1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the primary stateless implementation of the 10 // Alias Analysis interface that implements identities (two different 11 // globals cannot alias, etc), but does no stateful analysis. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/BasicAliasAnalysis.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/CFG.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/MemoryLocation.h" 27 #include "llvm/Analysis/PhiValues.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/Argument.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/ConstantRange.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/GetElementPtrTypeIterator.h" 40 #include "llvm/IR/GlobalAlias.h" 41 #include "llvm/IR/GlobalVariable.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/Operator.h" 48 #include "llvm/IR/Type.h" 49 #include "llvm/IR/User.h" 50 #include "llvm/IR/Value.h" 51 #include "llvm/InitializePasses.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Compiler.h" 56 #include "llvm/Support/KnownBits.h" 57 #include <cassert> 58 #include <cstdint> 59 #include <cstdlib> 60 #include <utility> 61 62 #define DEBUG_TYPE "basicaa" 63 64 using namespace llvm; 65 66 /// Enable analysis of recursive PHI nodes. 67 static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden, 68 cl::init(true)); 69 70 /// SearchLimitReached / SearchTimes shows how often the limit of 71 /// to decompose GEPs is reached. It will affect the precision 72 /// of basic alias analysis. 73 STATISTIC(SearchLimitReached, "Number of times the limit to " 74 "decompose GEPs is reached"); 75 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 76 77 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 78 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be 79 /// careful with value equivalence. We use reachability to make sure a value 80 /// cannot be involved in a cycle. 81 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 82 83 // The max limit of the search depth in DecomposeGEPExpression() and 84 // getUnderlyingObject(). 85 static const unsigned MaxLookupSearchDepth = 6; 86 87 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA, 88 FunctionAnalysisManager::Invalidator &Inv) { 89 // We don't care if this analysis itself is preserved, it has no state. But 90 // we need to check that the analyses it depends on have been. Note that we 91 // may be created without handles to some analyses and in that case don't 92 // depend on them. 93 if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) || 94 (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) || 95 (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA))) 96 return true; 97 98 // Otherwise this analysis result remains valid. 99 return false; 100 } 101 102 //===----------------------------------------------------------------------===// 103 // Useful predicates 104 //===----------------------------------------------------------------------===// 105 106 /// Returns true if the pointer is one which would have been considered an 107 /// escape by isNonEscapingLocalObject. 108 static bool isEscapeSource(const Value *V) { 109 if (auto *CB = dyn_cast<CallBase>(V)) 110 return !isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(CB, 111 true); 112 113 // The load case works because isNonEscapingLocalObject considers all 114 // stores to be escapes (it passes true for the StoreCaptures argument 115 // to PointerMayBeCaptured). 116 if (isa<LoadInst>(V)) 117 return true; 118 119 // The inttoptr case works because isNonEscapingLocalObject considers all 120 // means of converting or equating a pointer to an int (ptrtoint, ptr store 121 // which could be followed by an integer load, ptr<->int compare) as 122 // escaping, and objects located at well-known addresses via platform-specific 123 // means cannot be considered non-escaping local objects. 124 if (isa<IntToPtrInst>(V)) 125 return true; 126 127 return false; 128 } 129 130 /// Returns the size of the object specified by V or UnknownSize if unknown. 131 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 132 const TargetLibraryInfo &TLI, 133 bool NullIsValidLoc, 134 bool RoundToAlign = false) { 135 uint64_t Size; 136 ObjectSizeOpts Opts; 137 Opts.RoundToAlign = RoundToAlign; 138 Opts.NullIsUnknownSize = NullIsValidLoc; 139 if (getObjectSize(V, Size, DL, &TLI, Opts)) 140 return Size; 141 return MemoryLocation::UnknownSize; 142 } 143 144 /// Returns true if we can prove that the object specified by V is smaller than 145 /// Size. 146 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 147 const DataLayout &DL, 148 const TargetLibraryInfo &TLI, 149 bool NullIsValidLoc) { 150 // Note that the meanings of the "object" are slightly different in the 151 // following contexts: 152 // c1: llvm::getObjectSize() 153 // c2: llvm.objectsize() intrinsic 154 // c3: isObjectSmallerThan() 155 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 156 // refers to the "entire object". 157 // 158 // Consider this example: 159 // char *p = (char*)malloc(100) 160 // char *q = p+80; 161 // 162 // In the context of c1 and c2, the "object" pointed by q refers to the 163 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 164 // 165 // However, in the context of c3, the "object" refers to the chunk of memory 166 // being allocated. So, the "object" has 100 bytes, and q points to the middle 167 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 168 // parameter, before the llvm::getObjectSize() is called to get the size of 169 // entire object, we should: 170 // - either rewind the pointer q to the base-address of the object in 171 // question (in this case rewind to p), or 172 // - just give up. It is up to caller to make sure the pointer is pointing 173 // to the base address the object. 174 // 175 // We go for 2nd option for simplicity. 176 if (!isIdentifiedObject(V)) 177 return false; 178 179 // This function needs to use the aligned object size because we allow 180 // reads a bit past the end given sufficient alignment. 181 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc, 182 /*RoundToAlign*/ true); 183 184 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; 185 } 186 187 /// Return the minimal extent from \p V to the end of the underlying object, 188 /// assuming the result is used in an aliasing query. E.g., we do use the query 189 /// location size and the fact that null pointers cannot alias here. 190 static uint64_t getMinimalExtentFrom(const Value &V, 191 const LocationSize &LocSize, 192 const DataLayout &DL, 193 bool NullIsValidLoc) { 194 // If we have dereferenceability information we know a lower bound for the 195 // extent as accesses for a lower offset would be valid. We need to exclude 196 // the "or null" part if null is a valid pointer. We can ignore frees, as an 197 // access after free would be undefined behavior. 198 bool CanBeNull, CanBeFreed; 199 uint64_t DerefBytes = 200 V.getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed); 201 DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes; 202 // If queried with a precise location size, we assume that location size to be 203 // accessed, thus valid. 204 if (LocSize.isPrecise()) 205 DerefBytes = std::max(DerefBytes, LocSize.getValue()); 206 return DerefBytes; 207 } 208 209 /// Returns true if we can prove that the object specified by V has size Size. 210 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, 211 const TargetLibraryInfo &TLI, bool NullIsValidLoc) { 212 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc); 213 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; 214 } 215 216 //===----------------------------------------------------------------------===// 217 // CaptureInfo implementations 218 //===----------------------------------------------------------------------===// 219 220 CaptureInfo::~CaptureInfo() = default; 221 222 bool SimpleCaptureInfo::isNotCapturedBeforeOrAt(const Value *Object, 223 const Instruction *I) { 224 return isNonEscapingLocalObject(Object, &IsCapturedCache); 225 } 226 227 bool EarliestEscapeInfo::isNotCapturedBeforeOrAt(const Value *Object, 228 const Instruction *I) { 229 if (!isIdentifiedFunctionLocal(Object)) 230 return false; 231 232 auto Iter = EarliestEscapes.insert({Object, nullptr}); 233 if (Iter.second) { 234 Instruction *EarliestCapture = FindEarliestCapture( 235 Object, *const_cast<Function *>(I->getFunction()), 236 /*ReturnCaptures=*/false, /*StoreCaptures=*/true, DT, EphValues); 237 if (EarliestCapture) { 238 auto Ins = Inst2Obj.insert({EarliestCapture, {}}); 239 Ins.first->second.push_back(Object); 240 } 241 Iter.first->second = EarliestCapture; 242 } 243 244 // No capturing instruction. 245 if (!Iter.first->second) 246 return true; 247 248 return I != Iter.first->second && 249 !isPotentiallyReachable(Iter.first->second, I, nullptr, &DT, &LI); 250 } 251 252 void EarliestEscapeInfo::removeInstruction(Instruction *I) { 253 auto Iter = Inst2Obj.find(I); 254 if (Iter != Inst2Obj.end()) { 255 for (const Value *Obj : Iter->second) 256 EarliestEscapes.erase(Obj); 257 Inst2Obj.erase(I); 258 } 259 } 260 261 //===----------------------------------------------------------------------===// 262 // GetElementPtr Instruction Decomposition and Analysis 263 //===----------------------------------------------------------------------===// 264 265 namespace { 266 /// Represents zext(sext(trunc(V))). 