1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the primary stateless implementation of the
10 // Alias Analysis interface that implements identities (two different
11 // globals cannot alias, etc), but does no stateful analysis.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/BasicAliasAnalysis.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/PhiValues.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GetElementPtrTypeIterator.h"
40 #include "llvm/IR/GlobalAlias.h"
41 #include "llvm/IR/GlobalVariable.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/Operator.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/KnownBits.h"
58 #include <cassert>
59 #include <cstdint>
60 #include <cstdlib>
61 #include <utility>
62 
63 #define DEBUG_TYPE "basicaa"
64 
65 using namespace llvm;
66 
67 /// Enable analysis of recursive PHI nodes.
68 static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden,
69                                           cl::init(true));
70 
71 /// SearchLimitReached / SearchTimes shows how often the limit of
72 /// to decompose GEPs is reached. It will affect the precision
73 /// of basic alias analysis.
74 STATISTIC(SearchLimitReached, "Number of times the limit to "
75                               "decompose GEPs is reached");
76 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
77 
78 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
79 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
80 /// careful with value equivalence. We use reachability to make sure a value
81 /// cannot be involved in a cycle.
82 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
83 
84 // The max limit of the search depth in DecomposeGEPExpression() and
85 // getUnderlyingObject(), both functions need to use the same search
86 // depth otherwise the algorithm in aliasGEP will assert.
87 static const unsigned MaxLookupSearchDepth = 6;
88 
89 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
90                                FunctionAnalysisManager::Invalidator &Inv) {
91   // We don't care if this analysis itself is preserved, it has no state. But
92   // we need to check that the analyses it depends on have been. Note that we
93   // may be created without handles to some analyses and in that case don't
94   // depend on them.
95   if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
96       (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) ||
97       (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA)))
98     return true;
99 
100   // Otherwise this analysis result remains valid.
101   return false;
102 }
103 
104 //===----------------------------------------------------------------------===//
105 // Useful predicates
106 //===----------------------------------------------------------------------===//
107 
108 /// Returns true if the pointer is one which would have been considered an
109 /// escape by isNonEscapingLocalObject.
110 static bool isEscapeSource(const Value *V) {
111   if (isa<CallBase>(V))
112     return true;
113 
114   // The load case works because isNonEscapingLocalObject considers all
115   // stores to be escapes (it passes true for the StoreCaptures argument
116   // to PointerMayBeCaptured).
117   if (isa<LoadInst>(V))
118     return true;
119 
120   // The inttoptr case works because isNonEscapingLocalObject considers all
121   // means of converting or equating a pointer to an int (ptrtoint, ptr store
122   // which could be followed by an integer load, ptr<->int compare) as
123   // escaping, and objects located at well-known addresses via platform-specific
124   // means cannot be considered non-escaping local objects.
125   if (isa<IntToPtrInst>(V))
126     return true;
127 
128   return false;
129 }
130 
131 /// Returns the size of the object specified by V or UnknownSize if unknown.
132 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
133                               const TargetLibraryInfo &TLI,
134                               bool NullIsValidLoc,
135                               bool RoundToAlign = false) {
136   uint64_t Size;
137   ObjectSizeOpts Opts;
138   Opts.RoundToAlign = RoundToAlign;
139   Opts.NullIsUnknownSize = NullIsValidLoc;
140   if (getObjectSize(V, Size, DL, &TLI, Opts))
141     return Size;
142   return MemoryLocation::UnknownSize;
143 }
144 
145 /// Returns true if we can prove that the object specified by V is smaller than
146 /// Size.
147 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
148                                 const DataLayout &DL,
149                                 const TargetLibraryInfo &TLI,
150                                 bool NullIsValidLoc) {
151   // Note that the meanings of the "object" are slightly different in the
152   // following contexts:
153   //    c1: llvm::getObjectSize()
154   //    c2: llvm.objectsize() intrinsic
155   //    c3: isObjectSmallerThan()
156   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
157   // refers to the "entire object".
158   //
159   //  Consider this example:
160   //     char *p = (char*)malloc(100)
161   //     char *q = p+80;
162   //
163   //  In the context of c1 and c2, the "object" pointed by q refers to the
164   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
165   //
166   //  However, in the context of c3, the "object" refers to the chunk of memory
167   // being allocated. So, the "object" has 100 bytes, and q points to the middle
168   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
169   // parameter, before the llvm::getObjectSize() is called to get the size of
170   // entire object, we should:
171   //    - either rewind the pointer q to the base-address of the object in
172   //      question (in this case rewind to p), or
173   //    - just give up. It is up to caller to make sure the pointer is pointing
174   //      to the base address the object.
175   //
176   // We go for 2nd option for simplicity.
177   if (!isIdentifiedObject(V))
178     return false;
179 
180   // This function needs to use the aligned object size because we allow
181   // reads a bit past the end given sufficient alignment.
182   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
183                                       /*RoundToAlign*/ true);
184 
185   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
186 }
187 
188 /// Return the minimal extent from \p V to the end of the underlying object,
189 /// assuming the result is used in an aliasing query. E.g., we do use the query
190 /// location size and the fact that null pointers cannot alias here.
191 static uint64_t getMinimalExtentFrom(const Value &V,
192                                      const LocationSize &LocSize,
193                                      const DataLayout &DL,
194                                      bool NullIsValidLoc) {
195   // If we have dereferenceability information we know a lower bound for the
196   // extent as accesses for a lower offset would be valid. We need to exclude
197   // the "or null" part if null is a valid pointer. We can ignore frees, as an
198   // access after free would be undefined behavior.
199   bool CanBeNull, CanBeFreed;
200   uint64_t DerefBytes =
201     V.getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
202   DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes;
203   // If queried with a precise location size, we assume that location size to be
204   // accessed, thus valid.
205   if (LocSize.isPrecise())
206     DerefBytes = std::max(DerefBytes, LocSize.getValue());
207   return DerefBytes;
208 }
209 
210 /// Returns true if we can prove that the object specified by V has size Size.
211 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
212                          const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
213   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc);
214   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
215 }
216 
217 //===----------------------------------------------------------------------===//
218 // CaptureInfo implementations
219 //===----------------------------------------------------------------------===//
220 
221 CaptureInfo::~CaptureInfo() = default;
222 
223 bool SimpleCaptureInfo::isNotCapturedBeforeOrAt(const Value *Object,
224                                                 const Instruction *I) {
225   return isNonEscapingLocalObject(Object, &IsCapturedCache);
226 }
227 
228 bool EarliestEscapeInfo::isNotCapturedBeforeOrAt(const Value *Object,
229                                                  const Instruction *I) {
230   if (!isIdentifiedFunctionLocal(Object))
231     return false;
232 
233   auto Iter = EarliestEscapes.insert({Object, nullptr});
234   if (Iter.second) {
235     Instruction *EarliestCapture = FindEarliestCapture(
236         Object, *const_cast<Function *>(I->getFunction()),
237         /*ReturnCaptures=*/false, /*StoreCaptures=*/true, DT);
238     if (EarliestCapture) {
239       auto Ins = Inst2Obj.insert({EarliestCapture, {}});
240       Ins.first->second.push_back(Object);
241     }
242     Iter.first->second = EarliestCapture;
243   }
244 
245   // No capturing instruction.
246   if (!Iter.first->second)
247     return true;
248 
249   return I != Iter.first->second &&
250          !isPotentiallyReachable(Iter.first->second, I, nullptr, &DT, &LI);
251 }
252 
253 void EarliestEscapeInfo::removeInstruction(Instruction *I) {
254   auto Iter = Inst2Obj.find(I);
255   if (Iter != Inst2Obj.end()) {
256     for (const Value *Obj : Iter->second)
257       EarliestEscapes.erase(Obj);
258     Inst2Obj.erase(I);
259   }
260 }
261 
262 //===----------------------------------------------------------------------===//
263 // GetElementPtr Instruction Decomposition and Analysis
264 //===----------------------------------------------------------------------===//
265 
266 namespace {
267 /// Represents zext(sext(V)).
268 struct ExtendedValue {
269   const Value *V;
270   unsigned ZExtBits;
271   unsigned SExtBits;
272 
273   explicit ExtendedValue(const Value *V, unsigned ZExtBits = 0,
274                          unsigned SExtBits = 0)
275       : V(V), ZExtBits(ZExtBits), SExtBits(SExtBits) {}
276 
277   unsigned getBitWidth() const {
278     return V->getType()->getPrimitiveSizeInBits() + ZExtBits + SExtBits;
279   }
280 
281   ExtendedValue withValue(const Value *NewV) const {
282     return ExtendedValue(NewV, ZExtBits, SExtBits);
283   }
284 
285   ExtendedValue withZExtOfValue(const Value *NewV) const {
286     unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() -
287                         NewV->getType()->getPrimitiveSizeInBits();
288     // zext(sext(zext(NewV))) == zext(zext(zext(NewV)))
289     return ExtendedValue(NewV, ZExtBits + SExtBits + ExtendBy, 0);
290   }
291 
292   ExtendedValue withSExtOfValue(const Value *NewV) const {
293     unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() -
294                         NewV->getType()->getPrimitiveSizeInBits();
295     // zext(sext(sext(NewV)))
296     return ExtendedValue(NewV, ZExtBits, SExtBits + ExtendBy);
297   }
298 
299   APInt evaluateWith(APInt N) const {
300     assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() &&
301            "Incompatible bit width");
302     if (SExtBits) N = N.sext(N.getBitWidth() + SExtBits);
303     if (ZExtBits) N = N.zext(N.getBitWidth() + ZExtBits);
304     return N;
305   }
306 
307   KnownBits evaluateWith(KnownBits N) const {
308     assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() &&
309            "Incompatible bit width");
310     if (SExtBits) N = N.sext(N.getBitWidth() + SExtBits);
311     if (ZExtBits) N = N.zext(N.getBitWidth() + ZExtBits);
312     return N;
313   }
314 
315   bool canDistributeOver(bool NUW, bool NSW) const {
316     // zext(x op<nuw> y) == zext(x) op<nuw> zext(y)
317     // sext(x op<nsw> y) == sext(x) op<nsw> sext(y)
318     return (!ZExtBits || NUW) && (!SExtBits || NSW);
319   }
320 
321   bool hasSameExtensionsAs(const ExtendedValue &Other) const {
322     return ZExtBits == Other.ZExtBits && SExtBits == Other.SExtBits;
323   }
324 };
325 
326 /// Represents zext(sext(V)) * Scale + Offset.
