1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the primary stateless implementation of the
10 // Alias Analysis interface that implements identities (two different
11 // globals cannot alias, etc), but does no stateful analysis.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/BasicAliasAnalysis.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/PhiValues.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GetElementPtrTypeIterator.h"
40 #include "llvm/IR/GlobalAlias.h"
41 #include "llvm/IR/GlobalVariable.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/Operator.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/KnownBits.h"
58 #include <cassert>
59 #include <cstdint>
60 #include <cstdlib>
61 #include <utility>
62 
63 #define DEBUG_TYPE "basicaa"
64 
65 using namespace llvm;
66 
67 /// Enable analysis of recursive PHI nodes.
68 static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden,
69                                           cl::init(true));
70 
71 /// By default, even on 32-bit architectures we use 64-bit integers for
72 /// calculations. This will allow us to more-aggressively decompose indexing
73 /// expressions calculated using i64 values (e.g., long long in C) which is
74 /// common enough to worry about.
75 static cl::opt<bool> ForceAtLeast64Bits("basic-aa-force-at-least-64b",
76                                         cl::Hidden, cl::init(true));
77 static cl::opt<bool> DoubleCalcBits("basic-aa-double-calc-bits",
78                                     cl::Hidden, cl::init(false));
79 
80 /// SearchLimitReached / SearchTimes shows how often the limit of
81 /// to decompose GEPs is reached. It will affect the precision
82 /// of basic alias analysis.
83 STATISTIC(SearchLimitReached, "Number of times the limit to "
84                               "decompose GEPs is reached");
85 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
86 
87 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
88 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
89 /// careful with value equivalence. We use reachability to make sure a value
90 /// cannot be involved in a cycle.
91 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
92 
93 // The max limit of the search depth in DecomposeGEPExpression() and
94 // getUnderlyingObject(), both functions need to use the same search
95 // depth otherwise the algorithm in aliasGEP will assert.
96 static const unsigned MaxLookupSearchDepth = 6;
97 
98 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
99                                FunctionAnalysisManager::Invalidator &Inv) {
100   // We don't care if this analysis itself is preserved, it has no state. But
101   // we need to check that the analyses it depends on have been. Note that we
102   // may be created without handles to some analyses and in that case don't
103   // depend on them.
104   if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
105       (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) ||
106       (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA)))
107     return true;
108 
109   // Otherwise this analysis result remains valid.
110   return false;
111 }
112 
113 //===----------------------------------------------------------------------===//
114 // Useful predicates
115 //===----------------------------------------------------------------------===//
116 
117 /// Returns true if the pointer is one which would have been considered an
118 /// escape by isNonEscapingLocalObject.
119 static bool isEscapeSource(const Value *V) {
120   if (isa<CallBase>(V))
121     return true;
122 
123   if (isa<Argument>(V))
124     return true;
125 
126   // The load case works because isNonEscapingLocalObject considers all
127   // stores to be escapes (it passes true for the StoreCaptures argument
128   // to PointerMayBeCaptured).
129   if (isa<LoadInst>(V))
130     return true;
131 
132   return false;
133 }
134 
135 /// Returns the size of the object specified by V or UnknownSize if unknown.
136 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
137                               const TargetLibraryInfo &TLI,
138                               bool NullIsValidLoc,
139                               bool RoundToAlign = false) {
140   uint64_t Size;
141   ObjectSizeOpts Opts;
142   Opts.RoundToAlign = RoundToAlign;
143   Opts.NullIsUnknownSize = NullIsValidLoc;
144   if (getObjectSize(V, Size, DL, &TLI, Opts))
145     return Size;
146   return MemoryLocation::UnknownSize;
147 }
148 
149 /// Returns true if we can prove that the object specified by V is smaller than
150 /// Size.
151 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
152                                 const DataLayout &DL,
153                                 const TargetLibraryInfo &TLI,
154                                 bool NullIsValidLoc) {
155   // Note that the meanings of the "object" are slightly different in the
156   // following contexts:
157   //    c1: llvm::getObjectSize()
158   //    c2: llvm.objectsize() intrinsic
159   //    c3: isObjectSmallerThan()
160   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
161   // refers to the "entire object".
162   //
163   //  Consider this example:
164   //     char *p = (char*)malloc(100)
165   //     char *q = p+80;
166   //
167   //  In the context of c1 and c2, the "object" pointed by q refers to the
168   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
169   //
170   //  However, in the context of c3, the "object" refers to the chunk of memory
171   // being allocated. So, the "object" has 100 bytes, and q points to the middle
172   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
173   // parameter, before the llvm::getObjectSize() is called to get the size of
174   // entire object, we should:
175   //    - either rewind the pointer q to the base-address of the object in
176   //      question (in this case rewind to p), or
177   //    - just give up. It is up to caller to make sure the pointer is pointing
178   //      to the base address the object.
179   //
180   // We go for 2nd option for simplicity.
181   if (!isIdentifiedObject(V))
182     return false;
183 
184   // This function needs to use the aligned object size because we allow
185   // reads a bit past the end given sufficient alignment.
186   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
187                                       /*RoundToAlign*/ true);
188 
189   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
190 }
191 
192 /// Return the minimal extent from \p V to the end of the underlying object,
193 /// assuming the result is used in an aliasing query. E.g., we do use the query
194 /// location size and the fact that null pointers cannot alias here.
195 static uint64_t getMinimalExtentFrom(const Value &V,
196                                      const LocationSize &LocSize,
197                                      const DataLayout &DL,
198                                      bool NullIsValidLoc) {
199   // If we have dereferenceability information we know a lower bound for the
200   // extent as accesses for a lower offset would be valid. We need to exclude
201   // the "or null" part if null is a valid pointer.
202   bool CanBeNull, CanBeFreed;
203   uint64_t DerefBytes =
204     V.getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
205   DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes;
206   DerefBytes = CanBeFreed ? 0 : DerefBytes;
207   // If queried with a precise location size, we assume that location size to be
208   // accessed, thus valid.
209   if (LocSize.isPrecise())
210     DerefBytes = std::max(DerefBytes, LocSize.getValue());
211   return DerefBytes;
212 }
213 
214 /// Returns true if we can prove that the object specified by V has size Size.
215 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
216                          const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
217   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc);
218   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
219 }
220 
221 //===----------------------------------------------------------------------===//
222 // GetElementPtr Instruction Decomposition and Analysis
223 //===----------------------------------------------------------------------===//
224 
225 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
226 /// B are constant integers.
227 ///
228 /// Returns the scale and offset values as APInts and return V as a Value*, and
229 /// return whether we looked through any sign or zero extends.  The incoming
230 /// Value is known to have IntegerType, and it may already be sign or zero
231 /// extended.
232 ///
233 /// Note that this looks through extends, so the high bits may not be
234 /// represented in the result.
235 /*static*/ const Value *BasicAAResult::GetLinearExpression(
236     const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
237     unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
238     AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
239   assert(V->getType()->isIntegerTy() && "Not an integer value");
240 
241   // Limit our recursion depth.
242   if (Depth == 6) {
243     Scale = 1;
244     Offset = 0;
245     return V;
246   }
247 
248   if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
249     // If it's a constant, just convert it to an offset and remove the variable.
250     // If we've been called recursively, the Offset bit width will be greater
251     // than the constant's (the Offset's always as wide as the outermost call),
252     // so we'll zext here and process any extension in the isa<SExtInst> &
253     // isa<ZExtInst> cases below.
254     Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
255     assert(Scale == 0 && "Constant values don't have a scale");
256     return V;
257   }
258 
259   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
260     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
261       // If we've been called recursively, then Offset and Scale will be wider
262       // than the BOp operands. We'll always zext it here as we'll process sign
263       // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
264       APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
265 
266       switch (BOp->getOpcode()) {
267       default:
268         // We don't understand this instruction, so we can't decompose it any
269         // further.
270         Scale = 1;
271         Offset = 0;
272         return V;
273       case Instruction::Or:
274         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
275         // analyze it.
276         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
277                                BOp, DT)) {
278           Scale = 1;
279           Offset = 0;
280           return V;
281         }
282         LLVM_FALLTHROUGH;
283       case Instruction::Add:
284         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
285                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
286         Offset += RHS;
287         break;
288       case Instruction::Sub:
289         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
290                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
291         Offset -= RHS;
292         break;
293       case Instruction::Mul:
294         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
295                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
296         Offset *= RHS;
297         Scale *= RHS;
298         break;
299       case Instruction::Shl:
300         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
301                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
302 
303         // We're trying to linearize an expression of the kind:
304         //   shl i8 -128, 36
305         // where the shift count exceeds the bitwidth of the type.