267 struct CastedValue { 268 const Value *V; 269 unsigned ZExtBits = 0; 270 unsigned SExtBits = 0; 271 unsigned TruncBits = 0; 272 273 explicit CastedValue(const Value *V) : V(V) {} 274 explicit CastedValue(const Value *V, unsigned ZExtBits, unsigned SExtBits, 275 unsigned TruncBits) 276 : V(V), ZExtBits(ZExtBits), SExtBits(SExtBits), TruncBits(TruncBits) {} 277 278 unsigned getBitWidth() const { 279 return V->getType()->getPrimitiveSizeInBits() - TruncBits + ZExtBits + 280 SExtBits; 281 } 282 283 CastedValue withValue(const Value *NewV) const { 284 return CastedValue(NewV, ZExtBits, SExtBits, TruncBits); 285 } 286 287 /// Replace V with zext(NewV) 288 CastedValue withZExtOfValue(const Value *NewV) const { 289 unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() - 290 NewV->getType()->getPrimitiveSizeInBits(); 291 if (ExtendBy <= TruncBits) 292 return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy); 293 294 // zext(sext(zext(NewV))) == zext(zext(zext(NewV))) 295 ExtendBy -= TruncBits; 296 return CastedValue(NewV, ZExtBits + SExtBits + ExtendBy, 0, 0); 297 } 298 299 /// Replace V with sext(NewV) 300 CastedValue withSExtOfValue(const Value *NewV) const { 301 unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() - 302 NewV->getType()->getPrimitiveSizeInBits(); 303 if (ExtendBy <= TruncBits) 304 return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy); 305 306 // zext(sext(sext(NewV))) 307 ExtendBy -= TruncBits; 308 return CastedValue(NewV, ZExtBits, SExtBits + ExtendBy, 0); 309 } 310 311 APInt evaluateWith(APInt N) const { 312 assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() && 313 "Incompatible bit width"); 314 if (TruncBits) N = N.trunc(N.getBitWidth() - TruncBits); 315 if (SExtBits) N = N.sext(N.getBitWidth() + SExtBits); 316 if (ZExtBits) N = N.zext(N.getBitWidth() + ZExtBits); 317 return N; 318 } 319 320 ConstantRange evaluateWith(ConstantRange N) const { 321 assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() && 322 "Incompatible bit width"); 323 if (TruncBits) N = N.truncate(N.getBitWidth() - TruncBits); 324 if (SExtBits) N = N.signExtend(N.getBitWidth() + SExtBits); 325 if (ZExtBits) N = N.zeroExtend(N.getBitWidth() + ZExtBits); 326 return N; 327 } 328 329 bool canDistributeOver(bool NUW, bool NSW) const { 330 // zext(x op<nuw> y) == zext(x) op<nuw> zext(y) 331 // sext(x op<nsw> y) == sext(x) op<nsw> sext(y) 332 // trunc(x op y) == trunc(x) op trunc(y) 333 return (!ZExtBits || NUW) && (!SExtBits || NSW); 334 } 335 336 bool hasSameCastsAs(const CastedValue &Other) const { 337 return ZExtBits == Other.ZExtBits && SExtBits == Other.SExtBits && 338 TruncBits == Other.TruncBits; 339 } 340 }; 341 342 /// Represents zext(sext(trunc(V))) * Scale + Offset. 343 struct LinearExpression { 344 CastedValue Val; 345 APInt Scale; 346 APInt Offset; 347 348 /// True if all operations in this expression are NSW. 349 bool IsNSW; 350 351 LinearExpression(const CastedValue &Val, const APInt &Scale, 352 const APInt &Offset, bool IsNSW) 353 : Val(Val), Scale(Scale), Offset(Offset), IsNSW(IsNSW) {} 354 355 LinearExpression(const CastedValue &Val) : Val(Val), IsNSW(true) { 356 unsigned BitWidth = Val.getBitWidth(); 357 Scale = APInt(BitWidth, 1); 358 Offset = APInt(BitWidth, 0); 359 } 360 361 LinearExpression mul(const APInt &Other, bool MulIsNSW) const { 362 // The check for zero offset is necessary, because generally 363 // (X +nsw Y) *nsw Z does not imply (X *nsw Z) +nsw (Y *nsw Z). 364 bool NSW = IsNSW && (Other.isOne() || (MulIsNSW && Offset.isZero())); 365 return LinearExpression(Val, Scale * Other, Offset * Other, NSW); 366 } 367 }; 368 } 369 370 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 371 /// B are constant integers. 372 static LinearExpression GetLinearExpression( 373 const CastedValue &Val, const DataLayout &DL, unsigned Depth, 374 AssumptionCache *AC, DominatorTree *DT) { 375 // Limit our recursion depth. 376 if (Depth == 6) 377 return Val; 378 379 if (const ConstantInt *Const = dyn_cast<ConstantInt>(Val.V)) 380 return LinearExpression(Val, APInt(Val.getBitWidth(), 0), 381 Val.evaluateWith(Const->getValue()), true); 382 383 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val.V)) { 384 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 385 APInt RHS = Val.evaluateWith(RHSC->getValue()); 386 // The only non-OBO case we deal with is or, and only limited to the 387 // case where it is both nuw and nsw. 388 bool NUW = true, NSW = true; 389 if (isa<OverflowingBinaryOperator>(BOp)) { 390 NUW &= BOp->hasNoUnsignedWrap(); 391 NSW &= BOp->hasNoSignedWrap(); 392 } 393 if (!Val.canDistributeOver(NUW, NSW)) 394 return Val; 395 396 // While we can distribute over trunc, we cannot preserve nowrap flags 397 // in that case. 398 if (Val.TruncBits) 399 NUW = NSW = false; 400 401 LinearExpression E(Val); 402 switch (BOp->getOpcode()) { 403 default: 404 // We don't understand this instruction, so we can't decompose it any 405 // further. 406 return Val; 407 case Instruction::Or: 408 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 409 // analyze it. 410 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, 411 BOp, DT)) 412 return Val; 413 414 LLVM_FALLTHROUGH; 415 case Instruction::Add: { 416 E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, 417 Depth + 1, AC, DT); 418 E.Offset += RHS; 419 E.IsNSW &= NSW; 420 break; 421 } 422 case Instruction::Sub: { 423 E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, 424 Depth + 1, AC, DT); 425 E.Offset -= RHS; 426 E.IsNSW &= NSW; 427 break; 428 } 429 case Instruction::Mul: 430 E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, 431 Depth + 1, AC, DT) 432 .mul(RHS, NSW); 433 break; 434 case Instruction::Shl: 435 // We're trying to linearize an expression of the kind: 436 // shl i8 -128, 36 437 // where the shift count exceeds the bitwidth of the type. 438 // We can't decompose this further (the expression would return 439 // a poison value). 440 if (RHS.getLimitedValue() > Val.getBitWidth()) 441 return Val; 442 443 E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, 444 Depth + 1, AC, DT); 445 E.Offset <<= RHS.getLimitedValue(); 446 E.Scale <<= RHS.getLimitedValue(); 447 E.IsNSW &= NSW; 448 break; 449 } 450 return E; 451 } 452 } 453 454 if (isa<ZExtInst>(Val.V)) 455 return GetLinearExpression( 456 Val.withZExtOfValue(cast<CastInst>(Val.V)->getOperand(0)), 457 DL, Depth + 1, AC, DT); 458 459 if (isa<SExtInst>(Val.V)) 460 return GetLinearExpression( 461 Val.withSExtOfValue(cast<CastInst>(Val.V)->getOperand(0)), 462 DL, Depth + 1, AC, DT); 463 464 return Val; 465 } 466 467 /// To ensure a pointer offset fits in an integer of size IndexSize 468 /// (in bits) when that size is smaller than the maximum index size. This is 469 /// an issue, for example, in particular for 32b pointers with negative indices 470 /// that rely on two's complement wrap-arounds for precise alias information 471 /// where the maximum index size is 64b. 472 static APInt adjustToIndexSize(const APInt &Offset, unsigned IndexSize) { 473 assert(IndexSize <= Offset.getBitWidth() && "Invalid IndexSize!"); 474 unsigned ShiftBits = Offset.getBitWidth() - IndexSize; 475 return (Offset << ShiftBits).ashr(ShiftBits); 476 } 477 478 namespace { 479 // A linear transformation of a Value; this class represents 480 // ZExt(SExt(Trunc(V, TruncBits), SExtBits), ZExtBits) * Scale. 481 struct VariableGEPIndex { 482 CastedValue Val; 483 APInt Scale; 484 485 // Context instruction to use when querying information about this index. 486 const Instruction *CxtI; 487 488 /// True if all operations in this expression are NSW. 489 bool IsNSW; 490 491 void dump() const { 492 print(dbgs()); 493 dbgs() << "\n"; 494 } 495 void print(raw_ostream &OS) const { 496 OS << "(V=" << Val.V->getName() 497 << ", zextbits=" << Val.ZExtBits 498 << ", sextbits=" << Val.SExtBits 499 << ", truncbits=" << Val.TruncBits 500 << ", scale=" << Scale << ")"; 501 } 502 }; 503 } 504 505 // Represents the internal structure of a GEP, decomposed into a base pointer, 506 // constant offsets, and variable scaled indices. 507 struct BasicAAResult::DecomposedGEP { 508 // Base pointer of the GEP 509 const Value *Base; 510 // Total constant offset from base. 511 APInt Offset; 512 // Scaled variable (non-constant) indices. 513 SmallVector<VariableGEPIndex, 4> VarIndices; 514 // Are all operations inbounds GEPs or non-indexing operations? 515 // (None iff expression doesn't involve any geps) 516 Optional<bool> InBounds; 517 518 void dump() const { 519 print(dbgs()); 520 dbgs() << "\n"; 521 } 522 void print(raw_ostream &OS) const { 523 OS << "(DecomposedGEP Base=" << Base->getName() 524 << ", Offset=" << Offset 525 << ", VarIndices=["; 526 for (size_t i = 0; i < VarIndices.size(); i++) { 527 if (i != 0) 528 OS << ", "; 529 VarIndices[i].print(OS); 530 } 531 OS << "])"; 532 } 533 }; 534 535 536 /// If V is a symbolic pointer expression, decompose it into a base pointer 537 /// with a constant offset and a number of scaled symbolic offsets. 538 /// 539 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 540 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 541 /// specified amount, but which may have other unrepresented high bits. As 542 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 543 BasicAAResult::DecomposedGEP 544 BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL, 545 AssumptionCache *AC, DominatorTree *DT) { 546 // Limit recursion depth to limit compile time in crazy cases. 