1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the primary stateless implementation of the
10 // Alias Analysis interface that implements identities (two different
11 // globals cannot alias, etc), but does no stateful analysis.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/BasicAliasAnalysis.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/Analysis/CaptureTracking.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/PhiValues.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GetElementPtrTypeIterator.h"
40 #include "llvm/IR/GlobalAlias.h"
41 #include "llvm/IR/GlobalVariable.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/Operator.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/KnownBits.h"
58 #include <cassert>
59 #include <cstdint>
60 #include <cstdlib>
61 #include <utility>
62 
63 #define DEBUG_TYPE "basicaa"
64 
65 using namespace llvm;
66 
67 /// Enable analysis of recursive PHI nodes.
68 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden,
69                                           cl::init(false));
70 
71 /// By default, even on 32-bit architectures we use 64-bit integers for
72 /// calculations. This will allow us to more-aggressively decompose indexing
73 /// expressions calculated using i64 values (e.g., long long in C) which is
74 /// common enough to worry about.
75 static cl::opt<bool> ForceAtLeast64Bits("basicaa-force-at-least-64b",
76                                         cl::Hidden, cl::init(true));
77 static cl::opt<bool> DoubleCalcBits("basicaa-double-calc-bits",
78                                     cl::Hidden, cl::init(false));
79 
80 /// SearchLimitReached / SearchTimes shows how often the limit of
81 /// to decompose GEPs is reached. It will affect the precision
82 /// of basic alias analysis.
83 STATISTIC(SearchLimitReached, "Number of times the limit to "
84                               "decompose GEPs is reached");
85 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
86 
87 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
88 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
89 /// careful with value equivalence. We use reachability to make sure a value
90 /// cannot be involved in a cycle.
91 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
92 
93 // The max limit of the search depth in DecomposeGEPExpression() and
94 // GetUnderlyingObject(), both functions need to use the same search
95 // depth otherwise the algorithm in aliasGEP will assert.
96 static const unsigned MaxLookupSearchDepth = 6;
97 
98 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
99                                FunctionAnalysisManager::Invalidator &Inv) {
100   // We don't care if this analysis itself is preserved, it has no state. But
101   // we need to check that the analyses it depends on have been. Note that we
102   // may be created without handles to some analyses and in that case don't
103   // depend on them.
104   if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
105       (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) ||
106       (LI && Inv.invalidate<LoopAnalysis>(Fn, PA)) ||
107       (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA)))
108     return true;
109 
110   // Otherwise this analysis result remains valid.
111   return false;
112 }
113 
114 //===----------------------------------------------------------------------===//
115 // Useful predicates
116 //===----------------------------------------------------------------------===//
117 
118 /// Returns true if the pointer is to a function-local object that never
119 /// escapes from the function.
120 static bool isNonEscapingLocalObject(
121     const Value *V,
122     SmallDenseMap<const Value *, bool, 8> *IsCapturedCache = nullptr) {
123   SmallDenseMap<const Value *, bool, 8>::iterator CacheIt;
124   if (IsCapturedCache) {
125     bool Inserted;
126     std::tie(CacheIt, Inserted) = IsCapturedCache->insert({V, false});
127     if (!Inserted)
128       // Found cached result, return it!
129       return CacheIt->second;
130   }
131 
132   // If this is a local allocation, check to see if it escapes.
133   if (isa<AllocaInst>(V) || isNoAliasCall(V)) {
134     // Set StoreCaptures to True so that we can assume in our callers that the
135     // pointer is not the result of a load instruction. Currently
136     // PointerMayBeCaptured doesn't have any special analysis for the
137     // StoreCaptures=false case; if it did, our callers could be refined to be
138     // more precise.
139     auto Ret = !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
140     if (IsCapturedCache)
141       CacheIt->second = Ret;
142     return Ret;
143   }
144 
145   // If this is an argument that corresponds to a byval or noalias argument,
146   // then it has not escaped before entering the function.  Check if it escapes
147   // inside the function.
148   if (const Argument *A = dyn_cast<Argument>(V))
149     if (A->hasByValAttr() || A->hasNoAliasAttr()) {
150       // Note even if the argument is marked nocapture, we still need to check
151       // for copies made inside the function. The nocapture attribute only
152       // specifies that there are no copies made that outlive the function.
153       auto Ret = !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
154       if (IsCapturedCache)
155         CacheIt->second = Ret;
156       return Ret;
157     }
158 
159   return false;
160 }
161 
162 /// Returns true if the pointer is one which would have been considered an
163 /// escape by isNonEscapingLocalObject.
164 static bool isEscapeSource(const Value *V) {
165   if (isa<CallBase>(V))
166     return true;
167 
168   if (isa<Argument>(V))
169     return true;
170 
171   // The load case works because isNonEscapingLocalObject considers all
172   // stores to be escapes (it passes true for the StoreCaptures argument
173   // to PointerMayBeCaptured).
174   if (isa<LoadInst>(V))
175     return true;
176 
177   return false;
178 }
179 
180 /// Returns the size of the object specified by V or UnknownSize if unknown.
181 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
182                               const TargetLibraryInfo &TLI,
183                               bool NullIsValidLoc,
184                               bool RoundToAlign = false) {
185   uint64_t Size;
186   ObjectSizeOpts Opts;
187   Opts.RoundToAlign = RoundToAlign;
188   Opts.NullIsUnknownSize = NullIsValidLoc;
189   if (getObjectSize(V, Size, DL, &TLI, Opts))
190     return Size;
191   return MemoryLocation::UnknownSize;
192 }
193 
194 /// Returns true if we can prove that the object specified by V is smaller than
195 /// Size.
196 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
197                                 const DataLayout &DL,
198                                 const TargetLibraryInfo &TLI,
199                                 bool NullIsValidLoc) {
200   // Note that the meanings of the "object" are slightly different in the
201   // following contexts:
202   //    c1: llvm::getObjectSize()
203   //    c2: llvm.objectsize() intrinsic
204   //    c3: isObjectSmallerThan()
205   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
206   // refers to the "entire object".
207   //
208   //  Consider this example:
209   //     char *p = (char*)malloc(100)
210   //     char *q = p+80;
211   //
212   //  In the context of c1 and c2, the "object" pointed by q refers to the
213   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
214   //
215   //  However, in the context of c3, the "object" refers to the chunk of memory
216   // being allocated. So, the "object" has 100 bytes, and q points to the middle
217   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
218   // parameter, before the llvm::getObjectSize() is called to get the size of
219   // entire object, we should:
220   //    - either rewind the pointer q to the base-address of the object in
221   //      question (in this case rewind to p), or
222   //    - just give up. It is up to caller to make sure the pointer is pointing
223   //      to the base address the object.