306         // We can't decompose this further (the expression would return
307         // a poison value).
308         if (Offset.getBitWidth() < RHS.getLimitedValue() ||
309             Scale.getBitWidth() < RHS.getLimitedValue()) {
310           Scale = 1;
311           Offset = 0;
312           return V;
313         }
314 
315         Offset <<= RHS.getLimitedValue();
316         Scale <<= RHS.getLimitedValue();
317         // the semantics of nsw and nuw for left shifts don't match those of
318         // multiplications, so we won't propagate them.
319         NSW = NUW = false;
320         return V;
321       }
322 
323       if (isa<OverflowingBinaryOperator>(BOp)) {
324         NUW &= BOp->hasNoUnsignedWrap();
325         NSW &= BOp->hasNoSignedWrap();
326       }
327       return V;
328     }
329   }
330 
331   // Since GEP indices are sign extended anyway, we don't care about the high
332   // bits of a sign or zero extended value - just scales and offsets.  The
333   // extensions have to be consistent though.
334   if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
335     Value *CastOp = cast<CastInst>(V)->getOperand(0);
336     unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
337     unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
338     unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
339     const Value *Result =
340         GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
341                             Depth + 1, AC, DT, NSW, NUW);
342 
343     // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this
344     // by just incrementing the number of bits we've extended by.
345     unsigned ExtendedBy = NewWidth - SmallWidth;
346 
347     if (isa<SExtInst>(V) && ZExtBits == 0) {
348       // sext(sext(%x, a), b) == sext(%x, a + b)
349 
350       if (NSW) {
351         // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
352         // into sext(%x) + sext(c). We'll sext the Offset ourselves:
353         unsigned OldWidth = Offset.getBitWidth();
354         Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
355       } else {
356         // We may have signed-wrapped, so don't decompose sext(%x + c) into
357         // sext(%x) + sext(c)
358         Scale = 1;
359         Offset = 0;
360         Result = CastOp;
361         ZExtBits = OldZExtBits;
362         SExtBits = OldSExtBits;
363       }
364       SExtBits += ExtendedBy;
365     } else {
366       // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
367 
368       if (!NUW) {
369         // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
370         // zext(%x) + zext(c)
371         Scale = 1;
372         Offset = 0;
373         Result = CastOp;
374         ZExtBits = OldZExtBits;
375         SExtBits = OldSExtBits;
376       }
377       ZExtBits += ExtendedBy;
378     }
379 
380     return Result;
381   }
382 
383   Scale = 1;
384   Offset = 0;
385   return V;
386 }
387 
388 /// To ensure a pointer offset fits in an integer of size PointerSize
389 /// (in bits) when that size is smaller than the maximum pointer size. This is
390 /// an issue, for example, in particular for 32b pointers with negative indices
391 /// that rely on two's complement wrap-arounds for precise alias information
392 /// where the maximum pointer size is 64b.
393 static APInt adjustToPointerSize(const APInt &Offset, unsigned PointerSize) {
394   assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!");
395   unsigned ShiftBits = Offset.getBitWidth() - PointerSize;
396   return (Offset << ShiftBits).ashr(ShiftBits);
397 }
398 
399 static unsigned getMaxPointerSize(const DataLayout &DL) {
400   unsigned MaxPointerSize = DL.getMaxPointerSizeInBits();
401   if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64;
402   if (DoubleCalcBits) MaxPointerSize *= 2;
403 
404   return MaxPointerSize;
405 }
406 
407 /// If V is a symbolic pointer expression, decompose it into a base pointer
408 /// with a constant offset and a number of scaled symbolic offsets.
409 ///
410 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
411 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
412 /// specified amount, but which may have other unrepresented high bits. As
413 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
414 ///
415 /// This function is capable of analyzing everything that getUnderlyingObject
416 /// can look through. To be able to do that getUnderlyingObject and
417 /// DecomposeGEPExpression must use the same search depth
418 /// (MaxLookupSearchDepth).
419 BasicAAResult::DecomposedGEP
420 BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL,
421                                       AssumptionCache *AC, DominatorTree *DT) {
422   // Limit recursion depth to limit compile time in crazy cases.
423   unsigned MaxLookup = MaxLookupSearchDepth;
424   SearchTimes++;
425   const Instruction *CxtI = dyn_cast<Instruction>(V);
426 
427   unsigned MaxPointerSize = getMaxPointerSize(DL);
428   DecomposedGEP Decomposed;
429   Decomposed.Offset = APInt(MaxPointerSize, 0);
430   Decomposed.HasCompileTimeConstantScale = true;
431   do {
432     // See if this is a bitcast or GEP.
433     const Operator *Op = dyn_cast<Operator>(V);
434     if (!Op) {
435       // The only non-operator case we can handle are GlobalAliases.
436       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
437         if (!GA->isInterposable()) {
438           V = GA->getAliasee();
439           continue;
440         }
441       }
442       Decomposed.Base = V;
443       return Decomposed;
444     }
445 
446     if (Op->getOpcode() == Instruction::BitCast ||
447         Op->getOpcode() == Instruction::AddrSpaceCast) {
448       V = Op->getOperand(0);
449       continue;
450     }
451 
452     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
453     if (!GEPOp) {
454       if (const auto *PHI = dyn_cast<PHINode>(V)) {
455         // Look through single-arg phi nodes created by LCSSA.
456         if (PHI->getNumIncomingValues() == 1) {
457           V = PHI->getIncomingValue(0);
458           continue;
459         }
460       } else if (const auto *Call = dyn_cast<CallBase>(V)) {
461         // CaptureTracking can know about special capturing properties of some
462         // intrinsics like launder.invariant.group, that can't be expressed with
463         // the attributes, but have properties like returning aliasing pointer.
464         // Because some analysis may assume that nocaptured pointer is not
465         // returned from some special intrinsic (because function would have to
466         // be marked with returns attribute), it is crucial to use this function
467         // because it should be in sync with CaptureTracking. Not using it may
468         // cause weird miscompilations where 2 aliasing pointers are assumed to
469         // noalias.
470         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
471           V = RP;
472           continue;
473         }
474       }
475 
476       Decomposed.Base = V;
477       return Decomposed;
478     }
479 
480     // Track whether we've seen at least one in bounds gep, and if so, whether
481     // all geps parsed were in bounds.
482     if (Decomposed.InBounds == None)
483       Decomposed.InBounds = GEPOp->isInBounds();
484     else if (!GEPOp->isInBounds())
485       Decomposed.InBounds = false;
486 
487     // Don't attempt to analyze GEPs over unsized objects.
488     if (!GEPOp->getSourceElementType()->isSized()) {
489       Decomposed.Base = V;
490       return Decomposed;
491     }
492 
493     // Don't attempt to analyze GEPs if index scale is not a compile-time
494     // constant.
495     if (isa<ScalableVectorType>(GEPOp->getSourceElementType())) {
496       Decomposed.Base = V;
497       Decomposed.HasCompileTimeConstantScale = false;
498       return Decomposed;
499     }
500 
501     unsigned AS = GEPOp->getPointerAddressSpace();
502     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
503     gep_type_iterator GTI = gep_type_begin(GEPOp);
504     unsigned PointerSize = DL.getPointerSizeInBits(AS);
505     // Assume all GEP operands are constants until proven otherwise.
506     bool GepHasConstantOffset = true;
507     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
508          I != E; ++I, ++GTI) {
509       const Value *Index = *I;
510       // Compute the (potentially symbolic) offset in bytes for this index.
511       if (StructType *STy = GTI.getStructTypeOrNull()) {
512         // For a struct, add the member offset.
513         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
514         if (FieldNo == 0)
515           continue;
516 
517         Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo);
518         continue;
519       }
520 
521       // For an array/pointer, add the element offset, explicitly scaled.
522       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
523         if (CIdx->isZero())
524           continue;
525         Decomposed.Offset +=
526             DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize() *
527             CIdx->getValue().sextOrTrunc(MaxPointerSize);
528         continue;
529       }
530 
531       GepHasConstantOffset = false;
532 
533       APInt Scale(MaxPointerSize,
534                   DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize());
535       unsigned ZExtBits = 0, SExtBits = 0;
536 
537       // If the integer type is smaller than the pointer size, it is implicitly
538       // sign extended to pointer size.