547 unsigned MaxLookup = MaxLookupSearchDepth; 548 SearchTimes++; 549 const Instruction *CxtI = dyn_cast<Instruction>(V); 550 551 unsigned MaxIndexSize = DL.getMaxIndexSizeInBits(); 552 DecomposedGEP Decomposed; 553 Decomposed.Offset = APInt(MaxIndexSize, 0); 554 do { 555 // See if this is a bitcast or GEP. 556 const Operator *Op = dyn_cast<Operator>(V); 557 if (!Op) { 558 // The only non-operator case we can handle are GlobalAliases. 559 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 560 if (!GA->isInterposable()) { 561 V = GA->getAliasee(); 562 continue; 563 } 564 } 565 Decomposed.Base = V; 566 return Decomposed; 567 } 568 569 if (Op->getOpcode() == Instruction::BitCast || 570 Op->getOpcode() == Instruction::AddrSpaceCast) { 571 V = Op->getOperand(0); 572 continue; 573 } 574 575 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 576 if (!GEPOp) { 577 if (const auto *PHI = dyn_cast<PHINode>(V)) { 578 // Look through single-arg phi nodes created by LCSSA. 579 if (PHI->getNumIncomingValues() == 1) { 580 V = PHI->getIncomingValue(0); 581 continue; 582 } 583 } else if (const auto *Call = dyn_cast<CallBase>(V)) { 584 // CaptureTracking can know about special capturing properties of some 585 // intrinsics like launder.invariant.group, that can't be expressed with 586 // the attributes, but have properties like returning aliasing pointer. 587 // Because some analysis may assume that nocaptured pointer is not 588 // returned from some special intrinsic (because function would have to 589 // be marked with returns attribute), it is crucial to use this function 590 // because it should be in sync with CaptureTracking. Not using it may 591 // cause weird miscompilations where 2 aliasing pointers are assumed to 592 // noalias. 593 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 594 V = RP; 595 continue; 596 } 597 } 598 599 Decomposed.Base = V; 600 return Decomposed; 601 } 602 603 // Track whether we've seen at least one in bounds gep, and if so, whether 604 // all geps parsed were in bounds. 605 if (Decomposed.InBounds == None) 606 Decomposed.InBounds = GEPOp->isInBounds(); 607 else if (!GEPOp->isInBounds()) 608 Decomposed.InBounds = false; 609 610 assert(GEPOp->getSourceElementType()->isSized() && "GEP must be sized"); 611 612 // Don't attempt to analyze GEPs if index scale is not a compile-time 613 // constant. 614 if (isa<ScalableVectorType>(GEPOp->getSourceElementType())) { 615 Decomposed.Base = V; 616 return Decomposed; 617 } 618 619 unsigned AS = GEPOp->getPointerAddressSpace(); 620 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 621 gep_type_iterator GTI = gep_type_begin(GEPOp); 622 unsigned IndexSize = DL.getIndexSizeInBits(AS); 623 // Assume all GEP operands are constants until proven otherwise. 624 bool GepHasConstantOffset = true; 625 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 626 I != E; ++I, ++GTI) { 627 const Value *Index = *I; 628 // Compute the (potentially symbolic) offset in bytes for this index. 629 if (StructType *STy = GTI.getStructTypeOrNull()) { 630 // For a struct, add the member offset. 631 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 632 if (FieldNo == 0) 633 continue; 634 635 Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo); 636 continue; 637 } 638 639 // For an array/pointer, add the element offset, explicitly scaled. 640 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 641 if (CIdx->isZero()) 642 continue; 643 Decomposed.Offset += 644 DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize() * 645 CIdx->getValue().sextOrTrunc(MaxIndexSize); 646 continue; 647 } 648 649 GepHasConstantOffset = false; 650 651 // If the integer type is smaller than the index size, it is implicitly 652 // sign extended or truncated to index size. 653 unsigned Width = Index->getType()->getIntegerBitWidth(); 654 unsigned SExtBits = IndexSize > Width ? IndexSize - Width : 0; 655 unsigned TruncBits = IndexSize < Width ? Width - IndexSize : 0; 656 LinearExpression LE = GetLinearExpression( 657 CastedValue(Index, 0, SExtBits, TruncBits), DL, 0, AC, DT); 658 659 // Scale by the type size. 660 unsigned TypeSize = 661 DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize(); 662 LE = LE.mul(APInt(IndexSize, TypeSize), GEPOp->isInBounds()); 663 Decomposed.Offset += LE.Offset.sext(MaxIndexSize); 664 APInt Scale = LE.Scale.sext(MaxIndexSize); 665 666 // If we already had an occurrence of this index variable, merge this 667 // scale into it. For example, we want to handle: 668 // A[x][x] -> x*16 + x*4 -> x*20 669 // This also ensures that 'x' only appears in the index list once. 670 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { 671 if (Decomposed.VarIndices[i].Val.V == LE.Val.V && 672 Decomposed.VarIndices[i].Val.hasSameCastsAs(LE.Val)) { 673 Scale += Decomposed.VarIndices[i].Scale; 674 Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i); 675 break; 676 } 677 } 678 679 // Make sure that we have a scale that makes sense for this target's 680 // index size. 681 Scale = adjustToIndexSize(Scale, IndexSize); 682 683 if (!!Scale) { 684 VariableGEPIndex Entry = {LE.Val, Scale, CxtI, LE.IsNSW}; 685 Decomposed.VarIndices.push_back(Entry); 686 } 687 } 688 689 // Take care of wrap-arounds 690 if (GepHasConstantOffset) 691 Decomposed.Offset = adjustToIndexSize(Decomposed.Offset, IndexSize); 692 693 // Analyze the base pointer next. 694 V = GEPOp->getOperand(0); 695 } while (--MaxLookup); 696 697 // If the chain of expressions is too deep, just return early. 698 Decomposed.Base = V; 699 SearchLimitReached++; 700 return Decomposed; 701 } 702 703 /// Returns whether the given pointer value points to memory that is local to 704 /// the function, with global constants being considered local to all 705 /// functions. 706 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc, 707 AAQueryInfo &AAQI, bool OrLocal) { 708 assert(Visited.empty() && "Visited must be cleared after use!"); 709 710 unsigned MaxLookup = 8; 711 SmallVector<const Value *, 16> Worklist; 712 Worklist.push_back(Loc.Ptr); 713 do { 714 const Value *V = getUnderlyingObject(Worklist.pop_back_val()); 715 if (!Visited.insert(V).second) { 716 Visited.clear(); 717 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 718 } 719 720 // An alloca instruction defines local memory. 721 if (OrLocal && isa<AllocaInst>(V)) 722 continue; 723 724 // A global constant counts as local memory for our purposes. 725 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 726 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 727 // global to be marked constant in some modules and non-constant in 728 // others. GV may even be a declaration, not a definition. 729 if (!GV->isConstant()) { 730 Visited.clear(); 731 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 732 } 733 continue; 734 } 735 736 // If both select values point to local memory, then so does the select. 737 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 738 Worklist.push_back(SI->getTrueValue()); 739 Worklist.push_back(SI->getFalseValue()); 740 continue; 741 } 742 743 // If all values incoming to a phi node point to local memory, then so does 744 // the phi. 745 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 746 // Don't bother inspecting phi nodes with many operands. 747 if (PN->getNumIncomingValues() > MaxLookup) { 748 Visited.clear(); 749 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 750 } 751 append_range(Worklist, PN->incoming_values()); 752 continue; 753 } 754 755 // Otherwise be conservative. 756 Visited.clear(); 757 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 758 } while (!Worklist.empty() && --MaxLookup); 759 760 Visited.clear(); 761 return Worklist.empty(); 762 } 763 764 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) { 765 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call); 766 return II && II->getIntrinsicID() == IID; 767 } 768 769 /// Returns the behavior when calling the given call site. 770 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) { 771 if (Call->doesNotAccessMemory()) 772 // Can't do better than this. 773 return FMRB_DoesNotAccessMemory; 774 775 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 776 777 // If the callsite knows it only reads memory, don't return worse 778 // than that. 779 if (Call->onlyReadsMemory()) 780 Min = FMRB_OnlyReadsMemory; 781 else if (Call->onlyWritesMemory()) 782 Min = FMRB_OnlyWritesMemory; 783 784 if (Call->onlyAccessesArgMemory()) 785 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 786 else if (Call->onlyAccessesInaccessibleMemory()) 787 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 788 else if (Call->onlyAccessesInaccessibleMemOrArgMem()) 789 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 790 791 // If the call has operand bundles then aliasing attributes from the function 792 // it calls do not directly apply to the call. This can be made more precise 793 // in the future. 794 if (!Call->hasOperandBundles()) 795 if (const Function *F = Call->getCalledFunction()) 796 Min = 797 FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F)); 798 799 return Min; 800 } 801 802 /// Returns the behavior when calling the given function. For use when the call 803 /// site is not known. 804 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) { 805 // If the function declares it doesn't access memory, we can't do better. 