1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the primary stateless implementation of the 10 // Alias Analysis interface that implements identities (two different 11 // globals cannot alias, etc), but does no stateful analysis. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/BasicAliasAnalysis.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/CFG.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/PhiValues.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/Argument.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/GetElementPtrTypeIterator.h" 40 #include "llvm/IR/GlobalAlias.h" 41 #include "llvm/IR/GlobalVariable.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/Operator.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/User.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/InitializePasses.h" 53 #include "llvm/Pass.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Compiler.h" 57 #include "llvm/Support/KnownBits.h" 58 #include <cassert> 59 #include <cstdint> 60 #include <cstdlib> 61 #include <utility> 62 63 #define DEBUG_TYPE "basicaa" 64 65 using namespace llvm; 66 67 /// Enable analysis of recursive PHI nodes. 68 static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden, 69 cl::init(true)); 70 71 /// By default, even on 32-bit architectures we use 64-bit integers for 72 /// calculations. This will allow us to more-aggressively decompose indexing 73 /// expressions calculated using i64 values (e.g., long long in C) which is 74 /// common enough to worry about. 75 static cl::opt<bool> ForceAtLeast64Bits("basic-aa-force-at-least-64b", 76 cl::Hidden, cl::init(true)); 77 static cl::opt<bool> DoubleCalcBits("basic-aa-double-calc-bits", 78 cl::Hidden, cl::init(false)); 79 80 /// SearchLimitReached / SearchTimes shows how often the limit of 81 /// to decompose GEPs is reached. It will affect the precision 82 /// of basic alias analysis. 83 STATISTIC(SearchLimitReached, "Number of times the limit to " 84 "decompose GEPs is reached"); 85 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 86 87 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 88 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be 89 /// careful with value equivalence. We use reachability to make sure a value 90 /// cannot be involved in a cycle. 91 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 92 93 // The max limit of the search depth in DecomposeGEPExpression() and 94 // getUnderlyingObject(), both functions need to use the same search 95 // depth otherwise the algorithm in aliasGEP will assert. 96 static const unsigned MaxLookupSearchDepth = 6; 97 98 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA, 99 FunctionAnalysisManager::Invalidator &Inv) { 100 // We don't care if this analysis itself is preserved, it has no state. But 101 // we need to check that the analyses it depends on have been. Note that we 102 // may be created without handles to some analyses and in that case don't 103 // depend on them. 104 if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) || 105 (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) || 106 (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA))) 107 return true; 108 109 // Otherwise this analysis result remains valid. 110 return false; 111 } 112 113 //===----------------------------------------------------------------------===// 114 // Useful predicates 115 //===----------------------------------------------------------------------===// 116 117 /// Returns true if the pointer is one which would have been considered an 118 /// escape by isNonEscapingLocalObject. 119 static bool isEscapeSource(const Value *V) { 120 if (isa<CallBase>(V)) 121 return true; 122 123 if (isa<Argument>(V)) 124 return true; 125 126 // The load case works because isNonEscapingLocalObject considers all 127 // stores to be escapes (it passes true for the StoreCaptures argument 128 // to PointerMayBeCaptured). 129 if (isa<LoadInst>(V)) 130 return true; 131 132 return false; 133 } 134 135 /// Returns the size of the object specified by V or UnknownSize if unknown. 136 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 137 const TargetLibraryInfo &TLI, 138 bool NullIsValidLoc, 139 bool RoundToAlign = false) { 140 uint64_t Size; 141 ObjectSizeOpts Opts; 142 Opts.RoundToAlign = RoundToAlign; 143 Opts.NullIsUnknownSize = NullIsValidLoc; 144 if (getObjectSize(V, Size, DL, &TLI, Opts)) 145 return Size; 146 return MemoryLocation::UnknownSize; 147 } 148 149 /// Returns true if we can prove that the object specified by V is smaller than 150 /// Size. 151 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 152 const DataLayout &DL, 153 const TargetLibraryInfo &TLI, 154 bool NullIsValidLoc) { 155 // Note that the meanings of the "object" are slightly different in the 156 // following contexts: 157 // c1: llvm::getObjectSize() 158 // c2: llvm.objectsize() intrinsic 159 // c3: isObjectSmallerThan() 160 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 161 // refers to the "entire object". 162 // 163 // Consider this example: 164 // char *p = (char*)malloc(100) 165 // char *q = p+80; 166 // 167 // In the context of c1 and c2, the "object" pointed by q refers to the 168 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 169 // 170 // However, in the context of c3, the "object" refers to the chunk of memory 171 // being allocated. So, the "object" has 100 bytes, and q points to the middle 172 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 173 // parameter, before the llvm::getObjectSize() is called to get the size of 174 // entire object, we should: 175 // - either rewind the pointer q to the base-address of the object in 176 // question (in this case rewind to p), or 177 // - just give up. It is up to caller to make sure the pointer is pointing 178 // to the base address the object. 179 // 180 // We go for 2nd option for simplicity. 181 if (!isIdentifiedObject(V)) 182 return false; 183 184 // This function needs to use the aligned object size because we allow 185 // reads a bit past the end given sufficient alignment. 186 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc, 187 /*RoundToAlign*/ true); 188 189 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; 190 } 191 192 /// Return the minimal extent from \p V to the end of the underlying object, 193 /// assuming the result is used in an aliasing query. E.g., we do use the query 194 /// location size and the fact that null pointers cannot alias here. 195 static uint64_t getMinimalExtentFrom(const Value &V, 196 const LocationSize &LocSize, 197 const DataLayout &DL, 198 bool NullIsValidLoc) { 199 // If we have dereferenceability information we know a lower bound for the 200 // extent as accesses for a lower offset would be valid. We need to exclude 201 // the "or null" part if null is a valid pointer. 202 bool CanBeNull, CanBeFreed; 203 uint64_t DerefBytes = 204 V.getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed); 205 DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes; 206 DerefBytes = CanBeFreed ? 0 : DerefBytes; 207 // If queried with a precise location size, we assume that location size to be 208 // accessed, thus valid. 209 if (LocSize.isPrecise()) 210 DerefBytes = std::max(DerefBytes, LocSize.getValue()); 211 return DerefBytes; 212 } 213 214 /// Returns true if we can prove that the object specified by V has size Size. 215 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, 216 const TargetLibraryInfo &TLI, bool NullIsValidLoc) { 217 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc); 218 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; 219 } 220 221 //===----------------------------------------------------------------------===// 222 // GetElementPtr Instruction Decomposition and Analysis 223 //===----------------------------------------------------------------------===// 224 225 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 226 /// B are constant integers. 227 /// 228 /// Returns the scale and offset values as APInts and return V as a Value*, and 229 /// return whether we looked through any sign or zero extends. The incoming 230 /// Value is known to have IntegerType, and it may already be sign or zero 231 /// extended. 232 /// 233 /// Note that this looks through extends, so the high bits may not be 234 /// represented in the result. 235 /*static*/ const Value *BasicAAResult::GetLinearExpression( 236 const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits, 237 unsigned &SExtBits, const DataLayout &DL, unsigned Depth, 238 AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) { 239 assert(V->getType()->isIntegerTy() && "Not an integer value"); 240 241 // Limit our recursion depth. 242 if (Depth == 6) { 243 Scale = 1; 244 Offset = 0; 245 return V; 246 } 247 248 if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) { 249 // If it's a constant, just convert it to an offset and remove the variable. 