224   //
225   // We go for 2nd option for simplicity.
226   if (!isIdentifiedObject(V))
227     return false;
228 
229   // This function needs to use the aligned object size because we allow
230   // reads a bit past the end given sufficient alignment.
231   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
232                                       /*RoundToAlign*/ true);
233 
234   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
235 }
236 
237 /// Return the minimal extent from \p V to the end of the underlying object,
238 /// assuming the result is used in an aliasing query. E.g., we do use the query
239 /// location size and the fact that null pointers cannot alias here.
240 static uint64_t getMinimalExtentFrom(const Value &V,
241                                      const LocationSize &LocSize,
242                                      const DataLayout &DL,
243                                      bool NullIsValidLoc) {
244   // If we have dereferenceability information we know a lower bound for the
245   // extent as accesses for a lower offset would be valid. We need to exclude
246   // the "or null" part if null is a valid pointer.
247   bool CanBeNull;
248   uint64_t DerefBytes = V.getPointerDereferenceableBytes(DL, CanBeNull);
249   DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes;
250   // If queried with a precise location size, we assume that location size to be
251   // accessed, thus valid.
252   if (LocSize.isPrecise())
253     DerefBytes = std::max(DerefBytes, LocSize.getValue());
254   return DerefBytes;
255 }
256 
257 /// Returns true if we can prove that the object specified by V has size Size.
258 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
259                          const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
260   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc);
261   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
262 }
263 
264 //===----------------------------------------------------------------------===//
265 // GetElementPtr Instruction Decomposition and Analysis
266 //===----------------------------------------------------------------------===//
267 
268 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
269 /// B are constant integers.
270 ///
271 /// Returns the scale and offset values as APInts and return V as a Value*, and
272 /// return whether we looked through any sign or zero extends.  The incoming
273 /// Value is known to have IntegerType, and it may already be sign or zero
274 /// extended.
275 ///
276 /// Note that this looks through extends, so the high bits may not be
277 /// represented in the result.
278 /*static*/ const Value *BasicAAResult::GetLinearExpression(
279     const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
280     unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
281     AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
282   assert(V->getType()->isIntegerTy() && "Not an integer value");
283 
284   // Limit our recursion depth.
285   if (Depth == 6) {
286     Scale = 1;
287     Offset = 0;
288     return V;
289   }
290 
291   if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
292     // If it's a constant, just convert it to an offset and remove the variable.
293     // If we've been called recursively, the Offset bit width will be greater
294     // than the constant's (the Offset's always as wide as the outermost call),
295     // so we'll zext here and process any extension in the isa<SExtInst> &
296     // isa<ZExtInst> cases below.
297     Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
298     assert(Scale == 0 && "Constant values don't have a scale");
299     return V;
300   }
301 
302   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
303     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
304       // If we've been called recursively, then Offset and Scale will be wider
305       // than the BOp operands. We'll always zext it here as we'll process sign
306       // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
307       APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
308 
309       switch (BOp->getOpcode()) {
310       default:
311         // We don't understand this instruction, so we can't decompose it any
312         // further.
313         Scale = 1;
314         Offset = 0;
315         return V;
316       case Instruction::Or:
317         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
318         // analyze it.
319         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
320                                BOp, DT)) {
321           Scale = 1;
322           Offset = 0;
323           return V;
324         }
325         LLVM_FALLTHROUGH;
326       case Instruction::Add:
327         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
328                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
329         Offset += RHS;
330         break;
331       case Instruction::Sub:
332         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
333                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
334         Offset -= RHS;
335         break;
336       case Instruction::Mul:
337         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
338                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
339         Offset *= RHS;
340         Scale *= RHS;
341         break;
342       case Instruction::Shl:
343         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
344                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
345 
346         // We're trying to linearize an expression of the kind:
347         //   shl i8 -128, 36
348         // where the shift count exceeds the bitwidth of the type.
349         // We can't decompose this further (the expression would return
350         // a poison value).
351         if (Offset.getBitWidth() < RHS.getLimitedValue() ||
352             Scale.getBitWidth() < RHS.getLimitedValue()) {
353           Scale = 1;
354           Offset = 0;
355           return V;
356         }
357 
358         Offset <<= RHS.getLimitedValue();
359         Scale <<= RHS.getLimitedValue();
360         // the semantics of nsw and nuw for left shifts don't match those of
361         // multiplications, so we won't propagate them.
362         NSW = NUW = false;
363         return V;
364       }
365 
366       if (isa<OverflowingBinaryOperator>(BOp)) {
367         NUW &= BOp->hasNoUnsignedWrap();
368         NSW &= BOp->hasNoSignedWrap();
369       }
370       return V;
371     }
372   }
373 
374   // Since GEP indices are sign extended anyway, we don't care about the high
375   // bits of a sign or zero extended value - just scales and offsets.  The
376   // extensions have to be consistent though.
377   if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
378     Value *CastOp = cast<CastInst>(V)->getOperand(0);
379     unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
380     unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
381     unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
382     const Value *Result =
383         GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
384                             Depth + 1, AC, DT, NSW, NUW);
385 
386     // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this
387     // by just incrementing the number of bits we've extended by.
388     unsigned ExtendedBy = NewWidth - SmallWidth;
389 
390     if (isa<SExtInst>(V) && ZExtBits == 0) {
391       // sext(sext(%x, a), b) == sext(%x, a + b)
392 
393       if (NSW) {
394         // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
395         // into sext(%x) + sext(c). We'll sext the Offset ourselves:
396         unsigned OldWidth = Offset.getBitWidth();
397         Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
398       } else {
399         // We may have signed-wrapped, so don't decompose sext(%x + c) into
400         // sext(%x) + sext(c)
401         Scale = 1;
402         Offset = 0;
403         Result = CastOp;
404         ZExtBits = OldZExtBits;
405         SExtBits = OldSExtBits;
406       }
407       SExtBits += ExtendedBy;
408     } else {
409       // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
410 
411       if (!NUW) {
412         // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
413         // zext(%x) + zext(c)
414         Scale = 1;
415         Offset = 0;
416         Result = CastOp;
417         ZExtBits = OldZExtBits;
418         SExtBits = OldSExtBits;
419       }
420       ZExtBits += ExtendedBy;
421     }
422 
423     return Result;
424   }
425 
426   Scale = 1;
427   Offset = 0;
428   return V;
429 }
430 
431 /// To ensure a pointer offset fits in an integer of size PointerSize
432 /// (in bits) when that size is smaller than the maximum pointer size. This is
433 /// an issue, for example, in particular for 32b pointers with negative indices
434 /// that rely on two's complement wrap-arounds for precise alias information
435 /// where the maximum pointer size is 64b.