806 if (F->doesNotAccessMemory()) 807 return FMRB_DoesNotAccessMemory; 808 809 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 810 811 // If the function declares it only reads memory, go with that. 812 if (F->onlyReadsMemory()) 813 Min = FMRB_OnlyReadsMemory; 814 else if (F->onlyWritesMemory()) 815 Min = FMRB_OnlyWritesMemory; 816 817 if (F->onlyAccessesArgMemory()) 818 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 819 else if (F->onlyAccessesInaccessibleMemory()) 820 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 821 else if (F->onlyAccessesInaccessibleMemOrArgMem()) 822 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 823 824 return Min; 825 } 826 827 /// Returns true if this is a writeonly (i.e Mod only) parameter. 828 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx, 829 const TargetLibraryInfo &TLI) { 830 if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly)) 831 return true; 832 833 // We can bound the aliasing properties of memset_pattern16 just as we can 834 // for memcpy/memset. This is particularly important because the 835 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 836 // whenever possible. 837 // FIXME Consider handling this in InferFunctionAttr.cpp together with other 838 // attributes. 839 LibFunc F; 840 if (Call->getCalledFunction() && 841 TLI.getLibFunc(*Call->getCalledFunction(), F) && 842 F == LibFunc_memset_pattern16 && TLI.has(F)) 843 if (ArgIdx == 0) 844 return true; 845 846 // TODO: memset_pattern4, memset_pattern8 847 // TODO: _chk variants 848 // TODO: strcmp, strcpy 849 850 return false; 851 } 852 853 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call, 854 unsigned ArgIdx) { 855 // Checking for known builtin intrinsics and target library functions. 856 if (isWriteOnlyParam(Call, ArgIdx, TLI)) 857 return ModRefInfo::Mod; 858 859 if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly)) 860 return ModRefInfo::Ref; 861 862 if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone)) 863 return ModRefInfo::NoModRef; 864 865 return AAResultBase::getArgModRefInfo(Call, ArgIdx); 866 } 867 868 #ifndef NDEBUG 869 static const Function *getParent(const Value *V) { 870 if (const Instruction *inst = dyn_cast<Instruction>(V)) { 871 if (!inst->getParent()) 872 return nullptr; 873 return inst->getParent()->getParent(); 874 } 875 876 if (const Argument *arg = dyn_cast<Argument>(V)) 877 return arg->getParent(); 878 879 return nullptr; 880 } 881 882 static bool notDifferentParent(const Value *O1, const Value *O2) { 883 884 const Function *F1 = getParent(O1); 885 const Function *F2 = getParent(O2); 886 887 return !F1 || !F2 || F1 == F2; 888 } 889 #endif 890 891 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 892 const MemoryLocation &LocB, 893 AAQueryInfo &AAQI) { 894 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 895 "BasicAliasAnalysis doesn't support interprocedural queries."); 896 return aliasCheck(LocA.Ptr, LocA.Size, LocB.Ptr, LocB.Size, AAQI); 897 } 898 899 /// Checks to see if the specified callsite can clobber the specified memory 900 /// object. 901 /// 902 /// Since we only look at local properties of this function, we really can't 903 /// say much about this query. We do, however, use simple "address taken" 904 /// analysis on local objects. 905 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call, 906 const MemoryLocation &Loc, 907 AAQueryInfo &AAQI) { 908 assert(notDifferentParent(Call, Loc.Ptr) && 909 "AliasAnalysis query involving multiple functions!"); 910 911 const Value *Object = getUnderlyingObject(Loc.Ptr); 912 913 // Calls marked 'tail' cannot read or write allocas from the current frame 914 // because the current frame might be destroyed by the time they run. However, 915 // a tail call may use an alloca with byval. Calling with byval copies the 916 // contents of the alloca into argument registers or stack slots, so there is 917 // no lifetime issue. 918 if (isa<AllocaInst>(Object)) 919 if (const CallInst *CI = dyn_cast<CallInst>(Call)) 920 if (CI->isTailCall() && 921 !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal)) 922 return ModRefInfo::NoModRef; 923 924 // Stack restore is able to modify unescaped dynamic allocas. Assume it may 925 // modify them even though the alloca is not escaped. 926 if (auto *AI = dyn_cast<AllocaInst>(Object)) 927 if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore)) 928 return ModRefInfo::Mod; 929 930 // If the pointer is to a locally allocated object that does not escape, 931 // then the call can not mod/ref the pointer unless the call takes the pointer 932 // as an argument, and itself doesn't capture it. 933 if (!isa<Constant>(Object) && Call != Object && 934 AAQI.CI->isNotCapturedBeforeOrAt(Object, Call)) { 935 936 // Optimistically assume that call doesn't touch Object and check this 937 // assumption in the following loop. 938 ModRefInfo Result = ModRefInfo::NoModRef; 939 bool IsMustAlias = true; 940 941 unsigned OperandNo = 0; 942 for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end(); 943 CI != CE; ++CI, ++OperandNo) { 944 // Only look at the no-capture or byval pointer arguments. If this 945 // pointer were passed to arguments that were neither of these, then it 946 // couldn't be no-capture. 947 if (!(*CI)->getType()->isPointerTy() || 948 (!Call->doesNotCapture(OperandNo) && OperandNo < Call->arg_size() && 949 !Call->isByValArgument(OperandNo))) 950 continue; 951 952 // Call doesn't access memory through this operand, so we don't care 953 // if it aliases with Object. 954 if (Call->doesNotAccessMemory(OperandNo)) 955 continue; 956 957 // If this is a no-capture pointer argument, see if we can tell that it 958 // is impossible to alias the pointer we're checking. 959 AliasResult AR = getBestAAResults().alias( 960 MemoryLocation::getBeforeOrAfter(*CI), 961 MemoryLocation::getBeforeOrAfter(Object), AAQI); 962 if (AR != AliasResult::MustAlias) 963 IsMustAlias = false; 964 // Operand doesn't alias 'Object', continue looking for other aliases 965 if (AR == AliasResult::NoAlias) 966 continue; 967 // Operand aliases 'Object', but call doesn't modify it. Strengthen 968 // initial assumption and keep looking in case if there are more aliases. 969 if (Call->onlyReadsMemory(OperandNo)) { 970 Result = setRef(Result); 971 continue; 972 } 973 // Operand aliases 'Object' but call only writes into it. 974 if (Call->onlyWritesMemory(OperandNo)) { 975 Result = setMod(Result); 976 continue; 977 } 978 // This operand aliases 'Object' and call reads and writes into it. 979 // Setting ModRef will not yield an early return below, MustAlias is not 980 // used further. 981 Result = ModRefInfo::ModRef; 982 break; 983 } 984 985 // No operand aliases, reset Must bit. Add below if at least one aliases 986 // and all aliases found are MustAlias. 987 if (isNoModRef(Result)) 988 IsMustAlias = false; 989 990 // Early return if we improved mod ref information 991 if (!isModAndRefSet(Result)) { 992 if (isNoModRef(Result)) 993 return ModRefInfo::NoModRef; 994 return IsMustAlias ? setMust(Result) : clearMust(Result); 995 } 996 } 997 998 // If the call is malloc/calloc like, we can assume that it doesn't 999 // modify any IR visible value. This is only valid because we assume these 1000 // routines do not read values visible in the IR. TODO: Consider special 1001 // casing realloc and strdup routines which access only their arguments as 1002 // well. Or alternatively, replace all of this with inaccessiblememonly once 1003 // that's implemented fully. 1004 if (isMallocOrCallocLikeFn(Call, &TLI)) { 1005 // Be conservative if the accessed pointer may alias the allocation - 1006 // fallback to the generic handling below. 1007 if (getBestAAResults().alias(MemoryLocation::getBeforeOrAfter(Call), Loc, 1008 AAQI) == AliasResult::NoAlias) 1009 return ModRefInfo::NoModRef; 1010 } 1011 1012 // Ideally, there should be no need to special case for memcpy/memove 1013 // intrinsics here since general machinery (based on memory attributes) should 1014 // already handle it just fine. Unfortunately, it doesn't due to deficiency in 1015 // operand bundles support. At the moment it's not clear if complexity behind 1016 // enhancing general mechanism worths it. 1017 // TODO: Consider improving operand bundles support in general mechanism. 1018 if (auto *Inst = dyn_cast<AnyMemTransferInst>(Call)) { 1019 AliasResult SrcAA = 1020 getBestAAResults().alias(MemoryLocation::getForSource(Inst), Loc, AAQI); 1021 AliasResult DestAA = 1022 getBestAAResults().alias(MemoryLocation::getForDest(Inst), Loc, AAQI); 1023 // It's also possible for Loc to alias both src and dest, or neither. 1024 ModRefInfo rv = ModRefInfo::NoModRef; 1025 if (SrcAA != AliasResult::NoAlias || Call->hasReadingOperandBundles()) 1026 rv = setRef(rv); 1027 if (DestAA != AliasResult::NoAlias || Call->hasClobberingOperandBundles()) 1028 rv = setMod(rv); 1029 return rv; 1030 } 1031 1032 // Guard intrinsics are marked as arbitrarily writing so that proper control 1033 // dependencies are maintained but they never mods any particular memory 1034 // location. 1035 // 1036 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 1037 // heap state at the point the guard is issued needs to be consistent in case 1038 // the guard invokes the "deopt" continuation. 