250 // If we've been called recursively, the Offset bit width will be greater 251 // than the constant's (the Offset's always as wide as the outermost call), 252 // so we'll zext here and process any extension in the isa<SExtInst> & 253 // isa<ZExtInst> cases below. 254 Offset += Const->getValue().zextOrSelf(Offset.getBitWidth()); 255 assert(Scale == 0 && "Constant values don't have a scale"); 256 return V; 257 } 258 259 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 260 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 261 // If we've been called recursively, then Offset and Scale will be wider 262 // than the BOp operands. We'll always zext it here as we'll process sign 263 // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases). 264 APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth()); 265 266 switch (BOp->getOpcode()) { 267 default: 268 // We don't understand this instruction, so we can't decompose it any 269 // further. 270 Scale = 1; 271 Offset = 0; 272 return V; 273 case Instruction::Or: 274 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 275 // analyze it. 276 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, 277 BOp, DT)) { 278 Scale = 1; 279 Offset = 0; 280 return V; 281 } 282 LLVM_FALLTHROUGH; 283 case Instruction::Add: 284 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 285 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 286 Offset += RHS; 287 break; 288 case Instruction::Sub: 289 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 290 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 291 Offset -= RHS; 292 break; 293 case Instruction::Mul: 294 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 295 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 296 Offset *= RHS; 297 Scale *= RHS; 298 break; 299 case Instruction::Shl: 300 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 301 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 302 303 // We're trying to linearize an expression of the kind: 304 // shl i8 -128, 36 305 // where the shift count exceeds the bitwidth of the type. 306 // We can't decompose this further (the expression would return 307 // a poison value). 308 if (Offset.getBitWidth() < RHS.getLimitedValue() || 309 Scale.getBitWidth() < RHS.getLimitedValue()) { 310 Scale = 1; 311 Offset = 0; 312 return V; 313 } 314 315 Offset <<= RHS.getLimitedValue(); 316 Scale <<= RHS.getLimitedValue(); 317 // the semantics of nsw and nuw for left shifts don't match those of 318 // multiplications, so we won't propagate them. 319 NSW = NUW = false; 320 return V; 321 } 322 323 if (isa<OverflowingBinaryOperator>(BOp)) { 324 NUW &= BOp->hasNoUnsignedWrap(); 325 NSW &= BOp->hasNoSignedWrap(); 326 } 327 return V; 328 } 329 } 330 331 // Since GEP indices are sign extended anyway, we don't care about the high 332 // bits of a sign or zero extended value - just scales and offsets. The 333 // extensions have to be consistent though. 334 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) { 335 Value *CastOp = cast<CastInst>(V)->getOperand(0); 336 unsigned NewWidth = V->getType()->getPrimitiveSizeInBits(); 337 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 338 unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits; 339 const Value *Result = 340 GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL, 341 Depth + 1, AC, DT, NSW, NUW); 342 343 // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this 344 // by just incrementing the number of bits we've extended by. 345 unsigned ExtendedBy = NewWidth - SmallWidth; 346 347 if (isa<SExtInst>(V) && ZExtBits == 0) { 348 // sext(sext(%x, a), b) == sext(%x, a + b) 349 350 if (NSW) { 351 // We haven't sign-wrapped, so it's valid to decompose sext(%x + c) 352 // into sext(%x) + sext(c). We'll sext the Offset ourselves: 353 unsigned OldWidth = Offset.getBitWidth(); 354 Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth); 355 } else { 356 // We may have signed-wrapped, so don't decompose sext(%x + c) into 357 // sext(%x) + sext(c) 358 Scale = 1; 359 Offset = 0; 360 Result = CastOp; 361 ZExtBits = OldZExtBits; 362 SExtBits = OldSExtBits; 363 } 364 SExtBits += ExtendedBy; 365 } else { 366 // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b) 367 368 if (!NUW) { 369 // We may have unsigned-wrapped, so don't decompose zext(%x + c) into 370 // zext(%x) + zext(c) 371 Scale = 1; 372 Offset = 0; 373 Result = CastOp; 374 ZExtBits = OldZExtBits; 375 SExtBits = OldSExtBits; 376 } 377 ZExtBits += ExtendedBy; 378 } 379 380 return Result; 381 } 382 383 Scale = 1; 384 Offset = 0; 385 return V; 386 } 387 388 /// To ensure a pointer offset fits in an integer of size PointerSize 389 /// (in bits) when that size is smaller than the maximum pointer size. This is 390 /// an issue, for example, in particular for 32b pointers with negative indices 391 /// that rely on two's complement wrap-arounds for precise alias information 392 /// where the maximum pointer size is 64b. 393 static APInt adjustToPointerSize(const APInt &Offset, unsigned PointerSize) { 394 assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!"); 395 unsigned ShiftBits = Offset.getBitWidth() - PointerSize; 396 return (Offset << ShiftBits).ashr(ShiftBits); 397 } 398 399 static unsigned getMaxPointerSize(const DataLayout &DL) { 400 unsigned MaxPointerSize = DL.getMaxPointerSizeInBits(); 401 if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64; 402 if (DoubleCalcBits) MaxPointerSize *= 2; 403 404 return MaxPointerSize; 405 } 406 407 /// If V is a symbolic pointer expression, decompose it into a base pointer 408 /// with a constant offset and a number of scaled symbolic offsets. 409 /// 410 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 411 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 412 /// specified amount, but which may have other unrepresented high bits. As 413 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 414 /// 415 /// This function is capable of analyzing everything that getUnderlyingObject 416 /// can look through. To be able to do that getUnderlyingObject and 417 /// DecomposeGEPExpression must use the same search depth 418 /// (MaxLookupSearchDepth). 419 BasicAAResult::DecomposedGEP 420 BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL, 421 AssumptionCache *AC, DominatorTree *DT) { 422 // Limit recursion depth to limit compile time in crazy cases. 423 unsigned MaxLookup = MaxLookupSearchDepth; 424 SearchTimes++; 425 const Instruction *CxtI = dyn_cast<Instruction>(V); 426 427 unsigned MaxPointerSize = getMaxPointerSize(DL); 428 DecomposedGEP Decomposed; 429 Decomposed.Offset = APInt(MaxPointerSize, 0); 430 Decomposed.HasCompileTimeConstantScale = true; 431 do { 432 // See if this is a bitcast or GEP. 433 const Operator *Op = dyn_cast<Operator>(V); 434 if (!Op) { 435 // The only non-operator case we can handle are GlobalAliases. 436 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 437 if (!GA->isInterposable()) { 438 V = GA->getAliasee(); 439 continue; 440 } 441 } 442 Decomposed.Base = V; 443 return Decomposed; 444 } 445 446 if (Op->getOpcode() == Instruction::BitCast || 447 Op->getOpcode() == Instruction::AddrSpaceCast) { 448 V = Op->getOperand(0); 449 continue; 450 } 451 452 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 453 if (!GEPOp) { 454 if (const auto *PHI = dyn_cast<PHINode>(V)) { 455 // Look through single-arg phi nodes created by LCSSA. 456 if (PHI->getNumIncomingValues() == 1) { 457 V = PHI->getIncomingValue(0); 458 continue; 459 } 460 } else if (const auto *Call = dyn_cast<CallBase>(V)) { 461 // CaptureTracking can know about special capturing properties of some 462 // intrinsics like launder.invariant.group, that can't be expressed with 463 // the attributes, but have properties like returning aliasing pointer. 464 // Because some analysis may assume that nocaptured pointer is not 465 // returned from some special intrinsic (because function would have to 466 // be marked with returns attribute), it is crucial to use this function 467 // because it should be in sync with CaptureTracking. Not using it may 468 // cause weird miscompilations where 2 aliasing pointers are assumed to 469 // noalias. 470 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 471 V = RP; 472 continue; 473 } 474 } 475 476 Decomposed.Base = V; 477 return Decomposed; 478 } 479 480 // Track whether we've seen at least one in bounds gep, and if so, whether 481 // all geps parsed were in bounds. 482 if (Decomposed.InBounds == None) 483 Decomposed.InBounds = GEPOp->isInBounds(); 484 else if (!GEPOp->isInBounds()) 485 Decomposed.InBounds = false; 486 487 // Don't attempt to analyze GEPs over unsized objects. 488 if (!GEPOp->getSourceElementType()->isSized()) { 489 Decomposed.Base = V; 490 return Decomposed; 491 } 492 493 // Don't attempt to analyze GEPs if index scale is not a compile-time 494 // constant. 