436 static APInt adjustToPointerSize(APInt Offset, unsigned PointerSize) {
437   assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!");
438   unsigned ShiftBits = Offset.getBitWidth() - PointerSize;
439   return (Offset << ShiftBits).ashr(ShiftBits);
440 }
441 
442 static unsigned getMaxPointerSize(const DataLayout &DL) {
443   unsigned MaxPointerSize = DL.getMaxPointerSizeInBits();
444   if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64;
445   if (DoubleCalcBits) MaxPointerSize *= 2;
446 
447   return MaxPointerSize;
448 }
449 
450 /// If V is a symbolic pointer expression, decompose it into a base pointer
451 /// with a constant offset and a number of scaled symbolic offsets.
452 ///
453 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
454 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
455 /// specified amount, but which may have other unrepresented high bits. As
456 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
457 ///
458 /// When DataLayout is around, this function is capable of analyzing everything
459 /// that GetUnderlyingObject can look through. To be able to do that
460 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search
461 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks
462 /// through pointer casts.
463 bool BasicAAResult::DecomposeGEPExpression(const Value *V,
464        DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC,
465        DominatorTree *DT) {
466   // Limit recursion depth to limit compile time in crazy cases.
467   unsigned MaxLookup = MaxLookupSearchDepth;
468   SearchTimes++;
469 
470   unsigned MaxPointerSize = getMaxPointerSize(DL);
471   Decomposed.VarIndices.clear();
472   do {
473     // See if this is a bitcast or GEP.
474     const Operator *Op = dyn_cast<Operator>(V);
475     if (!Op) {
476       // The only non-operator case we can handle are GlobalAliases.
477       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
478         if (!GA->isInterposable()) {
479           V = GA->getAliasee();
480           continue;
481         }
482       }
483       Decomposed.Base = V;
484       return false;
485     }
486 
487     if (Op->getOpcode() == Instruction::BitCast ||
488         Op->getOpcode() == Instruction::AddrSpaceCast) {
489       V = Op->getOperand(0);
490       continue;
491     }
492 
493     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
494     if (!GEPOp) {
495       if (const auto *Call = dyn_cast<CallBase>(V)) {
496         // CaptureTracking can know about special capturing properties of some
497         // intrinsics like launder.invariant.group, that can't be expressed with
498         // the attributes, but have properties like returning aliasing pointer.
499         // Because some analysis may assume that nocaptured pointer is not
500         // returned from some special intrinsic (because function would have to
501         // be marked with returns attribute), it is crucial to use this function
502         // because it should be in sync with CaptureTracking. Not using it may
503         // cause weird miscompilations where 2 aliasing pointers are assumed to
504         // noalias.
505         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
506           V = RP;
507           continue;
508         }
509       }
510 
511       // If it's not a GEP, hand it off to SimplifyInstruction to see if it
512       // can come up with something. This matches what GetUnderlyingObject does.
513       if (const Instruction *I = dyn_cast<Instruction>(V))
514         // TODO: Get a DominatorTree and AssumptionCache and use them here
515         // (these are both now available in this function, but this should be
516         // updated when GetUnderlyingObject is updated). TLI should be
517         // provided also.
518         if (const Value *Simplified =
519                 SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
520           V = Simplified;
521           continue;
522         }
523 
524       Decomposed.Base = V;
525       return false;
526     }
527 
528     // Don't attempt to analyze GEPs over unsized objects.
529     if (!GEPOp->getSourceElementType()->isSized()) {
530       Decomposed.Base = V;
531       return false;
532     }
533 
534     // Don't attempt to analyze GEPs if index scale is not a compile-time
535     // constant.
536     Type *SrcEleTy = GEPOp->getSourceElementType();
537     if (SrcEleTy->isVectorTy() && cast<VectorType>(SrcEleTy)->isScalable()) {
538       Decomposed.Base = V;
539       Decomposed.HasCompileTimeConstantScale = false;
540       return false;
541     }
542 
543     unsigned AS = GEPOp->getPointerAddressSpace();
544     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
545     gep_type_iterator GTI = gep_type_begin(GEPOp);
546     unsigned PointerSize = DL.getPointerSizeInBits(AS);
547     // Assume all GEP operands are constants until proven otherwise.
548     bool GepHasConstantOffset = true;
549     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
550          I != E; ++I, ++GTI) {
551       const Value *Index = *I;
552       // Compute the (potentially symbolic) offset in bytes for this index.
553       if (StructType *STy = GTI.getStructTypeOrNull()) {
554         // For a struct, add the member offset.
555         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
556         if (FieldNo == 0)
557           continue;
558 
559         Decomposed.StructOffset +=
560           DL.getStructLayout(STy)->getElementOffset(FieldNo);
561         continue;
562       }
563 
564       // For an array/pointer, add the element offset, explicitly scaled.
565       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
566         if (CIdx->isZero())
567           continue;
568         Decomposed.OtherOffset +=
569             (DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize() *
570              CIdx->getValue().sextOrSelf(MaxPointerSize))
571                 .sextOrTrunc(MaxPointerSize);
572         continue;
573       }
574 
575       GepHasConstantOffset = false;
576 
577       APInt Scale(MaxPointerSize,
578                   DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize());
579       unsigned ZExtBits = 0, SExtBits = 0;
580 
581       // If the integer type is smaller than the pointer size, it is implicitly
582       // sign extended to pointer size.
583       unsigned Width = Index->getType()->getIntegerBitWidth();
584       if (PointerSize > Width)
585         SExtBits += PointerSize - Width;
586 
587       // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
588       APInt IndexScale(Width, 0), IndexOffset(Width, 0);
589       bool NSW = true, NUW = true;
590       const Value *OrigIndex = Index;
591       Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
592                                   SExtBits, DL, 0, AC, DT, NSW, NUW);
593 
594       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
595       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
596 
597       // It can be the case that, even through C1*V+C2 does not overflow for
598       // relevant values of V, (C2*Scale) can overflow. In that case, we cannot
599       // decompose the expression in this way.
600       //
601       // FIXME: C1*Scale and the other operations in the decomposed
602       // (C1*Scale)*V+C2*Scale can also overflow. We should check for this
603       // possibility.
604       APInt WideScaledOffset = IndexOffset.sextOrTrunc(MaxPointerSize*2) *
605                                  Scale.sext(MaxPointerSize*2);
606       if (WideScaledOffset.getMinSignedBits() > MaxPointerSize) {
607         Index = OrigIndex;
608         IndexScale = 1;
609         IndexOffset = 0;
610 
611         ZExtBits = SExtBits = 0;
612         if (PointerSize > Width)
613           SExtBits += PointerSize - Width;
614       } else {
615         Decomposed.OtherOffset += IndexOffset.sextOrTrunc(MaxPointerSize) * Scale;
616         Scale *= IndexScale.sextOrTrunc(MaxPointerSize);
617       }
618 
619       // If we already had an occurrence of this index variable, merge this
620       // scale into it.  For example, we want to handle:
621       //   A[x][x] -> x*16 + x*4 -> x*20
622       // This also ensures that 'x' only appears in the index list once.
