1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the primary stateless implementation of the 11 // Alias Analysis interface that implements identities (two different 12 // globals cannot alias, etc), but does no stateful analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/Passes.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/CaptureTracking.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/TargetLibraryInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/GetElementPtrTypeIterator.h" 34 #include "llvm/IR/GlobalAlias.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include <algorithm> 43 using namespace llvm; 44 45 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 46 /// in a cycle. Because we are analysing 'through' phi nodes we need to be 47 /// careful with value equivalence. We use reachability to make sure a value 48 /// cannot be involved in a cycle. 49 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 50 51 // The max limit of the search depth in DecomposeGEPExpression() and 52 // GetUnderlyingObject(), both functions need to use the same search 53 // depth otherwise the algorithm in aliasGEP will assert. 54 static const unsigned MaxLookupSearchDepth = 6; 55 56 //===----------------------------------------------------------------------===// 57 // Useful predicates 58 //===----------------------------------------------------------------------===// 59 60 /// isNonEscapingLocalObject - Return true if the pointer is to a function-local 61 /// object that never escapes from the function. 62 static bool isNonEscapingLocalObject(const Value *V) { 63 // If this is a local allocation, check to see if it escapes. 64 if (isa<AllocaInst>(V) || isNoAliasCall(V)) 65 // Set StoreCaptures to True so that we can assume in our callers that the 66 // pointer is not the result of a load instruction. Currently 67 // PointerMayBeCaptured doesn't have any special analysis for the 68 // StoreCaptures=false case; if it did, our callers could be refined to be 69 // more precise. 70 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 71 72 // If this is an argument that corresponds to a byval or noalias argument, 73 // then it has not escaped before entering the function. Check if it escapes 74 // inside the function. 75 if (const Argument *A = dyn_cast<Argument>(V)) 76 if (A->hasByValAttr() || A->hasNoAliasAttr()) 77 // Note even if the argument is marked nocapture we still need to check 78 // for copies made inside the function. The nocapture attribute only 79 // specifies that there are no copies made that outlive the function. 80 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 81 82 return false; 83 } 84 85 /// isEscapeSource - Return true if the pointer is one which would have 86 /// been considered an escape by isNonEscapingLocalObject. 87 static bool isEscapeSource(const Value *V) { 88 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V)) 89 return true; 90 91 // The load case works because isNonEscapingLocalObject considers all 92 // stores to be escapes (it passes true for the StoreCaptures argument 93 // to PointerMayBeCaptured). 94 if (isa<LoadInst>(V)) 95 return true; 96 97 return false; 98 } 99 100 /// getObjectSize - Return the size of the object specified by V, or 101 /// UnknownSize if unknown. 102 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 103 const TargetLibraryInfo &TLI, 104 bool RoundToAlign = false) { 105 uint64_t Size; 106 if (getObjectSize(V, Size, &DL, &TLI, RoundToAlign)) 107 return Size; 108 return AliasAnalysis::UnknownSize; 109 } 110 111 /// isObjectSmallerThan - Return true if we can prove that the object specified 112 /// by V is smaller than Size. 113 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 114 const DataLayout &DL, 115 const TargetLibraryInfo &TLI) { 116 // Note that the meanings of the "object" are slightly different in the 117 // following contexts: 118 // c1: llvm::getObjectSize() 119 // c2: llvm.objectsize() intrinsic 120 // c3: isObjectSmallerThan() 121 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 122 // refers to the "entire object". 123 // 124 // Consider this example: 125 // char *p = (char*)malloc(100) 126 // char *q = p+80; 127 // 128 // In the context of c1 and c2, the "object" pointed by q refers to the 129 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 130 // 131 // However, in the context of c3, the "object" refers to the chunk of memory 132 // being allocated. So, the "object" has 100 bytes, and q points to the middle 133 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 134 // parameter, before the llvm::getObjectSize() is called to get the size of 135 // entire object, we should: 136 // - either rewind the pointer q to the base-address of the object in 137 // question (in this case rewind to p), or 138 // - just give up. It is up to caller to make sure the pointer is pointing 139 // to the base address the object. 140 // 141 // We go for 2nd option for simplicity. 142 if (!isIdentifiedObject(V)) 143 return false; 144 145 // This function needs to use the aligned object size because we allow 146 // reads a bit past the end given sufficient alignment. 147 uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/true); 148 149 return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size; 150 } 151 152 /// isObjectSize - Return true if we can prove that the object specified 153 /// by V has size Size. 154 static bool isObjectSize(const Value *V, uint64_t Size, 155 const DataLayout &DL, const TargetLibraryInfo &TLI) { 156 uint64_t ObjectSize = getObjectSize(V, DL, TLI); 157 return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size; 158 } 159 160 //===----------------------------------------------------------------------===// 161 // GetElementPtr Instruction Decomposition and Analysis 162 //===----------------------------------------------------------------------===// 163 164 namespace { 165 enum ExtensionKind { 166 EK_NotExtended, 167 EK_SignExt, 168 EK_ZeroExt 169 }; 170 171 struct VariableGEPIndex { 172 const Value *V; 173 ExtensionKind Extension; 174 int64_t Scale; 175 176 bool operator==(const VariableGEPIndex &Other) const { 177 return V == Other.V && Extension == Other.Extension && 178 Scale == Other.Scale; 179 } 180 181 bool operator!=(const VariableGEPIndex &Other) const { 182 return !operator==(Other); 183 } 184 }; 185 } 186 187 188 /// GetLinearExpression - Analyze the specified value as a linear expression: 189 /// "A*V + B", where A and B are constant integers. Return the scale and offset 190 /// values as APInts and return V as a Value*, and return whether we looked 191 /// through any sign or zero extends. The incoming Value is known to have 192 /// IntegerType and it may already be sign or zero extended. 193 /// 194 /// Note that this looks through extends, so the high bits may not be 195 /// represented in the result. 196 static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset, 197 ExtensionKind &Extension, 198 const DataLayout &DL, unsigned Depth, 199 AssumptionCache *AC, DominatorTree *DT) { 200 assert(V->getType()->isIntegerTy() && "Not an integer value"); 201 202 // Limit our recursion depth. 