327 struct LinearExpression {
328   ExtendedValue Val;
329   APInt Scale;
330   APInt Offset;
331 
332   /// True if all operations in this expression are NSW.
333   bool IsNSW;
334 
335   LinearExpression(const ExtendedValue &Val, const APInt &Scale,
336                    const APInt &Offset, bool IsNSW)
337       : Val(Val), Scale(Scale), Offset(Offset), IsNSW(IsNSW) {}
338 
339   LinearExpression(const ExtendedValue &Val) : Val(Val), IsNSW(true) {
340     unsigned BitWidth = Val.getBitWidth();
341     Scale = APInt(BitWidth, 1);
342     Offset = APInt(BitWidth, 0);
343   }
344 };
345 }
346 
347 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
348 /// B are constant integers.
349 static LinearExpression GetLinearExpression(
350     const ExtendedValue &Val,  const DataLayout &DL, unsigned Depth,
351     AssumptionCache *AC, DominatorTree *DT) {
352   // Limit our recursion depth.
353   if (Depth == 6)
354     return Val;
355 
356   if (const ConstantInt *Const = dyn_cast<ConstantInt>(Val.V))
357     return LinearExpression(Val, APInt(Val.getBitWidth(), 0),
358                             Val.evaluateWith(Const->getValue()), true);
359 
360   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val.V)) {
361     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
362       APInt RHS = Val.evaluateWith(RHSC->getValue());
363       // The only non-OBO case we deal with is or, and only limited to the
364       // case where it is both nuw and nsw.
365       bool NUW = true, NSW = true;
366       if (isa<OverflowingBinaryOperator>(BOp)) {
367         NUW &= BOp->hasNoUnsignedWrap();
368         NSW &= BOp->hasNoSignedWrap();
369       }
370       if (!Val.canDistributeOver(NUW, NSW))
371         return Val;
372 
373       LinearExpression E(Val);
374       switch (BOp->getOpcode()) {
375       default:
376         // We don't understand this instruction, so we can't decompose it any
377         // further.
378         return Val;
379       case Instruction::Or:
380         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
381         // analyze it.
382         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
383                                BOp, DT))
384           return Val;
385 
386         LLVM_FALLTHROUGH;
387       case Instruction::Add: {
388         E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
389                                 Depth + 1, AC, DT);
390         E.Offset += RHS;
391         E.IsNSW &= NSW;
392         break;
393       }
394       case Instruction::Sub: {
395         E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
396                                 Depth + 1, AC, DT);
397         E.Offset -= RHS;
398         E.IsNSW &= NSW;
399         break;
400       }
401       case Instruction::Mul: {
402         E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
403                                 Depth + 1, AC, DT);
404         E.Offset *= RHS;
405         E.Scale *= RHS;
406         E.IsNSW &= NSW;
407         break;
408       }
409       case Instruction::Shl:
410         // We're trying to linearize an expression of the kind:
411         //   shl i8 -128, 36
412         // where the shift count exceeds the bitwidth of the type.
413         // We can't decompose this further (the expression would return
414         // a poison value).
415         if (RHS.getLimitedValue() > Val.getBitWidth())
416           return Val;
417 
418         E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
419                                 Depth + 1, AC, DT);
420         E.Offset <<= RHS.getLimitedValue();
421         E.Scale <<= RHS.getLimitedValue();
422         E.IsNSW &= NSW;
423         break;
424       }
425       return E;
426     }
427   }
428 
429   if (isa<ZExtInst>(Val.V))
430     return GetLinearExpression(
431         Val.withZExtOfValue(cast<CastInst>(Val.V)->getOperand(0)),
432         DL, Depth + 1, AC, DT);
433 
434   if (isa<SExtInst>(Val.V))
435     return GetLinearExpression(
436         Val.withSExtOfValue(cast<CastInst>(Val.V)->getOperand(0)),
437         DL, Depth + 1, AC, DT);
438 
439   return Val;
440 }
441 
442 /// To ensure a pointer offset fits in an integer of size PointerSize
443 /// (in bits) when that size is smaller than the maximum pointer size. This is
444 /// an issue, for example, in particular for 32b pointers with negative indices
445 /// that rely on two's complement wrap-arounds for precise alias information
446 /// where the maximum pointer size is 64b.
447 static APInt adjustToPointerSize(const APInt &Offset, unsigned PointerSize) {
448   assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!");
449   unsigned ShiftBits = Offset.getBitWidth() - PointerSize;
450   return (Offset << ShiftBits).ashr(ShiftBits);
451 }
452 
453 namespace {
454 // A linear transformation of a Value; this class represents
455 // ZExt(SExt(V, SExtBits), ZExtBits) * Scale.
456 struct VariableGEPIndex {
457   ExtendedValue Val;
458   APInt Scale;
459 
460   // Context instruction to use when querying information about this index.
461   const Instruction *CxtI;
462 
463   /// True if all operations in this expression are NSW.
464   bool IsNSW;
465 
466   void dump() const {
467     print(dbgs());
468     dbgs() << "\n";
469   }
470   void print(raw_ostream &OS) const {
471     OS << "(V=" << Val.V->getName()
472        << ", zextbits=" << Val.ZExtBits
473        << ", sextbits=" << Val.SExtBits
474        << ", scale=" << Scale << ")";
475   }
476 };
477 }
478 
479 // Represents the internal structure of a GEP, decomposed into a base pointer,
480 // constant offsets, and variable scaled indices.
481 struct BasicAAResult::DecomposedGEP {
482   // Base pointer of the GEP
483   const Value *Base;
484   // Total constant offset from base.
485   APInt Offset;
486   // Scaled variable (non-constant) indices.
487   SmallVector<VariableGEPIndex, 4> VarIndices;
488   // Is GEP index scale compile-time constant.
489   bool HasCompileTimeConstantScale;
490   // Are all operations inbounds GEPs or non-indexing operations?
491   // (None iff expression doesn't involve any geps)
492   Optional<bool> InBounds;
493 
494   void dump() const {
495     print(dbgs());
496     dbgs() << "\n";
497   }
498   void print(raw_ostream &OS) const {
499     OS << "(DecomposedGEP Base=" << Base->getName()
500        << ", Offset=" << Offset
501        << ", VarIndices=[";
502     for (size_t i = 0; i < VarIndices.size(); i++) {
503       if (i != 0)
504         OS << ", ";
505       VarIndices[i].print(OS);
506     }
507     OS << "], HasCompileTimeConstantScale=" << HasCompileTimeConstantScale
508        << ")";
509   }
510 };
511 
512 
513 /// If V is a symbolic pointer expression, decompose it into a base pointer
514 /// with a constant offset and a number of scaled symbolic offsets.
515 ///
516 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
517 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
518 /// specified amount, but which may have other unrepresented high bits. As
519 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
520 ///
521 /// This function is capable of analyzing everything that getUnderlyingObject
522 /// can look through. To be able to do that getUnderlyingObject and
523 /// DecomposeGEPExpression must use the same search depth
524 /// (MaxLookupSearchDepth).
525 BasicAAResult::DecomposedGEP
526 BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL,
527                                       AssumptionCache *AC, DominatorTree *DT) {
528   // Limit recursion depth to limit compile time in crazy cases.
529   unsigned MaxLookup = MaxLookupSearchDepth;
530   SearchTimes++;
531   const Instruction *CxtI = dyn_cast<Instruction>(V);
532 
533   unsigned MaxPointerSize = DL.getMaxPointerSizeInBits();
534   DecomposedGEP Decomposed;
535   Decomposed.Offset = APInt(MaxPointerSize, 0);
536   Decomposed.HasCompileTimeConstantScale = true;
537   do {
538     // See if this is a bitcast or GEP.
539     const Operator *Op = dyn_cast<Operator>(V);
540     if (!Op) {
541       // The only non-operator case we can handle are GlobalAliases.
542       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
543         if (!GA->isInterposable()) {
544           V = GA->getAliasee();
545           continue;
546         }
547       }
548       Decomposed.Base = V;
549       return Decomposed;
550     }
551 
552     if (Op->getOpcode() == Instruction::BitCast ||
553         Op->getOpcode() == Instruction::AddrSpaceCast) {
554       V = Op->getOperand(0);
555       continue;
556     }
557 
558     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
559     if (!GEPOp) {
560       if (const auto *PHI = dyn_cast<PHINode>(V)) {
561         // Look through single-arg phi nodes created by LCSSA.