539       unsigned Width = Index->getType()->getIntegerBitWidth();
540       if (PointerSize > Width)
541         SExtBits += PointerSize - Width;
542 
543       // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
544       APInt IndexScale(Width, 0), IndexOffset(Width, 0);
545       bool NSW = true, NUW = true;
546       const Value *OrigIndex = Index;
547       Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
548                                   SExtBits, DL, 0, AC, DT, NSW, NUW);
549 
550       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
551       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
552 
553       // It can be the case that, even through C1*V+C2 does not overflow for
554       // relevant values of V, (C2*Scale) can overflow. In that case, we cannot
555       // decompose the expression in this way.
556       //
557       // FIXME: C1*Scale and the other operations in the decomposed
558       // (C1*Scale)*V+C2*Scale can also overflow. We should check for this
559       // possibility.
560       bool Overflow;
561       APInt ScaledOffset = IndexOffset.sextOrTrunc(MaxPointerSize)
562                            .smul_ov(Scale, Overflow);
563       if (Overflow) {
564         Index = OrigIndex;
565         IndexScale = 1;
566         IndexOffset = 0;
567 
568         ZExtBits = SExtBits = 0;
569         if (PointerSize > Width)
570           SExtBits += PointerSize - Width;
571       } else {
572         Decomposed.Offset += ScaledOffset;
573         Scale *= IndexScale.sextOrTrunc(MaxPointerSize);
574       }
575 
576       // If we already had an occurrence of this index variable, merge this
577       // scale into it.  For example, we want to handle:
578       //   A[x][x] -> x*16 + x*4 -> x*20
579       // This also ensures that 'x' only appears in the index list once.
580       for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
581         if (Decomposed.VarIndices[i].V == Index &&
582             Decomposed.VarIndices[i].ZExtBits == ZExtBits &&
583             Decomposed.VarIndices[i].SExtBits == SExtBits) {
584           Scale += Decomposed.VarIndices[i].Scale;
585           Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
586           break;
587         }
588       }
589 
590       // Make sure that we have a scale that makes sense for this target's
591       // pointer size.
592       Scale = adjustToPointerSize(Scale, PointerSize);
593 
594       if (!!Scale) {
595         VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, Scale, CxtI};
596         Decomposed.VarIndices.push_back(Entry);
597       }
598     }
599 
600     // Take care of wrap-arounds
601     if (GepHasConstantOffset)
602       Decomposed.Offset = adjustToPointerSize(Decomposed.Offset, PointerSize);
603 
604     // Analyze the base pointer next.
605     V = GEPOp->getOperand(0);
606   } while (--MaxLookup);
607 
608   // If the chain of expressions is too deep, just return early.
609   Decomposed.Base = V;
610   SearchLimitReached++;
611   return Decomposed;
612 }
613 
614 /// Returns whether the given pointer value points to memory that is local to
615 /// the function, with global constants being considered local to all
616 /// functions.
617 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
618                                            AAQueryInfo &AAQI, bool OrLocal) {
619   assert(Visited.empty() && "Visited must be cleared after use!");
620 
621   unsigned MaxLookup = 8;
622   SmallVector<const Value *, 16> Worklist;
623   Worklist.push_back(Loc.Ptr);
624   do {
625     const Value *V = getUnderlyingObject(Worklist.pop_back_val());
626     if (!Visited.insert(V).second) {
627       Visited.clear();
628       return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
629     }
630 
631     // An alloca instruction defines local memory.
632     if (OrLocal && isa<AllocaInst>(V))
633       continue;
634 
635     // A global constant counts as local memory for our purposes.
636     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
637       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
638       // global to be marked constant in some modules and non-constant in
639       // others.  GV may even be a declaration, not a definition.
640       if (!GV->isConstant()) {
641         Visited.clear();
642         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
643       }
644       continue;
645     }
646 
647     // If both select values point to local memory, then so does the select.
648     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
649       Worklist.push_back(SI->getTrueValue());
650       Worklist.push_back(SI->getFalseValue());
651       continue;
652     }
653 
654     // If all values incoming to a phi node point to local memory, then so does
655     // the phi.
656     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
657       // Don't bother inspecting phi nodes with many operands.
658       if (PN->getNumIncomingValues() > MaxLookup) {
659         Visited.clear();
660         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
661       }
662       append_range(Worklist, PN->incoming_values());
663       continue;
664     }
665 
666     // Otherwise be conservative.
667     Visited.clear();
668     return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
669   } while (!Worklist.empty() && --MaxLookup);
670 
671   Visited.clear();
672   return Worklist.empty();
673 }
674 
675 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
676   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
677   return II && II->getIntrinsicID() == IID;
678 }
679 
680 /// Returns the behavior when calling the given call site.
681 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) {
682   if (Call->doesNotAccessMemory())
683     // Can't do better than this.
684     return FMRB_DoesNotAccessMemory;
685 
686   // The assume intrinsic can have operand bundles, but still only accesses
687   // inaccessible memory in that case (to maintain control dependencies).
688   if (isIntrinsicCall(Call, Intrinsic::assume))
689     return FMRB_OnlyAccessesInaccessibleMem;
690 
691   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
692 
693   // If the callsite knows it only reads memory, don't return worse
694   // than that.
695   if (Call->onlyReadsMemory())
696     Min = FMRB_OnlyReadsMemory;
697   else if (Call->doesNotReadMemory())
698     Min = FMRB_OnlyWritesMemory;
699 
700   if (Call->onlyAccessesArgMemory())
701     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
702   else if (Call->onlyAccessesInaccessibleMemory())
703     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
704   else if (Call->onlyAccessesInaccessibleMemOrArgMem())
705     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
706 
707   // If the call has operand bundles then aliasing attributes from the function
708   // it calls do not directly apply to the call.  This can be made more precise
709   // in the future.
710   if (!Call->hasOperandBundles())
711     if (const Function *F = Call->getCalledFunction())
712       Min =
713           FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
714 
715   return Min;
716 }
717 
718 /// Returns the behavior when calling the given function. For use when the call
719 /// site is not known.
720 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
721   // If the function declares it doesn't access memory, we can't do better.
722   if (F->doesNotAccessMemory())
723     return FMRB_DoesNotAccessMemory;
724 
725   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
726 
727   // If the function declares it only reads memory, go with that.
728   if (F->onlyReadsMemory())
729     Min = FMRB_OnlyReadsMemory;
730   else if (F->doesNotReadMemory())
731     Min = FMRB_OnlyWritesMemory;
732 
733   if (F->onlyAccessesArgMemory())
734     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
735   else if (F->onlyAccessesInaccessibleMemory())
736     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
737   else if (F->onlyAccessesInaccessibleMemOrArgMem())
738     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
739 
740   return Min;
741 }
742 
743 /// Returns true if this is a writeonly (i.e Mod only) parameter.
744 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx,
745                              const TargetLibraryInfo &TLI) {
746   if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly))
747     return true;
748 
749   // We can bound the aliasing properties of memset_pattern16 just as we can
750   // for memcpy/memset.  This is particularly important because the
751   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
752   // whenever possible.
753   // FIXME Consider handling this in InferFunctionAttr.cpp together with other
754   // attributes.
755   LibFunc F;
756   if (Call->getCalledFunction() &&
757       TLI.getLibFunc(*Call->getCalledFunction(), F) &&
758       F == LibFunc_memset_pattern16 && TLI.has(F))
759     if (ArgIdx == 0)
760       return true;
761 
762   // TODO: memset_pattern4, memset_pattern8
763   // TODO: _chk variants
764   // TODO: strcmp, strcpy
765 
766   return false;
767 }
768 
769 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
770                                            unsigned ArgIdx) {
771   // Checking for known builtin intrinsics and target library functions.
772   if (isWriteOnlyParam(Call, ArgIdx, TLI))
773     return ModRefInfo::Mod;
774 
775   if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly))
776     return ModRefInfo::Ref;
777 
778   if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone))
779     return ModRefInfo::NoModRef;
780 
781   return AAResultBase::getArgModRefInfo(Call, ArgIdx);
782 }
783 
784 #ifndef NDEBUG
785 static const Function *getParent(const Value *V) {
786   if (const Instruction *inst = dyn_cast<Instruction>(V)) {
787     if (!inst->getParent())
788       return nullptr;
789     return inst->getParent()->getParent();
790   }
791 
792   if (const Argument *arg = dyn_cast<Argument>(V))
793     return arg->getParent();
794 
795   return nullptr;
796 }
797 
798 static bool notDifferentParent(const Value *O1, const Value *O2) {
799 
800   const Function *F1 = getParent(O1);
801   const Function *F2 = getParent(O2);
802 
803   return !F1 || !F2 || F1 == F2;
804 }
805 #endif
806 
807 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
808                                  const MemoryLocation &LocB,
809                                  AAQueryInfo &AAQI) {
810   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
811          "BasicAliasAnalysis doesn't support interprocedural queries.");
812   return aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr, LocB.Size,
813                     LocB.AATags, AAQI);
814 }
815 
816 /// Checks to see if the specified callsite can clobber the specified memory
817 /// object.