623       for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
624         if (Decomposed.VarIndices[i].V == Index &&
625             Decomposed.VarIndices[i].ZExtBits == ZExtBits &&
626             Decomposed.VarIndices[i].SExtBits == SExtBits) {
627           Scale += Decomposed.VarIndices[i].Scale;
628           Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
629           break;
630         }
631       }
632 
633       // Make sure that we have a scale that makes sense for this target's
634       // pointer size.
635       Scale = adjustToPointerSize(Scale, PointerSize);
636 
637       if (!!Scale) {
638         VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, Scale};
639         Decomposed.VarIndices.push_back(Entry);
640       }
641     }
642 
643     // Take care of wrap-arounds
644     if (GepHasConstantOffset) {
645       Decomposed.StructOffset =
646           adjustToPointerSize(Decomposed.StructOffset, PointerSize);
647       Decomposed.OtherOffset =
648           adjustToPointerSize(Decomposed.OtherOffset, PointerSize);
649     }
650 
651     // Analyze the base pointer next.
652     V = GEPOp->getOperand(0);
653   } while (--MaxLookup);
654 
655   // If the chain of expressions is too deep, just return early.
656   Decomposed.Base = V;
657   SearchLimitReached++;
658   return true;
659 }
660 
661 /// Returns whether the given pointer value points to memory that is local to
662 /// the function, with global constants being considered local to all
663 /// functions.
664 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
665                                            AAQueryInfo &AAQI, bool OrLocal) {
666   assert(Visited.empty() && "Visited must be cleared after use!");
667 
668   unsigned MaxLookup = 8;
669   SmallVector<const Value *, 16> Worklist;
670   Worklist.push_back(Loc.Ptr);
671   do {
672     const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
673     if (!Visited.insert(V).second) {
674       Visited.clear();
675       return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
676     }
677 
678     // An alloca instruction defines local memory.
679     if (OrLocal && isa<AllocaInst>(V))
680       continue;
681 
682     // A global constant counts as local memory for our purposes.
683     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
684       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
685       // global to be marked constant in some modules and non-constant in
686       // others.  GV may even be a declaration, not a definition.
687       if (!GV->isConstant()) {
688         Visited.clear();
689         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
690       }
691       continue;
692     }
693 
694     // If both select values point to local memory, then so does the select.
695     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
696       Worklist.push_back(SI->getTrueValue());
697       Worklist.push_back(SI->getFalseValue());
698       continue;
699     }
700 
701     // If all values incoming to a phi node point to local memory, then so does
702     // the phi.
703     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
704       // Don't bother inspecting phi nodes with many operands.
705       if (PN->getNumIncomingValues() > MaxLookup) {
706         Visited.clear();
707         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
708       }
709       for (Value *IncValue : PN->incoming_values())
710         Worklist.push_back(IncValue);
711       continue;
712     }
713 
714     // Otherwise be conservative.
715     Visited.clear();
716     return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
717   } while (!Worklist.empty() && --MaxLookup);
718 
719   Visited.clear();
720   return Worklist.empty();
721 }
722 
723 /// Returns the behavior when calling the given call site.
724 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) {
725   if (Call->doesNotAccessMemory())
726     // Can't do better than this.
727     return FMRB_DoesNotAccessMemory;
728 
729   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
730 
731   // If the callsite knows it only reads memory, don't return worse
732   // than that.
733   if (Call->onlyReadsMemory())
734     Min = FMRB_OnlyReadsMemory;
735   else if (Call->doesNotReadMemory())
736     Min = FMRB_OnlyWritesMemory;
737 
738   if (Call->onlyAccessesArgMemory())
739     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
740   else if (Call->onlyAccessesInaccessibleMemory())
741     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
742   else if (Call->onlyAccessesInaccessibleMemOrArgMem())
743     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
744 
745   // If the call has operand bundles then aliasing attributes from the function
746   // it calls do not directly apply to the call.  This can be made more precise
747   // in the future.
748   if (!Call->hasOperandBundles())
749     if (const Function *F = Call->getCalledFunction())
750       Min =
751           FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
752 
753   return Min;
754 }
755 
756 /// Returns the behavior when calling the given function. For use when the call
757 /// site is not known.
758 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
759   // If the function declares it doesn't access memory, we can't do better.
760   if (F->doesNotAccessMemory())
761     return FMRB_DoesNotAccessMemory;
762 
763   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
764 
765   // If the function declares it only reads memory, go with that.
766   if (F->onlyReadsMemory())
767     Min = FMRB_OnlyReadsMemory;
768   else if (F->doesNotReadMemory())
769     Min = FMRB_OnlyWritesMemory;
770 
771   if (F->onlyAccessesArgMemory())
772     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
773   else if (F->onlyAccessesInaccessibleMemory())
774     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
775   else if (F->onlyAccessesInaccessibleMemOrArgMem())
776     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
777 
778   return Min;
779 }
780 
781 /// Returns true if this is a writeonly (i.e Mod only) parameter.
782 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx,
783                              const TargetLibraryInfo &TLI) {
784   if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly))
785     return true;
786 
787   // We can bound the aliasing properties of memset_pattern16 just as we can
788   // for memcpy/memset.  This is particularly important because the
789   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
790   // whenever possible.
791   // FIXME Consider handling this in InferFunctionAttr.cpp together with other
792   // attributes.
793   LibFunc F;
794   if (Call->getCalledFunction() &&
795       TLI.getLibFunc(*Call->getCalledFunction(), F) &&
796       F == LibFunc_memset_pattern16 && TLI.has(F))
797     if (ArgIdx == 0)
798       return true;
799 
800   // TODO: memset_pattern4, memset_pattern8
801   // TODO: _chk variants
802   // TODO: strcmp, strcpy
803 
804   return false;
805 }
806 
807 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
808                                            unsigned ArgIdx) {
809   // Checking for known builtin intrinsics and target library functions.