562         if (PHI->getNumIncomingValues() == 1) {
563           V = PHI->getIncomingValue(0);
564           continue;
565         }
566       } else if (const auto *Call = dyn_cast<CallBase>(V)) {
567         // CaptureTracking can know about special capturing properties of some
568         // intrinsics like launder.invariant.group, that can't be expressed with
569         // the attributes, but have properties like returning aliasing pointer.
570         // Because some analysis may assume that nocaptured pointer is not
571         // returned from some special intrinsic (because function would have to
572         // be marked with returns attribute), it is crucial to use this function
573         // because it should be in sync with CaptureTracking. Not using it may
574         // cause weird miscompilations where 2 aliasing pointers are assumed to
575         // noalias.
576         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
577           V = RP;
578           continue;
579         }
580       }
581 
582       Decomposed.Base = V;
583       return Decomposed;
584     }
585 
586     // Track whether we've seen at least one in bounds gep, and if so, whether
587     // all geps parsed were in bounds.
588     if (Decomposed.InBounds == None)
589       Decomposed.InBounds = GEPOp->isInBounds();
590     else if (!GEPOp->isInBounds())
591       Decomposed.InBounds = false;
592 
593     assert(GEPOp->getSourceElementType()->isSized() && "GEP must be sized");
594 
595     // Don't attempt to analyze GEPs if index scale is not a compile-time
596     // constant.
597     if (isa<ScalableVectorType>(GEPOp->getSourceElementType())) {
598       Decomposed.Base = V;
599       Decomposed.HasCompileTimeConstantScale = false;
600       return Decomposed;
601     }
602 
603     unsigned AS = GEPOp->getPointerAddressSpace();
604     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
605     gep_type_iterator GTI = gep_type_begin(GEPOp);
606     unsigned PointerSize = DL.getPointerSizeInBits(AS);
607     // Assume all GEP operands are constants until proven otherwise.
608     bool GepHasConstantOffset = true;
609     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
610          I != E; ++I, ++GTI) {
611       const Value *Index = *I;
612       // Compute the (potentially symbolic) offset in bytes for this index.
613       if (StructType *STy = GTI.getStructTypeOrNull()) {
614         // For a struct, add the member offset.
615         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
616         if (FieldNo == 0)
617           continue;
618 
619         Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo);
620         continue;
621       }
622 
623       // For an array/pointer, add the element offset, explicitly scaled.
624       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
625         if (CIdx->isZero())
626           continue;
627         Decomposed.Offset +=
628             DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize() *
629             CIdx->getValue().sextOrTrunc(MaxPointerSize);
630         continue;
631       }
632 
633       GepHasConstantOffset = false;
634 
635       APInt Scale(MaxPointerSize,
636                   DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize());
637       // If the integer type is smaller than the pointer size, it is implicitly
638       // sign extended to pointer size.
639       unsigned Width = Index->getType()->getIntegerBitWidth();
640       unsigned SExtBits = PointerSize > Width ? PointerSize - Width : 0;
641       LinearExpression LE = GetLinearExpression(
642           ExtendedValue(Index, 0, SExtBits), DL, 0, AC, DT);
643 
644       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
645       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
646 
647       // It can be the case that, even through C1*V+C2 does not overflow for
648       // relevant values of V, (C2*Scale) can overflow. In that case, we cannot
649       // decompose the expression in this way.
650       //
651       // FIXME: C1*Scale and the other operations in the decomposed
652       // (C1*Scale)*V+C2*Scale can also overflow. We should check for this
653       // possibility.
654       bool Overflow;
655       APInt ScaledOffset = LE.Offset.sextOrTrunc(MaxPointerSize)
656                            .smul_ov(Scale, Overflow);
657       if (Overflow) {
658         LE = LinearExpression(ExtendedValue(Index, 0, SExtBits));
659       } else {
660         Decomposed.Offset += ScaledOffset;
661         Scale *= LE.Scale.sextOrTrunc(MaxPointerSize);
662       }
663 
664       // If we already had an occurrence of this index variable, merge this
665       // scale into it.  For example, we want to handle:
666       //   A[x][x] -> x*16 + x*4 -> x*20
667       // This also ensures that 'x' only appears in the index list once.
668       for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
669         if (Decomposed.VarIndices[i].Val.V == LE.Val.V &&
670             Decomposed.VarIndices[i].Val.hasSameExtensionsAs(LE.Val)) {
671           Scale += Decomposed.VarIndices[i].Scale;
672           Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
673           break;
674         }
675       }
676 
677       // Make sure that we have a scale that makes sense for this target's
678       // pointer size.
679       Scale = adjustToPointerSize(Scale, PointerSize);
680 
681       if (!!Scale) {
682         VariableGEPIndex Entry = {LE.Val, Scale, CxtI, LE.IsNSW};
683         Decomposed.VarIndices.push_back(Entry);
684       }
685     }
686 
687     // Take care of wrap-arounds
688     if (GepHasConstantOffset)
689       Decomposed.Offset = adjustToPointerSize(Decomposed.Offset, PointerSize);
690 
691     // Analyze the base pointer next.
692     V = GEPOp->getOperand(0);
693   } while (--MaxLookup);
694 
695   // If the chain of expressions is too deep, just return early.
696   Decomposed.Base = V;
697   SearchLimitReached++;
698   return Decomposed;
699 }
700 
701 /// Returns whether the given pointer value points to memory that is local to
702 /// the function, with global constants being considered local to all
703 /// functions.
704 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
705                                            AAQueryInfo &AAQI, bool OrLocal) {
706   assert(Visited.empty() && "Visited must be cleared after use!");
707 
708   unsigned MaxLookup = 8;
709   SmallVector<const Value *, 16> Worklist;
710   Worklist.push_back(Loc.Ptr);
711   do {
712     const Value *V = getUnderlyingObject(Worklist.pop_back_val());
713     if (!Visited.insert(V).second) {
714       Visited.clear();
715       return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
716     }
717 
718     // An alloca instruction defines local memory.
719     if (OrLocal && isa<AllocaInst>(V))
720       continue;
721 
722     // A global constant counts as local memory for our purposes.
723     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
724       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
725       // global to be marked constant in some modules and non-constant in
726       // others.  GV may even be a declaration, not a definition.
727       if (!GV->isConstant()) {
728         Visited.clear();
729         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
730       }
731       continue;
732     }
733 
734     // If both select values point to local memory, then so does the select.
735     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
736       Worklist.push_back(SI->getTrueValue());
737       Worklist.push_back(SI->getFalseValue());
738       continue;
739     }
740 
741     // If all values incoming to a phi node point to local memory, then so does
742     // the phi.
743     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
744       // Don't bother inspecting phi nodes with many operands.
745       if (PN->getNumIncomingValues() > MaxLookup) {
746         Visited.clear();
747         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
748       }
749       append_range(Worklist, PN->incoming_values());
750       continue;
751     }
752 
753     // Otherwise be conservative.
754     Visited.clear();
755     return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
756   } while (!Worklist.empty() && --MaxLookup);
757 
758   Visited.clear();
759   return Worklist.empty();
760 }
761 
762 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
763   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
764   return II && II->getIntrinsicID() == IID;
765 }
766 
767 /// Returns the behavior when calling the given call site.
768 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) {
769   if (Call->doesNotAccessMemory())
770     // Can't do better than this.
771     return FMRB_DoesNotAccessMemory;
772 
773   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
774 
775   // If the callsite knows it only reads memory, don't return worse
776   // than that.
777   if (Call->onlyReadsMemory())
778     Min = FMRB_OnlyReadsMemory;
779   else if (Call->doesNotReadMemory())
780     Min = FMRB_OnlyWritesMemory;
781 
782   if (Call->onlyAccessesArgMemory())
783     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
784   else if (Call->onlyAccessesInaccessibleMemory())
785     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
786   else if (Call->onlyAccessesInaccessibleMemOrArgMem())
787     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
788 
789   // If the call has operand bundles then aliasing attributes from the function
790   // it calls do not directly apply to the call.  This can be made more precise
791   // in the future.
792   if (!Call->hasOperandBundles())
793     if (const Function *F = Call->getCalledFunction())
794       Min =
795           FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
796 
797   return Min;
798 }
799 
800 /// Returns the behavior when calling the given function. For use when the call
801 /// site is not known.
802 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
803   // If the function declares it doesn't access memory, we can't do better.
804   if (F->doesNotAccessMemory())
805     return FMRB_DoesNotAccessMemory;
806 
807   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
808 
809   // If the function declares it only reads memory, go with that.
810   if (F->onlyReadsMemory())
811     Min = FMRB_OnlyReadsMemory;
812   else if (F->doesNotReadMemory())
813     Min = FMRB_OnlyWritesMemory;
814 
815   if (F->onlyAccessesArgMemory())
816     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
817   else if (F->onlyAccessesInaccessibleMemory())
818     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
819   else if (F->onlyAccessesInaccessibleMemOrArgMem())
820     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
821 
822   return Min;
823 }
824 
825 /// Returns true if this is a writeonly (i.e Mod only) parameter.