818 ///
819 /// Since we only look at local properties of this function, we really can't
820 /// say much about this query.  We do, however, use simple "address taken"
821 /// analysis on local objects.
822 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
823                                         const MemoryLocation &Loc,
824                                         AAQueryInfo &AAQI) {
825   assert(notDifferentParent(Call, Loc.Ptr) &&
826          "AliasAnalysis query involving multiple functions!");
827 
828   const Value *Object = getUnderlyingObject(Loc.Ptr);
829 
830   // Calls marked 'tail' cannot read or write allocas from the current frame
831   // because the current frame might be destroyed by the time they run. However,
832   // a tail call may use an alloca with byval. Calling with byval copies the
833   // contents of the alloca into argument registers or stack slots, so there is
834   // no lifetime issue.
835   if (isa<AllocaInst>(Object))
836     if (const CallInst *CI = dyn_cast<CallInst>(Call))
837       if (CI->isTailCall() &&
838           !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal))
839         return ModRefInfo::NoModRef;
840 
841   // Stack restore is able to modify unescaped dynamic allocas. Assume it may
842   // modify them even though the alloca is not escaped.
843   if (auto *AI = dyn_cast<AllocaInst>(Object))
844     if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore))
845       return ModRefInfo::Mod;
846 
847   // If the pointer is to a locally allocated object that does not escape,
848   // then the call can not mod/ref the pointer unless the call takes the pointer
849   // as an argument, and itself doesn't capture it.
850   if (!isa<Constant>(Object) && Call != Object &&
851       isNonEscapingLocalObject(Object, &AAQI.IsCapturedCache)) {
852 
853     // Optimistically assume that call doesn't touch Object and check this
854     // assumption in the following loop.
855     ModRefInfo Result = ModRefInfo::NoModRef;
856     bool IsMustAlias = true;
857 
858     unsigned OperandNo = 0;
859     for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
860          CI != CE; ++CI, ++OperandNo) {
861       // Only look at the no-capture or byval pointer arguments.  If this
862       // pointer were passed to arguments that were neither of these, then it
863       // couldn't be no-capture.
864       if (!(*CI)->getType()->isPointerTy() ||
865           (!Call->doesNotCapture(OperandNo) &&
866            OperandNo < Call->getNumArgOperands() &&
867            !Call->isByValArgument(OperandNo)))
868         continue;
869 
870       // Call doesn't access memory through this operand, so we don't care
871       // if it aliases with Object.
872       if (Call->doesNotAccessMemory(OperandNo))
873         continue;
874 
875       // If this is a no-capture pointer argument, see if we can tell that it
876       // is impossible to alias the pointer we're checking.
877       AliasResult AR = getBestAAResults().alias(
878           MemoryLocation::getBeforeOrAfter(*CI),
879           MemoryLocation::getBeforeOrAfter(Object), AAQI);
880       if (AR != MustAlias)
881         IsMustAlias = false;
882       // Operand doesn't alias 'Object', continue looking for other aliases
883       if (AR == NoAlias)
884         continue;
885       // Operand aliases 'Object', but call doesn't modify it. Strengthen
886       // initial assumption and keep looking in case if there are more aliases.
887       if (Call->onlyReadsMemory(OperandNo)) {
888         Result = setRef(Result);
889         continue;
890       }
891       // Operand aliases 'Object' but call only writes into it.
892       if (Call->doesNotReadMemory(OperandNo)) {
893         Result = setMod(Result);
894         continue;
895       }
896       // This operand aliases 'Object' and call reads and writes into it.
897       // Setting ModRef will not yield an early return below, MustAlias is not
898       // used further.
899       Result = ModRefInfo::ModRef;
900       break;
901     }
902 
903     // No operand aliases, reset Must bit. Add below if at least one aliases
904     // and all aliases found are MustAlias.
905     if (isNoModRef(Result))
906       IsMustAlias = false;
907 
908     // Early return if we improved mod ref information
909     if (!isModAndRefSet(Result)) {
910       if (isNoModRef(Result))
911         return ModRefInfo::NoModRef;
912       return IsMustAlias ? setMust(Result) : clearMust(Result);
913     }
914   }
915 
916   // If the call is malloc/calloc like, we can assume that it doesn't
917   // modify any IR visible value.  This is only valid because we assume these
918   // routines do not read values visible in the IR.  TODO: Consider special
919   // casing realloc and strdup routines which access only their arguments as
920   // well.  Or alternatively, replace all of this with inaccessiblememonly once
921   // that's implemented fully.
922   if (isMallocOrCallocLikeFn(Call, &TLI)) {
923     // Be conservative if the accessed pointer may alias the allocation -
924     // fallback to the generic handling below.
925     if (getBestAAResults().alias(MemoryLocation::getBeforeOrAfter(Call),
926                                  Loc, AAQI) == NoAlias)
927       return ModRefInfo::NoModRef;
928   }
929 
930   // The semantics of memcpy intrinsics either exactly overlap or do not
931   // overlap, i.e., source and destination of any given memcpy are either
932   // no-alias or must-alias.
933   if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) {
934     AliasResult SrcAA =
935         getBestAAResults().alias(MemoryLocation::getForSource(Inst), Loc, AAQI);
936     AliasResult DestAA =
937         getBestAAResults().alias(MemoryLocation::getForDest(Inst), Loc, AAQI);
938     // It's also possible for Loc to alias both src and dest, or neither.
939     ModRefInfo rv = ModRefInfo::NoModRef;
940     if (SrcAA != NoAlias)
941       rv = setRef(rv);
942     if (DestAA != NoAlias)
943       rv = setMod(rv);
944     return rv;
945   }
946 
947   // Guard intrinsics are marked as arbitrarily writing so that proper control
948   // dependencies are maintained but they never mods any particular memory
949   // location.
950   //
951   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
952   // heap state at the point the guard is issued needs to be consistent in case
953   // the guard invokes the "deopt" continuation.
954   if (isIntrinsicCall(Call, Intrinsic::experimental_guard))
955     return ModRefInfo::Ref;
956   // The same applies to deoptimize which is essentially a guard(false).
957   if (isIntrinsicCall(Call, Intrinsic::experimental_deoptimize))
958     return ModRefInfo::Ref;
959 
960   // Like assumes, invariant.start intrinsics were also marked as arbitrarily
961   // writing so that proper control dependencies are maintained but they never
962   // mod any particular memory location visible to the IR.
963   // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
964   // intrinsic is now modeled as reading memory. This prevents hoisting the
965   // invariant.start intrinsic over stores. Consider:
966   // *ptr = 40;
967   // *ptr = 50;
968   // invariant_start(ptr)
969   // int val = *ptr;
970   // print(val);
971   //
972   // This cannot be transformed to:
973   //
974   // *ptr = 40;
975   // invariant_start(ptr)
976   // *ptr = 50;
977   // int val = *ptr;
978   // print(val);
979   //
980   // The transformation will cause the second store to be ignored (based on
981   // rules of invariant.start)  and print 40, while the first program always
982   // prints 50.
983   if (isIntrinsicCall(Call, Intrinsic::invariant_start))
984     return ModRefInfo::Ref;
985 
986   // The AAResultBase base class has some smarts, lets use them.
987   return AAResultBase::getModRefInfo(Call, Loc, AAQI);
988 }
989 
990 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
991                                         const CallBase *Call2,
992                                         AAQueryInfo &AAQI) {
993   // Guard intrinsics are marked as arbitrarily writing so that proper control
994   // dependencies are maintained but they never mods any particular memory
995   // location.
996   //
997   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
998   // heap state at the point the guard is issued needs to be consistent in case
999   // the guard invokes the "deopt" continuation.
1000 
1001   // NB! This function is *not* commutative, so we special case two
1002   // possibilities for guard intrinsics.
1003 
1004   if (isIntrinsicCall(Call1, Intrinsic::experimental_guard))
1005     return isModSet(createModRefInfo(getModRefBehavior(Call2)))
1006                ? ModRefInfo::Ref
1007                : ModRefInfo::NoModRef;
1008 
1009   if (isIntrinsicCall(Call2, Intrinsic::experimental_guard))
1010     return isModSet(createModRefInfo(getModRefBehavior(Call1)))
1011                ? ModRefInfo::Mod
1012                : ModRefInfo::NoModRef;
1013 
1014   // The AAResultBase base class has some smarts, lets use them.