203 if (Depth == 6) { 204 Scale = 1; 205 Offset = 0; 206 return V; 207 } 208 209 if (ConstantInt *Const = dyn_cast<ConstantInt>(V)) { 210 // if it's a constant, just convert it to an offset 211 // and remove the variable. 212 Offset += Const->getValue(); 213 assert(Scale == 0 && "Constant values don't have a scale"); 214 return V; 215 } 216 217 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 218 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 219 switch (BOp->getOpcode()) { 220 default: break; 221 case Instruction::Or: 222 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 223 // analyze it. 224 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &DL, 0, AC, 225 BOp, DT)) 226 break; 227 // FALL THROUGH. 228 case Instruction::Add: 229 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 230 DL, Depth + 1, AC, DT); 231 Offset += RHSC->getValue(); 232 return V; 233 case Instruction::Mul: 234 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 235 DL, Depth + 1, AC, DT); 236 Offset *= RHSC->getValue(); 237 Scale *= RHSC->getValue(); 238 return V; 239 case Instruction::Shl: 240 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 241 DL, Depth + 1, AC, DT); 242 Offset <<= RHSC->getValue().getLimitedValue(); 243 Scale <<= RHSC->getValue().getLimitedValue(); 244 return V; 245 } 246 } 247 } 248 249 // Since GEP indices are sign extended anyway, we don't care about the high 250 // bits of a sign or zero extended value - just scales and offsets. The 251 // extensions have to be consistent though. 252 if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) || 253 (isa<ZExtInst>(V) && Extension != EK_SignExt)) { 254 Value *CastOp = cast<CastInst>(V)->getOperand(0); 255 unsigned OldWidth = Scale.getBitWidth(); 256 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 257 Scale = Scale.trunc(SmallWidth); 258 Offset = Offset.trunc(SmallWidth); 259 Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt; 260 261 Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension, DL, 262 Depth + 1, AC, DT); 263 Scale = Scale.zext(OldWidth); 264 265 // We have to sign-extend even if Extension == EK_ZeroExt as we can't 266 // decompose a sign extension (i.e. zext(x - 1) != zext(x) - zext(-1)). 267 Offset = Offset.sext(OldWidth); 268 269 return Result; 270 } 271 272 Scale = 1; 273 Offset = 0; 274 return V; 275 } 276 277 /// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it 278 /// into a base pointer with a constant offset and a number of scaled symbolic 279 /// offsets. 280 /// 281 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale in 282 /// the VarIndices vector) are Value*'s that are known to be scaled by the 283 /// specified amount, but which may have other unrepresented high bits. As such, 284 /// the gep cannot necessarily be reconstructed from its decomposed form. 285 /// 286 /// When DataLayout is around, this function is capable of analyzing everything 287 /// that GetUnderlyingObject can look through. To be able to do that 288 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search 289 /// depth (MaxLookupSearchDepth). 290 /// When DataLayout not is around, it just looks through pointer casts. 291 /// 292 static const Value * 293 DecomposeGEPExpression(const Value *V, int64_t &BaseOffs, 294 SmallVectorImpl<VariableGEPIndex> &VarIndices, 295 bool &MaxLookupReached, const DataLayout *DL, 296 AssumptionCache *AC, DominatorTree *DT) { 297 // Limit recursion depth to limit compile time in crazy cases. 298 unsigned MaxLookup = MaxLookupSearchDepth; 299 MaxLookupReached = false; 300 301 BaseOffs = 0; 302 do { 303 // See if this is a bitcast or GEP. 304 const Operator *Op = dyn_cast<Operator>(V); 305 if (!Op) { 306 // The only non-operator case we can handle are GlobalAliases. 307 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 308 if (!GA->mayBeOverridden()) { 309 V = GA->getAliasee(); 310 continue; 311 } 312 } 313 return V; 314 } 315 316 if (Op->getOpcode() == Instruction::BitCast || 317 Op->getOpcode() == Instruction::AddrSpaceCast) { 318 V = Op->getOperand(0); 319 continue; 320 } 321 322 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 323 if (!GEPOp) { 324 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 325 // can come up with something. This matches what GetUnderlyingObject does. 326 if (const Instruction *I = dyn_cast<Instruction>(V)) 327 // TODO: Get a DominatorTree and AssumptionCache and use them here 328 // (these are both now available in this function, but this should be 329 // updated when GetUnderlyingObject is updated). TLI should be 330 // provided also. 331 if (const Value *Simplified = 332 SimplifyInstruction(const_cast<Instruction *>(I), DL)) { 333 V = Simplified; 334 continue; 335 } 336 337 return V; 338 } 339 340 // Don't attempt to analyze GEPs over unsized objects. 341 if (!GEPOp->getOperand(0)->getType()->getPointerElementType()->isSized()) 342 return V; 343 344 // If we are lacking DataLayout information, we can't compute the offets of 345 // elements computed by GEPs. However, we can handle bitcast equivalent 346 // GEPs. 347 if (!DL) { 348 if (!GEPOp->hasAllZeroIndices()) 349 return V; 350 V = GEPOp->getOperand(0); 351 continue; 352 } 353 354 unsigned AS = GEPOp->getPointerAddressSpace(); 355 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 356 gep_type_iterator GTI = gep_type_begin(GEPOp); 357 for (User::const_op_iterator I = GEPOp->op_begin()+1, 358 E = GEPOp->op_end(); I != E; ++I) { 359 Value *Index = *I; 360 // Compute the (potentially symbolic) offset in bytes for this index. 361 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 362 // For a struct, add the member offset. 363 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 364 if (FieldNo == 0) continue; 365 366 BaseOffs += DL->getStructLayout(STy)->getElementOffset(FieldNo); 367 continue; 368 } 369 370 // For an array/pointer, add the element offset, explicitly scaled. 371 if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 372 if (CIdx->isZero()) continue; 373 BaseOffs += DL->getTypeAllocSize(*GTI)*CIdx->getSExtValue(); 374 continue; 375 } 376 377 uint64_t Scale = DL->getTypeAllocSize(*GTI); 378 ExtensionKind Extension = EK_NotExtended; 379 380 // If the integer type is smaller than the pointer size, it is implicitly 381 // sign extended to pointer size. 382 unsigned Width = Index->getType()->getIntegerBitWidth(); 383 if (DL->getPointerSizeInBits(AS) > Width) 384 Extension = EK_SignExt; 385 386 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 387 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 388 Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension, 389 *DL, 0, AC, DT); 390 391 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 392 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 393 BaseOffs += IndexOffset.getSExtValue()*Scale; 394 Scale *= IndexScale.getSExtValue(); 395 396 // If we already had an occurrence of this index variable, merge this 397 // scale into it. For example, we want to handle: 398 // A[x][x] -> x*16 + x*4 -> x*20 399 // This also ensures that 'x' only appears in the index list once. 400 for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) { 401 if (VarIndices[i].V == Index && 402 VarIndices[i].Extension == Extension) { 403 Scale += VarIndices[i].Scale; 404 VarIndices.erase(VarIndices.begin()+i); 405 break; 406 } 407 } 408 409 // Make sure that we have a scale that makes sense for this target's 410 // pointer size. 411 if (unsigned ShiftBits = 64 - DL->getPointerSizeInBits(AS)) { 412 Scale <<= ShiftBits; 413 Scale = (int64_t)Scale >> ShiftBits; 414 } 415 416 if (Scale) { 417 VariableGEPIndex Entry = {Index, Extension, 418 static_cast<int64_t>(Scale)}; 419 VarIndices.push_back(Entry); 420 } 421 } 422 423 // Analyze the base pointer next. 424 V = GEPOp->getOperand(0); 425 } while (--MaxLookup); 426 427 // If the chain of expressions is too deep, just return early. 