810   if (isWriteOnlyParam(Call, ArgIdx, TLI))
811     return ModRefInfo::Mod;
812 
813   if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly))
814     return ModRefInfo::Ref;
815 
816   if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone))
817     return ModRefInfo::NoModRef;
818 
819   return AAResultBase::getArgModRefInfo(Call, ArgIdx);
820 }
821 
822 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
823   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
824   return II && II->getIntrinsicID() == IID;
825 }
826 
827 #ifndef NDEBUG
828 static const Function *getParent(const Value *V) {
829   if (const Instruction *inst = dyn_cast<Instruction>(V)) {
830     if (!inst->getParent())
831       return nullptr;
832     return inst->getParent()->getParent();
833   }
834 
835   if (const Argument *arg = dyn_cast<Argument>(V))
836     return arg->getParent();
837 
838   return nullptr;
839 }
840 
841 static bool notDifferentParent(const Value *O1, const Value *O2) {
842 
843   const Function *F1 = getParent(O1);
844   const Function *F2 = getParent(O2);
845 
846   return !F1 || !F2 || F1 == F2;
847 }
848 #endif
849 
850 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
851                                  const MemoryLocation &LocB,
852                                  AAQueryInfo &AAQI) {
853   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
854          "BasicAliasAnalysis doesn't support interprocedural queries.");
855 
856   // If we have a directly cached entry for these locations, we have recursed
857   // through this once, so just return the cached results. Notably, when this
858   // happens, we don't clear the cache.
859   auto CacheIt = AAQI.AliasCache.find(AAQueryInfo::LocPair(LocA, LocB));
860   if (CacheIt != AAQI.AliasCache.end())
861     return CacheIt->second;
862 
863   CacheIt = AAQI.AliasCache.find(AAQueryInfo::LocPair(LocB, LocA));
864   if (CacheIt != AAQI.AliasCache.end())
865     return CacheIt->second;
866 
867   AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
868                                  LocB.Size, LocB.AATags, AAQI);
869 
870   VisitedPhiBBs.clear();
871   return Alias;
872 }
873 
874 /// Checks to see if the specified callsite can clobber the specified memory
875 /// object.
876 ///
877 /// Since we only look at local properties of this function, we really can't
878 /// say much about this query.  We do, however, use simple "address taken"
879 /// analysis on local objects.
880 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
881                                         const MemoryLocation &Loc,
882                                         AAQueryInfo &AAQI) {
883   assert(notDifferentParent(Call, Loc.Ptr) &&
884          "AliasAnalysis query involving multiple functions!");
885 
886   const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);
887 
888   // Calls marked 'tail' cannot read or write allocas from the current frame
889   // because the current frame might be destroyed by the time they run. However,
890   // a tail call may use an alloca with byval. Calling with byval copies the
891   // contents of the alloca into argument registers or stack slots, so there is
892   // no lifetime issue.
893   if (isa<AllocaInst>(Object))
894     if (const CallInst *CI = dyn_cast<CallInst>(Call))
895       if (CI->isTailCall() &&
896           !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal))
897         return ModRefInfo::NoModRef;
898 
899   // Stack restore is able to modify unescaped dynamic allocas. Assume it may
900   // modify them even though the alloca is not escaped.
901   if (auto *AI = dyn_cast<AllocaInst>(Object))
902     if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore))
903       return ModRefInfo::Mod;
904 
905   // If the pointer is to a locally allocated object that does not escape,
906   // then the call can not mod/ref the pointer unless the call takes the pointer
907   // as an argument, and itself doesn't capture it.
908   if (!isa<Constant>(Object) && Call != Object &&
909       isNonEscapingLocalObject(Object, &AAQI.IsCapturedCache)) {
910 
911     // Optimistically assume that call doesn't touch Object and check this
912     // assumption in the following loop.
913     ModRefInfo Result = ModRefInfo::NoModRef;
914     bool IsMustAlias = true;
915 
916     unsigned OperandNo = 0;
917     for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
918          CI != CE; ++CI, ++OperandNo) {
919       // Only look at the no-capture or byval pointer arguments.  If this
920       // pointer were passed to arguments that were neither of these, then it
921       // couldn't be no-capture.
922       if (!(*CI)->getType()->isPointerTy() ||
923           (!Call->doesNotCapture(OperandNo) &&
924            OperandNo < Call->getNumArgOperands() &&
925            !Call->isByValArgument(OperandNo)))
926         continue;
927 
928       // Call doesn't access memory through this operand, so we don't care
929       // if it aliases with Object.
930       if (Call->doesNotAccessMemory(OperandNo))
931         continue;
932 
933       // If this is a no-capture pointer argument, see if we can tell that it
934       // is impossible to alias the pointer we're checking.
935       AliasResult AR = getBestAAResults().alias(MemoryLocation(*CI),
936                                                 MemoryLocation(Object), AAQI);
937       if (AR != MustAlias)
938         IsMustAlias = false;
939       // Operand doesn't alias 'Object', continue looking for other aliases
940       if (AR == NoAlias)
941         continue;
942       // Operand aliases 'Object', but call doesn't modify it. Strengthen
943       // initial assumption and keep looking in case if there are more aliases.
944       if (Call->onlyReadsMemory(OperandNo)) {
945         Result = setRef(Result);
946         continue;
947       }
948       // Operand aliases 'Object' but call only writes into it.
949       if (Call->doesNotReadMemory(OperandNo)) {
950         Result = setMod(Result);
951         continue;
952       }
953       // This operand aliases 'Object' and call reads and writes into it.
954       // Setting ModRef will not yield an early return below, MustAlias is not
955       // used further.
956       Result = ModRefInfo::ModRef;
957       break;
958     }
959 
960     // No operand aliases, reset Must bit. Add below if at least one aliases
961     // and all aliases found are MustAlias.
962     if (isNoModRef(Result))
963       IsMustAlias = false;
964 
965     // Early return if we improved mod ref information
966     if (!isModAndRefSet(Result)) {
967       if (isNoModRef(Result))
968         return ModRefInfo::NoModRef;
969       return IsMustAlias ? setMust(Result) : clearMust(Result);
970     }
971   }
972 
973   // If the call is malloc/calloc like, we can assume that it doesn't
974   // modify any IR visible value.  This is only valid because we assume these
975   // routines do not read values visible in the IR.  TODO: Consider special
976   // casing realloc and strdup routines which access only their arguments as
977   // well.  Or alternatively, replace all of this with inaccessiblememonly once
978   // that's implemented fully.
979   if (isMallocOrCallocLikeFn(Call, &TLI)) {
980     // Be conservative if the accessed pointer may alias the allocation -
981     // fallback to the generic handling below.
982     if (getBestAAResults().alias(MemoryLocation(Call), Loc, AAQI) == NoAlias)
983       return ModRefInfo::NoModRef;
984   }
985 
986   // The semantics of memcpy intrinsics forbid overlap between their respective
987   // operands, i.e., source and destination of any given memcpy must no-alias.
988   // If Loc must-aliases either one of these two locations, then it necessarily
989   // no-aliases the other.