1015   return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
1016 }
1017 
1018 /// Return true if we know V to the base address of the corresponding memory
1019 /// object.  This implies that any address less than V must be out of bounds
1020 /// for the underlying object.  Note that just being isIdentifiedObject() is
1021 /// not enough - For example, a negative offset from a noalias argument or call
1022 /// can be inbounds w.r.t the actual underlying object.
1023 static bool isBaseOfObject(const Value *V) {
1024   // TODO: We can handle other cases here
1025   // 1) For GC languages, arguments to functions are often required to be
1026   //    base pointers.
1027   // 2) Result of allocation routines are often base pointers.  Leverage TLI.
1028   return (isa<AllocaInst>(V) || isa<GlobalVariable>(V));
1029 }
1030 
1031 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1032 /// another pointer.
1033 ///
1034 /// We know that V1 is a GEP, but we don't know anything about V2.
1035 /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for
1036 /// V2.
1037 AliasResult BasicAAResult::aliasGEP(
1038     const GEPOperator *GEP1, LocationSize V1Size, const AAMDNodes &V1AAInfo,
1039     const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo,
1040     const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) {
1041   DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT);
1042   DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT);
1043 
1044   // Don't attempt to analyze the decomposed GEP if index scale is not a
1045   // compile-time constant.
1046   if (!DecompGEP1.HasCompileTimeConstantScale ||
1047       !DecompGEP2.HasCompileTimeConstantScale)
1048     return MayAlias;
1049 
1050   assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
1051          "DecomposeGEPExpression returned a result different from "
1052          "getUnderlyingObject");
1053 
1054   // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1055   // symbolic difference.
1056   DecompGEP1.Offset -= DecompGEP2.Offset;
1057   GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);
1058 
1059   // If an inbounds GEP would have to start from an out of bounds address
1060   // for the two to alias, then we can assume noalias.
1061   if (*DecompGEP1.InBounds && DecompGEP1.VarIndices.empty() &&
1062       V2Size.hasValue() && DecompGEP1.Offset.sge(V2Size.getValue()) &&
1063       isBaseOfObject(DecompGEP2.Base))
1064     return NoAlias;
1065 
1066   if (isa<GEPOperator>(V2)) {
1067     // Symmetric case to above.
1068     if (*DecompGEP2.InBounds && DecompGEP1.VarIndices.empty() &&
1069         V1Size.hasValue() && DecompGEP1.Offset.sle(-V1Size.getValue()) &&
1070         isBaseOfObject(DecompGEP1.Base))
1071     return NoAlias;
1072   } else {
1073     // TODO: This limitation exists for compile-time reasons. Relax it if we
1074     // can avoid exponential pathological cases.
1075     if (!V1Size.hasValue() && !V2Size.hasValue())
1076       return MayAlias;
1077   }
1078 
1079   // For GEPs with identical offsets, we can preserve the size and AAInfo
1080   // when performing the alias check on the underlying objects.
1081   if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty())
1082     return getBestAAResults().alias(
1083         MemoryLocation(UnderlyingV1, V1Size, V1AAInfo),
1084         MemoryLocation(UnderlyingV2, V2Size, V2AAInfo), AAQI);
1085 
1086   // Do the base pointers alias?
1087   AliasResult BaseAlias = getBestAAResults().alias(
1088       MemoryLocation::getBeforeOrAfter(UnderlyingV1),
1089       MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI);
1090 
1091   // If we get a No or May, then return it immediately, no amount of analysis
1092   // will improve this situation.
1093   if (BaseAlias != MustAlias) {
1094     assert(BaseAlias == NoAlias || BaseAlias == MayAlias);
1095     return BaseAlias;
1096   }
1097 
1098   // If there is a constant difference between the pointers, but the difference
1099   // is less than the size of the associated memory object, then we know
1100   // that the objects are partially overlapping.  If the difference is
1101   // greater, we know they do not overlap.
1102   if (DecompGEP1.Offset != 0 && DecompGEP1.VarIndices.empty()) {
1103     APInt &Off = DecompGEP1.Offset;
1104 
1105     // Initialize for Off >= 0 (V2 <= GEP1) case.
1106     const Value *LeftPtr = V2;
1107     const Value *RightPtr = GEP1;
1108     LocationSize VLeftSize = V2Size;
1109     LocationSize VRightSize = V1Size;
1110 
1111     if (Off.isNegative()) {
1112       // Swap if we have the situation where:
1113       // +                +
1114       // | BaseOffset     |
1115       // ---------------->|
1116       // |-->V1Size       |-------> V2Size
1117       // GEP1             V2
1118       std::swap(LeftPtr, RightPtr);
1119       std::swap(VLeftSize, VRightSize);
1120       Off = -Off;
1121     }
1122 
1123     if (VLeftSize.hasValue()) {
1124       const uint64_t LSize = VLeftSize.getValue();
1125       if (Off.ult(LSize)) {
1126         // Conservatively drop processing if a phi was visited and/or offset is
1127         // too big.
1128         if (VisitedPhiBBs.empty() && VRightSize.hasValue() &&
1129             Off.ule(INT64_MAX)) {
1130           // Memory referenced by right pointer is nested. Save the offset in
1131           // cache.
1132           const uint64_t RSize = VRightSize.getValue();
1133           if ((Off + RSize).ule(LSize))
1134             AAQI.setClobberOffset(LeftPtr, RightPtr, LSize, RSize,
1135                                   Off.getSExtValue());
1136         }
1137         return PartialAlias;
1138       }
1139       return NoAlias;
1140     }
1141   }
1142 
1143   if (!DecompGEP1.VarIndices.empty()) {
1144     APInt GCD;
1145     bool AllNonNegative = DecompGEP1.Offset.isNonNegative();
1146     bool AllNonPositive = DecompGEP1.Offset.isNonPositive();
1147     for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1148       const APInt &Scale = DecompGEP1.VarIndices[i].Scale;
1149       if (i == 0)
1150         GCD = Scale.abs();
1151       else
1152         GCD = APIntOps::GreatestCommonDivisor(GCD, Scale.abs());
1153 
1154       if (AllNonNegative || AllNonPositive) {
1155         // If the Value could change between cycles, then any reasoning about
1156         // the Value this cycle may not hold in the next cycle. We'll just
1157         // give up if we can't determine conditions that hold for every cycle:
1158         const Value *V = DecompGEP1.VarIndices[i].V;
1159         const Instruction *CxtI = DecompGEP1.VarIndices[i].CxtI;
1160 
1161         KnownBits Known = computeKnownBits(V, DL, 0, &AC, CxtI, DT);
1162         bool SignKnownZero = Known.isNonNegative();
1163         bool SignKnownOne = Known.isNegative();
1164 
1165         // Zero-extension widens the variable, and so forces the sign
1166         // bit to zero.
1167         bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
1168         SignKnownZero |= IsZExt;
1169         SignKnownOne &= !IsZExt;
1170 
1171         AllNonNegative &= (SignKnownZero && Scale.isNonNegative()) ||
1172                           (SignKnownOne && Scale.isNonPositive());
1173         AllNonPositive &= (SignKnownZero && Scale.isNonPositive()) ||
1174                           (SignKnownOne && Scale.isNonNegative());
1175       }
1176     }
1177 
1178     // We now have accesses at two offsets from the same base:
1179     //  1. (...)*GCD + DecompGEP1.Offset with size V1Size
1180     //  2. 0 with size V2Size
1181     // Using arithmetic modulo GCD, the accesses are at
1182     // [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits
1183     // into the range [V2Size..GCD), then we know they cannot overlap.
1184     APInt ModOffset = DecompGEP1.Offset.srem(GCD);
1185     if (ModOffset.isNegative())
1186       ModOffset += GCD; // We want mod, not rem.
1187     if (V1Size.hasValue() && V2Size.hasValue() &&
1188         ModOffset.uge(V2Size.getValue()) &&
1189         (GCD - ModOffset).uge(V1Size.getValue()))
1190       return NoAlias;
1191 
1192     // If we know all the variables are non-negative, then the total offset is
1193     // also non-negative and >= DecompGEP1.Offset. We have the following layout:
1194     // [0, V2Size) ... [TotalOffset, TotalOffer+V1Size]
1195     // If DecompGEP1.Offset >= V2Size, the accesses don't alias.
1196     if (AllNonNegative && V2Size.hasValue() &&
1197         DecompGEP1.Offset.uge(V2Size.getValue()))
1198       return NoAlias;
1199     // Similarly, if the variables are non-positive, then the total offset is
1200     // also non-positive and <= DecompGEP1.Offset. We have the following layout:
1201     // [TotalOffset, TotalOffset+V1Size) ... [0, V2Size)
1202     // If -DecompGEP1.Offset >= V1Size, the accesses don't alias.