1039 if (isIntrinsicCall(Call, Intrinsic::experimental_guard)) 1040 return ModRefInfo::Ref; 1041 // The same applies to deoptimize which is essentially a guard(false). 1042 if (isIntrinsicCall(Call, Intrinsic::experimental_deoptimize)) 1043 return ModRefInfo::Ref; 1044 1045 // Like assumes, invariant.start intrinsics were also marked as arbitrarily 1046 // writing so that proper control dependencies are maintained but they never 1047 // mod any particular memory location visible to the IR. 1048 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start 1049 // intrinsic is now modeled as reading memory. This prevents hoisting the 1050 // invariant.start intrinsic over stores. Consider: 1051 // *ptr = 40; 1052 // *ptr = 50; 1053 // invariant_start(ptr) 1054 // int val = *ptr; 1055 // print(val); 1056 // 1057 // This cannot be transformed to: 1058 // 1059 // *ptr = 40; 1060 // invariant_start(ptr) 1061 // *ptr = 50; 1062 // int val = *ptr; 1063 // print(val); 1064 // 1065 // The transformation will cause the second store to be ignored (based on 1066 // rules of invariant.start) and print 40, while the first program always 1067 // prints 50. 1068 if (isIntrinsicCall(Call, Intrinsic::invariant_start)) 1069 return ModRefInfo::Ref; 1070 1071 // The AAResultBase base class has some smarts, lets use them. 1072 return AAResultBase::getModRefInfo(Call, Loc, AAQI); 1073 } 1074 1075 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1, 1076 const CallBase *Call2, 1077 AAQueryInfo &AAQI) { 1078 // Guard intrinsics are marked as arbitrarily writing so that proper control 1079 // dependencies are maintained but they never mods any particular memory 1080 // location. 1081 // 1082 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 1083 // heap state at the point the guard is issued needs to be consistent in case 1084 // the guard invokes the "deopt" continuation. 1085 1086 // NB! This function is *not* commutative, so we special case two 1087 // possibilities for guard intrinsics. 1088 1089 if (isIntrinsicCall(Call1, Intrinsic::experimental_guard)) 1090 return isModSet(createModRefInfo(getModRefBehavior(Call2))) 1091 ? ModRefInfo::Ref 1092 : ModRefInfo::NoModRef; 1093 1094 if (isIntrinsicCall(Call2, Intrinsic::experimental_guard)) 1095 return isModSet(createModRefInfo(getModRefBehavior(Call1))) 1096 ? ModRefInfo::Mod 1097 : ModRefInfo::NoModRef; 1098 1099 // The AAResultBase base class has some smarts, lets use them. 1100 return AAResultBase::getModRefInfo(Call1, Call2, AAQI); 1101 } 1102 1103 /// Return true if we know V to the base address of the corresponding memory 1104 /// object. This implies that any address less than V must be out of bounds 1105 /// for the underlying object. Note that just being isIdentifiedObject() is 1106 /// not enough - For example, a negative offset from a noalias argument or call 1107 /// can be inbounds w.r.t the actual underlying object. 1108 static bool isBaseOfObject(const Value *V) { 1109 // TODO: We can handle other cases here 1110 // 1) For GC languages, arguments to functions are often required to be 1111 // base pointers. 1112 // 2) Result of allocation routines are often base pointers. Leverage TLI. 1113 return (isa<AllocaInst>(V) || isa<GlobalVariable>(V)); 1114 } 1115 1116 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 1117 /// another pointer. 1118 /// 1119 /// We know that V1 is a GEP, but we don't know anything about V2. 1120 /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for 1121 /// V2. 1122 AliasResult BasicAAResult::aliasGEP( 1123 const GEPOperator *GEP1, LocationSize V1Size, 1124 const Value *V2, LocationSize V2Size, 1125 const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) { 1126 if (!V1Size.hasValue() && !V2Size.hasValue()) { 1127 // TODO: This limitation exists for compile-time reasons. Relax it if we 1128 // can avoid exponential pathological cases. 1129 if (!isa<GEPOperator>(V2)) 1130 return AliasResult::MayAlias; 1131 1132 // If both accesses have unknown size, we can only check whether the base 1133 // objects don't alias. 1134 AliasResult BaseAlias = getBestAAResults().alias( 1135 MemoryLocation::getBeforeOrAfter(UnderlyingV1), 1136 MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI); 1137 return BaseAlias == AliasResult::NoAlias ? AliasResult::NoAlias 1138 : AliasResult::MayAlias; 1139 } 1140 1141 DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT); 1142 DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT); 1143 1144 // Bail if we were not able to decompose anything. 1145 if (DecompGEP1.Base == GEP1 && DecompGEP2.Base == V2) 1146 return AliasResult::MayAlias; 1147 1148 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1149 // symbolic difference. 1150 subtractDecomposedGEPs(DecompGEP1, DecompGEP2); 1151 1152 // If an inbounds GEP would have to start from an out of bounds address 1153 // for the two to alias, then we can assume noalias. 1154 if (*DecompGEP1.InBounds && DecompGEP1.VarIndices.empty() && 1155 V2Size.hasValue() && DecompGEP1.Offset.sge(V2Size.getValue()) && 1156 isBaseOfObject(DecompGEP2.Base)) 1157 return AliasResult::NoAlias; 1158 1159 if (isa<GEPOperator>(V2)) { 1160 // Symmetric case to above. 1161 if (*DecompGEP2.InBounds && DecompGEP1.VarIndices.empty() && 1162 V1Size.hasValue() && DecompGEP1.Offset.sle(-V1Size.getValue()) && 1163 isBaseOfObject(DecompGEP1.Base)) 1164 return AliasResult::NoAlias; 1165 } 1166 1167 // For GEPs with identical offsets, we can preserve the size and AAInfo 1168 // when performing the alias check on the underlying objects. 1169 if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty()) 1170 return getBestAAResults().alias(MemoryLocation(DecompGEP1.Base, V1Size), 1171 MemoryLocation(DecompGEP2.Base, V2Size), 1172 AAQI); 1173 1174 // Do the base pointers alias? 1175 AliasResult BaseAlias = getBestAAResults().alias( 1176 MemoryLocation::getBeforeOrAfter(DecompGEP1.Base), 1177 MemoryLocation::getBeforeOrAfter(DecompGEP2.Base), AAQI); 1178 1179 // If we get a No or May, then return it immediately, no amount of analysis 1180 // will improve this situation. 1181 if (BaseAlias != AliasResult::MustAlias) { 1182 assert(BaseAlias == AliasResult::NoAlias || 1183 BaseAlias == AliasResult::MayAlias); 1184 return BaseAlias; 1185 } 1186 1187 // If there is a constant difference between the pointers, but the difference 1188 // is less than the size of the associated memory object, then we know 1189 // that the objects are partially overlapping. If the difference is 1190 // greater, we know they do not overlap. 1191 if (DecompGEP1.VarIndices.empty()) { 1192 APInt &Off = DecompGEP1.Offset; 1193 1194 // Initialize for Off >= 0 (V2 <= GEP1) case. 1195 const Value *LeftPtr = V2; 1196 const Value *RightPtr = GEP1; 1197 LocationSize VLeftSize = V2Size; 1198 LocationSize VRightSize = V1Size; 1199 const bool Swapped = Off.isNegative(); 1200 1201 if (Swapped) { 1202 // Swap if we have the situation where: 1203 // + + 1204 // | BaseOffset | 1205 // ---------------->| 1206 // |-->V1Size |-------> V2Size 1207 // GEP1 V2 1208 std::swap(LeftPtr, RightPtr); 1209 std::swap(VLeftSize, VRightSize); 1210 Off = -Off; 1211 } 1212 1213 if (!VLeftSize.hasValue()) 1214 return AliasResult::MayAlias; 1215 1216 const uint64_t LSize = VLeftSize.getValue(); 1217 if (Off.ult(LSize)) { 1218 // Conservatively drop processing if a phi was visited and/or offset is 1219 // too big. 1220 AliasResult AR = AliasResult::PartialAlias; 1221 if (VRightSize.hasValue() && Off.ule(INT32_MAX) && 1222 (Off + VRightSize.getValue()).ule(LSize)) { 1223 // Memory referenced by right pointer is nested. Save the offset in 1224 // cache. Note that originally offset estimated as GEP1-V2, but 1225 // AliasResult contains the shift that represents GEP1+Offset=V2. 1226 AR.setOffset(-Off.getSExtValue()); 1227 AR.swap(Swapped); 1228 } 1229 return AR; 1230 } 1231 return AliasResult::NoAlias; 1232 } 1233 1234 // We need to know both acess sizes for all the following heuristics. 1235 if (!V1Size.hasValue() || !V2Size.hasValue()) 1236 return AliasResult::MayAlias; 1237 1238 APInt GCD; 1239 ConstantRange OffsetRange = ConstantRange(DecompGEP1.Offset); 1240 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { 1241 const VariableGEPIndex &Index = DecompGEP1.VarIndices[i]; 1242 const APInt &Scale = Index.Scale; 1243 APInt ScaleForGCD = Scale; 1244 if (!Index.IsNSW) 1245 ScaleForGCD = APInt::getOneBitSet(Scale.getBitWidth(), 1246 Scale.countTrailingZeros()); 1247 1248 if (i == 0) 1249 GCD = ScaleForGCD.abs(); 1250 else 1251 GCD = APIntOps::GreatestCommonDivisor(GCD, ScaleForGCD.abs()); 1252 1253 ConstantRange CR = computeConstantRange(Index.Val.V, /* ForSigned */ false, 1254 true, &AC, Index.CxtI); 1255 KnownBits Known = 1256 computeKnownBits(Index.Val.V, DL, 0, &AC, Index.CxtI, DT); 1257 CR = CR.intersectWith( 1258 ConstantRange::fromKnownBits(Known, /* Signed */ true), 1259 ConstantRange::Signed); 1260 CR = Index.Val.evaluateWith(CR).sextOrTrunc(OffsetRange.getBitWidth()); 1261 1262 assert(OffsetRange.getBitWidth() == Scale.getBitWidth() && 1263 "Bit widths are normalized to MaxIndexSize"); 1264 if (Index.IsNSW) 1265 OffsetRange = OffsetRange.add(CR.smul_sat(ConstantRange(Scale))); 1266 else 1267 OffsetRange = OffsetRange.add(CR.smul_fast(ConstantRange(Scale))); 1268 } 1269 1270 // We now have accesses at two offsets from the same base: 1271 // 1. (...)*GCD + DecompGEP1.Offset with size V1Size 1272 // 2. 