990   if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) {
991     AliasResult SrcAA, DestAA;
992 
993     if ((SrcAA = getBestAAResults().alias(MemoryLocation::getForSource(Inst),
994                                           Loc, AAQI)) == MustAlias)
995       // Loc is exactly the memcpy source thus disjoint from memcpy dest.
996       return ModRefInfo::Ref;
997     if ((DestAA = getBestAAResults().alias(MemoryLocation::getForDest(Inst),
998                                            Loc, AAQI)) == MustAlias)
999       // The converse case.
1000       return ModRefInfo::Mod;
1001 
1002     // It's also possible for Loc to alias both src and dest, or neither.
1003     ModRefInfo rv = ModRefInfo::NoModRef;
1004     if (SrcAA != NoAlias)
1005       rv = setRef(rv);
1006     if (DestAA != NoAlias)
1007       rv = setMod(rv);
1008     return rv;
1009   }
1010 
1011   // While the assume intrinsic is marked as arbitrarily writing so that
1012   // proper control dependencies will be maintained, it never aliases any
1013   // particular memory location.
1014   if (isIntrinsicCall(Call, Intrinsic::assume))
1015     return ModRefInfo::NoModRef;
1016 
1017   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
1018   // that proper control dependencies are maintained but they never mods any
1019   // particular memory location.
1020   //
1021   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1022   // heap state at the point the guard is issued needs to be consistent in case
1023   // the guard invokes the "deopt" continuation.
1024   if (isIntrinsicCall(Call, Intrinsic::experimental_guard))
1025     return ModRefInfo::Ref;
1026 
1027   // Like assumes, invariant.start intrinsics were also marked as arbitrarily
1028   // writing so that proper control dependencies are maintained but they never
1029   // mod any particular memory location visible to the IR.
1030   // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
1031   // intrinsic is now modeled as reading memory. This prevents hoisting the
1032   // invariant.start intrinsic over stores. Consider:
1033   // *ptr = 40;
1034   // *ptr = 50;
1035   // invariant_start(ptr)
1036   // int val = *ptr;
1037   // print(val);
1038   //
1039   // This cannot be transformed to:
1040   //
1041   // *ptr = 40;
1042   // invariant_start(ptr)
1043   // *ptr = 50;
1044   // int val = *ptr;
1045   // print(val);
1046   //
1047   // The transformation will cause the second store to be ignored (based on
1048   // rules of invariant.start)  and print 40, while the first program always
1049   // prints 50.
1050   if (isIntrinsicCall(Call, Intrinsic::invariant_start))
1051     return ModRefInfo::Ref;
1052 
1053   // The AAResultBase base class has some smarts, lets use them.
1054   return AAResultBase::getModRefInfo(Call, Loc, AAQI);
1055 }
1056 
1057 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
1058                                         const CallBase *Call2,
1059                                         AAQueryInfo &AAQI) {
1060   // While the assume intrinsic is marked as arbitrarily writing so that
1061   // proper control dependencies will be maintained, it never aliases any
1062   // particular memory location.
1063   if (isIntrinsicCall(Call1, Intrinsic::assume) ||
1064       isIntrinsicCall(Call2, Intrinsic::assume))
1065     return ModRefInfo::NoModRef;
1066 
1067   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
1068   // that proper control dependencies are maintained but they never mod any
1069   // particular memory location.
1070   //
1071   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1072   // heap state at the point the guard is issued needs to be consistent in case
1073   // the guard invokes the "deopt" continuation.
1074 
1075   // NB! This function is *not* commutative, so we special case two
1076   // possibilities for guard intrinsics.
1077 
1078   if (isIntrinsicCall(Call1, Intrinsic::experimental_guard))
1079     return isModSet(createModRefInfo(getModRefBehavior(Call2)))
1080                ? ModRefInfo::Ref
1081                : ModRefInfo::NoModRef;
1082 
1083   if (isIntrinsicCall(Call2, Intrinsic::experimental_guard))
1084     return isModSet(createModRefInfo(getModRefBehavior(Call1)))
1085                ? ModRefInfo::Mod
1086                : ModRefInfo::NoModRef;
1087 
1088   // The AAResultBase base class has some smarts, lets use them.
1089   return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
1090 }
1091 
1092 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
1093 /// both having the exact same pointer operand.
1094 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
1095                                             LocationSize MaybeV1Size,
1096                                             const GEPOperator *GEP2,
1097                                             LocationSize MaybeV2Size,
1098                                             const DataLayout &DL) {
1099   assert(GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
1100              GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
1101          GEP1->getPointerOperandType() == GEP2->getPointerOperandType() &&
1102          "Expected GEPs with the same pointer operand");
1103 
1104   // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
1105   // such that the struct field accesses provably cannot alias.
1106   // We also need at least two indices (the pointer, and the struct field).
1107   if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
1108       GEP1->getNumIndices() < 2)
1109     return MayAlias;
1110 
1111   // If we don't know the size of the accesses through both GEPs, we can't
1112   // determine whether the struct fields accessed can't alias.
1113   if (MaybeV1Size == LocationSize::unknown() ||
1114       MaybeV2Size == LocationSize::unknown())
1115     return MayAlias;
1116 
1117   const uint64_t V1Size = MaybeV1Size.getValue();
1118   const uint64_t V2Size = MaybeV2Size.getValue();
1119 
1120   ConstantInt *C1 =
1121       dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
1122   ConstantInt *C2 =
1123       dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
1124 
1125   // If the last (struct) indices are constants and are equal, the other indices
1126   // might be also be dynamically equal, so the GEPs can alias.
1127   if (C1 && C2) {
1128     unsigned BitWidth = std::max(C1->getBitWidth(), C2->getBitWidth());
1129     if (C1->getValue().sextOrSelf(BitWidth) ==
1130         C2->getValue().sextOrSelf(BitWidth))
1131       return MayAlias;
1132   }
1133 
1134   // Find the last-indexed type of the GEP, i.e., the type you'd get if
1135   // you stripped the last index.
1136   // On the way, look at each indexed type.  If there's something other
1137   // than an array, different indices can lead to different final types.
1138   SmallVector<Value *, 8> IntermediateIndices;
1139 
1140   // Insert the first index; we don't need to check the type indexed
1141   // through it as it only drops the pointer indirection.
1142   assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
1143   IntermediateIndices.push_back(GEP1->getOperand(1));
1144 
1145   // Insert all the remaining indices but the last one.
1146   // Also, check that they all index through arrays.