495 if (isa<ScalableVectorType>(GEPOp->getSourceElementType())) { 496 Decomposed.Base = V; 497 Decomposed.HasCompileTimeConstantScale = false; 498 return Decomposed; 499 } 500 501 unsigned AS = GEPOp->getPointerAddressSpace(); 502 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 503 gep_type_iterator GTI = gep_type_begin(GEPOp); 504 unsigned PointerSize = DL.getPointerSizeInBits(AS); 505 // Assume all GEP operands are constants until proven otherwise. 506 bool GepHasConstantOffset = true; 507 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 508 I != E; ++I, ++GTI) { 509 const Value *Index = *I; 510 // Compute the (potentially symbolic) offset in bytes for this index. 511 if (StructType *STy = GTI.getStructTypeOrNull()) { 512 // For a struct, add the member offset. 513 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 514 if (FieldNo == 0) 515 continue; 516 517 Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo); 518 continue; 519 } 520 521 // For an array/pointer, add the element offset, explicitly scaled. 522 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 523 if (CIdx->isZero()) 524 continue; 525 Decomposed.Offset += 526 DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize() * 527 CIdx->getValue().sextOrTrunc(MaxPointerSize); 528 continue; 529 } 530 531 GepHasConstantOffset = false; 532 533 APInt Scale(MaxPointerSize, 534 DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize()); 535 unsigned ZExtBits = 0, SExtBits = 0; 536 537 // If the integer type is smaller than the pointer size, it is implicitly 538 // sign extended to pointer size. 539 unsigned Width = Index->getType()->getIntegerBitWidth(); 540 if (PointerSize > Width) 541 SExtBits += PointerSize - Width; 542 543 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 544 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 545 bool NSW = true, NUW = true; 546 const Value *OrigIndex = Index; 547 Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits, 548 SExtBits, DL, 0, AC, DT, NSW, NUW); 549 550 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 551 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 552 553 // It can be the case that, even through C1*V+C2 does not overflow for 554 // relevant values of V, (C2*Scale) can overflow. In that case, we cannot 555 // decompose the expression in this way. 556 // 557 // FIXME: C1*Scale and the other operations in the decomposed 558 // (C1*Scale)*V+C2*Scale can also overflow. We should check for this 559 // possibility. 560 bool Overflow; 561 APInt ScaledOffset = IndexOffset.sextOrTrunc(MaxPointerSize) 562 .smul_ov(Scale, Overflow); 563 if (Overflow) { 564 Index = OrigIndex; 565 IndexScale = 1; 566 IndexOffset = 0; 567 568 ZExtBits = SExtBits = 0; 569 if (PointerSize > Width) 570 SExtBits += PointerSize - Width; 571 } else { 572 Decomposed.Offset += ScaledOffset; 573 Scale *= IndexScale.sextOrTrunc(MaxPointerSize); 574 } 575 576 // If we already had an occurrence of this index variable, merge this 577 // scale into it. For example, we want to handle: 578 // A[x][x] -> x*16 + x*4 -> x*20 579 // This also ensures that 'x' only appears in the index list once. 580 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { 581 if (Decomposed.VarIndices[i].V == Index && 582 Decomposed.VarIndices[i].ZExtBits == ZExtBits && 583 Decomposed.VarIndices[i].SExtBits == SExtBits) { 584 Scale += Decomposed.VarIndices[i].Scale; 585 Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i); 586 break; 587 } 588 } 589 590 // Make sure that we have a scale that makes sense for this target's 591 // pointer size. 592 Scale = adjustToPointerSize(Scale, PointerSize); 593 594 if (!!Scale) { 595 VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, Scale, CxtI}; 596 Decomposed.VarIndices.push_back(Entry); 597 } 598 } 599 600 // Take care of wrap-arounds 601 if (GepHasConstantOffset) 602 Decomposed.Offset = adjustToPointerSize(Decomposed.Offset, PointerSize); 603 604 // Analyze the base pointer next. 605 V = GEPOp->getOperand(0); 606 } while (--MaxLookup); 607 608 // If the chain of expressions is too deep, just return early. 609 Decomposed.Base = V; 610 SearchLimitReached++; 611 return Decomposed; 612 } 613 614 /// Returns whether the given pointer value points to memory that is local to 615 /// the function, with global constants being considered local to all 616 /// functions. 617 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc, 618 AAQueryInfo &AAQI, bool OrLocal) { 619 assert(Visited.empty() && "Visited must be cleared after use!"); 620 621 unsigned MaxLookup = 8; 622 SmallVector<const Value *, 16> Worklist; 623 Worklist.push_back(Loc.Ptr); 624 do { 625 const Value *V = getUnderlyingObject(Worklist.pop_back_val()); 626 if (!Visited.insert(V).second) { 627 Visited.clear(); 628 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 629 } 630 631 // An alloca instruction defines local memory. 632 if (OrLocal && isa<AllocaInst>(V)) 633 continue; 634 635 // A global constant counts as local memory for our purposes. 636 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 637 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 638 // global to be marked constant in some modules and non-constant in 639 // others. GV may even be a declaration, not a definition. 640 if (!GV->isConstant()) { 641 Visited.clear(); 642 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 643 } 644 continue; 645 } 646 647 // If both select values point to local memory, then so does the select. 648 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 649 Worklist.push_back(SI->getTrueValue()); 650 Worklist.push_back(SI->getFalseValue()); 651 continue; 652 } 653 654 // If all values incoming to a phi node point to local memory, then so does 655 // the phi. 656 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 657 // Don't bother inspecting phi nodes with many operands. 658 if (PN->getNumIncomingValues() > MaxLookup) { 659 Visited.clear(); 660 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 661 } 662 append_range(Worklist, PN->incoming_values()); 663 continue; 664 } 665 666 // Otherwise be conservative. 667 Visited.clear(); 668 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 669 } while (!Worklist.empty() && --MaxLookup); 670 671 Visited.clear(); 672 return Worklist.empty(); 673 } 674 675 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) { 676 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call); 677 return II && II->getIntrinsicID() == IID; 678 } 679 680 /// Returns the behavior when calling the given call site. 681 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) { 682 if (Call->doesNotAccessMemory()) 683 // Can't do better than this. 684 return FMRB_DoesNotAccessMemory; 685 686 // The assume intrinsic can have operand bundles, but still only accesses 687 // inaccessible memory in that case (to maintain control dependencies). 688 if (isIntrinsicCall(Call, Intrinsic::assume)) 689 return FMRB_OnlyAccessesInaccessibleMem; 690 691 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 692 693 // If the callsite knows it only reads memory, don't return worse 694 // than that. 695 if (Call->onlyReadsMemory()) 696 Min = FMRB_OnlyReadsMemory; 697 else if (Call->doesNotReadMemory()) 698 Min = FMRB_OnlyWritesMemory; 699 700 if (Call->onlyAccessesArgMemory()) 701 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 702 else if (Call->onlyAccessesInaccessibleMemory()) 703 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 704 else if (Call->onlyAccessesInaccessibleMemOrArgMem()) 705 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 706 707 // If the call has operand bundles then aliasing attributes from the function 708 // it calls do not directly apply to the call. This can be made more precise 709 // in the future. 710 if (!Call->hasOperandBundles()) 711 if (const Function *F = Call->getCalledFunction()) 712 Min = 713 FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F)); 714 715 return Min; 716 } 717 718 /// Returns the behavior when calling the given function. For use when the call 719 /// site is not known. 720 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) { 721 // If the function declares it doesn't access memory, we can't do better. 722 if (F->doesNotAccessMemory()) 723 return FMRB_DoesNotAccessMemory; 724 725 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 726 727 // If the function declares it only reads memory, go with that. 728 if (F->onlyReadsMemory()) 729 Min = FMRB_OnlyReadsMemory; 730 else if (F->doesNotReadMemory()) 731 Min = FMRB_OnlyWritesMemory; 732 733 if (F->onlyAccessesArgMemory()) 734 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 735 else if (F->onlyAccessesInaccessibleMemory()) 736 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 737 else if (F->onlyAccessesInaccessibleMemOrArgMem()) 738 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 739 740 return Min; 741 } 742 743 /// Returns true if this is a writeonly (i.e Mod only) parameter. 