826 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx,
827                              const TargetLibraryInfo &TLI) {
828   if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly))
829     return true;
830 
831   // We can bound the aliasing properties of memset_pattern16 just as we can
832   // for memcpy/memset.  This is particularly important because the
833   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
834   // whenever possible.
835   // FIXME Consider handling this in InferFunctionAttr.cpp together with other
836   // attributes.
837   LibFunc F;
838   if (Call->getCalledFunction() &&
839       TLI.getLibFunc(*Call->getCalledFunction(), F) &&
840       F == LibFunc_memset_pattern16 && TLI.has(F))
841     if (ArgIdx == 0)
842       return true;
843 
844   // TODO: memset_pattern4, memset_pattern8
845   // TODO: _chk variants
846   // TODO: strcmp, strcpy
847 
848   return false;
849 }
850 
851 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
852                                            unsigned ArgIdx) {
853   // Checking for known builtin intrinsics and target library functions.
854   if (isWriteOnlyParam(Call, ArgIdx, TLI))
855     return ModRefInfo::Mod;
856 
857   if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly))
858     return ModRefInfo::Ref;
859 
860   if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone))
861     return ModRefInfo::NoModRef;
862 
863   return AAResultBase::getArgModRefInfo(Call, ArgIdx);
864 }
865 
866 #ifndef NDEBUG
867 static const Function *getParent(const Value *V) {
868   if (const Instruction *inst = dyn_cast<Instruction>(V)) {
869     if (!inst->getParent())
870       return nullptr;
871     return inst->getParent()->getParent();
872   }
873 
874   if (const Argument *arg = dyn_cast<Argument>(V))
875     return arg->getParent();
876 
877   return nullptr;
878 }
879 
880 static bool notDifferentParent(const Value *O1, const Value *O2) {
881 
882   const Function *F1 = getParent(O1);
883   const Function *F2 = getParent(O2);
884 
885   return !F1 || !F2 || F1 == F2;
886 }
887 #endif
888 
889 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
890                                  const MemoryLocation &LocB,
891                                  AAQueryInfo &AAQI) {
892   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
893          "BasicAliasAnalysis doesn't support interprocedural queries.");
894   return aliasCheck(LocA.Ptr, LocA.Size, LocB.Ptr, LocB.Size, AAQI);
895 }
896 
897 /// Checks to see if the specified callsite can clobber the specified memory
898 /// object.
899 ///
900 /// Since we only look at local properties of this function, we really can't
901 /// say much about this query.  We do, however, use simple "address taken"
902 /// analysis on local objects.
903 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
904                                         const MemoryLocation &Loc,
905                                         AAQueryInfo &AAQI) {
906   assert(notDifferentParent(Call, Loc.Ptr) &&
907          "AliasAnalysis query involving multiple functions!");
908 
909   const Value *Object = getUnderlyingObject(Loc.Ptr);
910 
911   // Calls marked 'tail' cannot read or write allocas from the current frame
912   // because the current frame might be destroyed by the time they run. However,
913   // a tail call may use an alloca with byval. Calling with byval copies the
914   // contents of the alloca into argument registers or stack slots, so there is
915   // no lifetime issue.
916   if (isa<AllocaInst>(Object))
917     if (const CallInst *CI = dyn_cast<CallInst>(Call))
918       if (CI->isTailCall() &&
919           !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal))
920         return ModRefInfo::NoModRef;
921 
922   // Stack restore is able to modify unescaped dynamic allocas. Assume it may
923   // modify them even though the alloca is not escaped.
924   if (auto *AI = dyn_cast<AllocaInst>(Object))
925     if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore))
926       return ModRefInfo::Mod;
927 
928   // If the pointer is to a locally allocated object that does not escape,
929   // then the call can not mod/ref the pointer unless the call takes the pointer
930   // as an argument, and itself doesn't capture it.
931   if (!isa<Constant>(Object) && Call != Object &&
932       AAQI.CI->isNotCapturedBeforeOrAt(Object, Call)) {
933 
934     // Optimistically assume that call doesn't touch Object and check this
935     // assumption in the following loop.
936     ModRefInfo Result = ModRefInfo::NoModRef;
937     bool IsMustAlias = true;
938 
939     unsigned OperandNo = 0;
940     for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
941          CI != CE; ++CI, ++OperandNo) {
942       // Only look at the no-capture or byval pointer arguments.  If this
943       // pointer were passed to arguments that were neither of these, then it
944       // couldn't be no-capture.
945       if (!(*CI)->getType()->isPointerTy() ||
946           (!Call->doesNotCapture(OperandNo) && OperandNo < Call->arg_size() &&
947            !Call->isByValArgument(OperandNo)))
948         continue;
949 
950       // Call doesn't access memory through this operand, so we don't care
951       // if it aliases with Object.
952       if (Call->doesNotAccessMemory(OperandNo))
953         continue;
954 
955       // If this is a no-capture pointer argument, see if we can tell that it
956       // is impossible to alias the pointer we're checking.
957       AliasResult AR = getBestAAResults().alias(
958           MemoryLocation::getBeforeOrAfter(*CI),
959           MemoryLocation::getBeforeOrAfter(Object), AAQI);
960       if (AR != AliasResult::MustAlias)
961         IsMustAlias = false;
962       // Operand doesn't alias 'Object', continue looking for other aliases
963       if (AR == AliasResult::NoAlias)
964         continue;
965       // Operand aliases 'Object', but call doesn't modify it. Strengthen
966       // initial assumption and keep looking in case if there are more aliases.
967       if (Call->onlyReadsMemory(OperandNo)) {
968         Result = setRef(Result);
969         continue;
970       }
971       // Operand aliases 'Object' but call only writes into it.
972       if (Call->doesNotReadMemory(OperandNo)) {
973         Result = setMod(Result);
974         continue;
975       }
976       // This operand aliases 'Object' and call reads and writes into it.
977       // Setting ModRef will not yield an early return below, MustAlias is not
978       // used further.
979       Result = ModRefInfo::ModRef;
980       break;
981     }
982 
983     // No operand aliases, reset Must bit. Add below if at least one aliases
984     // and all aliases found are MustAlias.
985     if (isNoModRef(Result))
986       IsMustAlias = false;
987 
988     // Early return if we improved mod ref information
989     if (!isModAndRefSet(Result)) {
990       if (isNoModRef(Result))
991         return ModRefInfo::NoModRef;
992       return IsMustAlias ? setMust(Result) : clearMust(Result);
993     }
994   }
995 
996   // If the call is malloc/calloc like, we can assume that it doesn't
997   // modify any IR visible value.  This is only valid because we assume these
998   // routines do not read values visible in the IR.  TODO: Consider special
999   // casing realloc and strdup routines which access only their arguments as
1000   // well.  Or alternatively, replace all of this with inaccessiblememonly once
1001   // that's implemented fully.
1002   if (isMallocOrCallocLikeFn(Call, &TLI)) {
1003     // Be conservative if the accessed pointer may alias the allocation -
1004     // fallback to the generic handling below.
1005     if (getBestAAResults().alias(MemoryLocation::getBeforeOrAfter(Call), Loc,
1006                                  AAQI) == AliasResult::NoAlias)
1007       return ModRefInfo::NoModRef;
1008   }
1009 
1010   // The semantics of memcpy intrinsics either exactly overlap or do not
1011   // overlap, i.e., source and destination of any given memcpy are either
1012   // no-alias or must-alias.
1013   if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) {
1014     AliasResult SrcAA =
1015         getBestAAResults().alias(MemoryLocation::getForSource(Inst), Loc, AAQI);
1016     AliasResult DestAA =
1017         getBestAAResults().alias(MemoryLocation::getForDest(Inst), Loc, AAQI);
1018     // It's also possible for Loc to alias both src and dest, or neither.
1019     ModRefInfo rv = ModRefInfo::NoModRef;
1020     if (SrcAA != AliasResult::NoAlias)
1021       rv = setRef(rv);
1022     if (DestAA != AliasResult::NoAlias)
1023       rv = setMod(rv);
1024     return rv;
1025   }
1026 
1027   // Guard intrinsics are marked as arbitrarily writing so that proper control
1028   // dependencies are maintained but they never mods any particular memory
1029   // location.
1030   //
1031   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1032   // heap state at the point the guard is issued needs to be consistent in case
1033   // the guard invokes the "deopt" continuation.
1034   if (isIntrinsicCall(Call, Intrinsic::experimental_guard))
1035     return ModRefInfo::Ref;
1036   // The same applies to deoptimize which is essentially a guard(false).
1037   if (isIntrinsicCall(Call, Intrinsic::experimental_deoptimize))
1038     return ModRefInfo::Ref;
1039 
1040   // Like assumes, invariant.start intrinsics were also marked as arbitrarily
1041   // writing so that proper control dependencies are maintained but they never
1042   // mod any particular memory location visible to the IR.
1043   // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
1044   // intrinsic is now modeled as reading memory. This prevents hoisting the
1045   // invariant.start intrinsic over stores. Consider:
1046   // *ptr = 40;
1047   // *ptr = 50;
1048   // invariant_start(ptr)
1049   // int val = *ptr;
1050   // print(val);
1051   //
1052   // This cannot be transformed to:
1053   //
1054   // *ptr = 40;
1055   // invariant_start(ptr)
1056   // *ptr = 50;
1057   // int val = *ptr;
1058   // print(val);
1059   //
1060   // The transformation will cause the second store to be ignored (based on
1061   // rules of invariant.start)  and print 40, while the first program always
1062   // prints 50.