0 with size V2Size 1273 // Using arithmetic modulo GCD, the accesses are at 1274 // [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits 1275 // into the range [V2Size..GCD), then we know they cannot overlap. 1276 APInt ModOffset = DecompGEP1.Offset.srem(GCD); 1277 if (ModOffset.isNegative()) 1278 ModOffset += GCD; // We want mod, not rem. 1279 if (ModOffset.uge(V2Size.getValue()) && 1280 (GCD - ModOffset).uge(V1Size.getValue())) 1281 return AliasResult::NoAlias; 1282 1283 // Compute ranges of potentially accessed bytes for both accesses. If the 1284 // interseciton is empty, there can be no overlap. 1285 unsigned BW = OffsetRange.getBitWidth(); 1286 ConstantRange Range1 = OffsetRange.add( 1287 ConstantRange(APInt(BW, 0), APInt(BW, V1Size.getValue()))); 1288 ConstantRange Range2 = 1289 ConstantRange(APInt(BW, 0), APInt(BW, V2Size.getValue())); 1290 if (Range1.intersectWith(Range2).isEmptySet()) 1291 return AliasResult::NoAlias; 1292 1293 // Try to determine the range of values for VarIndex such that 1294 // VarIndex <= -MinAbsVarIndex || MinAbsVarIndex <= VarIndex. 1295 Optional<APInt> MinAbsVarIndex; 1296 if (DecompGEP1.VarIndices.size() == 1) { 1297 // VarIndex = Scale*V. 1298 const VariableGEPIndex &Var = DecompGEP1.VarIndices[0]; 1299 if (Var.Val.TruncBits == 0 && 1300 isKnownNonZero(Var.Val.V, DL, 0, &AC, Var.CxtI, DT)) { 1301 // If V != 0, then abs(VarIndex) > 0. 1302 MinAbsVarIndex = APInt(Var.Scale.getBitWidth(), 1); 1303 1304 // Check if abs(V*Scale) >= abs(Scale) holds in the presence of 1305 // potentially wrapping math. 1306 auto MultiplyByScaleNoWrap = [](const VariableGEPIndex &Var) { 1307 if (Var.IsNSW) 1308 return true; 1309 1310 int ValOrigBW = Var.Val.V->getType()->getPrimitiveSizeInBits(); 1311 // If Scale is small enough so that abs(V*Scale) >= abs(Scale) holds. 1312 // The max value of abs(V) is 2^ValOrigBW - 1. Multiplying with a 1313 // constant smaller than 2^(bitwidth(Val) - ValOrigBW) won't wrap. 1314 int MaxScaleValueBW = Var.Val.getBitWidth() - ValOrigBW; 1315 if (MaxScaleValueBW <= 0) 1316 return false; 1317 return Var.Scale.ule( 1318 APInt::getMaxValue(MaxScaleValueBW).zext(Var.Scale.getBitWidth())); 1319 }; 1320 // Refine MinAbsVarIndex, if abs(Scale*V) >= abs(Scale) holds in the 1321 // presence of potentially wrapping math. 1322 if (MultiplyByScaleNoWrap(Var)) { 1323 // If V != 0 then abs(VarIndex) >= abs(Scale). 1324 MinAbsVarIndex = Var.Scale.abs(); 1325 } 1326 } 1327 } else if (DecompGEP1.VarIndices.size() == 2) { 1328 // VarIndex = Scale*V0 + (-Scale)*V1. 1329 // If V0 != V1 then abs(VarIndex) >= abs(Scale). 1330 // Check that VisitedPhiBBs is empty, to avoid reasoning about 1331 // inequality of values across loop iterations. 1332 const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0]; 1333 const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1]; 1334 if (Var0.Scale == -Var1.Scale && Var0.Val.TruncBits == 0 && 1335 Var0.Val.hasSameCastsAs(Var1.Val) && VisitedPhiBBs.empty() && 1336 isKnownNonEqual(Var0.Val.V, Var1.Val.V, DL, &AC, /* CxtI */ nullptr, 1337 DT)) 1338 MinAbsVarIndex = Var0.Scale.abs(); 1339 } 1340 1341 if (MinAbsVarIndex) { 1342 // The constant offset will have added at least +/-MinAbsVarIndex to it. 1343 APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex; 1344 APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex; 1345 // We know that Offset <= OffsetLo || Offset >= OffsetHi 1346 if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) && 1347 OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue())) 1348 return AliasResult::NoAlias; 1349 } 1350 1351 if (constantOffsetHeuristic(DecompGEP1, V1Size, V2Size, &AC, DT)) 1352 return AliasResult::NoAlias; 1353 1354 // Statically, we can see that the base objects are the same, but the 1355 // pointers have dynamic offsets which we can't resolve. And none of our 1356 // little tricks above worked. 1357 return AliasResult::MayAlias; 1358 } 1359 1360 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1361 // If the results agree, take it. 1362 if (A == B) 1363 return A; 1364 // A mix of PartialAlias and MustAlias is PartialAlias. 1365 if ((A == AliasResult::PartialAlias && B == AliasResult::MustAlias) || 1366 (B == AliasResult::PartialAlias && A == AliasResult::MustAlias)) 1367 return AliasResult::PartialAlias; 1368 // Otherwise, we don't know anything. 1369 return AliasResult::MayAlias; 1370 } 1371 1372 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1373 /// against another. 1374 AliasResult 1375 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize, 1376 const Value *V2, LocationSize V2Size, 1377 AAQueryInfo &AAQI) { 1378 // If the values are Selects with the same condition, we can do a more precise 1379 // check: just check for aliases between the values on corresponding arms. 1380 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1381 if (SI->getCondition() == SI2->getCondition()) { 1382 AliasResult Alias = getBestAAResults().alias( 1383 MemoryLocation(SI->getTrueValue(), SISize), 1384 MemoryLocation(SI2->getTrueValue(), V2Size), AAQI); 1385 if (Alias == AliasResult::MayAlias) 1386 return AliasResult::MayAlias; 1387 AliasResult ThisAlias = getBestAAResults().alias( 1388 MemoryLocation(SI->getFalseValue(), SISize), 1389 MemoryLocation(SI2->getFalseValue(), V2Size), AAQI); 1390 return MergeAliasResults(ThisAlias, Alias); 1391 } 1392 1393 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1394 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1395 AliasResult Alias = 1396 getBestAAResults().alias(MemoryLocation(SI->getTrueValue(), SISize), 1397 MemoryLocation(V2, V2Size), AAQI); 1398 if (Alias == AliasResult::MayAlias) 1399 return AliasResult::MayAlias; 1400 1401 AliasResult ThisAlias = 1402 getBestAAResults().alias(MemoryLocation(SI->getFalseValue(), SISize), 1403 MemoryLocation(V2, V2Size), AAQI); 1404 return MergeAliasResults(ThisAlias, Alias); 1405 } 1406 1407 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1408 /// another. 1409 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize, 1410 const Value *V2, LocationSize V2Size, 1411 AAQueryInfo &AAQI) { 1412 if (!PN->getNumIncomingValues()) 1413 return AliasResult::NoAlias; 1414 // If the values are PHIs in the same block, we can do a more precise 1415 // as well as efficient check: just check for aliases between the values 1416 // on corresponding edges. 1417 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1418 if (PN2->getParent() == PN->getParent()) { 1419 Optional<AliasResult> Alias; 1420 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1421 AliasResult ThisAlias = getBestAAResults().alias( 1422 MemoryLocation(PN->getIncomingValue(i), PNSize), 1423 MemoryLocation( 1424 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size), 1425 AAQI); 1426 if (Alias) 1427 *Alias = MergeAliasResults(*Alias, ThisAlias); 1428 else 1429 Alias = ThisAlias; 1430 if (*Alias == AliasResult::MayAlias) 1431 break; 1432 } 1433 return *Alias; 1434 } 1435 1436 SmallVector<Value *, 4> V1Srcs; 1437 // If a phi operand recurses back to the phi, we can still determine NoAlias 1438 // if we don't alias the underlying objects of the other phi operands, as we 1439 // know that the recursive phi needs to be based on them in some way. 1440 bool isRecursive = false; 1441 auto CheckForRecPhi = [&](Value *PV) { 1442 if (!EnableRecPhiAnalysis) 1443 return false; 1444 if (getUnderlyingObject(PV) == PN) { 1445 isRecursive = true; 1446 return true; 1447 } 1448 return false; 1449 }; 1450 1451 if (PV) { 1452 // If we have PhiValues then use it to get the underlying phi values. 1453 const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN); 1454 // If we have more phi values than the search depth then return MayAlias 1455 // conservatively to avoid compile time explosion. The worst possible case 1456 // is if both sides are PHI nodes. In which case, this is O(m x n) time 1457 // where 'm' and 'n' are the number of PHI sources. 1458 if (PhiValueSet.size() > MaxLookupSearchDepth) 1459 return AliasResult::MayAlias; 1460 // Add the values to V1Srcs 1461 for (Value *PV1 : PhiValueSet) { 1462 if (CheckForRecPhi(PV1)) 1463 continue; 1464 V1Srcs.push_back(PV1); 1465 } 1466 } else { 1467 // If we don't have PhiInfo then just look at the operands of the phi itself 1468 // FIXME: Remove this once we can guarantee that we have PhiInfo always 1469 SmallPtrSet<Value *, 4> UniqueSrc; 1470 Value *OnePhi = nullptr; 1471 for (Value *PV1 : PN->incoming_values()) { 1472 if (isa<PHINode>(PV1)) { 1473 if (OnePhi && OnePhi != PV1) { 1474 // To control potential compile time explosion, we choose to be 1475 // conserviate when we have more than one Phi input. It is important 1476 // that we handle the single phi case as that lets us handle LCSSA 1477 // phi nodes and (combined with the recursive phi handling) simple 1478 // pointer induction variable patterns. 1479 return AliasResult::MayAlias; 1480 } 1481 OnePhi = PV1; 1482 } 1483 1484 if (CheckForRecPhi(PV1)) 1485 continue; 1486 1487 if (UniqueSrc.insert(PV1).second) 1488 V1Srcs.push_back(PV1); 1489 } 1490 1491 if (OnePhi && UniqueSrc.size() > 1) 1492 // Out of an abundance of caution, allow only the trivial lcssa and 1493 // recursive phi cases. 