1147   for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
1148     if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
1149             GEP1->getSourceElementType(), IntermediateIndices)))
1150       return MayAlias;
1151     IntermediateIndices.push_back(GEP1->getOperand(i + 1));
1152   }
1153 
1154   auto *Ty = GetElementPtrInst::getIndexedType(
1155     GEP1->getSourceElementType(), IntermediateIndices);
1156   StructType *LastIndexedStruct = dyn_cast<StructType>(Ty);
1157 
1158   if (isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
1159     // We know that:
1160     // - both GEPs begin indexing from the exact same pointer;
1161     // - the last indices in both GEPs are constants, indexing into a sequential
1162     //   type (array or vector);
1163     // - both GEPs only index through arrays prior to that.
1164     //
1165     // Because array indices greater than the number of elements are valid in
1166     // GEPs, unless we know the intermediate indices are identical between
1167     // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
1168     // partially overlap. We also need to check that the loaded size matches
1169     // the element size, otherwise we could still have overlap.
1170     Type *LastElementTy = GetElementPtrInst::getTypeAtIndex(Ty, (uint64_t)0);
1171     const uint64_t ElementSize =
1172         DL.getTypeStoreSize(LastElementTy).getFixedSize();
1173     if (V1Size != ElementSize || V2Size != ElementSize)
1174       return MayAlias;
1175 
1176     for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i)
1177       if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1))
1178         return MayAlias;
1179 
1180     // Now we know that the array/pointer that GEP1 indexes into and that
1181     // that GEP2 indexes into must either precisely overlap or be disjoint.
1182     // Because they cannot partially overlap and because fields in an array
1183     // cannot overlap, if we can prove the final indices are different between
1184     // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
1185 
1186     // If the last indices are constants, we've already checked they don't
1187     // equal each other so we can exit early.
1188     if (C1 && C2)
1189       return NoAlias;
1190     {
1191       Value *GEP1LastIdx = GEP1->getOperand(GEP1->getNumOperands() - 1);
1192       Value *GEP2LastIdx = GEP2->getOperand(GEP2->getNumOperands() - 1);
1193       if (isa<PHINode>(GEP1LastIdx) || isa<PHINode>(GEP2LastIdx)) {
1194         // If one of the indices is a PHI node, be safe and only use
1195         // computeKnownBits so we don't make any assumptions about the
1196         // relationships between the two indices. This is important if we're
1197         // asking about values from different loop iterations. See PR32314.
1198         // TODO: We may be able to change the check so we only do this when
1199         // we definitely looked through a PHINode.
1200         if (GEP1LastIdx != GEP2LastIdx &&
1201             GEP1LastIdx->getType() == GEP2LastIdx->getType()) {
1202           KnownBits Known1 = computeKnownBits(GEP1LastIdx, DL);
1203           KnownBits Known2 = computeKnownBits(GEP2LastIdx, DL);
1204           if (Known1.Zero.intersects(Known2.One) ||
1205               Known1.One.intersects(Known2.Zero))
1206             return NoAlias;
1207         }
1208       } else if (isKnownNonEqual(GEP1LastIdx, GEP2LastIdx, DL))
1209         return NoAlias;
1210     }
1211     return MayAlias;
1212   } else if (!LastIndexedStruct || !C1 || !C2) {
1213     return MayAlias;
1214   }
1215 
1216   if (C1->getValue().getActiveBits() > 64 ||
1217       C2->getValue().getActiveBits() > 64)
1218     return MayAlias;
1219 
1220   // We know that:
1221   // - both GEPs begin indexing from the exact same pointer;
1222   // - the last indices in both GEPs are constants, indexing into a struct;
1223   // - said indices are different, hence, the pointed-to fields are different;
1224   // - both GEPs only index through arrays prior to that.
1225   //
1226   // This lets us determine that the struct that GEP1 indexes into and the
1227   // struct that GEP2 indexes into must either precisely overlap or be
1228   // completely disjoint.  Because they cannot partially overlap, indexing into
1229   // different non-overlapping fields of the struct will never alias.
1230 
1231   // Therefore, the only remaining thing needed to show that both GEPs can't
1232   // alias is that the fields are not overlapping.
1233   const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
1234   const uint64_t StructSize = SL->getSizeInBytes();
1235   const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
1236   const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
1237 
1238   auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
1239                                       uint64_t V2Off, uint64_t V2Size) {
1240     return V1Off < V2Off && V1Off + V1Size <= V2Off &&
1241            ((V2Off + V2Size <= StructSize) ||
1242             (V2Off + V2Size - StructSize <= V1Off));
1243   };
1244 
1245   if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
1246       EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
1247     return NoAlias;
1248 
1249   return MayAlias;
1250 }
1251 
1252 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the
1253 // beginning of the object the GEP points would have a negative offset with
1254 // repsect to the alloca, that means the GEP can not alias pointer (b).
1255 // Note that the pointer based on the alloca may not be a GEP. For
1256 // example, it may be the alloca itself.
1257 // The same applies if (b) is based on a GlobalVariable. Note that just being
1258 // based on isIdentifiedObject() is not enough - we need an identified object
1259 // that does not permit access to negative offsets. For example, a negative
1260 // offset from a noalias argument or call can be inbounds w.r.t the actual
1261 // underlying object.
1262 //
1263 // For example, consider:
1264 //
1265 //   struct { int f0, int f1, ...} foo;
1266 //   foo alloca;
1267 //   foo* random = bar(alloca);
1268 //   int *f0 = &alloca.f0
1269 //   int *f1 = &random->f1;
1270 //
1271 // Which is lowered, approximately, to:
1272 //
1273 //  %alloca = alloca %struct.foo
1274 //  %random = call %struct.foo* @random(%struct.foo* %alloca)
1275 //  %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0
1276 //  %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1
1277 //
1278 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated
1279 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also
1280 // point into the same object. But since %f0 points to the beginning of %alloca,
1281 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher
1282 // than (%alloca - 1), and so is not inbounds, a contradiction.
1283 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp,
1284       const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject,
1285       LocationSize MaybeObjectAccessSize) {
1286   // If the object access size is unknown, or the GEP isn't inbounds, bail.
1287   if (MaybeObjectAccessSize == LocationSize::unknown() || !GEPOp->isInBounds())
1288     return false;
1289 
1290   const uint64_t ObjectAccessSize = MaybeObjectAccessSize.getValue();
1291 
1292   // We need the object to be an alloca or a globalvariable, and want to know
1293   // the offset of the pointer from the object precisely, so no variable
1294   // indices are allowed.
1295   if (!(isa<AllocaInst>(DecompObject.Base) ||
1296         isa<GlobalVariable>(DecompObject.Base)) ||
1297       !DecompObject.VarIndices.empty())
1298     return false;
1299 
1300   APInt ObjectBaseOffset = DecompObject.StructOffset +
1301                            DecompObject.OtherOffset;
1302 
1303   // If the GEP has no variable indices, we know the precise offset
1304   // from the base, then use it. If the GEP has variable indices,
1305   // we can't get exact GEP offset to identify pointer alias. So return
1306   // false in that case.