1063   if (isIntrinsicCall(Call, Intrinsic::invariant_start))
1064     return ModRefInfo::Ref;
1065 
1066   // The AAResultBase base class has some smarts, lets use them.
1067   return AAResultBase::getModRefInfo(Call, Loc, AAQI);
1068 }
1069 
1070 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
1071                                         const CallBase *Call2,
1072                                         AAQueryInfo &AAQI) {
1073   // Guard intrinsics are marked as arbitrarily writing so that proper control
1074   // dependencies are maintained but they never mods any particular memory
1075   // location.
1076   //
1077   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1078   // heap state at the point the guard is issued needs to be consistent in case
1079   // the guard invokes the "deopt" continuation.
1080 
1081   // NB! This function is *not* commutative, so we special case two
1082   // possibilities for guard intrinsics.
1083 
1084   if (isIntrinsicCall(Call1, Intrinsic::experimental_guard))
1085     return isModSet(createModRefInfo(getModRefBehavior(Call2)))
1086                ? ModRefInfo::Ref
1087                : ModRefInfo::NoModRef;
1088 
1089   if (isIntrinsicCall(Call2, Intrinsic::experimental_guard))
1090     return isModSet(createModRefInfo(getModRefBehavior(Call1)))
1091                ? ModRefInfo::Mod
1092                : ModRefInfo::NoModRef;
1093 
1094   // The AAResultBase base class has some smarts, lets use them.
1095   return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
1096 }
1097 
1098 /// Return true if we know V to the base address of the corresponding memory
1099 /// object.  This implies that any address less than V must be out of bounds
1100 /// for the underlying object.  Note that just being isIdentifiedObject() is
1101 /// not enough - For example, a negative offset from a noalias argument or call
1102 /// can be inbounds w.r.t the actual underlying object.
1103 static bool isBaseOfObject(const Value *V) {
1104   // TODO: We can handle other cases here
1105   // 1) For GC languages, arguments to functions are often required to be
1106   //    base pointers.
1107   // 2) Result of allocation routines are often base pointers.  Leverage TLI.
1108   return (isa<AllocaInst>(V) || isa<GlobalVariable>(V));
1109 }
1110 
1111 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1112 /// another pointer.
1113 ///
1114 /// We know that V1 is a GEP, but we don't know anything about V2.
1115 /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for
1116 /// V2.
1117 AliasResult BasicAAResult::aliasGEP(
1118     const GEPOperator *GEP1, LocationSize V1Size,
1119     const Value *V2, LocationSize V2Size,
1120     const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) {
1121   if (!V1Size.hasValue() && !V2Size.hasValue()) {
1122     // TODO: This limitation exists for compile-time reasons. Relax it if we
1123     // can avoid exponential pathological cases.
1124     if (!isa<GEPOperator>(V2))
1125       return AliasResult::MayAlias;
1126 
1127     // If both accesses have unknown size, we can only check whether the base
1128     // objects don't alias.
1129     AliasResult BaseAlias = getBestAAResults().alias(
1130         MemoryLocation::getBeforeOrAfter(UnderlyingV1),
1131         MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI);
1132     return BaseAlias == AliasResult::NoAlias ? AliasResult::NoAlias
1133                                              : AliasResult::MayAlias;
1134   }
1135 
1136   DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT);
1137   DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT);
1138 
1139   // Don't attempt to analyze the decomposed GEP if index scale is not a
1140   // compile-time constant.
1141   if (!DecompGEP1.HasCompileTimeConstantScale ||
1142       !DecompGEP2.HasCompileTimeConstantScale)
1143     return AliasResult::MayAlias;
1144 
1145   assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
1146          "DecomposeGEPExpression returned a result different from "
1147          "getUnderlyingObject");
1148 
1149   // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1150   // symbolic difference.
1151   subtractDecomposedGEPs(DecompGEP1, DecompGEP2);
1152 
1153   // If an inbounds GEP would have to start from an out of bounds address
1154   // for the two to alias, then we can assume noalias.
1155   if (*DecompGEP1.InBounds && DecompGEP1.VarIndices.empty() &&
1156       V2Size.hasValue() && DecompGEP1.Offset.sge(V2Size.getValue()) &&
1157       isBaseOfObject(DecompGEP2.Base))
1158     return AliasResult::NoAlias;
1159 
1160   if (isa<GEPOperator>(V2)) {
1161     // Symmetric case to above.
1162     if (*DecompGEP2.InBounds && DecompGEP1.VarIndices.empty() &&
1163         V1Size.hasValue() && DecompGEP1.Offset.sle(-V1Size.getValue()) &&
1164         isBaseOfObject(DecompGEP1.Base))
1165       return AliasResult::NoAlias;
1166   }
1167 
1168   // For GEPs with identical offsets, we can preserve the size and AAInfo
1169   // when performing the alias check on the underlying objects.
1170   if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty())
1171     return getBestAAResults().alias(MemoryLocation(DecompGEP1.Base, V1Size),
1172                                     MemoryLocation(DecompGEP2.Base, V2Size),
1173                                     AAQI);
1174 
1175   // Do the base pointers alias?
1176   AliasResult BaseAlias = getBestAAResults().alias(
1177       MemoryLocation::getBeforeOrAfter(DecompGEP1.Base),
1178       MemoryLocation::getBeforeOrAfter(DecompGEP2.Base), AAQI);
1179 
1180   // If we get a No or May, then return it immediately, no amount of analysis
1181   // will improve this situation.
1182   if (BaseAlias != AliasResult::MustAlias) {
1183     assert(BaseAlias == AliasResult::NoAlias ||
1184            BaseAlias == AliasResult::MayAlias);
1185     return BaseAlias;
1186   }
1187 
1188   // If there is a constant difference between the pointers, but the difference
1189   // is less than the size of the associated memory object, then we know
1190   // that the objects are partially overlapping.  If the difference is
1191   // greater, we know they do not overlap.
1192   if (DecompGEP1.Offset != 0 && DecompGEP1.VarIndices.empty()) {
1193     APInt &Off = DecompGEP1.Offset;
1194 
1195     // Initialize for Off >= 0 (V2 <= GEP1) case.
1196     const Value *LeftPtr = V2;
1197     const Value *RightPtr = GEP1;
1198     LocationSize VLeftSize = V2Size;
1199     LocationSize VRightSize = V1Size;
1200     const bool Swapped = Off.isNegative();
1201 
1202     if (Swapped) {
1203       // Swap if we have the situation where:
1204       // +                +
1205       // | BaseOffset     |
1206       // ---------------->|
1207       // |-->V1Size       |-------> V2Size
1208       // GEP1             V2
1209       std::swap(LeftPtr, RightPtr);
1210       std::swap(VLeftSize, VRightSize);
1211       Off = -Off;
1212     }
1213 
1214     if (VLeftSize.hasValue()) {
1215       const uint64_t LSize = VLeftSize.getValue();
1216       if (Off.ult(LSize)) {
1217         // Conservatively drop processing if a phi was visited and/or offset is
1218         // too big.
1219         AliasResult AR = AliasResult::PartialAlias;
1220         if (VRightSize.hasValue() && Off.ule(INT32_MAX) &&
1221             (Off + VRightSize.getValue()).ule(LSize)) {
1222           // Memory referenced by right pointer is nested. Save the offset in
1223           // cache. Note that originally offset estimated as GEP1-V2, but
1224           // AliasResult contains the shift that represents GEP1+Offset=V2.
1225           AR.setOffset(-Off.getSExtValue());
1226           AR.swap(Swapped);
1227         }
1228         return AR;
1229       }
1230       return AliasResult::NoAlias;
1231     }
1232   }
1233 
1234   if (!DecompGEP1.VarIndices.empty()) {
1235     APInt GCD;
1236     bool AllNonNegative = DecompGEP1.Offset.isNonNegative();
1237     bool AllNonPositive = DecompGEP1.Offset.isNonPositive();
1238     for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1239       const VariableGEPIndex &Index = DecompGEP1.VarIndices[i];
1240       const APInt &Scale = Index.Scale;
1241       APInt ScaleForGCD = Scale;
1242       if (!Index.IsNSW)
1243         ScaleForGCD = APInt::getOneBitSet(Scale.getBitWidth(),
1244                                           Scale.countTrailingZeros());
1245 
1246       if (i == 0)
1247         GCD = ScaleForGCD.abs();
1248       else
1249         GCD = APIntOps::GreatestCommonDivisor(GCD, ScaleForGCD.abs());
1250 
1251       if (AllNonNegative || AllNonPositive) {
1252         KnownBits Known = Index.Val.evaluateWith(
1253             computeKnownBits(Index.Val.V, DL, 0, &AC, Index.CxtI, DT));
1254         // TODO: Account for implicit trunc.
1255         bool SignKnownZero = Known.isNonNegative();
1256         bool SignKnownOne = Known.isNegative();
1257         AllNonNegative &= (SignKnownZero && Scale.isNonNegative()) ||
1258                           (SignKnownOne && Scale.isNonPositive());
1259         AllNonPositive &= (SignKnownZero && Scale.isNonPositive()) ||
1260                           (SignKnownOne && Scale.isNonNegative());
1261       }
1262     }
1263 
1264     // We now have accesses at two offsets from the same base:
1265     //  1. (...)*GCD + DecompGEP1.Offset with size V1Size
1266     //  2. 0 with size V2Size
1267     // Using arithmetic modulo GCD, the accesses are at
1268     // [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits
1269     // into the range [V2Size..GCD), then we know they cannot overlap.