1203     if (AllNonPositive && V1Size.hasValue() &&
1204         (-DecompGEP1.Offset).uge(V1Size.getValue()))
1205       return NoAlias;
1206 
1207     if (V1Size.hasValue() && V2Size.hasValue()) {
1208       // Try to determine whether abs(VarIndex) > 0.
1209       Optional<APInt> MinAbsVarIndex;
1210       if (DecompGEP1.VarIndices.size() == 1) {
1211         // VarIndex = Scale*V. If V != 0 then abs(VarIndex) >= abs(Scale).
1212         const VariableGEPIndex &Var = DecompGEP1.VarIndices[0];
1213         if (isKnownNonZero(Var.V, DL, 0, &AC, Var.CxtI, DT))
1214           MinAbsVarIndex = Var.Scale.abs();
1215       } else if (DecompGEP1.VarIndices.size() == 2) {
1216         // VarIndex = Scale*V0 + (-Scale)*V1.
1217         // If V0 != V1 then abs(VarIndex) >= abs(Scale).
1218         // Check that VisitedPhiBBs is empty, to avoid reasoning about
1219         // inequality of values across loop iterations.
1220         const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0];
1221         const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1];
1222         if (Var0.Scale == -Var1.Scale && Var0.ZExtBits == Var1.ZExtBits &&
1223             Var0.SExtBits == Var1.SExtBits && VisitedPhiBBs.empty() &&
1224             isKnownNonEqual(Var0.V, Var1.V, DL, &AC, /* CxtI */ nullptr, DT))
1225           MinAbsVarIndex = Var0.Scale.abs();
1226       }
1227 
1228       if (MinAbsVarIndex) {
1229         // The constant offset will have added at least +/-MinAbsVarIndex to it.
1230         APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex;
1231         APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex;
1232         // Check that an access at OffsetLo or lower, and an access at OffsetHi
1233         // or higher both do not alias.
1234         if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) &&
1235             OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue()))
1236           return NoAlias;
1237       }
1238     }
1239 
1240     if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
1241                                 DecompGEP1.Offset, &AC, DT))
1242       return NoAlias;
1243   }
1244 
1245   // Statically, we can see that the base objects are the same, but the
1246   // pointers have dynamic offsets which we can't resolve. And none of our
1247   // little tricks above worked.
1248   return MayAlias;
1249 }
1250 
1251 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1252   // If the results agree, take it.
1253   if (A == B)
1254     return A;
1255   // A mix of PartialAlias and MustAlias is PartialAlias.
1256   if ((A == PartialAlias && B == MustAlias) ||
1257       (B == PartialAlias && A == MustAlias))
1258     return PartialAlias;
1259   // Otherwise, we don't know anything.
1260   return MayAlias;
1261 }
1262 
1263 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1264 /// against another.
1265 AliasResult
1266 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize,
1267                            const AAMDNodes &SIAAInfo, const Value *V2,
1268                            LocationSize V2Size, const AAMDNodes &V2AAInfo,
1269                            AAQueryInfo &AAQI) {
1270   // If the values are Selects with the same condition, we can do a more precise
1271   // check: just check for aliases between the values on corresponding arms.
1272   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1273     if (SI->getCondition() == SI2->getCondition()) {
1274       AliasResult Alias = getBestAAResults().alias(
1275           MemoryLocation(SI->getTrueValue(), SISize, SIAAInfo),
1276           MemoryLocation(SI2->getTrueValue(), V2Size, V2AAInfo), AAQI);
1277       if (Alias == MayAlias)
1278         return MayAlias;
1279       AliasResult ThisAlias = getBestAAResults().alias(
1280           MemoryLocation(SI->getFalseValue(), SISize, SIAAInfo),
1281           MemoryLocation(SI2->getFalseValue(), V2Size, V2AAInfo), AAQI);
1282       return MergeAliasResults(ThisAlias, Alias);
1283     }
1284 
1285   // If both arms of the Select node NoAlias or MustAlias V2, then returns
1286   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1287   AliasResult Alias = getBestAAResults().alias(
1288       MemoryLocation(V2, V2Size, V2AAInfo),
1289       MemoryLocation(SI->getTrueValue(), SISize, SIAAInfo), AAQI);
1290   if (Alias == MayAlias)
1291     return MayAlias;
1292 
1293   AliasResult ThisAlias = getBestAAResults().alias(
1294       MemoryLocation(V2, V2Size, V2AAInfo),
1295       MemoryLocation(SI->getFalseValue(), SISize, SIAAInfo), AAQI);
1296   return MergeAliasResults(ThisAlias, Alias);
1297 }
1298 
1299 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1300 /// another.
1301 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
1302                                     const AAMDNodes &PNAAInfo, const Value *V2,
1303                                     LocationSize V2Size,
1304                                     const AAMDNodes &V2AAInfo,
1305                                     AAQueryInfo &AAQI) {
1306   // If the values are PHIs in the same block, we can do a more precise
1307   // as well as efficient check: just check for aliases between the values
1308   // on corresponding edges.
1309   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1310     if (PN2->getParent() == PN->getParent()) {
1311       Optional<AliasResult> Alias;
1312       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1313         AliasResult ThisAlias = getBestAAResults().alias(
1314             MemoryLocation(PN->getIncomingValue(i), PNSize, PNAAInfo),
1315             MemoryLocation(
1316                 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size,
1317                 V2AAInfo),
1318             AAQI);
1319         if (Alias)
1320           *Alias = MergeAliasResults(*Alias, ThisAlias);
1321         else
1322           Alias = ThisAlias;
1323         if (*Alias == MayAlias)
1324           break;
1325       }
1326       return *Alias;
1327     }
1328 
1329   SmallVector<Value *, 4> V1Srcs;
1330   // If a phi operand recurses back to the phi, we can still determine NoAlias
1331   // if we don't alias the underlying objects of the other phi operands, as we
1332   // know that the recursive phi needs to be based on them in some way.
1333   bool isRecursive = false;
1334   auto CheckForRecPhi = [&](Value *PV) {
1335     if (!EnableRecPhiAnalysis)
1336       return false;
1337     if (getUnderlyingObject(PV) == PN) {
1338       isRecursive = true;
1339       return true;
1340     }
1341     return false;
1342   };
1343 
1344   if (PV) {
1345     // If we have PhiValues then use it to get the underlying phi values.
1346     const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN);
1347     // If we have more phi values than the search depth then return MayAlias
1348     // conservatively to avoid compile time explosion. The worst possible case
1349     // is if both sides are PHI nodes. In which case, this is O(m x n) time
1350     // where 'm' and 'n' are the number of PHI sources.
1351     if (PhiValueSet.size() > MaxLookupSearchDepth)
1352       return MayAlias;
1353     // Add the values to V1Srcs
1354     for (Value *PV1 : PhiValueSet) {
1355       if (CheckForRecPhi(PV1))
1356         continue;
1357       V1Srcs.push_back(PV1);
1358     }
1359   } else {
1360     // If we don't have PhiInfo then just look at the operands of the phi itself
1361     // FIXME: Remove this once we can guarantee that we have PhiInfo always
1362     SmallPtrSet<Value *, 4> UniqueSrc;
1363     Value *OnePhi = nullptr;
1364     for (Value *PV1 : PN->incoming_values()) {
1365       if (isa<PHINode>(PV1)) {
1366         if (OnePhi && OnePhi != PV1) {
1367           // To control potential compile time explosion, we choose to be
1368           // conserviate when we have more than one Phi input.  It is important
1369           // that we handle the single phi case as that lets us handle LCSSA
1370           // phi nodes and (combined with the recursive phi handling) simple
1371           // pointer induction variable patterns.
1372           return MayAlias;
1373         }
1374         OnePhi = PV1;
1375       }
1376 
1377       if (CheckForRecPhi(PV1))
1378         continue;
1379 
1380       if (UniqueSrc.insert(PV1).second)
1381         V1Srcs.push_back(PV1);
1382     }
1383 
1384     if (OnePhi && UniqueSrc.size() > 1)
1385       // Out of an abundance of caution, allow only the trivial lcssa and
1386       // recursive phi cases.
1387       return MayAlias;
1388   }
1389 
1390   // If V1Srcs is empty then that means that the phi has no underlying non-phi
1391   // value. This should only be possible in blocks unreachable from the entry
1392   // block, but return MayAlias just in case.