428 MaxLookupReached = true; 429 return V; 430 } 431 432 //===----------------------------------------------------------------------===// 433 // BasicAliasAnalysis Pass 434 //===----------------------------------------------------------------------===// 435 436 #ifndef NDEBUG 437 static const Function *getParent(const Value *V) { 438 if (const Instruction *inst = dyn_cast<Instruction>(V)) 439 return inst->getParent()->getParent(); 440 441 if (const Argument *arg = dyn_cast<Argument>(V)) 442 return arg->getParent(); 443 444 return nullptr; 445 } 446 447 static bool notDifferentParent(const Value *O1, const Value *O2) { 448 449 const Function *F1 = getParent(O1); 450 const Function *F2 = getParent(O2); 451 452 return !F1 || !F2 || F1 == F2; 453 } 454 #endif 455 456 namespace { 457 /// BasicAliasAnalysis - This is the primary alias analysis implementation. 458 struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis { 459 static char ID; // Class identification, replacement for typeinfo 460 BasicAliasAnalysis() : ImmutablePass(ID) { 461 initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry()); 462 } 463 464 void initializePass() override { 465 InitializeAliasAnalysis(this); 466 } 467 468 void getAnalysisUsage(AnalysisUsage &AU) const override { 469 AU.addRequired<AliasAnalysis>(); 470 AU.addRequired<AssumptionCacheTracker>(); 471 AU.addRequired<TargetLibraryInfoWrapperPass>(); 472 } 473 474 AliasResult alias(const Location &LocA, const Location &LocB) override { 475 assert(AliasCache.empty() && "AliasCache must be cleared after use!"); 476 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 477 "BasicAliasAnalysis doesn't support interprocedural queries."); 478 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, 479 LocB.Ptr, LocB.Size, LocB.AATags); 480 // AliasCache rarely has more than 1 or 2 elements, always use 481 // shrink_and_clear so it quickly returns to the inline capacity of the 482 // SmallDenseMap if it ever grows larger. 483 // FIXME: This should really be shrink_to_inline_capacity_and_clear(). 484 AliasCache.shrink_and_clear(); 485 VisitedPhiBBs.clear(); 486 return Alias; 487 } 488 489 ModRefResult getModRefInfo(ImmutableCallSite CS, 490 const Location &Loc) override; 491 492 ModRefResult getModRefInfo(ImmutableCallSite CS1, 493 ImmutableCallSite CS2) override; 494 495 /// pointsToConstantMemory - Chase pointers until we find a (constant 496 /// global) or not. 497 bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override; 498 499 /// Get the location associated with a pointer argument of a callsite. 500 Location getArgLocation(ImmutableCallSite CS, unsigned ArgIdx, 501 ModRefResult &Mask) override; 502 503 /// getModRefBehavior - Return the behavior when calling the given 504 /// call site. 505 ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override; 506 507 /// getModRefBehavior - Return the behavior when calling the given function. 508 /// For use when the call site is not known. 509 ModRefBehavior getModRefBehavior(const Function *F) override; 510 511 /// getAdjustedAnalysisPointer - This method is used when a pass implements 512 /// an analysis interface through multiple inheritance. If needed, it 513 /// should override this to adjust the this pointer as needed for the 514 /// specified pass info. 515 void *getAdjustedAnalysisPointer(const void *ID) override { 516 if (ID == &AliasAnalysis::ID) 517 return (AliasAnalysis*)this; 518 return this; 519 } 520 521 private: 522 // AliasCache - Track alias queries to guard against recursion. 523 typedef std::pair<Location, Location> LocPair; 524 typedef SmallDenseMap<LocPair, AliasResult, 8> AliasCacheTy; 525 AliasCacheTy AliasCache; 526 527 /// \brief Track phi nodes we have visited. When interpret "Value" pointer 528 /// equality as value equality we need to make sure that the "Value" is not 529 /// part of a cycle. Otherwise, two uses could come from different 530 /// "iterations" of a cycle and see different values for the same "Value" 531 /// pointer. 532 /// The following example shows the problem: 533 /// %p = phi(%alloca1, %addr2) 534 /// %l = load %ptr 535 /// %addr1 = gep, %alloca2, 0, %l 536 /// %addr2 = gep %alloca2, 0, (%l + 1) 537 /// alias(%p, %addr1) -> MayAlias ! 538 /// store %l, ... 539 SmallPtrSet<const BasicBlock*, 8> VisitedPhiBBs; 540 541 // Visited - Track instructions visited by pointsToConstantMemory. 542 SmallPtrSet<const Value*, 16> Visited; 543 544 /// \brief Check whether two Values can be considered equivalent. 545 /// 546 /// In addition to pointer equivalence of \p V1 and \p V2 this checks 547 /// whether they can not be part of a cycle in the value graph by looking at 548 /// all visited phi nodes an making sure that the phis cannot reach the 549 /// value. We have to do this because we are looking through phi nodes (That 550 /// is we say noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 551 bool isValueEqualInPotentialCycles(const Value *V1, const Value *V2); 552 553 /// \brief Dest and Src are the variable indices from two decomposed 554 /// GetElementPtr instructions GEP1 and GEP2 which have common base 555 /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic 556 /// difference between the two pointers. 557 void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest, 558 const SmallVectorImpl<VariableGEPIndex> &Src); 559 560 // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP 561 // instruction against another. 562 AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size, 563 const AAMDNodes &V1AAInfo, 564 const Value *V2, uint64_t V2Size, 565 const AAMDNodes &V2AAInfo, 566 const Value *UnderlyingV1, const Value *UnderlyingV2); 567 568 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI 569 // instruction against another. 570 AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize, 571 const AAMDNodes &PNAAInfo, 572 const Value *V2, uint64_t V2Size, 573 const AAMDNodes &V2AAInfo); 574 575 /// aliasSelect - Disambiguate a Select instruction against another value. 