iterator, bool> Pair =
1869       AAQI.AliasCache.try_emplace(Locs, MayAlias);
1870   if (!Pair.second)
1871     return Pair.first->second;
1872 
1873   // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1874   // GEP can't simplify, we don't even look at the PHI cases.
1875   if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1876     std::swap(V1, V2);
1877     std::swap(V1Size, V2Size);
1878     std::swap(O1, O2);
1879     std::swap(V1AAInfo, V2AAInfo);
1880   }
1881   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1882     AliasResult Result =
1883         aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2, AAQI);
1884     if (Result != MayAlias) {
1885       auto ItInsPair = AAQI.AliasCache.insert(std::make_pair(Locs, Result));
1886       assert(!ItInsPair.second && "Entry must have existed");
1887       ItInsPair.first->second = Result;
1888       return Result;
1889     }
1890   }
1891 
1892   if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1893     std::swap(V1, V2);
1894     std::swap(O1, O2);
1895     std::swap(V1Size, V2Size);
1896     std::swap(V1AAInfo, V2AAInfo);
1897   }
1898   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1899     AliasResult Result =
1900         aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI);
1901     if (Result != MayAlias) {
1902       Pair = AAQI.AliasCache.try_emplace(Locs, Result);
1903       assert(!Pair.second && "Entry must have existed");
1904       return Pair.first->second = Result;
1905     }
1906   }
1907 
1908   if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1909     std::swap(V1, V2);
1910     std::swap(O1, O2);
1911     std::swap(V1Size, V2Size);
1912     std::swap(V1AAInfo, V2AAInfo);
1913   }
1914   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1915     AliasResult Result =
1916         aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI);
1917     if (Result != MayAlias) {
1918       Pair = AAQI.AliasCache.try_emplace(Locs, Result);
1919       assert(!Pair.second && "Entry must have existed");
1920       return Pair.first->second = Result;
1921     }
1922   }
1923 
1924   // If both pointers are pointing into the same object and one of them
1925   // accesses the entire object, then the accesses must overlap in some way.
1926   if (O1 == O2)
1927     if (V1Size.isPrecise() && V2Size.isPrecise() &&
1928         (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
1929          isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation))) {
1930       Pair = AAQI.AliasCache.try_emplace(Locs, PartialAlias);
1931       assert(!Pair.second && "Entry must have existed");
1932       return Pair.first->second = PartialAlias;
1933     }
1934 
1935   // Recurse back into the best AA results we have, potentially with refined
1936   // memory locations. We have already ensured that BasicAA has a MayAlias
1937   // cache result for these, so any recursion back into BasicAA won't loop.
1938   AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second, AAQI);
1939   Pair = AAQI.AliasCache.try_emplace(Locs, Result);
1940   assert(!Pair.second && "Entry must have existed");
1941   return Pair.first->second = Result;
1942 }
1943 
1944 /// Check whether two Values can be considered equivalent.
1945 ///
1946 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1947 /// they can not be part of a cycle in the value graph by looking at all
1948 /// visited phi nodes an making sure that the phis cannot reach the value. We
1949 /// have to do this because we are looking through phi nodes (That is we say
1950 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1951 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1952                                                   const Value *V2) {
1953   if (V != V2)
1954     return false;
1955 
1956   const Instruction *Inst = dyn_cast<Instruction>(V);
1957   if (!Inst)
1958     return true;
1959 
1960   if (VisitedPhiBBs.empty())
1961     return true;
1962 
1963   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1964     return false;
1965 
1966   // Make sure that the visited phis cannot reach the Value. This ensures that
1967   // the Values cannot come from different iterations of a potential cycle the
1968   // phi nodes could be involved in.
1969   for (auto *P : VisitedPhiBBs)
1970     if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT, LI))
1971       return false;
1972 
1973   return true;
1974 }
1975 
1976 /// Computes the symbolic difference between two de-composed GEPs.
1977 ///
1978 /// Dest and Src are the variable indices from two decomposed GetElementPtr
1979 /// instructions GEP1 and GEP2 which have common base pointers.
1980 void BasicAAResult::GetIndexDifference(
1981     SmallVectorImpl<VariableGEPIndex> &Dest,
1982     const SmallVectorImpl<VariableGEPIndex> &Src) {
1983   if (Src.empty())
1984     return;
1985 
1986   for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1987     const Value *V = Src[i].V;
1988     unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
1989     APInt Scale = Src[i].Scale;
1990 
1991     // Find V in Dest.  This is N^2, but pointer indices almost never have more
1992     // than a few variable indexes.
1993     for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1994       if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1995           Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
1996         continue;
1997 
1998       // If we found it, subtract off Scale V's from the entry in Dest.  If it
1999       // goes to zero, remove the entry.
2000       if (Dest[j].Scale != Scale)
2001         Dest[j].Scale -= Scale;
2002       else
2003         Dest.erase(Dest.begin() + j);
2004       Scale = 0;
2005       break;
2006     }
2007 
2008     // If we didn't consume this entry, add it to the end of the Dest list.