744 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx, 745 const TargetLibraryInfo &TLI) { 746 if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly)) 747 return true; 748 749 // We can bound the aliasing properties of memset_pattern16 just as we can 750 // for memcpy/memset. This is particularly important because the 751 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 752 // whenever possible. 753 // FIXME Consider handling this in InferFunctionAttr.cpp together with other 754 // attributes. 755 LibFunc F; 756 if (Call->getCalledFunction() && 757 TLI.getLibFunc(*Call->getCalledFunction(), F) && 758 F == LibFunc_memset_pattern16 && TLI.has(F)) 759 if (ArgIdx == 0) 760 return true; 761 762 // TODO: memset_pattern4, memset_pattern8 763 // TODO: _chk variants 764 // TODO: strcmp, strcpy 765 766 return false; 767 } 768 769 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call, 770 unsigned ArgIdx) { 771 // Checking for known builtin intrinsics and target library functions. 772 if (isWriteOnlyParam(Call, ArgIdx, TLI)) 773 return ModRefInfo::Mod; 774 775 if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly)) 776 return ModRefInfo::Ref; 777 778 if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone)) 779 return ModRefInfo::NoModRef; 780 781 return AAResultBase::getArgModRefInfo(Call, ArgIdx); 782 } 783 784 #ifndef NDEBUG 785 static const Function *getParent(const Value *V) { 786 if (const Instruction *inst = dyn_cast<Instruction>(V)) { 787 if (!inst->getParent()) 788 return nullptr; 789 return inst->getParent()->getParent(); 790 } 791 792 if (const Argument *arg = dyn_cast<Argument>(V)) 793 return arg->getParent(); 794 795 return nullptr; 796 } 797 798 static bool notDifferentParent(const Value *O1, const Value *O2) { 799 800 const Function *F1 = getParent(O1); 801 const Function *F2 = getParent(O2); 802 803 return !F1 || !F2 || F1 == F2; 804 } 805 #endif 806 807 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 808 const MemoryLocation &LocB, 809 AAQueryInfo &AAQI) { 810 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 811 "BasicAliasAnalysis doesn't support interprocedural queries."); 812 return aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr, LocB.Size, 813 LocB.AATags, AAQI); 814 } 815 816 /// Checks to see if the specified callsite can clobber the specified memory 817 /// object. 818 /// 819 /// Since we only look at local properties of this function, we really can't 820 /// say much about this query. We do, however, use simple "address taken" 821 /// analysis on local objects. 822 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call, 823 const MemoryLocation &Loc, 824 AAQueryInfo &AAQI) { 825 assert(notDifferentParent(Call, Loc.Ptr) && 826 "AliasAnalysis query involving multiple functions!"); 827 828 const Value *Object = getUnderlyingObject(Loc.Ptr); 829 830 // Calls marked 'tail' cannot read or write allocas from the current frame 831 // because the current frame might be destroyed by the time they run. However, 832 // a tail call may use an alloca with byval. Calling with byval copies the 833 // contents of the alloca into argument registers or stack slots, so there is 834 // no lifetime issue. 835 if (isa<AllocaInst>(Object)) 836 if (const CallInst *CI = dyn_cast<CallInst>(Call)) 837 if (CI->isTailCall() && 838 !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal)) 839 return ModRefInfo::NoModRef; 840 841 // Stack restore is able to modify unescaped dynamic allocas. Assume it may 842 // modify them even though the alloca is not escaped. 843 if (auto *AI = dyn_cast<AllocaInst>(Object)) 844 if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore)) 845 return ModRefInfo::Mod; 846 847 // If the pointer is to a locally allocated object that does not escape, 848 // then the call can not mod/ref the pointer unless the call takes the pointer 849 // as an argument, and itself doesn't capture it. 850 if (!isa<Constant>(Object) && Call != Object && 851 isNonEscapingLocalObject(Object, &AAQI.IsCapturedCache)) { 852 853 // Optimistically assume that call doesn't touch Object and check this 854 // assumption in the following loop. 855 ModRefInfo Result = ModRefInfo::NoModRef; 856 bool IsMustAlias = true; 857 858 unsigned OperandNo = 0; 859 for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end(); 860 CI != CE; ++CI, ++OperandNo) { 861 // Only look at the no-capture or byval pointer arguments. If this 862 // pointer were passed to arguments that were neither of these, then it 863 // couldn't be no-capture. 864 if (!(*CI)->getType()->isPointerTy() || 865 (!Call->doesNotCapture(OperandNo) && 866 OperandNo < Call->getNumArgOperands() && 867 !Call->isByValArgument(OperandNo))) 868 continue; 869 870 // Call doesn't access memory through this operand, so we don't care 871 // if it aliases with Object. 872 if (Call->doesNotAccessMemory(OperandNo)) 873 continue; 874 875 // If this is a no-capture pointer argument, see if we can tell that it 876 // is impossible to alias the pointer we're checking. 877 AliasResult AR = getBestAAResults().alias( 878 MemoryLocation::getBeforeOrAfter(*CI), 879 MemoryLocation::getBeforeOrAfter(Object), AAQI); 880 if (AR != MustAlias) 881 IsMustAlias = false; 882 // Operand doesn't alias 'Object', continue looking for other aliases 883 if (AR == NoAlias) 884 continue; 885 // Operand aliases 'Object', but call doesn't modify it. Strengthen 886 // initial assumption and keep looking in case if there are more aliases. 887 if (Call->onlyReadsMemory(OperandNo)) { 888 Result = setRef(Result); 889 continue; 890 } 891 // Operand aliases 'Object' but call only writes into it. 892 if (Call->doesNotReadMemory(OperandNo)) { 893 Result = setMod(Result); 894 continue; 895 } 896 // This operand aliases 'Object' and call reads and writes into it. 897 // Setting ModRef will not yield an early return below, MustAlias is not 898 // used further. 899 Result = ModRefInfo::ModRef; 900 break; 901 } 902 903 // No operand aliases, reset Must bit. Add below if at least one aliases 904 // and all aliases found are MustAlias. 905 if (isNoModRef(Result)) 906 IsMustAlias = false; 907 908 // Early return if we improved mod ref information 909 if (!isModAndRefSet(Result)) { 910 if (isNoModRef(Result)) 911 return ModRefInfo::NoModRef; 912 return IsMustAlias ? setMust(Result) : clearMust(Result); 913 } 914 } 915 916 // If the call is malloc/calloc like, we can assume that it doesn't 917 // modify any IR visible value. This is only valid because we assume these 918 // routines do not read values visible in the IR. TODO: Consider special 919 // casing realloc and strdup routines which access only their arguments as 920 // well. Or alternatively, replace all of this with inaccessiblememonly once 921 // that's implemented fully. 922 if (isMallocOrCallocLikeFn(Call, &TLI)) { 923 // Be conservative if the accessed pointer may alias the allocation - 924 // fallback to the generic handling below. 925 if (getBestAAResults().alias(MemoryLocation::getBeforeOrAfter(Call), 926 Loc, AAQI) == NoAlias) 927 return ModRefInfo::NoModRef; 928 } 929 930 // The semantics of memcpy intrinsics either exactly overlap or do not 931 // overlap, i.e., source and destination of any given memcpy are either 932 // no-alias or must-alias. 933 if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) { 934 AliasResult SrcAA = 935 getBestAAResults().alias(MemoryLocation::getForSource(Inst), Loc, AAQI); 936 AliasResult DestAA = 937 getBestAAResults().alias(MemoryLocation::getForDest(Inst), Loc, AAQI); 938 // It's also possible for Loc to alias both src and dest, or neither. 939 ModRefInfo rv = ModRefInfo::NoModRef; 940 if (SrcAA != NoAlias) 941 rv = setRef(rv); 942 if (DestAA != NoAlias) 943 rv = setMod(rv); 944 return rv; 945 } 946 947 // Guard intrinsics are marked as arbitrarily writing so that proper control 948 // dependencies are maintained but they never mods any particular memory 949 // location. 950 // 951 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 952 // heap state at the point the guard is issued needs to be consistent in case 953 // the guard invokes the "deopt" continuation. 954 if (isIntrinsicCall(Call, Intrinsic::experimental_guard)) 955 return ModRefInfo::Ref; 956 // The same applies to deoptimize which is essentially a guard(false). 957 if (isIntrinsicCall(Call, Intrinsic::experimental_deoptimize)) 958 return ModRefInfo::Ref; 959 960 // Like assumes, invariant.start intrinsics were also marked as arbitrarily 961 // writing so that proper control dependencies are maintained but they never 962 // mod any particular memory location visible to the IR. 963 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start 964 // intrinsic is now modeled as reading memory. This prevents hoisting the 965 // invariant.start intrinsic over stores. Consider: 966 // *ptr = 40; 967 // *ptr = 50; 968 // invariant_start(ptr) 969 // int val = *ptr; 970 // print(val); 971 // 972 // This cannot be transformed to: 973 // 974 // *ptr = 40; 975 // invariant_start(ptr) 976 // *ptr = 50; 977 // int val = *ptr; 978 // print(val); 979 // 980 // The transformation will cause the second store to be ignored (based on 981 // rules of invariant.start) and print 40, while the first program always 982 // prints 50. 