1270     APInt ModOffset = DecompGEP1.Offset.srem(GCD);
1271     if (ModOffset.isNegative())
1272       ModOffset += GCD; // We want mod, not rem.
1273     if (V1Size.hasValue() && V2Size.hasValue() &&
1274         ModOffset.uge(V2Size.getValue()) &&
1275         (GCD - ModOffset).uge(V1Size.getValue()))
1276       return AliasResult::NoAlias;
1277 
1278     // If we know all the variables are non-negative, then the total offset is
1279     // also non-negative and >= DecompGEP1.Offset. We have the following layout:
1280     // [0, V2Size) ... [TotalOffset, TotalOffer+V1Size]
1281     // If DecompGEP1.Offset >= V2Size, the accesses don't alias.
1282     if (AllNonNegative && V2Size.hasValue() &&
1283         DecompGEP1.Offset.uge(V2Size.getValue()))
1284       return AliasResult::NoAlias;
1285     // Similarly, if the variables are non-positive, then the total offset is
1286     // also non-positive and <= DecompGEP1.Offset. We have the following layout:
1287     // [TotalOffset, TotalOffset+V1Size) ... [0, V2Size)
1288     // If -DecompGEP1.Offset >= V1Size, the accesses don't alias.
1289     if (AllNonPositive && V1Size.hasValue() &&
1290         (-DecompGEP1.Offset).uge(V1Size.getValue()))
1291       return AliasResult::NoAlias;
1292 
1293     if (V1Size.hasValue() && V2Size.hasValue()) {
1294       // Try to determine whether abs(VarIndex) > 0.
1295       Optional<APInt> MinAbsVarIndex;
1296       if (DecompGEP1.VarIndices.size() == 1) {
1297         // VarIndex = Scale*V. If V != 0 then abs(VarIndex) >= abs(Scale).
1298         const VariableGEPIndex &Var = DecompGEP1.VarIndices[0];
1299         if (isKnownNonZero(Var.Val.V, DL, 0, &AC, Var.CxtI, DT))
1300           MinAbsVarIndex = Var.Scale.abs();
1301       } else if (DecompGEP1.VarIndices.size() == 2) {
1302         // VarIndex = Scale*V0 + (-Scale)*V1.
1303         // If V0 != V1 then abs(VarIndex) >= abs(Scale).
1304         // Check that VisitedPhiBBs is empty, to avoid reasoning about
1305         // inequality of values across loop iterations.
1306         const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0];
1307         const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1];
1308         if (Var0.Scale == -Var1.Scale &&
1309             Var0.Val.hasSameExtensionsAs(Var1.Val) && VisitedPhiBBs.empty() &&
1310             isKnownNonEqual(Var0.Val.V, Var1.Val.V, DL, &AC, /* CxtI */ nullptr,
1311                             DT))
1312           MinAbsVarIndex = Var0.Scale.abs();
1313       }
1314 
1315       if (MinAbsVarIndex) {
1316         // The constant offset will have added at least +/-MinAbsVarIndex to it.
1317         APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex;
1318         APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex;
1319         // Check that an access at OffsetLo or lower, and an access at OffsetHi
1320         // or higher both do not alias.
1321         if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) &&
1322             OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue()))
1323           return AliasResult::NoAlias;
1324       }
1325     }
1326 
1327     if (constantOffsetHeuristic(DecompGEP1, V1Size, V2Size, &AC, DT))
1328       return AliasResult::NoAlias;
1329   }
1330 
1331   // Statically, we can see that the base objects are the same, but the
1332   // pointers have dynamic offsets which we can't resolve. And none of our
1333   // little tricks above worked.
1334   return AliasResult::MayAlias;
1335 }
1336 
1337 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1338   // If the results agree, take it.
1339   if (A == B)
1340     return A;
1341   // A mix of PartialAlias and MustAlias is PartialAlias.
1342   if ((A == AliasResult::PartialAlias && B == AliasResult::MustAlias) ||
1343       (B == AliasResult::PartialAlias && A == AliasResult::MustAlias))
1344     return AliasResult::PartialAlias;
1345   // Otherwise, we don't know anything.
1346   return AliasResult::MayAlias;
1347 }
1348 
1349 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1350 /// against another.
1351 AliasResult
1352 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize,
1353                            const Value *V2, LocationSize V2Size,
1354                            AAQueryInfo &AAQI) {
1355   // If the values are Selects with the same condition, we can do a more precise
1356   // check: just check for aliases between the values on corresponding arms.
1357   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1358     if (SI->getCondition() == SI2->getCondition()) {
1359       AliasResult Alias = getBestAAResults().alias(
1360           MemoryLocation(SI->getTrueValue(), SISize),
1361           MemoryLocation(SI2->getTrueValue(), V2Size), AAQI);
1362       if (Alias == AliasResult::MayAlias)
1363         return AliasResult::MayAlias;
1364       AliasResult ThisAlias = getBestAAResults().alias(
1365           MemoryLocation(SI->getFalseValue(), SISize),
1366           MemoryLocation(SI2->getFalseValue(), V2Size), AAQI);
1367       return MergeAliasResults(ThisAlias, Alias);
1368     }
1369 
1370   // If both arms of the Select node NoAlias or MustAlias V2, then returns
1371   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1372   AliasResult Alias = getBestAAResults().alias(
1373       MemoryLocation(V2, V2Size),
1374       MemoryLocation(SI->getTrueValue(), SISize), AAQI);
1375   if (Alias == AliasResult::MayAlias)
1376     return AliasResult::MayAlias;
1377 
1378   AliasResult ThisAlias = getBestAAResults().alias(
1379       MemoryLocation(V2, V2Size),
1380       MemoryLocation(SI->getFalseValue(), SISize), AAQI);
1381   return MergeAliasResults(ThisAlias, Alias);
1382 }
1383 
1384 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1385 /// another.
1386 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
1387                                     const Value *V2, LocationSize V2Size,
1388                                     AAQueryInfo &AAQI) {
1389   if (!PN->getNumIncomingValues())
1390     return AliasResult::NoAlias;
1391   // If the values are PHIs in the same block, we can do a more precise
1392   // as well as efficient check: just check for aliases between the values
1393   // on corresponding edges.
1394   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1395     if (PN2->getParent() == PN->getParent()) {
1396       Optional<AliasResult> Alias;
1397       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1398         AliasResult ThisAlias = getBestAAResults().alias(
1399             MemoryLocation(PN->getIncomingValue(i), PNSize),
1400             MemoryLocation(
1401                 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size),
1402             AAQI);
1403         if (Alias)
1404           *Alias = MergeAliasResults(*Alias, ThisAlias);
1405         else
1406           Alias = ThisAlias;
1407         if (*Alias == AliasResult::MayAlias)
1408           break;
1409       }
1410       return *Alias;
1411     }
1412 
1413   SmallVector<Value *, 4> V1Srcs;
1414   // If a phi operand recurses back to the phi, we can still determine NoAlias
1415   // if we don't alias the underlying objects of the other phi operands, as we
1416   // know that the recursive phi needs to be based on them in some way.
1417   bool isRecursive = false;
1418   auto CheckForRecPhi = [&](Value *PV) {
1419     if (!EnableRecPhiAnalysis)
1420       return false;
1421     if (getUnderlyingObject(PV) == PN) {
1422       isRecursive = true;
1423       return true;
1424     }
1425     return false;
1426   };
1427 
1428   if (PV) {
1429     // If we have PhiValues then use it to get the underlying phi values.
1430     const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN);
1431     // If we have more phi values than the search depth then return MayAlias
1432     // conservatively to avoid compile time explosion. The worst possible case
1433     // is if both sides are PHI nodes. In which case, this is O(m x n) time
1434     // where 'm' and 'n' are the number of PHI sources.
1435     if (PhiValueSet.size() > MaxLookupSearchDepth)
1436       return AliasResult::MayAlias;
1437     // Add the values to V1Srcs
1438     for (Value *PV1 : PhiValueSet) {
1439       if (CheckForRecPhi(PV1))
1440         continue;
1441       V1Srcs.push_back(PV1);
1442     }
1443   } else {
1444     // If we don't have PhiInfo then just look at the operands of the phi itself
1445     // FIXME: Remove this once we can guarantee that we have PhiInfo always
1446     SmallPtrSet<Value *, 4> UniqueSrc;
1447     Value *OnePhi = nullptr;
1448     for (Value *PV1 : PN->incoming_values()) {
1449       if (isa<PHINode>(PV1)) {
1450         if (OnePhi && OnePhi != PV1) {
1451           // To control potential compile time explosion, we choose to be
1452           // conserviate when we have more than one Phi input.  It is important
1453           // that we handle the single phi case as that lets us handle LCSSA
1454           // phi nodes and (combined with the recursive phi handling) simple
1455           // pointer induction variable patterns.
1456           return AliasResult::MayAlias;
1457         }
1458         OnePhi = PV1;
1459       }
1460 
1461       if (CheckForRecPhi(PV1))
1462         continue;
1463 
1464       if (UniqueSrc.insert(PV1).second)
1465         V1Srcs.push_back(PV1);
1466     }
1467 
1468     if (OnePhi && UniqueSrc.size() > 1)
1469       // Out of an abundance of caution, allow only the trivial lcssa and
1470       // recursive phi cases.