1393   if (V1Srcs.empty())
1394     return MayAlias;
1395 
1396   // If this PHI node is recursive, indicate that the pointer may be moved
1397   // across iterations. We can only prove NoAlias if different underlying
1398   // objects are involved.
1399   if (isRecursive)
1400     PNSize = LocationSize::beforeOrAfterPointer();
1401 
1402   // In the recursive alias queries below, we may compare values from two
1403   // different loop iterations. Keep track of visited phi blocks, which will
1404   // be used when determining value equivalence.
1405   bool BlockInserted = VisitedPhiBBs.insert(PN->getParent()).second;
1406   auto _ = make_scope_exit([&]() {
1407     if (BlockInserted)
1408       VisitedPhiBBs.erase(PN->getParent());
1409   });
1410 
1411   // If we inserted a block into VisitedPhiBBs, alias analysis results that
1412   // have been cached earlier may no longer be valid. Perform recursive queries
1413   // with a new AAQueryInfo.
1414   AAQueryInfo NewAAQI = AAQI.withEmptyCache();
1415   AAQueryInfo *UseAAQI = BlockInserted ? &NewAAQI : &AAQI;
1416 
1417   AliasResult Alias = getBestAAResults().alias(
1418       MemoryLocation(V2, V2Size, V2AAInfo),
1419       MemoryLocation(V1Srcs[0], PNSize, PNAAInfo), *UseAAQI);
1420 
1421   // Early exit if the check of the first PHI source against V2 is MayAlias.
1422   // Other results are not possible.
1423   if (Alias == MayAlias)
1424     return MayAlias;
1425   // With recursive phis we cannot guarantee that MustAlias/PartialAlias will
1426   // remain valid to all elements and needs to conservatively return MayAlias.
1427   if (isRecursive && Alias != NoAlias)
1428     return MayAlias;
1429 
1430   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1431   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1432   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1433     Value *V = V1Srcs[i];
1434 
1435     AliasResult ThisAlias = getBestAAResults().alias(
1436         MemoryLocation(V2, V2Size, V2AAInfo),
1437         MemoryLocation(V, PNSize, PNAAInfo), *UseAAQI);
1438     Alias = MergeAliasResults(ThisAlias, Alias);
1439     if (Alias == MayAlias)
1440       break;
1441   }
1442 
1443   return Alias;
1444 }
1445 
1446 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1447 /// array references.
1448 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
1449                                       const AAMDNodes &V1AAInfo,
1450                                       const Value *V2, LocationSize V2Size,
1451                                       const AAMDNodes &V2AAInfo,
1452                                       AAQueryInfo &AAQI) {
1453   // If either of the memory references is empty, it doesn't matter what the
1454   // pointer values are.
1455   if (V1Size.isZero() || V2Size.isZero())
1456     return NoAlias;
1457 
1458   // Strip off any casts if they exist.
1459   V1 = V1->stripPointerCastsForAliasAnalysis();
1460   V2 = V2->stripPointerCastsForAliasAnalysis();
1461 
1462   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1463   // value for undef that aliases nothing in the program.
1464   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1465     return NoAlias;
1466 
1467   // Are we checking for alias of the same value?
1468   // Because we look 'through' phi nodes, we could look at "Value" pointers from
1469   // different iterations. We must therefore make sure that this is not the
1470   // case. The function isValueEqualInPotentialCycles ensures that this cannot
1471   // happen by looking at the visited phi nodes and making sure they cannot
1472   // reach the value.
1473   if (isValueEqualInPotentialCycles(V1, V2))
1474     return MustAlias;
1475 
1476   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1477     return NoAlias; // Scalars cannot alias each other
1478 
1479   // Figure out what objects these things are pointing to if we can.
1480   const Value *O1 = getUnderlyingObject(V1, MaxLookupSearchDepth);
1481   const Value *O2 = getUnderlyingObject(V2, MaxLookupSearchDepth);
1482 
1483   // Null values in the default address space don't point to any object, so they
1484   // don't alias any other pointer.
1485   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1486     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1487       return NoAlias;
1488   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1489     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1490       return NoAlias;
1491 
1492   if (O1 != O2) {
1493     // If V1/V2 point to two different objects, we know that we have no alias.
1494     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1495       return NoAlias;
1496 
1497     // Constant pointers can't alias with non-const isIdentifiedObject objects.
1498     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1499         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1500       return NoAlias;
1501 
1502     // Function arguments can't alias with things that are known to be
1503     // unambigously identified at the function level.
1504     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1505         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1506       return NoAlias;
1507 
1508     // If one pointer is the result of a call/invoke or load and the other is a
1509     // non-escaping local object within the same function, then we know the
1510     // object couldn't escape to a point where the call could return it.
1511     //
1512     // Note that if the pointers are in different functions, there are a
1513     // variety of complications. A call with a nocapture argument may still
1514     // temporary store the nocapture argument's value in a temporary memory
1515     // location if that memory location doesn't escape. Or it may pass a
1516     // nocapture value to other functions as long as they don't capture it.
1517     if (isEscapeSource(O1) &&
1518         isNonEscapingLocalObject(O2, &AAQI.IsCapturedCache))
1519       return NoAlias;
1520     if (isEscapeSource(O2) &&
1521         isNonEscapingLocalObject(O1, &AAQI.IsCapturedCache))
1522       return NoAlias;
1523   }
1524 
1525   // If the size of one access is larger than the entire object on the other
1526   // side, then we know such behavior is undefined and can assume no alias.
1527   bool NullIsValidLocation = NullPointerIsDefined(&F);
1528   if ((isObjectSmallerThan(
1529           O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL,
1530           TLI, NullIsValidLocation)) ||
1531       (isObjectSmallerThan(
1532           O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL,
1533           TLI, NullIsValidLocation)))
1534     return NoAlias;
1535 
1536   // If one the accesses may be before the accessed pointer, canonicalize this
1537   // by using unknown after-pointer sizes for both accesses. This is
1538   // equivalent, because regardless of which pointer is lower, one of them
1539   // will always came after the other, as long as the underlying objects aren't
1540   // disjoint. We do this so that the rest of BasicAA does not have to deal
1541   // with accesses before the base pointer, and to improve cache utilization by
1542   // merging equivalent states.
1543   if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) {
1544     V1Size = LocationSize::afterPointer();
1545     V2Size = LocationSize::afterPointer();
1546   }
1547 
1548   // FIXME: If this depth limit is hit, then we may cache sub-optimal results
1549   // for recursive queries. For this reason, this limit is chosen to be large
1550   // enough to be very rarely hit, while still being small enough to avoid
1551   // stack overflows.
1552   if (AAQI.Depth >= 512)
1553     return MayAlias;
1554 
1555   // Check the cache before climbing up use-def chains. This also terminates
1556   // otherwise infinitely recursive queries.
1557   AAQueryInfo::LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
1558                             MemoryLocation(V2, V2Size, V2AAInfo));
1559   if (V1 > V2)
1560     std::swap(Locs.first, Locs.second);
1561   const auto &Pair = AAQI.AliasCache.try_emplace(
1562       Locs, AAQueryInfo::CacheEntry{NoAlias, 0});
1563   if (!Pair.second) {
1564     auto &Entry = Pair.first->second;
1565     if (!Entry.isDefinitive()) {
1566       // Remember that we used an assumption.
1567       ++Entry.NumAssumptionUses;
1568       ++AAQI.NumAssumptionUses;
1569     }
1570     return Entry.Result;
1571   }
1572 
1573   int OrigNumAssumptionUses = AAQI.NumAssumptionUses;
1574   unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size();
1575   AliasResult Result = aliasCheckRecursive(V1, V1Size, V1AAInfo, V2, V2Size,
1576                                            V2AAInfo, AAQI, O1, O2);
1577 
1578   auto It = AAQI.AliasCache.find(Locs);
1579   assert(It != AAQI.AliasCache.end() && "Must be in cache");
1580   auto &Entry = It->second;
1581 
1582   // Check whether a NoAlias assumption has been used, but disproven.
1583   bool AssumptionDisproven = Entry.NumAssumptionUses > 0 && Result != NoAlias;
1584   if (AssumptionDisproven)
1585     Result = MayAlias;
1586 
1587   // This is a definitive result now, when considered as a root query.
1588   AAQI.NumAssumptionUses -= Entry.NumAssumptionUses;
1589   Entry.Result = Result;
1590   Entry.NumAssumptionUses = -1;
1591 
1592   // If the assumption has been disproven, remove any results that may have
1593   // been based on this assumption. Do this after the Entry updates above to
1594   // avoid iterator invalidation.