576 AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize, 577 const AAMDNodes &SIAAInfo, 578 const Value *V2, uint64_t V2Size, 579 const AAMDNodes &V2AAInfo); 580 581 AliasResult aliasCheck(const Value *V1, uint64_t V1Size, 582 AAMDNodes V1AATag, 583 const Value *V2, uint64_t V2Size, 584 AAMDNodes V2AATag); 585 }; 586 } // End of anonymous namespace 587 588 // Register this pass... 589 char BasicAliasAnalysis::ID = 0; 590 INITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa", 591 "Basic Alias Analysis (stateless AA impl)", 592 false, true, false) 593 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 594 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 595 INITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa", 596 "Basic Alias Analysis (stateless AA impl)", 597 false, true, false) 598 599 600 ImmutablePass *llvm::createBasicAliasAnalysisPass() { 601 return new BasicAliasAnalysis(); 602 } 603 604 /// pointsToConstantMemory - Returns whether the given pointer value 605 /// points to memory that is local to the function, with global constants being 606 /// considered local to all functions. 607 bool 608 BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) { 609 assert(Visited.empty() && "Visited must be cleared after use!"); 610 611 unsigned MaxLookup = 8; 612 SmallVector<const Value *, 16> Worklist; 613 Worklist.push_back(Loc.Ptr); 614 do { 615 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL); 616 if (!Visited.insert(V).second) { 617 Visited.clear(); 618 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 619 } 620 621 // An alloca instruction defines local memory. 622 if (OrLocal && isa<AllocaInst>(V)) 623 continue; 624 625 // A global constant counts as local memory for our purposes. 626 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 627 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 628 // global to be marked constant in some modules and non-constant in 629 // others. GV may even be a declaration, not a definition. 630 if (!GV->isConstant()) { 631 Visited.clear(); 632 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 633 } 634 continue; 635 } 636 637 // If both select values point to local memory, then so does the select. 638 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 639 Worklist.push_back(SI->getTrueValue()); 640 Worklist.push_back(SI->getFalseValue()); 641 continue; 642 } 643 644 // If all values incoming to a phi node point to local memory, then so does 645 // the phi. 646 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 647 // Don't bother inspecting phi nodes with many operands. 648 if (PN->getNumIncomingValues() > MaxLookup) { 649 Visited.clear(); 650 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 651 } 652 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 653 Worklist.push_back(PN->getIncomingValue(i)); 654 continue; 655 } 656 657 // Otherwise be conservative. 658 Visited.clear(); 659 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 660 661 } while (!Worklist.empty() && --MaxLookup); 662 663 Visited.clear(); 664 return Worklist.empty(); 665 } 666 667 static bool isMemsetPattern16(const Function *MS, 668 const TargetLibraryInfo &TLI) { 669 if (TLI.has(LibFunc::memset_pattern16) && 670 MS->getName() == "memset_pattern16") { 671 FunctionType *MemsetType = MS->getFunctionType(); 672 if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 && 673 isa<PointerType>(MemsetType->getParamType(0)) && 674 isa<PointerType>(MemsetType->getParamType(1)) && 675 isa<IntegerType>(MemsetType->getParamType(2))) 676 return true; 677 } 678 679 return false; 680 } 681 682 /// getModRefBehavior - Return the behavior when calling the given call site. 683 AliasAnalysis::ModRefBehavior 684 BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) { 685 if (CS.doesNotAccessMemory()) 686 // Can't do better than this. 687 return DoesNotAccessMemory; 688 689 ModRefBehavior Min = UnknownModRefBehavior; 690 691 // If the callsite knows it only reads memory, don't return worse 692 // than that. 693 if (CS.onlyReadsMemory()) 694 Min = OnlyReadsMemory; 695 696 // The AliasAnalysis base class has some smarts, lets use them. 697 return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min); 698 } 699 700 /// getModRefBehavior - Return the behavior when calling the given function. 701 /// For use when the call site is not known. 702 AliasAnalysis::ModRefBehavior 703 BasicAliasAnalysis::getModRefBehavior(const Function *F) { 704 // If the function declares it doesn't access memory, we can't do better. 705 if (F->doesNotAccessMemory()) 706 return DoesNotAccessMemory; 707 708 // For intrinsics, we can check the table. 709 if (unsigned iid = F->getIntrinsicID()) { 710 #define GET_INTRINSIC_MODREF_BEHAVIOR 711 #include "llvm/IR/Intrinsics.gen" 712 #undef GET_INTRINSIC_MODREF_BEHAVIOR 713 } 714 715 ModRefBehavior Min = UnknownModRefBehavior; 716 717 // If the function declares it only reads memory, go with that. 718 if (F->onlyReadsMemory()) 719 Min = OnlyReadsMemory; 720 721 const TargetLibraryInfo &TLI = 722 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 723 if (isMemsetPattern16(F, TLI)) 724 Min = OnlyAccessesArgumentPointees; 725 726 // Otherwise be conservative. 727 return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min); 728 } 729 730 AliasAnalysis::Location 731 BasicAliasAnalysis::getArgLocation(ImmutableCallSite CS, unsigned ArgIdx, 732 ModRefResult &Mask) { 733 Location Loc = AliasAnalysis::getArgLocation(CS, ArgIdx, Mask); 734 const TargetLibraryInfo &TLI = 735 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 736 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 737 if (II != nullptr) 738 switch (II->getIntrinsicID()) { 739 default: break; 740 case Intrinsic::memset: 741 case Intrinsic::memcpy: 742 case Intrinsic::memmove: { 743 assert((ArgIdx == 0 || ArgIdx == 1) && 744 "Invalid argument index for memory intrinsic"); 745 if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) 746 Loc.Size = LenCI->getZExtValue(); 747 assert(Loc.Ptr == II->getArgOperand(ArgIdx) && 748 "Memory intrinsic location pointer not argument?"); 749 Mask = ArgIdx ? Ref : Mod; 750 break; 751 } 752 case Intrinsic::lifetime_start: 753 case Intrinsic::lifetime_end: 754 case Intrinsic::invariant_start: { 755 assert(ArgIdx == 1 && "Invalid argument index"); 756 assert(Loc.Ptr == II->getArgOperand(ArgIdx) && 757 "Intrinsic location pointer not argument?"); 758 Loc.Size = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(); 759 break; 760 } 761 case Intrinsic::invariant_end: { 762 assert(ArgIdx == 2 && "Invalid argument index"); 763 assert(Loc.Ptr == II->getArgOperand(ArgIdx) && 764 "Intrinsic location pointer not argument?"); 765 Loc.Size = cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(); 766 break; 767 } 768 case Intrinsic::arm_neon_vld1: { 769 assert(ArgIdx == 0 && "Invalid argument index"); 770 assert(Loc.Ptr == II->getArgOperand(ArgIdx) && 771 "Intrinsic location pointer not argument?"); 772 // LLVM's vld1 and vst1 intrinsics currently only support a single 773 // vector register. 