1471       return AliasResult::MayAlias;
1472   }
1473 
1474   // If V1Srcs is empty then that means that the phi has no underlying non-phi
1475   // value. This should only be possible in blocks unreachable from the entry
1476   // block, but return MayAlias just in case.
1477   if (V1Srcs.empty())
1478     return AliasResult::MayAlias;
1479 
1480   // If this PHI node is recursive, indicate that the pointer may be moved
1481   // across iterations. We can only prove NoAlias if different underlying
1482   // objects are involved.
1483   if (isRecursive)
1484     PNSize = LocationSize::beforeOrAfterPointer();
1485 
1486   // In the recursive alias queries below, we may compare values from two
1487   // different loop iterations. Keep track of visited phi blocks, which will
1488   // be used when determining value equivalence.
1489   bool BlockInserted = VisitedPhiBBs.insert(PN->getParent()).second;
1490   auto _ = make_scope_exit([&]() {
1491     if (BlockInserted)
1492       VisitedPhiBBs.erase(PN->getParent());
1493   });
1494 
1495   // If we inserted a block into VisitedPhiBBs, alias analysis results that
1496   // have been cached earlier may no longer be valid. Perform recursive queries
1497   // with a new AAQueryInfo.
1498   AAQueryInfo NewAAQI = AAQI.withEmptyCache();
1499   AAQueryInfo *UseAAQI = BlockInserted ? &NewAAQI : &AAQI;
1500 
1501   AliasResult Alias = getBestAAResults().alias(
1502       MemoryLocation(V2, V2Size),
1503       MemoryLocation(V1Srcs[0], PNSize), *UseAAQI);
1504 
1505   // Early exit if the check of the first PHI source against V2 is MayAlias.
1506   // Other results are not possible.
1507   if (Alias == AliasResult::MayAlias)
1508     return AliasResult::MayAlias;
1509   // With recursive phis we cannot guarantee that MustAlias/PartialAlias will
1510   // remain valid to all elements and needs to conservatively return MayAlias.
1511   if (isRecursive && Alias != AliasResult::NoAlias)
1512     return AliasResult::MayAlias;
1513 
1514   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1515   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1516   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1517     Value *V = V1Srcs[i];
1518 
1519     AliasResult ThisAlias = getBestAAResults().alias(
1520         MemoryLocation(V2, V2Size), MemoryLocation(V, PNSize), *UseAAQI);
1521     Alias = MergeAliasResults(ThisAlias, Alias);
1522     if (Alias == AliasResult::MayAlias)
1523       break;
1524   }
1525 
1526   return Alias;
1527 }
1528 
1529 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1530 /// array references.
1531 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
1532                                       const Value *V2, LocationSize V2Size,
1533                                       AAQueryInfo &AAQI) {
1534   // If either of the memory references is empty, it doesn't matter what the
1535   // pointer values are.
1536   if (V1Size.isZero() || V2Size.isZero())
1537     return AliasResult::NoAlias;
1538 
1539   // Strip off any casts if they exist.
1540   V1 = V1->stripPointerCastsForAliasAnalysis();
1541   V2 = V2->stripPointerCastsForAliasAnalysis();
1542 
1543   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1544   // value for undef that aliases nothing in the program.
1545   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1546     return AliasResult::NoAlias;
1547 
1548   // Are we checking for alias of the same value?
1549   // Because we look 'through' phi nodes, we could look at "Value" pointers from
1550   // different iterations. We must therefore make sure that this is not the
1551   // case. The function isValueEqualInPotentialCycles ensures that this cannot
1552   // happen by looking at the visited phi nodes and making sure they cannot
1553   // reach the value.
1554   if (isValueEqualInPotentialCycles(V1, V2))
1555     return AliasResult::MustAlias;
1556 
1557   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1558     return AliasResult::NoAlias; // Scalars cannot alias each other
1559 
1560   // Figure out what objects these things are pointing to if we can.
1561   const Value *O1 = getUnderlyingObject(V1, MaxLookupSearchDepth);
1562   const Value *O2 = getUnderlyingObject(V2, MaxLookupSearchDepth);
1563 
1564   // Null values in the default address space don't point to any object, so they
1565   // don't alias any other pointer.
1566   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1567     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1568       return AliasResult::NoAlias;
1569   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1570     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1571       return AliasResult::NoAlias;
1572 
1573   if (O1 != O2) {
1574     // If V1/V2 point to two different objects, we know that we have no alias.
1575     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1576       return AliasResult::NoAlias;
1577 
1578     // Constant pointers can't alias with non-const isIdentifiedObject objects.
1579     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1580         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1581       return AliasResult::NoAlias;
1582 
1583     // Function arguments can't alias with things that are known to be
1584     // unambigously identified at the function level.
1585     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1586         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1587       return AliasResult::NoAlias;
1588 
1589     // If one pointer is the result of a call/invoke or load and the other is a
1590     // non-escaping local object within the same function, then we know the
1591     // object couldn't escape to a point where the call could return it.
1592     //
1593     // Note that if the pointers are in different functions, there are a
1594     // variety of complications. A call with a nocapture argument may still
1595     // temporary store the nocapture argument's value in a temporary memory
1596     // location if that memory location doesn't escape. Or it may pass a
1597     // nocapture value to other functions as long as they don't capture it.
1598     if (isEscapeSource(O1) &&
1599         AAQI.CI->isNotCapturedBeforeOrAt(O2, cast<Instruction>(O1)))
1600       return AliasResult::NoAlias;
1601     if (isEscapeSource(O2) &&
1602         AAQI.CI->isNotCapturedBeforeOrAt(O1, cast<Instruction>(O2)))
1603       return AliasResult::NoAlias;
1604   }
1605 
1606   // If the size of one access is larger than the entire object on the other
1607   // side, then we know such behavior is undefined and can assume no alias.
1608   bool NullIsValidLocation = NullPointerIsDefined(&F);
1609   if ((isObjectSmallerThan(
1610           O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL,
1611           TLI, NullIsValidLocation)) ||
1612       (isObjectSmallerThan(
1613           O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL,
1614           TLI, NullIsValidLocation)))
1615     return AliasResult::NoAlias;
1616 
1617   // If one the accesses may be before the accessed pointer, canonicalize this
1618   // by using unknown after-pointer sizes for both accesses. This is
1619   // equivalent, because regardless of which pointer is lower, one of them
1620   // will always came after the other, as long as the underlying objects aren't
1621   // disjoint. We do this so that the rest of BasicAA does not have to deal
1622   // with accesses before the base pointer, and to improve cache utilization by
1623   // merging equivalent states.
1624   if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) {
1625     V1Size = LocationSize::afterPointer();
1626     V2Size = LocationSize::afterPointer();
1627   }
1628 
1629   // FIXME: If this depth limit is hit, then we may cache sub-optimal results
1630   // for recursive queries. For this reason, this limit is chosen to be large
1631   // enough to be very rarely hit, while still being small enough to avoid
1632   // stack overflows.
1633   if (AAQI.Depth >= 512)
1634     return AliasResult::MayAlias;
1635 
1636   // Check the cache before climbing up use-def chains. This also terminates
1637   // otherwise infinitely recursive queries.
1638   AAQueryInfo::LocPair Locs({V1, V1Size}, {V2, V2Size});
1639   const bool Swapped = V1 > V2;
1640   if (Swapped)
1641     std::swap(Locs.first, Locs.second);
1642   const auto &Pair = AAQI.AliasCache.try_emplace(
1643       Locs, AAQueryInfo::CacheEntry{AliasResult::NoAlias, 0});
1644   if (!Pair.second) {
1645     auto &Entry = Pair.first->second;
1646     if (!Entry.isDefinitive()) {
1647       // Remember that we used an assumption.
1648       ++Entry.NumAssumptionUses;
1649       ++AAQI.NumAssumptionUses;
1650     }
1651     // Cache contains sorted {V1,V2} pairs but we should return original order.
1652     auto Result = Entry.Result;
1653     Result.swap(Swapped);
1654     return Result;
1655   }
1656 
1657   int OrigNumAssumptionUses = AAQI.NumAssumptionUses;
1658   unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size();
1659   AliasResult Result =
1660       aliasCheckRecursive(V1, V1Size, V2, V2Size, AAQI, O1, O2);
1661 
1662   auto It = AAQI.AliasCache.find(Locs);
1663   assert(It != AAQI.AliasCache.end() && "Must be in cache");
1664   auto &Entry = It->second;
1665 
1666   // Check whether a NoAlias assumption has been used, but disproven.
1667   bool AssumptionDisproven =
1668       Entry.NumAssumptionUses > 0 && Result != AliasResult::NoAlias;
1669   if (AssumptionDisproven)
1670     Result = AliasResult::MayAlias;
1671 
1672   // This is a definitive result now, when considered as a root query.
1673   AAQI.NumAssumptionUses -= Entry.NumAssumptionUses;
1674   Entry.Result = Result;
1675   // Cache contains sorted {V1,V2} pairs.
1676   Entry.Result.swap(Swapped);
1677   Entry.NumAssumptionUses = -1;
1678 
1679   // If the assumption has been disproven, remove any results that may have
1680   // been based on this assumption. Do this after the Entry updates above to
1681   // avoid iterator invalidation.