1595   if (AssumptionDisproven)
1596     while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults)
1597       AAQI.AliasCache.erase(AAQI.AssumptionBasedResults.pop_back_val());
1598 
1599   // The result may still be based on assumptions higher up in the chain.
1600   // Remember it, so it can be purged from the cache later.
1601   if (OrigNumAssumptionUses != AAQI.NumAssumptionUses && Result != MayAlias)
1602     AAQI.AssumptionBasedResults.push_back(Locs);
1603   return Result;
1604 }
1605 
1606 AliasResult BasicAAResult::aliasCheckRecursive(
1607     const Value *V1, LocationSize V1Size, const AAMDNodes &V1AAInfo,
1608     const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo,
1609     AAQueryInfo &AAQI, const Value *O1, const Value *O2) {
1610   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1611     AliasResult Result =
1612         aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2, AAQI);
1613     if (Result != MayAlias)
1614       return Result;
1615   } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) {
1616     AliasResult Result =
1617         aliasGEP(GV2, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, O2, O1, AAQI);
1618     if (Result != MayAlias)
1619       return Result;
1620   }
1621 
1622   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1623     AliasResult Result =
1624         aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, AAQI);
1625     if (Result != MayAlias)
1626       return Result;
1627   } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) {
1628     AliasResult Result =
1629         aliasPHI(PN, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, AAQI);
1630     if (Result != MayAlias)
1631       return Result;
1632   }
1633 
1634   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1635     AliasResult Result =
1636         aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, AAQI);
1637     if (Result != MayAlias)
1638       return Result;
1639   } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) {
1640     AliasResult Result =
1641         aliasSelect(S2, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, AAQI);
1642     if (Result != MayAlias)
1643       return Result;
1644   }
1645 
1646   // If both pointers are pointing into the same object and one of them
1647   // accesses the entire object, then the accesses must overlap in some way.
1648   if (O1 == O2) {
1649     bool NullIsValidLocation = NullPointerIsDefined(&F);
1650     if (V1Size.isPrecise() && V2Size.isPrecise() &&
1651         (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
1652          isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation)))
1653       return PartialAlias;
1654   }
1655 
1656   return MayAlias;
1657 }
1658 
1659 /// Check whether two Values can be considered equivalent.
1660 ///
1661 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1662 /// they can not be part of a cycle in the value graph by looking at all
1663 /// visited phi nodes an making sure that the phis cannot reach the value. We
1664 /// have to do this because we are looking through phi nodes (That is we say
1665 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1666 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1667                                                   const Value *V2) {
1668   if (V != V2)
1669     return false;
1670 
1671   const Instruction *Inst = dyn_cast<Instruction>(V);
1672   if (!Inst)
1673     return true;
1674 
1675   if (VisitedPhiBBs.empty())
1676     return true;
1677 
1678   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1679     return false;
1680 
1681   // Make sure that the visited phis cannot reach the Value. This ensures that
1682   // the Values cannot come from different iterations of a potential cycle the
1683   // phi nodes could be involved in.
1684   for (auto *P : VisitedPhiBBs)
1685     if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT))
1686       return false;
1687 
1688   return true;
1689 }
1690 
1691 /// Computes the symbolic difference between two de-composed GEPs.
1692 ///
1693 /// Dest and Src are the variable indices from two decomposed GetElementPtr
1694 /// instructions GEP1 and GEP2 which have common base pointers.
1695 void BasicAAResult::GetIndexDifference(
1696     SmallVectorImpl<VariableGEPIndex> &Dest,
1697     const SmallVectorImpl<VariableGEPIndex> &Src) {
1698   if (Src.empty())
1699     return;
1700 
1701   for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1702     const Value *V = Src[i].V;
1703     unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
1704     APInt Scale = Src[i].Scale;
1705 
1706     // Find V in Dest.  This is N^2, but pointer indices almost never have more
1707     // than a few variable indexes.
1708     for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1709       if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1710           Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
1711         continue;
1712 
1713       // If we found it, subtract off Scale V's from the entry in Dest.  If it
1714       // goes to zero, remove the entry.
1715       if (Dest[j].Scale != Scale)
1716         Dest[j].Scale -= Scale;
1717       else
1718         Dest.erase(Dest.begin() + j);
1719       Scale = 0;
1720       break;
1721     }
1722 
1723     // If we didn't consume this entry, add it to the end of the Dest list.
1724     if (!!Scale) {
1725       VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale, Src[i].CxtI};
1726       Dest.push_back(Entry);
1727     }
1728   }
1729 }
1730 
1731 bool BasicAAResult::constantOffsetHeuristic(
1732     const SmallVectorImpl<VariableGEPIndex> &VarIndices,
1733     LocationSize MaybeV1Size, LocationSize MaybeV2Size, const APInt &BaseOffset,
1734     AssumptionCache *AC, DominatorTree *DT) {
1735   if (VarIndices.size() != 2 || !MaybeV1Size.hasValue() ||
1736       !MaybeV2Size.hasValue())
1737     return false;
1738 
1739   const uint64_t V1Size = MaybeV1Size.getValue();
1740   const uint64_t V2Size = MaybeV2Size.getValue();
1741 
1742   const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
1743 
1744   if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
1745       Var0.Scale != -Var1.Scale)
1746     return false;
1747 
1748   unsigned Width = Var1.V->getType()->getIntegerBitWidth();
1749 
1750   // We'll strip off the Extensions of Var0 and Var1 and do another round
1751   // of GetLinearExpression decomposition. In the example above, if Var0
1752   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1753 
1754   APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
1755       V1Offset(Width, 0);
1756   bool NSW = true, NUW = true;
1757   unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
1758   const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
1759                                         V0SExtBits, DL, 0, AC, DT, NSW, NUW);
1760   NSW = true;
1761   NUW = true;
1762   const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
1763                                         V1SExtBits, DL, 0, AC, DT, NSW, NUW);
1764 
1765   if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
1766       V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
1767     return false;
1768 
1769   // We have a hit - Var0 and Var1 only differ by a constant offset!
1770 
1771   // If we've been sext'ed then zext'd the maximum difference between Var0 and
1772   // Var1 is possible to calculate, but we're just interested in the absolute
1773   // minimum difference between the two. The minimum distance may occur due to
1774   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1775   // the minimum distance between %i and %i + 5 is 3.
1776   APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
1777   MinDiff = APIntOps::umin(MinDiff, Wrapped);
1778   APInt MinDiffBytes =
1779     MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs();
1780 
1781   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
1782   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
1783   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
1784   // V2Size can fit in the MinDiffBytes gap.
1785   return MinDiffBytes.uge(V1Size + BaseOffset.abs()) &&
1786          MinDiffBytes.uge(V2Size + BaseOffset.abs());
1787 }
1788 
1789 //===----------------------------------------------------------------------===//
1790 // BasicAliasAnalysis Pass
1791 //===----------------------------------------------------------------------===//
1792 
1793 AnalysisKey BasicAA::Key;
1794 
1795 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
1796   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1797   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1798   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1799   auto *PV = AM.getCachedResult<PhiValuesAnalysis>(F);
1800   return BasicAAResult(F.getParent()->getDataLayout(), F, TLI, AC, DT, PV);
1801 }
1802 
1803 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
1804   initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
1805 }
1806 
1807 char BasicAAWrapperPass::ID = 0;
1808 
1809 void BasicAAWrapperPass::anchor() {}
1810 
1811 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa",
1812                       "Basic Alias Analysis (stateless AA impl)", true, true)
1813 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1814 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1815 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1816 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
1817 INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa",
1818                     "Basic Alias Analysis (stateless AA impl)", true, true)
1819 
1820 FunctionPass *llvm::createBasicAAWrapperPass() {
1821   return new BasicAAWrapperPass();
1822 }
1823 
1824 bool BasicAAWrapperPass::runOnFunction(Function &F) {
1825   auto &ACT = getAnalysis<AssumptionCacheTracker>();
1826   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
1827   auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
1828   auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>();
1829 
1830   Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F,
1831                                  TLIWP.getTLI(F), ACT.getAssumptionCache(F),
1832                                  &DTWP.getDomTree(),
1833                                  PVWP ? &PVWP->getResult() : nullptr));
1834 
1835   return false;
1836 }
1837 
1838 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1839   AU.setPreservesAll();
1840   AU.addRequiredTransitive<AssumptionCacheTracker>();
1841   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
1842   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1843   AU.addUsedIfAvailable<PhiValuesWrapperPass>();
1844 }
1845 
1846 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
1847   return BasicAAResult(
1848       F.getParent()->getDataLayout(), F,
1849       P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
1850       P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
1851 }
1852