983 if (isIntrinsicCall(Call, Intrinsic::invariant_start)) 984 return ModRefInfo::Ref; 985 986 // The AAResultBase base class has some smarts, lets use them. 987 return AAResultBase::getModRefInfo(Call, Loc, AAQI); 988 } 989 990 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1, 991 const CallBase *Call2, 992 AAQueryInfo &AAQI) { 993 // Guard intrinsics are marked as arbitrarily writing so that proper control 994 // dependencies are maintained but they never mods any particular memory 995 // location. 996 // 997 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 998 // heap state at the point the guard is issued needs to be consistent in case 999 // the guard invokes the "deopt" continuation. 1000 1001 // NB! This function is *not* commutative, so we special case two 1002 // possibilities for guard intrinsics. 1003 1004 if (isIntrinsicCall(Call1, Intrinsic::experimental_guard)) 1005 return isModSet(createModRefInfo(getModRefBehavior(Call2))) 1006 ? ModRefInfo::Ref 1007 : ModRefInfo::NoModRef; 1008 1009 if (isIntrinsicCall(Call2, Intrinsic::experimental_guard)) 1010 return isModSet(createModRefInfo(getModRefBehavior(Call1))) 1011 ? ModRefInfo::Mod 1012 : ModRefInfo::NoModRef; 1013 1014 // The AAResultBase base class has some smarts, lets use them. 1015 return AAResultBase::getModRefInfo(Call1, Call2, AAQI); 1016 } 1017 1018 /// Return true if we know V to the base address of the corresponding memory 1019 /// object. This implies that any address less than V must be out of bounds 1020 /// for the underlying object. Note that just being isIdentifiedObject() is 1021 /// not enough - For example, a negative offset from a noalias argument or call 1022 /// can be inbounds w.r.t the actual underlying object. 1023 static bool isBaseOfObject(const Value *V) { 1024 // TODO: We can handle other cases here 1025 // 1) For GC languages, arguments to functions are often required to be 1026 // base pointers. 1027 // 2) Result of allocation routines are often base pointers. Leverage TLI. 1028 return (isa<AllocaInst>(V) || isa<GlobalVariable>(V)); 1029 } 1030 1031 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 1032 /// another pointer. 1033 /// 1034 /// We know that V1 is a GEP, but we don't know anything about V2. 1035 /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for 1036 /// V2. 1037 AliasResult BasicAAResult::aliasGEP( 1038 const GEPOperator *GEP1, LocationSize V1Size, const AAMDNodes &V1AAInfo, 1039 const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo, 1040 const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) { 1041 DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT); 1042 DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT); 1043 1044 // Don't attempt to analyze the decomposed GEP if index scale is not a 1045 // compile-time constant. 1046 if (!DecompGEP1.HasCompileTimeConstantScale || 1047 !DecompGEP2.HasCompileTimeConstantScale) 1048 return MayAlias; 1049 1050 assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 && 1051 "DecomposeGEPExpression returned a result different from " 1052 "getUnderlyingObject"); 1053 1054 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1055 // symbolic difference. 1056 DecompGEP1.Offset -= DecompGEP2.Offset; 1057 GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices); 1058 1059 // If an inbounds GEP would have to start from an out of bounds address 1060 // for the two to alias, then we can assume noalias. 1061 if (*DecompGEP1.InBounds && DecompGEP1.VarIndices.empty() && 1062 V2Size.hasValue() && DecompGEP1.Offset.sge(V2Size.getValue()) && 1063 isBaseOfObject(DecompGEP2.Base)) 1064 return NoAlias; 1065 1066 if (isa<GEPOperator>(V2)) { 1067 // Symmetric case to above. 1068 if (*DecompGEP2.InBounds && DecompGEP1.VarIndices.empty() && 1069 V1Size.hasValue() && DecompGEP1.Offset.sle(-V1Size.getValue()) && 1070 isBaseOfObject(DecompGEP1.Base)) 1071 return NoAlias; 1072 } else { 1073 // TODO: This limitation exists for compile-time reasons. Relax it if we 1074 // can avoid exponential pathological cases. 1075 if (!V1Size.hasValue() && !V2Size.hasValue()) 1076 return MayAlias; 1077 } 1078 1079 // For GEPs with identical offsets, we can preserve the size and AAInfo 1080 // when performing the alias check on the underlying objects. 1081 if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty()) 1082 return getBestAAResults().alias( 1083 MemoryLocation(UnderlyingV1, V1Size, V1AAInfo), 1084 MemoryLocation(UnderlyingV2, V2Size, V2AAInfo), AAQI); 1085 1086 // Do the base pointers alias? 1087 AliasResult BaseAlias = getBestAAResults().alias( 1088 MemoryLocation::getBeforeOrAfter(UnderlyingV1), 1089 MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI); 1090 1091 // If we get a No or May, then return it immediately, no amount of analysis 1092 // will improve this situation. 1093 if (BaseAlias != MustAlias) { 1094 assert(BaseAlias == NoAlias || BaseAlias == MayAlias); 1095 return BaseAlias; 1096 } 1097 1098 // If there is a constant difference between the pointers, but the difference 1099 // is less than the size of the associated memory object, then we know 1100 // that the objects are partially overlapping. If the difference is 1101 // greater, we know they do not overlap. 1102 if (DecompGEP1.Offset != 0 && DecompGEP1.VarIndices.empty()) { 1103 APInt &Off = DecompGEP1.Offset; 1104 1105 // Initialize for Off >= 0 (V2 <= GEP1) case. 1106 const Value *LeftPtr = V2; 1107 const Value *RightPtr = GEP1; 1108 LocationSize VLeftSize = V2Size; 1109 LocationSize VRightSize = V1Size; 1110 1111 if (Off.isNegative()) { 1112 // Swap if we have the situation where: 1113 // + + 1114 // | BaseOffset | 1115 // ---------------->| 1116 // |-->V1Size |-------> V2Size 1117 // GEP1 V2 1118 std::swap(LeftPtr, RightPtr); 1119 std::swap(VLeftSize, VRightSize); 1120 Off = -Off; 1121 } 1122 1123 if (VLeftSize.hasValue()) { 1124 const uint64_t LSize = VLeftSize.getValue(); 1125 if (Off.ult(LSize)) { 1126 // Conservatively drop processing if a phi was visited and/or offset is 1127 // too big. 1128 if (VisitedPhiBBs.empty() && VRightSize.hasValue() && 1129 Off.ule(INT64_MAX)) { 1130 // Memory referenced by right pointer is nested. Save the offset in 1131 // cache. 1132 const uint64_t RSize = VRightSize.getValue(); 1133 if ((Off + RSize).ule(LSize)) 1134 AAQI.setClobberOffset(LeftPtr, RightPtr, LSize, RSize, 1135 Off.getSExtValue()); 1136 } 1137 return PartialAlias; 1138 } 1139 return NoAlias; 1140 } 1141 } 1142 1143 if (!DecompGEP1.VarIndices.empty()) { 1144 APInt GCD; 1145 bool AllNonNegative = DecompGEP1.Offset.isNonNegative(); 1146 bool AllNonPositive = DecompGEP1.Offset.isNonPositive(); 1147 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { 1148 const APInt &Scale = DecompGEP1.VarIndices[i].Scale; 1149 if (i == 0) 1150 GCD = Scale.abs(); 1151 else 1152 GCD = APIntOps::GreatestCommonDivisor(GCD, Scale.abs()); 1153 1154 if (AllNonNegative || AllNonPositive) { 1155 // If the Value could change between cycles, then any reasoning about 1156 // the Value this cycle may not hold in the next cycle. We'll just 1157 // give up if we can't determine conditions that hold for every cycle: 1158 const Value *V = DecompGEP1.VarIndices[i].V; 1159 const Instruction *CxtI = DecompGEP1.VarIndices[i].CxtI; 1160 1161 KnownBits Known = computeKnownBits(V, DL, 0, &AC, CxtI, DT); 1162 bool SignKnownZero = Known.isNonNegative(); 1163 bool SignKnownOne = Known.isNegative(); 1164 1165 // Zero-extension widens the variable, and so forces the sign 1166 // bit to zero. 1167 bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V); 1168 SignKnownZero |= IsZExt; 1169 SignKnownOne &= !IsZExt; 1170 1171 AllNonNegative &= (SignKnownZero && Scale.isNonNegative()) || 1172 (SignKnownOne && Scale.isNonPositive()); 1173 AllNonPositive &= (SignKnownZero && Scale.isNonPositive()) || 1174 (SignKnownOne && Scale.isNonNegative()); 1175 } 1176 } 1177 1178 // We now have accesses at two offsets from the same base: 1179 // 1. (...)*GCD + DecompGEP1.Offset with size V1Size 1180 // 2. 0 with size V2Size 1181 // Using arithmetic modulo GCD, the accesses are at 1182 // [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits 1183 // into the range [V2Size..GCD), then we know they cannot overlap. 1184 APInt ModOffset = DecompGEP1.Offset.srem(GCD); 1185 if (ModOffset.isNegative()) 1186 ModOffset += GCD; // We want mod, not rem. 1187 if (V1Size.hasValue() && V2Size.hasValue() && 1188 ModOffset.uge(V2Size.getValue()) && 1189 (GCD - ModOffset).uge(V1Size.getValue())) 1190 return NoAlias; 1191 1192 // If we know all the variables are non-negative, then the total offset is 1193 // also non-negative and >= DecompGEP1.Offset. We have the following layout: 1194 // [0, V2Size) ... [TotalOffset, TotalOffer+V1Size] 1195 // If DecompGEP1.Offset >= V2Size, the accesses don't alias. 