1494 return AliasResult::MayAlias; 1495 } 1496 1497 // If V1Srcs is empty then that means that the phi has no underlying non-phi 1498 // value. This should only be possible in blocks unreachable from the entry 1499 // block, but return MayAlias just in case. 1500 if (V1Srcs.empty()) 1501 return AliasResult::MayAlias; 1502 1503 // If this PHI node is recursive, indicate that the pointer may be moved 1504 // across iterations. We can only prove NoAlias if different underlying 1505 // objects are involved. 1506 if (isRecursive) 1507 PNSize = LocationSize::beforeOrAfterPointer(); 1508 1509 // In the recursive alias queries below, we may compare values from two 1510 // different loop iterations. Keep track of visited phi blocks, which will 1511 // be used when determining value equivalence. 1512 bool BlockInserted = VisitedPhiBBs.insert(PN->getParent()).second; 1513 auto _ = make_scope_exit([&]() { 1514 if (BlockInserted) 1515 VisitedPhiBBs.erase(PN->getParent()); 1516 }); 1517 1518 // If we inserted a block into VisitedPhiBBs, alias analysis results that 1519 // have been cached earlier may no longer be valid. Perform recursive queries 1520 // with a new AAQueryInfo. 1521 AAQueryInfo NewAAQI = AAQI.withEmptyCache(); 1522 AAQueryInfo *UseAAQI = BlockInserted ? &NewAAQI : &AAQI; 1523 1524 AliasResult Alias = getBestAAResults().alias( 1525 MemoryLocation(V1Srcs[0], PNSize), MemoryLocation(V2, V2Size), *UseAAQI); 1526 1527 // Early exit if the check of the first PHI source against V2 is MayAlias. 1528 // Other results are not possible. 1529 if (Alias == AliasResult::MayAlias) 1530 return AliasResult::MayAlias; 1531 // With recursive phis we cannot guarantee that MustAlias/PartialAlias will 1532 // remain valid to all elements and needs to conservatively return MayAlias. 1533 if (isRecursive && Alias != AliasResult::NoAlias) 1534 return AliasResult::MayAlias; 1535 1536 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1537 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1538 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1539 Value *V = V1Srcs[i]; 1540 1541 AliasResult ThisAlias = getBestAAResults().alias( 1542 MemoryLocation(V, PNSize), MemoryLocation(V2, V2Size), *UseAAQI); 1543 Alias = MergeAliasResults(ThisAlias, Alias); 1544 if (Alias == AliasResult::MayAlias) 1545 break; 1546 } 1547 1548 return Alias; 1549 } 1550 1551 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1552 /// array references. 1553 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size, 1554 const Value *V2, LocationSize V2Size, 1555 AAQueryInfo &AAQI) { 1556 // If either of the memory references is empty, it doesn't matter what the 1557 // pointer values are. 1558 if (V1Size.isZero() || V2Size.isZero()) 1559 return AliasResult::NoAlias; 1560 1561 // Strip off any casts if they exist. 1562 V1 = V1->stripPointerCastsForAliasAnalysis(); 1563 V2 = V2->stripPointerCastsForAliasAnalysis(); 1564 1565 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1566 // value for undef that aliases nothing in the program. 1567 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1568 return AliasResult::NoAlias; 1569 1570 // Are we checking for alias of the same value? 1571 // Because we look 'through' phi nodes, we could look at "Value" pointers from 1572 // different iterations. We must therefore make sure that this is not the 1573 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1574 // happen by looking at the visited phi nodes and making sure they cannot 1575 // reach the value. 1576 if (isValueEqualInPotentialCycles(V1, V2)) 1577 return AliasResult::MustAlias; 1578 1579 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1580 return AliasResult::NoAlias; // Scalars cannot alias each other 1581 1582 // Figure out what objects these things are pointing to if we can. 1583 const Value *O1 = getUnderlyingObject(V1, MaxLookupSearchDepth); 1584 const Value *O2 = getUnderlyingObject(V2, MaxLookupSearchDepth); 1585 1586 // Null values in the default address space don't point to any object, so they 1587 // don't alias any other pointer. 1588 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1589 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1590 return AliasResult::NoAlias; 1591 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1592 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1593 return AliasResult::NoAlias; 1594 1595 if (O1 != O2) { 1596 // If V1/V2 point to two different objects, we know that we have no alias. 1597 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1598 return AliasResult::NoAlias; 1599 1600 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1601 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1602 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1603 return AliasResult::NoAlias; 1604 1605 // Function arguments can't alias with things that are known to be 1606 // unambigously identified at the function level. 1607 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1608 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1609 return AliasResult::NoAlias; 1610 1611 // If one pointer is the result of a call/invoke or load and the other is a 1612 // non-escaping local object within the same function, then we know the 1613 // object couldn't escape to a point where the call could return it. 1614 // 1615 // Note that if the pointers are in different functions, there are a 1616 // variety of complications. A call with a nocapture argument may still 1617 // temporary store the nocapture argument's value in a temporary memory 1618 // location if that memory location doesn't escape. Or it may pass a 1619 // nocapture value to other functions as long as they don't capture it. 1620 if (isEscapeSource(O1) && 1621 AAQI.CI->isNotCapturedBeforeOrAt(O2, cast<Instruction>(O1))) 1622 return AliasResult::NoAlias; 1623 if (isEscapeSource(O2) && 1624 AAQI.CI->isNotCapturedBeforeOrAt(O1, cast<Instruction>(O2))) 1625 return AliasResult::NoAlias; 1626 } 1627 1628 // If the size of one access is larger than the entire object on the other 1629 // side, then we know such behavior is undefined and can assume no alias. 1630 bool NullIsValidLocation = NullPointerIsDefined(&F); 1631 if ((isObjectSmallerThan( 1632 O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL, 1633 TLI, NullIsValidLocation)) || 1634 (isObjectSmallerThan( 1635 O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL, 1636 TLI, NullIsValidLocation))) 1637 return AliasResult::NoAlias; 1638 1639 // If one the accesses may be before the accessed pointer, canonicalize this 1640 // by using unknown after-pointer sizes for both accesses. This is 1641 // equivalent, because regardless of which pointer is lower, one of them 1642 // will always came after the other, as long as the underlying objects aren't 1643 // disjoint. We do this so that the rest of BasicAA does not have to deal 1644 // with accesses before the base pointer, and to improve cache utilization by 1645 // merging equivalent states. 1646 if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) { 1647 V1Size = LocationSize::afterPointer(); 1648 V2Size = LocationSize::afterPointer(); 1649 } 1650 1651 // FIXME: If this depth limit is hit, then we may cache sub-optimal results 1652 // for recursive queries. For this reason, this limit is chosen to be large 1653 // enough to be very rarely hit, while still being small enough to avoid 1654 // stack overflows. 1655 if (AAQI.Depth >= 512) 1656 return AliasResult::MayAlias; 1657 1658 // Check the cache before climbing up use-def chains. This also terminates 1659 // otherwise infinitely recursive queries. 1660 AAQueryInfo::LocPair Locs({V1, V1Size}, {V2, V2Size}); 1661 const bool Swapped = V1 > V2; 1662 if (Swapped) 1663 std::swap(Locs.first, Locs.second); 1664 const auto &Pair = AAQI.AliasCache.try_emplace( 1665 Locs, AAQueryInfo::CacheEntry{AliasResult::NoAlias, 0}); 1666 if (!Pair.second) { 1667 auto &Entry = Pair.first->second; 1668 if (!Entry.isDefinitive()) { 1669 // Remember that we used an assumption. 1670 ++Entry.NumAssumptionUses; 1671 ++AAQI.NumAssumptionUses; 1672 } 1673 // Cache contains sorted {V1,V2} pairs but we should return original order. 1674 auto Result = Entry.Result; 1675 Result.swap(Swapped); 1676 return Result; 1677 } 1678 1679 int OrigNumAssumptionUses = AAQI.NumAssumptionUses; 1680 unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size(); 1681 AliasResult Result = 1682 aliasCheckRecursive(V1, V1Size, V2, V2Size, AAQI, O1, O2); 1683 1684 auto It = AAQI.AliasCache.find(Locs); 1685 assert(It != AAQI.AliasCache.end() && "Must be in cache"); 1686 auto &Entry = It->second; 1687 1688 // Check whether a NoAlias assumption has been used, but disproven. 1689 bool AssumptionDisproven = 1690 Entry.NumAssumptionUses > 0 && Result != AliasResult::NoAlias; 1691 if (AssumptionDisproven) 1692 Result = AliasResult::MayAlias; 1693 1694 // This is a definitive result now, when considered as a root query. 1695 AAQI.NumAssumptionUses -= Entry.NumAssumptionUses; 1696 Entry.Result = Result; 1697 // Cache contains sorted {V1,V2} pairs. 1698 Entry.Result.swap(Swapped); 1699 Entry.NumAssumptionUses = -1; 1700 1701 // If the assumption has been disproven, remove any results that may have 1702 // been based on this assumption. Do this after the Entry updates above to 1703 // avoid iterator invalidation. 1704 if (AssumptionDisproven) 1705 while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults) 1706 AAQI.AliasCache.erase(AAQI.AssumptionBasedResults.pop_back_val()); 1707 1708 // The result may still be based on assumptions higher up in the chain. 