774 if (DL) 775 Loc.Size = DL->getTypeStoreSize(II->getType()); 776 break; 777 } 778 case Intrinsic::arm_neon_vst1: { 779 assert(ArgIdx == 0 && "Invalid argument index"); 780 assert(Loc.Ptr == II->getArgOperand(ArgIdx) && 781 "Intrinsic location pointer not argument?"); 782 if (DL) 783 Loc.Size = DL->getTypeStoreSize(II->getArgOperand(1)->getType()); 784 break; 785 } 786 } 787 788 // We can bound the aliasing properties of memset_pattern16 just as we can 789 // for memcpy/memset. This is particularly important because the 790 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 791 // whenever possible. 792 else if (CS.getCalledFunction() && 793 isMemsetPattern16(CS.getCalledFunction(), TLI)) { 794 assert((ArgIdx == 0 || ArgIdx == 1) && 795 "Invalid argument index for memset_pattern16"); 796 if (ArgIdx == 1) 797 Loc.Size = 16; 798 else if (const ConstantInt *LenCI = 799 dyn_cast<ConstantInt>(CS.getArgument(2))) 800 Loc.Size = LenCI->getZExtValue(); 801 assert(Loc.Ptr == CS.getArgument(ArgIdx) && 802 "memset_pattern16 location pointer not argument?"); 803 Mask = ArgIdx ? Ref : Mod; 804 } 805 // FIXME: Handle memset_pattern4 and memset_pattern8 also. 806 807 return Loc; 808 } 809 810 static bool isAssumeIntrinsic(ImmutableCallSite CS) { 811 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 812 if (II && II->getIntrinsicID() == Intrinsic::assume) 813 return true; 814 815 return false; 816 } 817 818 /// getModRefInfo - Check to see if the specified callsite can clobber the 819 /// specified memory object. Since we only look at local properties of this 820 /// function, we really can't say much about this query. We do, however, use 821 /// simple "address taken" analysis on local objects. 822 AliasAnalysis::ModRefResult 823 BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS, 824 const Location &Loc) { 825 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && 826 "AliasAnalysis query involving multiple functions!"); 827 828 const Value *Object = GetUnderlyingObject(Loc.Ptr, DL); 829 830 // If this is a tail call and Loc.Ptr points to a stack location, we know that 831 // the tail call cannot access or modify the local stack. 832 // We cannot exclude byval arguments here; these belong to the caller of 833 // the current function not to the current function, and a tail callee 834 // may reference them. 835 if (isa<AllocaInst>(Object)) 836 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) 837 if (CI->isTailCall()) 838 return NoModRef; 839 840 // If the pointer is to a locally allocated object that does not escape, 841 // then the call can not mod/ref the pointer unless the call takes the pointer 842 // as an argument, and itself doesn't capture it. 843 if (!isa<Constant>(Object) && CS.getInstruction() != Object && 844 isNonEscapingLocalObject(Object)) { 845 bool PassedAsArg = false; 846 unsigned ArgNo = 0; 847 for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end(); 848 CI != CE; ++CI, ++ArgNo) { 849 // Only look at the no-capture or byval pointer arguments. If this 850 // pointer were passed to arguments that were neither of these, then it 851 // couldn't be no-capture. 852 if (!(*CI)->getType()->isPointerTy() || 853 (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo))) 854 continue; 855 856 // If this is a no-capture pointer argument, see if we can tell that it 857 // is impossible to alias the pointer we're checking. If not, we have to 858 // assume that the call could touch the pointer, even though it doesn't 859 // escape. 860 if (!isNoAlias(Location(*CI), Location(Object))) { 861 PassedAsArg = true; 862 break; 863 } 864 } 865 866 if (!PassedAsArg) 867 return NoModRef; 868 } 869 870 // While the assume intrinsic is marked as arbitrarily writing so that 871 // proper control dependencies will be maintained, it never aliases any 872 // particular memory location. 873 if (isAssumeIntrinsic(CS)) 874 return NoModRef; 875 876 // The AliasAnalysis base class has some smarts, lets use them. 877 return AliasAnalysis::getModRefInfo(CS, Loc); 878 } 879 880 AliasAnalysis::ModRefResult 881 BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS1, 882 ImmutableCallSite CS2) { 883 // While the assume intrinsic is marked as arbitrarily writing so that 884 // proper control dependencies will be maintained, it never aliases any 885 // particular memory location. 886 if (isAssumeIntrinsic(CS1) || isAssumeIntrinsic(CS2)) 887 return NoModRef; 888 889 // The AliasAnalysis base class has some smarts, lets use them. 890 return AliasAnalysis::getModRefInfo(CS1, CS2); 891 } 892 893 /// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction 894 /// against another pointer. We know that V1 is a GEP, but we don't know 895 /// anything about V2. UnderlyingV1 is GetUnderlyingObject(GEP1, DL), 896 /// UnderlyingV2 is the same for V2. 897 /// 898 AliasAnalysis::AliasResult 899 BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, 900 const AAMDNodes &V1AAInfo, 901 const Value *V2, uint64_t V2Size, 902 const AAMDNodes &V2AAInfo, 903 const Value *UnderlyingV1, 904 const Value *UnderlyingV2) { 905 int64_t GEP1BaseOffset; 906 bool GEP1MaxLookupReached; 907 SmallVector<VariableGEPIndex, 4> GEP1VariableIndices; 908 909 // We have to get two AssumptionCaches here because GEP1 and V2 may be from 910 // different functions. 911 // FIXME: This really doesn't make any sense. We get a dominator tree below 912 // that can only refer to a single function. But this function (aliasGEP) is 913 // a method on an immutable pass that can be called when there *isn't* 914 // a single function. The old pass management layer makes this "work", but 915 // this isn't really a clean solution. 916 AssumptionCacheTracker &ACT = getAnalysis<AssumptionCacheTracker>(); 917 AssumptionCache *AC1 = nullptr, *AC2 = nullptr; 918 if (auto *GEP1I = dyn_cast<Instruction>(GEP1)) 919 AC1 = &ACT.getAssumptionCache( 920 const_cast<Function &>(*GEP1I->getParent()->getParent())); 921 if (auto *I2 = dyn_cast<Instruction>(V2)) 922 AC2 = &ACT.getAssumptionCache( 923 const_cast<Function &>(*I2->getParent()->getParent())); 924 925 DominatorTreeWrapperPass *DTWP = 926 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 927 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 928 929 // If we have two gep instructions with must-alias or not-alias'ing base 930 // pointers, figure out if the indexes to the GEP tell us anything about the 931 // derived pointer. 932 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 933 // Do the base pointers alias? 934 AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, AAMDNodes(), 935 UnderlyingV2, UnknownSize, AAMDNodes()); 936 937 // Check for geps of non-aliasing underlying pointers where the offsets are 938 // identical. 939 if ((BaseAlias == MayAlias) && V1Size == V2Size) { 940 // Do the base pointers alias assuming type and size. 941 AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, 942 V1AAInfo, UnderlyingV2, 943 V2Size, V2AAInfo); 944 if (PreciseBaseAlias == NoAlias) { 945 // See if the computed offset from the common pointer tells us about the 946 // relation of the resulting pointer. 