1196 if (AllNonNegative && V2Size.hasValue() && 1197 DecompGEP1.Offset.uge(V2Size.getValue())) 1198 return NoAlias; 1199 // Similarly, if the variables are non-positive, then the total offset is 1200 // also non-positive and <= DecompGEP1.Offset. We have the following layout: 1201 // [TotalOffset, TotalOffset+V1Size) ... [0, V2Size) 1202 // If -DecompGEP1.Offset >= V1Size, the accesses don't alias. 1203 if (AllNonPositive && V1Size.hasValue() && 1204 (-DecompGEP1.Offset).uge(V1Size.getValue())) 1205 return NoAlias; 1206 1207 if (V1Size.hasValue() && V2Size.hasValue()) { 1208 // Try to determine whether abs(VarIndex) > 0. 1209 Optional<APInt> MinAbsVarIndex; 1210 if (DecompGEP1.VarIndices.size() == 1) { 1211 // VarIndex = Scale*V. If V != 0 then abs(VarIndex) >= abs(Scale). 1212 const VariableGEPIndex &Var = DecompGEP1.VarIndices[0]; 1213 if (isKnownNonZero(Var.V, DL, 0, &AC, Var.CxtI, DT)) 1214 MinAbsVarIndex = Var.Scale.abs(); 1215 } else if (DecompGEP1.VarIndices.size() == 2) { 1216 // VarIndex = Scale*V0 + (-Scale)*V1. 1217 // If V0 != V1 then abs(VarIndex) >= abs(Scale). 1218 // Check that VisitedPhiBBs is empty, to avoid reasoning about 1219 // inequality of values across loop iterations. 1220 const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0]; 1221 const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1]; 1222 if (Var0.Scale == -Var1.Scale && Var0.ZExtBits == Var1.ZExtBits && 1223 Var0.SExtBits == Var1.SExtBits && VisitedPhiBBs.empty() && 1224 isKnownNonEqual(Var0.V, Var1.V, DL, &AC, /* CxtI */ nullptr, DT)) 1225 MinAbsVarIndex = Var0.Scale.abs(); 1226 } 1227 1228 if (MinAbsVarIndex) { 1229 // The constant offset will have added at least +/-MinAbsVarIndex to it. 1230 APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex; 1231 APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex; 1232 // Check that an access at OffsetLo or lower, and an access at OffsetHi 1233 // or higher both do not alias. 1234 if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) && 1235 OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue())) 1236 return NoAlias; 1237 } 1238 } 1239 1240 if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size, 1241 DecompGEP1.Offset, &AC, DT)) 1242 return NoAlias; 1243 } 1244 1245 // Statically, we can see that the base objects are the same, but the 1246 // pointers have dynamic offsets which we can't resolve. And none of our 1247 // little tricks above worked. 1248 return MayAlias; 1249 } 1250 1251 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1252 // If the results agree, take it. 1253 if (A == B) 1254 return A; 1255 // A mix of PartialAlias and MustAlias is PartialAlias. 1256 if ((A == PartialAlias && B == MustAlias) || 1257 (B == PartialAlias && A == MustAlias)) 1258 return PartialAlias; 1259 // Otherwise, we don't know anything. 1260 return MayAlias; 1261 } 1262 1263 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1264 /// against another. 1265 AliasResult 1266 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize, 1267 const AAMDNodes &SIAAInfo, const Value *V2, 1268 LocationSize V2Size, const AAMDNodes &V2AAInfo, 1269 AAQueryInfo &AAQI) { 1270 // If the values are Selects with the same condition, we can do a more precise 1271 // check: just check for aliases between the values on corresponding arms. 1272 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1273 if (SI->getCondition() == SI2->getCondition()) { 1274 AliasResult Alias = getBestAAResults().alias( 1275 MemoryLocation(SI->getTrueValue(), SISize, SIAAInfo), 1276 MemoryLocation(SI2->getTrueValue(), V2Size, V2AAInfo), AAQI); 1277 if (Alias == MayAlias) 1278 return MayAlias; 1279 AliasResult ThisAlias = getBestAAResults().alias( 1280 MemoryLocation(SI->getFalseValue(), SISize, SIAAInfo), 1281 MemoryLocation(SI2->getFalseValue(), V2Size, V2AAInfo), AAQI); 1282 return MergeAliasResults(ThisAlias, Alias); 1283 } 1284 1285 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1286 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1287 AliasResult Alias = getBestAAResults().alias( 1288 MemoryLocation(V2, V2Size, V2AAInfo), 1289 MemoryLocation(SI->getTrueValue(), SISize, SIAAInfo), AAQI); 1290 if (Alias == MayAlias) 1291 return MayAlias; 1292 1293 AliasResult ThisAlias = getBestAAResults().alias( 1294 MemoryLocation(V2, V2Size, V2AAInfo), 1295 MemoryLocation(SI->getFalseValue(), SISize, SIAAInfo), AAQI); 1296 return MergeAliasResults(ThisAlias, Alias); 1297 } 1298 1299 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1300 /// another. 1301 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize, 1302 const AAMDNodes &PNAAInfo, const Value *V2, 1303 LocationSize V2Size, 1304 const AAMDNodes &V2AAInfo, 1305 AAQueryInfo &AAQI) { 1306 // If the values are PHIs in the same block, we can do a more precise 1307 // as well as efficient check: just check for aliases between the values 1308 // on corresponding edges. 1309 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1310 if (PN2->getParent() == PN->getParent()) { 1311 Optional<AliasResult> Alias; 1312 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1313 AliasResult ThisAlias = getBestAAResults().alias( 1314 MemoryLocation(PN->getIncomingValue(i), PNSize, PNAAInfo), 1315 MemoryLocation( 1316 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size, 1317 V2AAInfo), 1318 AAQI); 1319 if (Alias) 1320 *Alias = MergeAliasResults(*Alias, ThisAlias); 1321 else 1322 Alias = ThisAlias; 1323 if (*Alias == MayAlias) 1324 break; 1325 } 1326 return *Alias; 1327 } 1328 1329 SmallVector<Value *, 4> V1Srcs; 1330 // If a phi operand recurses back to the phi, we can still determine NoAlias 1331 // if we don't alias the underlying objects of the other phi operands, as we 1332 // know that the recursive phi needs to be based on them in some way. 1333 bool isRecursive = false; 1334 auto CheckForRecPhi = [&](Value *PV) { 1335 if (!EnableRecPhiAnalysis) 1336 return false; 1337 if (getUnderlyingObject(PV) == PN) { 1338 isRecursive = true; 1339 return true; 1340 } 1341 return false; 1342 }; 1343 1344 if (PV) { 1345 // If we have PhiValues then use it to get the underlying phi values. 1346 const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN); 1347 // If we have more phi values than the search depth then return MayAlias 1348 // conservatively to avoid compile time explosion. The worst possible case 1349 // is if both sides are PHI nodes. In which case, this is O(m x n) time 1350 // where 'm' and 'n' are the number of PHI sources. 1351 if (PhiValueSet.size() > MaxLookupSearchDepth) 1352 return MayAlias; 1353 // Add the values to V1Srcs 1354 for (Value *PV1 : PhiValueSet) { 1355 if (CheckForRecPhi(PV1)) 1356 continue; 1357 V1Srcs.push_back(PV1); 1358 } 1359 } else { 1360 // If we don't have PhiInfo then just look at the operands of the phi itself 1361 // FIXME: Remove this once we can guarantee that we have PhiInfo always 1362 SmallPtrSet<Value *, 4> UniqueSrc; 1363 Value *OnePhi = nullptr; 1364 for (Value *PV1 : PN->incoming_values()) { 1365 if (isa<PHINode>(PV1)) { 1366 if (OnePhi && OnePhi != PV1) { 1367 // To control potential compile time explosion, we choose to be 1368 // conserviate when we have more than one Phi input. It is important 1369 // that we handle the single phi case as that lets us handle LCSSA 1370 // phi nodes and (combined with the recursive phi handling) simple 1371 // pointer induction variable patterns. 1372 return MayAlias; 1373 } 1374 OnePhi = PV1; 1375 } 1376 1377 if (CheckForRecPhi(PV1)) 1378 continue; 1379 1380 if (UniqueSrc.insert(PV1).second) 1381 V1Srcs.push_back(PV1); 1382 } 1383 1384 if (OnePhi && UniqueSrc.size() > 1) 1385 // Out of an abundance of caution, allow only the trivial lcssa and 1386 // recursive phi cases. 1387 return MayAlias; 1388 } 1389 1390 // If V1Srcs is empty then that means that the phi has no underlying non-phi 1391 // value. This should only be possible in blocks unreachable from the entry 1392 // block, but return MayAlias just in case. 1393 if (V1Srcs.empty()) 1394 return MayAlias; 1395 1396 // If this PHI node is recursive, indicate that the pointer may be moved 1397 // across iterations. We can only prove NoAlias if different underlying 1398 // objects are involved. 1399 if (isRecursive) 1400 PNSize = LocationSize::beforeOrAfterPointer(); 1401 1402 // In the recursive alias queries below, we may compare values from two 1403 // different loop iterations. Keep track of visited phi blocks, which will 1404 // be used when determining value equivalence. 1405 bool BlockInserted = VisitedPhiBBs.insert(PN->getParent()).second; 1406 auto _ = make_scope_exit([&]() { 1407 if (BlockInserted) 1408 VisitedPhiBBs.erase(PN->getParent()); 1409 }); 1410 1411 // If we inserted a block into VisitedPhiBBs, alias analysis results that 1412 // have been cached earlier may no longer be valid. Perform recursive queries 1413 // with a new AAQueryInfo. 