1682   if (AssumptionDisproven)
1683     while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults)
1684       AAQI.AliasCache.erase(AAQI.AssumptionBasedResults.pop_back_val());
1685 
1686   // The result may still be based on assumptions higher up in the chain.
1687   // Remember it, so it can be purged from the cache later.
1688   if (OrigNumAssumptionUses != AAQI.NumAssumptionUses &&
1689       Result != AliasResult::MayAlias)
1690     AAQI.AssumptionBasedResults.push_back(Locs);
1691   return Result;
1692 }
1693 
1694 AliasResult BasicAAResult::aliasCheckRecursive(
1695     const Value *V1, LocationSize V1Size,
1696     const Value *V2, LocationSize V2Size,
1697     AAQueryInfo &AAQI, const Value *O1, const Value *O2) {
1698   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1699     AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, O1, O2, AAQI);
1700     if (Result != AliasResult::MayAlias)
1701       return Result;
1702   } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) {
1703     AliasResult Result = aliasGEP(GV2, V2Size, V1, V1Size, O2, O1, AAQI);
1704     if (Result != AliasResult::MayAlias)
1705       return Result;
1706   }
1707 
1708   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1709     AliasResult Result = aliasPHI(PN, V1Size, V2, V2Size, AAQI);
1710     if (Result != AliasResult::MayAlias)
1711       return Result;
1712   } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) {
1713     AliasResult Result = aliasPHI(PN, V2Size, V1, V1Size, AAQI);
1714     if (Result != AliasResult::MayAlias)
1715       return Result;
1716   }
1717 
1718   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1719     AliasResult Result = aliasSelect(S1, V1Size, V2, V2Size, AAQI);
1720     if (Result != AliasResult::MayAlias)
1721       return Result;
1722   } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) {
1723     AliasResult Result = aliasSelect(S2, V2Size, V1, V1Size, AAQI);
1724     if (Result != AliasResult::MayAlias)
1725       return Result;
1726   }
1727 
1728   // If both pointers are pointing into the same object and one of them
1729   // accesses the entire object, then the accesses must overlap in some way.
1730   if (O1 == O2) {
1731     bool NullIsValidLocation = NullPointerIsDefined(&F);
1732     if (V1Size.isPrecise() && V2Size.isPrecise() &&
1733         (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
1734          isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation)))
1735       return AliasResult::PartialAlias;
1736   }
1737 
1738   return AliasResult::MayAlias;
1739 }
1740 
1741 /// Check whether two Values can be considered equivalent.
1742 ///
1743 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1744 /// they can not be part of a cycle in the value graph by looking at all
1745 /// visited phi nodes an making sure that the phis cannot reach the value. We
1746 /// have to do this because we are looking through phi nodes (That is we say
1747 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1748 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1749                                                   const Value *V2) {
1750   if (V != V2)
1751     return false;
1752 
1753   const Instruction *Inst = dyn_cast<Instruction>(V);
1754   if (!Inst)
1755     return true;
1756 
1757   if (VisitedPhiBBs.empty())
1758     return true;
1759 
1760   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1761     return false;
1762 
1763   // Make sure that the visited phis cannot reach the Value. This ensures that
1764   // the Values cannot come from different iterations of a potential cycle the
1765   // phi nodes could be involved in.
1766   for (auto *P : VisitedPhiBBs)
1767     if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT))
1768       return false;
1769 
1770   return true;
1771 }
1772 
1773 /// Computes the symbolic difference between two de-composed GEPs.
1774 void BasicAAResult::subtractDecomposedGEPs(DecomposedGEP &DestGEP,
1775                                            const DecomposedGEP &SrcGEP) {
1776   DestGEP.Offset -= SrcGEP.Offset;
1777   for (const VariableGEPIndex &Src : SrcGEP.VarIndices) {
1778     // Find V in Dest.  This is N^2, but pointer indices almost never have more
1779     // than a few variable indexes.
1780     bool Found = false;
1781     for (auto I : enumerate(DestGEP.VarIndices)) {
1782       VariableGEPIndex &Dest = I.value();
1783       if (!isValueEqualInPotentialCycles(Dest.Val.V, Src.Val.V) ||
1784           !Dest.Val.hasSameExtensionsAs(Src.Val))
1785         continue;
1786 
1787       // If we found it, subtract off Scale V's from the entry in Dest.  If it
1788       // goes to zero, remove the entry.
1789       if (Dest.Scale != Src.Scale) {
1790         Dest.Scale -= Src.Scale;
1791         Dest.IsNSW = false;
1792       } else {
1793         DestGEP.VarIndices.erase(DestGEP.VarIndices.begin() + I.index());
1794       }
1795       Found = true;
1796       break;
1797     }
1798 
1799     // If we didn't consume this entry, add it to the end of the Dest list.
1800     if (!Found) {
1801       VariableGEPIndex Entry = {Src.Val, -Src.Scale, Src.CxtI, Src.IsNSW};
1802       DestGEP.VarIndices.push_back(Entry);
1803     }
1804   }
1805 }
1806 
1807 bool BasicAAResult::constantOffsetHeuristic(
1808     const DecomposedGEP &GEP, LocationSize MaybeV1Size,
1809     LocationSize MaybeV2Size, AssumptionCache *AC, DominatorTree *DT) {
1810   if (GEP.VarIndices.size() != 2 || !MaybeV1Size.hasValue() ||
1811       !MaybeV2Size.hasValue())
1812     return false;
1813 
1814   const uint64_t V1Size = MaybeV1Size.getValue();
1815   const uint64_t V2Size = MaybeV2Size.getValue();
1816 
1817   const VariableGEPIndex &Var0 = GEP.VarIndices[0], &Var1 = GEP.VarIndices[1];
1818 
1819   if (!Var0.Val.hasSameExtensionsAs(Var1.Val) || Var0.Scale != -Var1.Scale ||
1820       Var0.Val.V->getType() != Var1.Val.V->getType())
1821     return false;
1822 
1823   // We'll strip off the Extensions of Var0 and Var1 and do another round
1824   // of GetLinearExpression decomposition. In the example above, if Var0
1825   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1826 
1827   LinearExpression E0 =
1828       GetLinearExpression(ExtendedValue(Var0.Val.V), DL, 0, AC, DT);
1829   LinearExpression E1 =
1830       GetLinearExpression(ExtendedValue(Var1.Val.V), DL, 0, AC, DT);
1831   if (E0.Scale != E1.Scale || !E0.Val.hasSameExtensionsAs(E1.Val) ||
1832       !isValueEqualInPotentialCycles(E0.Val.V, E1.Val.V))
1833     return false;
1834 
1835   // We have a hit - Var0 and Var1 only differ by a constant offset!
1836 
1837   // If we've been sext'ed then zext'd the maximum difference between Var0 and
1838   // Var1 is possible to calculate, but we're just interested in the absolute
1839   // minimum difference between the two. The minimum distance may occur due to
1840   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1841   // the minimum distance between %i and %i + 5 is 3.
1842   APInt MinDiff = E0.Offset - E1.Offset, Wrapped = -MinDiff;
1843   MinDiff = APIntOps::umin(MinDiff, Wrapped);
1844   APInt MinDiffBytes =
1845     MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs();
1846 
1847   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
1848   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
1849   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
1850   // V2Size can fit in the MinDiffBytes gap.
1851   return MinDiffBytes.uge(V1Size + GEP.Offset.abs()) &&
1852          MinDiffBytes.uge(V2Size + GEP.Offset.abs());
1853 }
1854 
1855 //===----------------------------------------------------------------------===//
1856 // BasicAliasAnalysis Pass
1857 //===----------------------------------------------------------------------===//
1858 
1859 AnalysisKey BasicAA::Key;
1860 
1861 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
1862   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1863   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1864   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1865   auto *PV = AM.getCachedResult<PhiValuesAnalysis>(F);
1866   return BasicAAResult(F.getParent()->getDataLayout(), F, TLI, AC, DT, PV);
1867 }
1868 
1869 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
1870   initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
1871 }
1872 
1873 char BasicAAWrapperPass::ID = 0;
1874 
1875 void BasicAAWrapperPass::anchor() {}
1876 
1877 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa",
1878                       "Basic Alias Analysis (stateless AA impl)", true, true)
1879 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1880 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1881 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1882 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
1883 INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa",
1884                     "Basic Alias Analysis (stateless AA impl)", true, true)
1885 
1886 FunctionPass *llvm::createBasicAAWrapperPass() {
1887   return new BasicAAWrapperPass();
1888 }
1889 
1890 bool BasicAAWrapperPass::runOnFunction(Function &F) {
1891   auto &ACT = getAnalysis<AssumptionCacheTracker>();
1892   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
1893   auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
1894   auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>();
1895 
1896   Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F,
1897                                  TLIWP.getTLI(F), ACT.getAssumptionCache(F),
1898                                  &DTWP.getDomTree(),
1899                                  PVWP ? &PVWP->getResult() : nullptr));
1900 
1901   return false;
1902 }
1903 
1904 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1905   AU.setPreservesAll();
1906   AU.addRequiredTransitive<AssumptionCacheTracker>();
1907   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
1908   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1909   AU.addUsedIfAvailable<PhiValuesWrapperPass>();
1910 }
1911 
1912 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
1913   return BasicAAResult(
1914       F.getParent()->getDataLayout(), F,
1915       P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
1916       P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
1917 }
1918