947 int64_t GEP2BaseOffset; 948 bool GEP2MaxLookupReached; 949 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 950 const Value *GEP2BasePtr = 951 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, 952 GEP2MaxLookupReached, DL, AC2, DT); 953 const Value *GEP1BasePtr = 954 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 955 GEP1MaxLookupReached, DL, AC1, DT); 956 // DecomposeGEPExpression and GetUnderlyingObject should return the 957 // same result except when DecomposeGEPExpression has no DataLayout. 958 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 959 assert(!DL && 960 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 961 return MayAlias; 962 } 963 // If the max search depth is reached the result is undefined 964 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 965 return MayAlias; 966 967 // Same offsets. 968 if (GEP1BaseOffset == GEP2BaseOffset && 969 GEP1VariableIndices == GEP2VariableIndices) 970 return NoAlias; 971 GEP1VariableIndices.clear(); 972 } 973 } 974 975 // If we get a No or May, then return it immediately, no amount of analysis 976 // will improve this situation. 977 if (BaseAlias != MustAlias) return BaseAlias; 978 979 // Otherwise, we have a MustAlias. Since the base pointers alias each other 980 // exactly, see if the computed offset from the common pointer tells us 981 // about the relation of the resulting pointer. 982 const Value *GEP1BasePtr = 983 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 984 GEP1MaxLookupReached, DL, AC1, DT); 985 986 int64_t GEP2BaseOffset; 987 bool GEP2MaxLookupReached; 988 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 989 const Value *GEP2BasePtr = 990 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, 991 GEP2MaxLookupReached, DL, AC2, DT); 992 993 // DecomposeGEPExpression and GetUnderlyingObject should return the 994 // same result except when DecomposeGEPExpression has no DataLayout. 995 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 996 assert(!DL && 997 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 998 return MayAlias; 999 } 1000 // If the max search depth is reached the result is undefined 1001 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1002 return MayAlias; 1003 1004 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1005 // symbolic difference. 1006 GEP1BaseOffset -= GEP2BaseOffset; 1007 GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices); 1008 1009 } else { 1010 // Check to see if these two pointers are related by the getelementptr 1011 // instruction. If one pointer is a GEP with a non-zero index of the other 1012 // pointer, we know they cannot alias. 1013 1014 // If both accesses are unknown size, we can't do anything useful here. 1015 if (V1Size == UnknownSize && V2Size == UnknownSize) 1016 return MayAlias; 1017 1018 AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, AAMDNodes(), 1019 V2, V2Size, V2AAInfo); 1020 if (R != MustAlias) 1021 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 1022 // If V2 is known not to alias GEP base pointer, then the two values 1023 // cannot alias per GEP semantics: "A pointer value formed from a 1024 // getelementptr instruction is associated with the addresses associated 1025 // with the first operand of the getelementptr". 1026 return R; 1027 1028 const Value *GEP1BasePtr = 1029 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 1030 GEP1MaxLookupReached, DL, AC1, DT); 1031 1032 // DecomposeGEPExpression and GetUnderlyingObject should return the 1033 // same result except when DecomposeGEPExpression has no DataLayout. 1034 if (GEP1BasePtr != UnderlyingV1) { 1035 assert(!DL && 1036 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 1037 return MayAlias; 1038 } 1039 // If the max search depth is reached the result is undefined 1040 if (GEP1MaxLookupReached) 1041 return MayAlias; 1042 } 1043 1044 // In the two GEP Case, if there is no difference in the offsets of the 1045 // computed pointers, the resultant pointers are a must alias. This 1046 // hapens when we have two lexically identical GEP's (for example). 1047 // 1048 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 1049 // must aliases the GEP, the end result is a must alias also. 1050 if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty()) 1051 return MustAlias; 1052 1053 // If there is a constant difference between the pointers, but the difference 1054 // is less than the size of the associated memory object, then we know 1055 // that the objects are partially overlapping. If the difference is 1056 // greater, we know they do not overlap. 1057 if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) { 1058 if (GEP1BaseOffset >= 0) { 1059 if (V2Size != UnknownSize) { 1060 if ((uint64_t)GEP1BaseOffset < V2Size) 1061 return PartialAlias; 1062 return NoAlias; 1063 } 1064 } else { 1065 // We have the situation where: 1066 // + + 1067 // | BaseOffset | 1068 // ---------------->| 1069 // |-->V1Size |-------> V2Size 1070 // GEP1 V2 1071 // We need to know that V2Size is not unknown, otherwise we might have 1072 // stripped a gep with negative index ('gep <ptr>, -1, ...). 1073 if (V1Size != UnknownSize && V2Size != UnknownSize) { 1074 if (-(uint64_t)GEP1BaseOffset < V1Size) 1075 return PartialAlias; 1076 return NoAlias; 1077 } 1078 } 1079 } 1080 1081 if (!GEP1VariableIndices.empty()) { 1082 uint64_t Modulo = 0; 1083 bool AllPositive = true; 1084 for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) { 1085 1086 // Try to distinguish something like &A[i][1] against &A[42][0]. 1087 // Grab the least significant bit set in any of the scales. We 1088 // don't need std::abs here (even if the scale's negative) as we'll 1089 // be ^'ing Modulo with itself later. 1090 Modulo |= (uint64_t) GEP1VariableIndices[i].Scale; 1091 1092 if (AllPositive) { 1093 // If the Value could change between cycles, then any reasoning about 1094 // the Value this cycle may not hold in the next cycle. We'll just 1095 // give up if we can't determine conditions that hold for every cycle: 1096 const Value *V = GEP1VariableIndices[i].V; 1097 1098 bool SignKnownZero, SignKnownOne; 1099 ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, DL, 1100 0, AC1, nullptr, DT); 1101 1102 // Zero-extension widens the variable, and so forces the sign 1103 // bit to zero. 1104 bool IsZExt = GEP1VariableIndices[i].Extension == EK_ZeroExt; 1105 SignKnownZero |= IsZExt; 1106 SignKnownOne &= !IsZExt; 1107 1108 // If the variable begins with a zero then we know it's 1109 // positive, regardless of whether the value is signed or 1110 // unsigned. 1111 int64_t Scale = GEP1VariableIndices[i].Scale; 1112 AllPositive = 1113 (SignKnownZero && Scale >= 0) || 1114 (SignKnownOne && Scale < 0); 1115 } 1116 } 1117 1118 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1119 1120 // We can compute the difference between the two addresses 1121 // mod Modulo. Check whether that difference guarantees that the 1122 // two locations do not alias. 1123 uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1); 1124 if (V1Size != UnknownSize && V2Size != UnknownSize && 1125 ModOffset >= V2Size && V1Size <= Modulo - ModOffset) 1126 return NoAlias; 1127 1128 // If we know all the variables are positive, then GEP1 >= GEP1BasePtr. 