1414 AAQueryInfo NewAAQI = AAQI.withEmptyCache(); 1415 AAQueryInfo *UseAAQI = BlockInserted ? &NewAAQI : &AAQI; 1416 1417 AliasResult Alias = getBestAAResults().alias( 1418 MemoryLocation(V2, V2Size, V2AAInfo), 1419 MemoryLocation(V1Srcs[0], PNSize, PNAAInfo), *UseAAQI); 1420 1421 // Early exit if the check of the first PHI source against V2 is MayAlias. 1422 // Other results are not possible. 1423 if (Alias == MayAlias) 1424 return MayAlias; 1425 // With recursive phis we cannot guarantee that MustAlias/PartialAlias will 1426 // remain valid to all elements and needs to conservatively return MayAlias. 1427 if (isRecursive && Alias != NoAlias) 1428 return MayAlias; 1429 1430 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1431 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1432 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1433 Value *V = V1Srcs[i]; 1434 1435 AliasResult ThisAlias = getBestAAResults().alias( 1436 MemoryLocation(V2, V2Size, V2AAInfo), 1437 MemoryLocation(V, PNSize, PNAAInfo), *UseAAQI); 1438 Alias = MergeAliasResults(ThisAlias, Alias); 1439 if (Alias == MayAlias) 1440 break; 1441 } 1442 1443 return Alias; 1444 } 1445 1446 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1447 /// array references. 1448 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size, 1449 const AAMDNodes &V1AAInfo, 1450 const Value *V2, LocationSize V2Size, 1451 const AAMDNodes &V2AAInfo, 1452 AAQueryInfo &AAQI) { 1453 // If either of the memory references is empty, it doesn't matter what the 1454 // pointer values are. 1455 if (V1Size.isZero() || V2Size.isZero()) 1456 return NoAlias; 1457 1458 // Strip off any casts if they exist. 1459 V1 = V1->stripPointerCastsForAliasAnalysis(); 1460 V2 = V2->stripPointerCastsForAliasAnalysis(); 1461 1462 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1463 // value for undef that aliases nothing in the program. 1464 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1465 return NoAlias; 1466 1467 // Are we checking for alias of the same value? 1468 // Because we look 'through' phi nodes, we could look at "Value" pointers from 1469 // different iterations. We must therefore make sure that this is not the 1470 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1471 // happen by looking at the visited phi nodes and making sure they cannot 1472 // reach the value. 1473 if (isValueEqualInPotentialCycles(V1, V2)) 1474 return MustAlias; 1475 1476 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1477 return NoAlias; // Scalars cannot alias each other 1478 1479 // Figure out what objects these things are pointing to if we can. 1480 const Value *O1 = getUnderlyingObject(V1, MaxLookupSearchDepth); 1481 const Value *O2 = getUnderlyingObject(V2, MaxLookupSearchDepth); 1482 1483 // Null values in the default address space don't point to any object, so they 1484 // don't alias any other pointer. 1485 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1486 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1487 return NoAlias; 1488 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1489 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1490 return NoAlias; 1491 1492 if (O1 != O2) { 1493 // If V1/V2 point to two different objects, we know that we have no alias. 1494 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1495 return NoAlias; 1496 1497 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1498 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1499 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1500 return NoAlias; 1501 1502 // Function arguments can't alias with things that are known to be 1503 // unambigously identified at the function level. 1504 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1505 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1506 return NoAlias; 1507 1508 // If one pointer is the result of a call/invoke or load and the other is a 1509 // non-escaping local object within the same function, then we know the 1510 // object couldn't escape to a point where the call could return it. 1511 // 1512 // Note that if the pointers are in different functions, there are a 1513 // variety of complications. A call with a nocapture argument may still 1514 // temporary store the nocapture argument's value in a temporary memory 1515 // location if that memory location doesn't escape. Or it may pass a 1516 // nocapture value to other functions as long as they don't capture it. 1517 if (isEscapeSource(O1) && 1518 isNonEscapingLocalObject(O2, &AAQI.IsCapturedCache)) 1519 return NoAlias; 1520 if (isEscapeSource(O2) && 1521 isNonEscapingLocalObject(O1, &AAQI.IsCapturedCache)) 1522 return NoAlias; 1523 } 1524 1525 // If the size of one access is larger than the entire object on the other 1526 // side, then we know such behavior is undefined and can assume no alias. 1527 bool NullIsValidLocation = NullPointerIsDefined(&F); 1528 if ((isObjectSmallerThan( 1529 O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL, 1530 TLI, NullIsValidLocation)) || 1531 (isObjectSmallerThan( 1532 O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL, 1533 TLI, NullIsValidLocation))) 1534 return NoAlias; 1535 1536 // If one the accesses may be before the accessed pointer, canonicalize this 1537 // by using unknown after-pointer sizes for both accesses. This is 1538 // equivalent, because regardless of which pointer is lower, one of them 1539 // will always came after the other, as long as the underlying objects aren't 1540 // disjoint. We do this so that the rest of BasicAA does not have to deal 1541 // with accesses before the base pointer, and to improve cache utilization by 1542 // merging equivalent states. 1543 if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) { 1544 V1Size = LocationSize::afterPointer(); 1545 V2Size = LocationSize::afterPointer(); 1546 } 1547 1548 // FIXME: If this depth limit is hit, then we may cache sub-optimal results 1549 // for recursive queries. For this reason, this limit is chosen to be large 1550 // enough to be very rarely hit, while still being small enough to avoid 1551 // stack overflows. 1552 if (AAQI.Depth >= 512) 1553 return MayAlias; 1554 1555 // Check the cache before climbing up use-def chains. This also terminates 1556 // otherwise infinitely recursive queries. 1557 AAQueryInfo::LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo), 1558 MemoryLocation(V2, V2Size, V2AAInfo)); 1559 if (V1 > V2) 1560 std::swap(Locs.first, Locs.second); 1561 const auto &Pair = AAQI.AliasCache.try_emplace( 1562 Locs, AAQueryInfo::CacheEntry{NoAlias, 0}); 1563 if (!Pair.second) { 1564 auto &Entry = Pair.first->second; 1565 if (!Entry.isDefinitive()) { 1566 // Remember that we used an assumption. 1567 ++Entry.NumAssumptionUses; 1568 ++AAQI.NumAssumptionUses; 1569 } 1570 return Entry.Result; 1571 } 1572 1573 int OrigNumAssumptionUses = AAQI.NumAssumptionUses; 1574 unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size(); 1575 AliasResult Result = aliasCheckRecursive(V1, V1Size, V1AAInfo, V2, V2Size, 1576 V2AAInfo, AAQI, O1, O2); 1577 1578 auto It = AAQI.AliasCache.find(Locs); 1579 assert(It != AAQI.AliasCache.end() && "Must be in cache"); 1580 auto &Entry = It->second; 1581 1582 // Check whether a NoAlias assumption has been used, but disproven. 1583 bool AssumptionDisproven = Entry.NumAssumptionUses > 0 && Result != NoAlias; 1584 if (AssumptionDisproven) 1585 Result = MayAlias; 1586 1587 // This is a definitive result now, when considered as a root query. 1588 AAQI.NumAssumptionUses -= Entry.NumAssumptionUses; 1589 Entry.Result = Result; 1590 Entry.NumAssumptionUses = -1; 1591 1592 // If the assumption has been disproven, remove any results that may have 1593 // been based on this assumption. Do this after the Entry updates above to 1594 // avoid iterator invalidation. 1595 if (AssumptionDisproven) 1596 while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults) 1597 AAQI.AliasCache.erase(AAQI.AssumptionBasedResults.pop_back_val()); 1598 1599 // The result may still be based on assumptions higher up in the chain. 1600 // Remember it, so it can be purged from the cache later. 