2009     if (!!Scale) {
2010       VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale};
2011       Dest.push_back(Entry);
2012     }
2013   }
2014 }
2015 
2016 bool BasicAAResult::constantOffsetHeuristic(
2017     const SmallVectorImpl<VariableGEPIndex> &VarIndices,
2018     LocationSize MaybeV1Size, LocationSize MaybeV2Size, APInt BaseOffset,
2019     AssumptionCache *AC, DominatorTree *DT) {
2020   if (VarIndices.size() != 2 || MaybeV1Size == LocationSize::unknown() ||
2021       MaybeV2Size == LocationSize::unknown())
2022     return false;
2023 
2024   const uint64_t V1Size = MaybeV1Size.getValue();
2025   const uint64_t V2Size = MaybeV2Size.getValue();
2026 
2027   const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
2028 
2029   if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
2030       Var0.Scale != -Var1.Scale)
2031     return false;
2032 
2033   unsigned Width = Var1.V->getType()->getIntegerBitWidth();
2034 
2035   // We'll strip off the Extensions of Var0 and Var1 and do another round
2036   // of GetLinearExpression decomposition. In the example above, if Var0
2037   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
2038 
2039   APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
2040       V1Offset(Width, 0);
2041   bool NSW = true, NUW = true;
2042   unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
2043   const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
2044                                         V0SExtBits, DL, 0, AC, DT, NSW, NUW);
2045   NSW = true;
2046   NUW = true;
2047   const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
2048                                         V1SExtBits, DL, 0, AC, DT, NSW, NUW);
2049 
2050   if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
2051       V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
2052     return false;
2053 
2054   // We have a hit - Var0 and Var1 only differ by a constant offset!
2055 
2056   // If we've been sext'ed then zext'd the maximum difference between Var0 and
2057   // Var1 is possible to calculate, but we're just interested in the absolute
2058   // minimum difference between the two. The minimum distance may occur due to
2059   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
2060   // the minimum distance between %i and %i + 5 is 3.
2061   APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
2062   MinDiff = APIntOps::umin(MinDiff, Wrapped);
2063   APInt MinDiffBytes =
2064     MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs();
2065 
2066   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
2067   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
2068   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
2069   // V2Size can fit in the MinDiffBytes gap.
2070   return MinDiffBytes.uge(V1Size + BaseOffset.abs()) &&
2071          MinDiffBytes.uge(V2Size + BaseOffset.abs());
2072 }
2073 
2074 //===----------------------------------------------------------------------===//
2075 // BasicAliasAnalysis Pass
2076 //===----------------------------------------------------------------------===//
2077 
2078 AnalysisKey BasicAA::Key;
2079 
2080 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
2081   return BasicAAResult(F.getParent()->getDataLayout(),
2082                        F,
2083                        AM.getResult<TargetLibraryAnalysis>(F),
2084                        AM.getResult<AssumptionAnalysis>(F),
2085                        &AM.getResult<DominatorTreeAnalysis>(F),
2086                        AM.getCachedResult<LoopAnalysis>(F),
2087                        AM.getCachedResult<PhiValuesAnalysis>(F));
2088 }
2089 
2090 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
2091   initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
2092 }
2093 
2094 char BasicAAWrapperPass::ID = 0;
2095 
2096 void BasicAAWrapperPass::anchor() {}
2097 
2098 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa",
2099                       "Basic Alias Analysis (stateless AA impl)", true, true)
2100 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2101 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2102 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2103 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
2104 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa",
2105                     "Basic Alias Analysis (stateless AA impl)", true, true)
2106 
2107 FunctionPass *llvm::createBasicAAWrapperPass() {
2108   return new BasicAAWrapperPass();
2109 }
2110 
2111 bool BasicAAWrapperPass::runOnFunction(Function &F) {
2112   auto &ACT = getAnalysis<AssumptionCacheTracker>();
2113   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
2114   auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
2115   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
2116   auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>();
2117 
2118   Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F,
2119                                  TLIWP.getTLI(F), ACT.getAssumptionCache(F),
2120                                  &DTWP.getDomTree(),
2121                                  LIWP ? &LIWP->getLoopInfo() : nullptr,
2122                                  PVWP ? &PVWP->getResult() : nullptr));
2123 
2124   return false;
2125 }
2126 
2127 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
2128   AU.setPreservesAll();
2129   AU.addRequired<AssumptionCacheTracker>();
2130   AU.addRequired<DominatorTreeWrapperPass>();
2131   AU.addRequired<TargetLibraryInfoWrapperPass>();
2132   AU.addUsedIfAvailable<PhiValuesWrapperPass>();
2133 }
2134 
2135 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
2136   return BasicAAResult(
2137       F.getParent()->getDataLayout(), F,
2138       P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
2139       P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
2140 }
2141