1129 // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers 1130 // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr. 1131 if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t) GEP1BaseOffset) 1132 return NoAlias; 1133 } 1134 1135 // Statically, we can see that the base objects are the same, but the 1136 // pointers have dynamic offsets which we can't resolve. And none of our 1137 // little tricks above worked. 1138 // 1139 // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the 1140 // practical effect of this is protecting TBAA in the case of dynamic 1141 // indices into arrays of unions or malloc'd memory. 1142 return PartialAlias; 1143 } 1144 1145 static AliasAnalysis::AliasResult 1146 MergeAliasResults(AliasAnalysis::AliasResult A, AliasAnalysis::AliasResult B) { 1147 // If the results agree, take it. 1148 if (A == B) 1149 return A; 1150 // A mix of PartialAlias and MustAlias is PartialAlias. 1151 if ((A == AliasAnalysis::PartialAlias && B == AliasAnalysis::MustAlias) || 1152 (B == AliasAnalysis::PartialAlias && A == AliasAnalysis::MustAlias)) 1153 return AliasAnalysis::PartialAlias; 1154 // Otherwise, we don't know anything. 1155 return AliasAnalysis::MayAlias; 1156 } 1157 1158 /// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select 1159 /// instruction against another. 1160 AliasAnalysis::AliasResult 1161 BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize, 1162 const AAMDNodes &SIAAInfo, 1163 const Value *V2, uint64_t V2Size, 1164 const AAMDNodes &V2AAInfo) { 1165 // If the values are Selects with the same condition, we can do a more precise 1166 // check: just check for aliases between the values on corresponding arms. 1167 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1168 if (SI->getCondition() == SI2->getCondition()) { 1169 AliasResult Alias = 1170 aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, 1171 SI2->getTrueValue(), V2Size, V2AAInfo); 1172 if (Alias == MayAlias) 1173 return MayAlias; 1174 AliasResult ThisAlias = 1175 aliasCheck(SI->getFalseValue(), SISize, SIAAInfo, 1176 SI2->getFalseValue(), V2Size, V2AAInfo); 1177 return MergeAliasResults(ThisAlias, Alias); 1178 } 1179 1180 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1181 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1182 AliasResult Alias = 1183 aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), SISize, SIAAInfo); 1184 if (Alias == MayAlias) 1185 return MayAlias; 1186 1187 AliasResult ThisAlias = 1188 aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo); 1189 return MergeAliasResults(ThisAlias, Alias); 1190 } 1191 1192 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction 1193 // against another. 1194 AliasAnalysis::AliasResult 1195 BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize, 1196 const AAMDNodes &PNAAInfo, 1197 const Value *V2, uint64_t V2Size, 1198 const AAMDNodes &V2AAInfo) { 1199 // Track phi nodes we have visited. We use this information when we determine 1200 // value equivalence. 1201 VisitedPhiBBs.insert(PN->getParent()); 1202 1203 // If the values are PHIs in the same block, we can do a more precise 1204 // as well as efficient check: just check for aliases between the values 1205 // on corresponding edges. 1206 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1207 if (PN2->getParent() == PN->getParent()) { 1208 LocPair Locs(Location(PN, PNSize, PNAAInfo), 1209 Location(V2, V2Size, V2AAInfo)); 1210 if (PN > V2) 1211 std::swap(Locs.first, Locs.second); 1212 // Analyse the PHIs' inputs under the assumption that the PHIs are 1213 // NoAlias. 1214 // If the PHIs are May/MustAlias there must be (recursively) an input 1215 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1216 // there must be an operation on the PHIs within the PHIs' value cycle 1217 // that causes a MayAlias. 1218 // Pretend the phis do not alias. 1219 AliasResult Alias = NoAlias; 1220 assert(AliasCache.count(Locs) && 1221 "There must exist an entry for the phi node"); 1222 AliasResult OrigAliasResult = AliasCache[Locs]; 1223 AliasCache[Locs] = NoAlias; 1224 1225 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1226 AliasResult ThisAlias = 1227 aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo, 1228 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1229 V2Size, V2AAInfo); 1230 Alias = MergeAliasResults(ThisAlias, Alias); 1231 if (Alias == MayAlias) 1232 break; 1233 } 1234 1235 // Reset if speculation failed. 1236 if (Alias != NoAlias) 1237 AliasCache[Locs] = OrigAliasResult; 1238 1239 return Alias; 1240 } 1241 1242 SmallPtrSet<Value*, 4> UniqueSrc; 1243 SmallVector<Value*, 4> V1Srcs; 1244 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1245 Value *PV1 = PN->getIncomingValue(i); 1246 if (isa<PHINode>(PV1)) 1247 // If any of the source itself is a PHI, return MayAlias conservatively 1248 // to avoid compile time explosion. The worst possible case is if both 1249 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1250 // and 'n' are the number of PHI sources. 1251 return MayAlias; 1252 if (UniqueSrc.insert(PV1).second) 1253 V1Srcs.push_back(PV1); 1254 } 1255 1256 AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, 1257 V1Srcs[0], PNSize, PNAAInfo); 1258 // Early exit if the check of the first PHI source against V2 is MayAlias. 1259 // Other results are not possible. 1260 if (Alias == MayAlias) 1261 return MayAlias; 1262 1263 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1264 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1265 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1266 Value *V = V1Srcs[i]; 1267 1268 AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo, 1269 V, PNSize, PNAAInfo); 1270 Alias = MergeAliasResults(ThisAlias, Alias); 1271 if (Alias == MayAlias) 1272 break; 1273 } 1274 1275 return Alias; 1276 } 1277 1278 // aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases, 1279 // such as array references. 1280 // 1281 AliasAnalysis::AliasResult 1282 BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size, 1283 AAMDNodes V1AAInfo, 1284 const Value *V2, uint64_t V2Size, 1285 AAMDNodes V2AAInfo) { 1286 // If either of the memory references is empty, it doesn't matter what the 1287 // pointer values are. 1288 if (V1Size == 0 || V2Size == 0) 1289 return NoAlias; 1290 1291 // Strip off any casts if they exist. 1292 V1 = V1->stripPointerCasts(); 1293 V2 = V2->stripPointerCasts(); 1294 1295 // Are we checking for alias of the same value? 1296 // Because we look 'through' phi nodes we could look at "Value" pointers from 1297 // different iterations. We must therefore make sure that this is not the 1298 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1299 // happen by looking at the visited phi nodes and making sure they cannot 1300 // reach the value. 1301 if (isValueEqualInPotentialCycles(V1, V2)) 1302 return MustAlias; 1303 1304 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1305 return NoAlias; // Scalars cannot alias each other 1306 1307 // Figure out what objects these things are pointing to if we can. 1308 const Value *O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth); 1309 const Value *O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth); 1310 1311 // Null values in the default address space don't point to any object, so they 1312 // don't alias any other pointer. 