1601 if (OrigNumAssumptionUses != AAQI.NumAssumptionUses && Result != MayAlias) 1602 AAQI.AssumptionBasedResults.push_back(Locs); 1603 return Result; 1604 } 1605 1606 AliasResult BasicAAResult::aliasCheckRecursive( 1607 const Value *V1, LocationSize V1Size, const AAMDNodes &V1AAInfo, 1608 const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo, 1609 AAQueryInfo &AAQI, const Value *O1, const Value *O2) { 1610 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1611 AliasResult Result = 1612 aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2, AAQI); 1613 if (Result != MayAlias) 1614 return Result; 1615 } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) { 1616 AliasResult Result = 1617 aliasGEP(GV2, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, O2, O1, AAQI); 1618 if (Result != MayAlias) 1619 return Result; 1620 } 1621 1622 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1623 AliasResult Result = 1624 aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, AAQI); 1625 if (Result != MayAlias) 1626 return Result; 1627 } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) { 1628 AliasResult Result = 1629 aliasPHI(PN, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, AAQI); 1630 if (Result != MayAlias) 1631 return Result; 1632 } 1633 1634 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1635 AliasResult Result = 1636 aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, AAQI); 1637 if (Result != MayAlias) 1638 return Result; 1639 } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) { 1640 AliasResult Result = 1641 aliasSelect(S2, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, AAQI); 1642 if (Result != MayAlias) 1643 return Result; 1644 } 1645 1646 // If both pointers are pointing into the same object and one of them 1647 // accesses the entire object, then the accesses must overlap in some way. 1648 if (O1 == O2) { 1649 bool NullIsValidLocation = NullPointerIsDefined(&F); 1650 if (V1Size.isPrecise() && V2Size.isPrecise() && 1651 (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) || 1652 isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation))) 1653 return PartialAlias; 1654 } 1655 1656 return MayAlias; 1657 } 1658 1659 /// Check whether two Values can be considered equivalent. 1660 /// 1661 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether 1662 /// they can not be part of a cycle in the value graph by looking at all 1663 /// visited phi nodes an making sure that the phis cannot reach the value. We 1664 /// have to do this because we are looking through phi nodes (That is we say 1665 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1666 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1667 const Value *V2) { 1668 if (V != V2) 1669 return false; 1670 1671 const Instruction *Inst = dyn_cast<Instruction>(V); 1672 if (!Inst) 1673 return true; 1674 1675 if (VisitedPhiBBs.empty()) 1676 return true; 1677 1678 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1679 return false; 1680 1681 // Make sure that the visited phis cannot reach the Value. This ensures that 1682 // the Values cannot come from different iterations of a potential cycle the 1683 // phi nodes could be involved in. 1684 for (auto *P : VisitedPhiBBs) 1685 if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT)) 1686 return false; 1687 1688 return true; 1689 } 1690 1691 /// Computes the symbolic difference between two de-composed GEPs. 1692 /// 1693 /// Dest and Src are the variable indices from two decomposed GetElementPtr 1694 /// instructions GEP1 and GEP2 which have common base pointers. 1695 void BasicAAResult::GetIndexDifference( 1696 SmallVectorImpl<VariableGEPIndex> &Dest, 1697 const SmallVectorImpl<VariableGEPIndex> &Src) { 1698 if (Src.empty()) 1699 return; 1700 1701 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1702 const Value *V = Src[i].V; 1703 unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits; 1704 APInt Scale = Src[i].Scale; 1705 1706 // Find V in Dest. This is N^2, but pointer indices almost never have more 1707 // than a few variable indexes. 1708 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1709 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1710 Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits) 1711 continue; 1712 1713 // If we found it, subtract off Scale V's from the entry in Dest. If it 1714 // goes to zero, remove the entry. 1715 if (Dest[j].Scale != Scale) 1716 Dest[j].Scale -= Scale; 1717 else 1718 Dest.erase(Dest.begin() + j); 1719 Scale = 0; 1720 break; 1721 } 1722 1723 // If we didn't consume this entry, add it to the end of the Dest list. 1724 if (!!Scale) { 1725 VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale, Src[i].CxtI}; 1726 Dest.push_back(Entry); 1727 } 1728 } 1729 } 1730 1731 bool BasicAAResult::constantOffsetHeuristic( 1732 const SmallVectorImpl<VariableGEPIndex> &VarIndices, 1733 LocationSize MaybeV1Size, LocationSize MaybeV2Size, const APInt &BaseOffset, 1734 AssumptionCache *AC, DominatorTree *DT) { 1735 if (VarIndices.size() != 2 || !MaybeV1Size.hasValue() || 1736 !MaybeV2Size.hasValue()) 1737 return false; 1738 1739 const uint64_t V1Size = MaybeV1Size.getValue(); 1740 const uint64_t V2Size = MaybeV2Size.getValue(); 1741 1742 const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1]; 1743 1744 if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits || 1745 Var0.Scale != -Var1.Scale) 1746 return false; 1747 1748 unsigned Width = Var1.V->getType()->getIntegerBitWidth(); 1749 1750 // We'll strip off the Extensions of Var0 and Var1 and do another round 1751 // of GetLinearExpression decomposition. In the example above, if Var0 1752 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 1753 1754 APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0), 1755 V1Offset(Width, 0); 1756 bool NSW = true, NUW = true; 1757 unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0; 1758 const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits, 1759 V0SExtBits, DL, 0, AC, DT, NSW, NUW); 1760 NSW = true; 1761 NUW = true; 1762 const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits, 1763 V1SExtBits, DL, 0, AC, DT, NSW, NUW); 1764 1765 if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits || 1766 V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1)) 1767 return false; 1768 1769 // We have a hit - Var0 and Var1 only differ by a constant offset! 1770 1771 // If we've been sext'ed then zext'd the maximum difference between Var0 and 1772 // Var1 is possible to calculate, but we're just interested in the absolute 1773 // minimum difference between the two. The minimum distance may occur due to 1774 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 1775 // the minimum distance between %i and %i + 5 is 3. 1776 APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff; 1777 MinDiff = APIntOps::umin(MinDiff, Wrapped); 1778 APInt MinDiffBytes = 1779 MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs(); 1780 1781 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 1782 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 1783 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 1784 // V2Size can fit in the MinDiffBytes gap. 1785 return MinDiffBytes.uge(V1Size + BaseOffset.abs()) && 1786 MinDiffBytes.uge(V2Size + BaseOffset.abs()); 1787 } 1788 1789 //===----------------------------------------------------------------------===// 1790 // BasicAliasAnalysis Pass 1791 //===----------------------------------------------------------------------===// 1792 1793 AnalysisKey BasicAA::Key; 1794 1795 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) { 1796 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1797 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1798 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 1799 auto *PV = AM.getCachedResult<PhiValuesAnalysis>(F); 1800 return BasicAAResult(F.getParent()->getDataLayout(), F, TLI, AC, DT, PV); 1801 } 1802 1803 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 1804 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1805 } 1806 1807 char BasicAAWrapperPass::ID = 0; 1808 1809 void BasicAAWrapperPass::anchor() {} 1810 1811 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa", 1812 "Basic Alias Analysis (stateless AA impl)", true, true) 1813 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1814 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1815 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1816 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass) 1817 INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa", 1818 "Basic Alias Analysis (stateless AA impl)", true, true) 1819 1820 FunctionPass *llvm::createBasicAAWrapperPass() { 1821 return new BasicAAWrapperPass(); 1822 } 1823 1824 bool BasicAAWrapperPass::runOnFunction(Function &F) { 1825 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 1826 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 1827 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); 1828 auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>(); 1829 1830 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F, 1831 TLIWP.getTLI(F), ACT.getAssumptionCache(F), 1832 &DTWP.getDomTree(), 1833 PVWP ? &PVWP->getResult() : nullptr)); 1834 1835 return false; 1836 } 1837 1838 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1839 AU.setPreservesAll(); 1840 AU.addRequiredTransitive<AssumptionCacheTracker>(); 1841 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 1842 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 1843 AU.addUsedIfAvailable<PhiValuesWrapperPass>(); 1844 } 1845 1846 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { 1847 return BasicAAResult( 1848 F.getParent()->getDataLayout(), F, 1849 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 1850 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 1851 } 1852