1709 // Remember it, so it can be purged from the cache later. 1710 if (OrigNumAssumptionUses != AAQI.NumAssumptionUses && 1711 Result != AliasResult::MayAlias) 1712 AAQI.AssumptionBasedResults.push_back(Locs); 1713 return Result; 1714 } 1715 1716 AliasResult BasicAAResult::aliasCheckRecursive( 1717 const Value *V1, LocationSize V1Size, 1718 const Value *V2, LocationSize V2Size, 1719 AAQueryInfo &AAQI, const Value *O1, const Value *O2) { 1720 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1721 AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, O1, O2, AAQI); 1722 if (Result != AliasResult::MayAlias) 1723 return Result; 1724 } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) { 1725 AliasResult Result = aliasGEP(GV2, V2Size, V1, V1Size, O2, O1, AAQI); 1726 Result.swap(); 1727 if (Result != AliasResult::MayAlias) 1728 return Result; 1729 } 1730 1731 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1732 AliasResult Result = aliasPHI(PN, V1Size, V2, V2Size, AAQI); 1733 if (Result != AliasResult::MayAlias) 1734 return Result; 1735 } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) { 1736 AliasResult Result = aliasPHI(PN, V2Size, V1, V1Size, AAQI); 1737 Result.swap(); 1738 if (Result != AliasResult::MayAlias) 1739 return Result; 1740 } 1741 1742 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1743 AliasResult Result = aliasSelect(S1, V1Size, V2, V2Size, AAQI); 1744 if (Result != AliasResult::MayAlias) 1745 return Result; 1746 } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) { 1747 AliasResult Result = aliasSelect(S2, V2Size, V1, V1Size, AAQI); 1748 Result.swap(); 1749 if (Result != AliasResult::MayAlias) 1750 return Result; 1751 } 1752 1753 // If both pointers are pointing into the same object and one of them 1754 // accesses the entire object, then the accesses must overlap in some way. 1755 if (O1 == O2) { 1756 bool NullIsValidLocation = NullPointerIsDefined(&F); 1757 if (V1Size.isPrecise() && V2Size.isPrecise() && 1758 (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) || 1759 isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation))) 1760 return AliasResult::PartialAlias; 1761 } 1762 1763 return AliasResult::MayAlias; 1764 } 1765 1766 /// Check whether two Values can be considered equivalent. 1767 /// 1768 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether 1769 /// they can not be part of a cycle in the value graph by looking at all 1770 /// visited phi nodes an making sure that the phis cannot reach the value. We 1771 /// have to do this because we are looking through phi nodes (That is we say 1772 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1773 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1774 const Value *V2) { 1775 if (V != V2) 1776 return false; 1777 1778 const Instruction *Inst = dyn_cast<Instruction>(V); 1779 if (!Inst) 1780 return true; 1781 1782 if (VisitedPhiBBs.empty()) 1783 return true; 1784 1785 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1786 return false; 1787 1788 // Make sure that the visited phis cannot reach the Value. This ensures that 1789 // the Values cannot come from different iterations of a potential cycle the 1790 // phi nodes could be involved in. 1791 for (auto *P : VisitedPhiBBs) 1792 if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT)) 1793 return false; 1794 1795 return true; 1796 } 1797 1798 /// Computes the symbolic difference between two de-composed GEPs. 1799 void BasicAAResult::subtractDecomposedGEPs(DecomposedGEP &DestGEP, 1800 const DecomposedGEP &SrcGEP) { 1801 DestGEP.Offset -= SrcGEP.Offset; 1802 for (const VariableGEPIndex &Src : SrcGEP.VarIndices) { 1803 // Find V in Dest. This is N^2, but pointer indices almost never have more 1804 // than a few variable indexes. 1805 bool Found = false; 1806 for (auto I : enumerate(DestGEP.VarIndices)) { 1807 VariableGEPIndex &Dest = I.value(); 1808 if (!isValueEqualInPotentialCycles(Dest.Val.V, Src.Val.V) || 1809 !Dest.Val.hasSameCastsAs(Src.Val)) 1810 continue; 1811 1812 // If we found it, subtract off Scale V's from the entry in Dest. If it 1813 // goes to zero, remove the entry. 1814 if (Dest.Scale != Src.Scale) { 1815 Dest.Scale -= Src.Scale; 1816 Dest.IsNSW = false; 1817 } else { 1818 DestGEP.VarIndices.erase(DestGEP.VarIndices.begin() + I.index()); 1819 } 1820 Found = true; 1821 break; 1822 } 1823 1824 // If we didn't consume this entry, add it to the end of the Dest list. 1825 if (!Found) { 1826 VariableGEPIndex Entry = {Src.Val, -Src.Scale, Src.CxtI, Src.IsNSW}; 1827 DestGEP.VarIndices.push_back(Entry); 1828 } 1829 } 1830 } 1831 1832 bool BasicAAResult::constantOffsetHeuristic( 1833 const DecomposedGEP &GEP, LocationSize MaybeV1Size, 1834 LocationSize MaybeV2Size, AssumptionCache *AC, DominatorTree *DT) { 1835 if (GEP.VarIndices.size() != 2 || !MaybeV1Size.hasValue() || 1836 !MaybeV2Size.hasValue()) 1837 return false; 1838 1839 const uint64_t V1Size = MaybeV1Size.getValue(); 1840 const uint64_t V2Size = MaybeV2Size.getValue(); 1841 1842 const VariableGEPIndex &Var0 = GEP.VarIndices[0], &Var1 = GEP.VarIndices[1]; 1843 1844 if (Var0.Val.TruncBits != 0 || !Var0.Val.hasSameCastsAs(Var1.Val) || 1845 Var0.Scale != -Var1.Scale || 1846 Var0.Val.V->getType() != Var1.Val.V->getType()) 1847 return false; 1848 1849 // We'll strip off the Extensions of Var0 and Var1 and do another round 1850 // of GetLinearExpression decomposition. In the example above, if Var0 1851 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 1852 1853 LinearExpression E0 = 1854 GetLinearExpression(CastedValue(Var0.Val.V), DL, 0, AC, DT); 1855 LinearExpression E1 = 1856 GetLinearExpression(CastedValue(Var1.Val.V), DL, 0, AC, DT); 1857 if (E0.Scale != E1.Scale || !E0.Val.hasSameCastsAs(E1.Val) || 1858 !isValueEqualInPotentialCycles(E0.Val.V, E1.Val.V)) 1859 return false; 1860 1861 // We have a hit - Var0 and Var1 only differ by a constant offset! 1862 1863 // If we've been sext'ed then zext'd the maximum difference between Var0 and 1864 // Var1 is possible to calculate, but we're just interested in the absolute 1865 // minimum difference between the two. The minimum distance may occur due to 1866 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 1867 // the minimum distance between %i and %i + 5 is 3. 1868 APInt MinDiff = E0.Offset - E1.Offset, Wrapped = -MinDiff; 1869 MinDiff = APIntOps::umin(MinDiff, Wrapped); 1870 APInt MinDiffBytes = 1871 MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs(); 1872 1873 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 1874 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 1875 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 1876 // V2Size can fit in the MinDiffBytes gap. 1877 return MinDiffBytes.uge(V1Size + GEP.Offset.abs()) && 1878 MinDiffBytes.uge(V2Size + GEP.Offset.abs()); 1879 } 1880 1881 //===----------------------------------------------------------------------===// 1882 // BasicAliasAnalysis Pass 1883 //===----------------------------------------------------------------------===// 1884 1885 AnalysisKey BasicAA::Key; 1886 1887 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) { 1888 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1889 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1890 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 1891 auto *PV = AM.getCachedResult<PhiValuesAnalysis>(F); 1892 return BasicAAResult(F.getParent()->getDataLayout(), F, TLI, AC, DT, PV); 1893 } 1894 1895 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 1896 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1897 } 1898 1899 char BasicAAWrapperPass::ID = 0; 1900 1901 void BasicAAWrapperPass::anchor() {} 1902 1903 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa", 1904 "Basic Alias Analysis (stateless AA impl)", true, true) 1905 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1906 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1907 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1908 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass) 1909 INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa", 1910 "Basic Alias Analysis (stateless AA impl)", true, true) 1911 1912 FunctionPass *llvm::createBasicAAWrapperPass() { 1913 return new BasicAAWrapperPass(); 1914 } 1915 1916 bool BasicAAWrapperPass::runOnFunction(Function &F) { 1917 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 1918 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 1919 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); 1920 auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>(); 1921 1922 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F, 1923 TLIWP.getTLI(F), ACT.getAssumptionCache(F), 1924 &DTWP.getDomTree(), 1925 PVWP ? &PVWP->getResult() : nullptr)); 1926 1927 return false; 1928 } 1929 1930 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1931 AU.setPreservesAll(); 1932 AU.addRequiredTransitive<AssumptionCacheTracker>(); 1933 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 1934 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 1935 AU.addUsedIfAvailable<PhiValuesWrapperPass>(); 1936 } 1937 1938 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { 1939 return BasicAAResult( 1940 F.getParent()->getDataLayout(), F, 1941 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 1942 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 1943 } 1944