1313 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1314 if (CPN->getType()->getAddressSpace() == 0) 1315 return NoAlias; 1316 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1317 if (CPN->getType()->getAddressSpace() == 0) 1318 return NoAlias; 1319 1320 if (O1 != O2) { 1321 // If V1/V2 point to two different objects we know that we have no alias. 1322 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1323 return NoAlias; 1324 1325 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1326 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1327 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1328 return NoAlias; 1329 1330 // Function arguments can't alias with things that are known to be 1331 // unambigously identified at the function level. 1332 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1333 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1334 return NoAlias; 1335 1336 // Most objects can't alias null. 1337 if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) || 1338 (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2))) 1339 return NoAlias; 1340 1341 // If one pointer is the result of a call/invoke or load and the other is a 1342 // non-escaping local object within the same function, then we know the 1343 // object couldn't escape to a point where the call could return it. 1344 // 1345 // Note that if the pointers are in different functions, there are a 1346 // variety of complications. A call with a nocapture argument may still 1347 // temporary store the nocapture argument's value in a temporary memory 1348 // location if that memory location doesn't escape. Or it may pass a 1349 // nocapture value to other functions as long as they don't capture it. 1350 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) 1351 return NoAlias; 1352 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) 1353 return NoAlias; 1354 } 1355 1356 // If the size of one access is larger than the entire object on the other 1357 // side, then we know such behavior is undefined and can assume no alias. 1358 if (DL) 1359 if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *DL, *TLI)) || 1360 (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *DL, *TLI))) 1361 return NoAlias; 1362 1363 // Check the cache before climbing up use-def chains. This also terminates 1364 // otherwise infinitely recursive queries. 1365 LocPair Locs(Location(V1, V1Size, V1AAInfo), 1366 Location(V2, V2Size, V2AAInfo)); 1367 if (V1 > V2) 1368 std::swap(Locs.first, Locs.second); 1369 std::pair<AliasCacheTy::iterator, bool> Pair = 1370 AliasCache.insert(std::make_pair(Locs, MayAlias)); 1371 if (!Pair.second) 1372 return Pair.first->second; 1373 1374 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1375 // GEP can't simplify, we don't even look at the PHI cases. 1376 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1377 std::swap(V1, V2); 1378 std::swap(V1Size, V2Size); 1379 std::swap(O1, O2); 1380 std::swap(V1AAInfo, V2AAInfo); 1381 } 1382 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1383 AliasResult Result = aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2); 1384 if (Result != MayAlias) return AliasCache[Locs] = Result; 1385 } 1386 1387 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1388 std::swap(V1, V2); 1389 std::swap(V1Size, V2Size); 1390 std::swap(V1AAInfo, V2AAInfo); 1391 } 1392 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1393 AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, 1394 V2, V2Size, V2AAInfo); 1395 if (Result != MayAlias) return AliasCache[Locs] = Result; 1396 } 1397 1398 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1399 std::swap(V1, V2); 1400 std::swap(V1Size, V2Size); 1401 std::swap(V1AAInfo, V2AAInfo); 1402 } 1403 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1404 AliasResult Result = aliasSelect(S1, V1Size, V1AAInfo, 1405 V2, V2Size, V2AAInfo); 1406 if (Result != MayAlias) return AliasCache[Locs] = Result; 1407 } 1408 1409 // If both pointers are pointing into the same object and one of them 1410 // accesses is accessing the entire object, then the accesses must 1411 // overlap in some way. 1412 if (DL && O1 == O2) 1413 if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *DL, *TLI)) || 1414 (V2Size != UnknownSize && isObjectSize(O2, V2Size, *DL, *TLI))) 1415 return AliasCache[Locs] = PartialAlias; 1416 1417 AliasResult Result = 1418 AliasAnalysis::alias(Location(V1, V1Size, V1AAInfo), 1419 Location(V2, V2Size, V2AAInfo)); 1420 return AliasCache[Locs] = Result; 1421 } 1422 1423 bool BasicAliasAnalysis::isValueEqualInPotentialCycles(const Value *V, 1424 const Value *V2) { 1425 if (V != V2) 1426 return false; 1427 1428 const Instruction *Inst = dyn_cast<Instruction>(V); 1429 if (!Inst) 1430 return true; 1431 1432 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1433 return false; 1434 1435 // Use dominance or loop info if available. 1436 DominatorTreeWrapperPass *DTWP = 1437 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1438 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 1439 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 1440 LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 1441 1442 // Make sure that the visited phis cannot reach the Value. This ensures that 1443 // the Values cannot come from different iterations of a potential cycle the 1444 // phi nodes could be involved in. 1445 for (auto *P : VisitedPhiBBs) 1446 if (isPotentiallyReachable(P->begin(), Inst, DT, LI)) 1447 return false; 1448 1449 return true; 1450 } 1451 1452 /// GetIndexDifference - Dest and Src are the variable indices from two 1453 /// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base 1454 /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic 1455 /// difference between the two pointers. 1456 void BasicAliasAnalysis::GetIndexDifference( 1457 SmallVectorImpl<VariableGEPIndex> &Dest, 1458 const SmallVectorImpl<VariableGEPIndex> &Src) { 1459 if (Src.empty()) 1460 return; 1461 1462 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1463 const Value *V = Src[i].V; 1464 ExtensionKind Extension = Src[i].Extension; 1465 int64_t Scale = Src[i].Scale; 1466 1467 // Find V in Dest. This is N^2, but pointer indices almost never have more 1468 // than a few variable indexes. 1469 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1470 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1471 Dest[j].Extension != Extension) 1472 continue; 1473 1474 // If we found it, subtract off Scale V's from the entry in Dest. If it 1475 // goes to zero, remove the entry. 1476 if (Dest[j].Scale != Scale) 1477 Dest[j].Scale -= Scale; 1478 else 1479 Dest.erase(Dest.begin() + j); 1480 Scale = 0; 1481 break; 1482 } 1483 1484 // If we didn't consume this entry, add it to the end of the Dest list. 1485 if (Scale) { 1486 VariableGEPIndex Entry = { V, Extension, -Scale }; 1487 Dest.push_back(Entry); 1488 } 1489 } 1490 } 1491