1307   if (!DecompGEP.VarIndices.empty())
1308     return false;
1309 
1310   APInt GEPBaseOffset = DecompGEP.StructOffset;
1311   GEPBaseOffset += DecompGEP.OtherOffset;
1312 
1313   return GEPBaseOffset.sge(ObjectBaseOffset + (int64_t)ObjectAccessSize);
1314 }
1315 
1316 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1317 /// another pointer.
1318 ///
1319 /// We know that V1 is a GEP, but we don't know anything about V2.
1320 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for
1321 /// V2.
1322 AliasResult BasicAAResult::aliasGEP(
1323     const GEPOperator *GEP1, LocationSize V1Size, const AAMDNodes &V1AAInfo,
1324     const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo,
1325     const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) {
1326   DecomposedGEP DecompGEP1, DecompGEP2;
1327   unsigned MaxPointerSize = getMaxPointerSize(DL);
1328   DecompGEP1.StructOffset = DecompGEP1.OtherOffset = APInt(MaxPointerSize, 0);
1329   DecompGEP2.StructOffset = DecompGEP2.OtherOffset = APInt(MaxPointerSize, 0);
1330   DecompGEP1.HasCompileTimeConstantScale =
1331       DecompGEP2.HasCompileTimeConstantScale = true;
1332 
1333   bool GEP1MaxLookupReached =
1334     DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT);
1335   bool GEP2MaxLookupReached =
1336     DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT);
1337 
1338   // Don't attempt to analyze the decomposed GEP if index scale is not a
1339   // compile-time constant.
1340   if (!DecompGEP1.HasCompileTimeConstantScale ||
1341       !DecompGEP2.HasCompileTimeConstantScale)
1342     return MayAlias;
1343 
1344   APInt GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset;
1345   APInt GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset;
1346 
1347   assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
1348          "DecomposeGEPExpression returned a result different from "
1349          "GetUnderlyingObject");
1350 
1351   // If the GEP's offset relative to its base is such that the base would
1352   // fall below the start of the object underlying V2, then the GEP and V2
1353   // cannot alias.
1354   if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1355       isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size))
1356     return NoAlias;
1357   // If we have two gep instructions with must-alias or not-alias'ing base
1358   // pointers, figure out if the indexes to the GEP tell us anything about the
1359   // derived pointer.
1360   if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
1361     // Check for the GEP base being at a negative offset, this time in the other
1362     // direction.
1363     if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1364         isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size))
1365       return NoAlias;
1366     // Do the base pointers alias?
1367     AliasResult BaseAlias =
1368         aliasCheck(UnderlyingV1, LocationSize::unknown(), AAMDNodes(),
1369                    UnderlyingV2, LocationSize::unknown(), AAMDNodes(), AAQI);
1370 
1371     // Check for geps of non-aliasing underlying pointers where the offsets are
1372     // identical.
1373     if ((BaseAlias == MayAlias) && V1Size == V2Size) {
1374       // Do the base pointers alias assuming type and size.
1375       AliasResult PreciseBaseAlias = aliasCheck(
1376           UnderlyingV1, V1Size, V1AAInfo, UnderlyingV2, V2Size, V2AAInfo, AAQI);
1377       if (PreciseBaseAlias == NoAlias) {
1378         // See if the computed offset from the common pointer tells us about the
1379         // relation of the resulting pointer.
1380         // If the max search depth is reached the result is undefined
1381         if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1382           return MayAlias;
1383 
1384         // Same offsets.
1385         if (GEP1BaseOffset == GEP2BaseOffset &&
1386             DecompGEP1.VarIndices == DecompGEP2.VarIndices)
1387           return NoAlias;
1388       }
1389     }
1390 
1391     // If we get a No or May, then return it immediately, no amount of analysis
1392     // will improve this situation.
1393     if (BaseAlias != MustAlias) {
1394       assert(BaseAlias == NoAlias || BaseAlias == MayAlias);
1395       return BaseAlias;
1396     }
1397 
1398     // Otherwise, we have a MustAlias.  Since the base pointers alias each other
1399     // exactly, see if the computed offset from the common pointer tells us
1400     // about the relation of the resulting pointer.
1401     // If we know the two GEPs are based off of the exact same pointer (and not
1402     // just the same underlying object), see if that tells us anything about
1403     // the resulting pointers.
1404     if (GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
1405             GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
1406         GEP1->getPointerOperandType() == GEP2->getPointerOperandType()) {
1407       AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL);
1408       // If we couldn't find anything interesting, don't abandon just yet.
1409       if (R != MayAlias)
1410         return R;
1411     }
1412 
1413     // If the max search depth is reached, the result is undefined
1414     if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1415       return MayAlias;
1416 
1417     // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1418     // symbolic difference.
1419     GEP1BaseOffset -= GEP2BaseOffset;
1420     GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);
1421 
1422   } else {
1423     // Check to see if these two pointers are related by the getelementptr
1424     // instruction.  If one pointer is a GEP with a non-zero index of the other
1425     // pointer, we know they cannot alias.
1426 
1427     // If both accesses are unknown size, we can't do anything useful here.
1428     if (V1Size == LocationSize::unknown() && V2Size == LocationSize::unknown())
1429       return MayAlias;
1430 
1431     AliasResult R = aliasCheck(UnderlyingV1, LocationSize::unknown(),
1432                                AAMDNodes(), V2, LocationSize::unknown(),
1433                                V2AAInfo, AAQI, nullptr, UnderlyingV2);
1434     if (R != MustAlias) {
1435       // If V2 may alias GEP base pointer, conservatively returns MayAlias.
1436       // If V2 is known not to alias GEP base pointer, then the two values
1437       // cannot alias per GEP semantics: "Any memory access must be done through
1438       // a pointer value associated with an address range of the memory access,
1439       // otherwise the behavior is undefined.".
1440       assert(R == NoAlias || R == MayAlias);
1441       return R;
1442     }
1443 
1444     // If the max search depth is reached the result is undefined
1445     if (GEP1MaxLookupReached)
1446       return MayAlias;
1447   }
1448 
1449   // In the two GEP Case, if there is no difference in the offsets of the
1450   // computed pointers, the resultant pointers are a must alias.  This
1451   // happens when we have two lexically identical GEP's (for example).
1452   //
1453   // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
1454   // must aliases the GEP, the end result is a must alias also.
1455   if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty())
1456     return MustAlias;
1457 
1458   // If there is a constant difference between the pointers, but the difference
1459   // is less than the size of the associated memory object, then we know
1460   // that the objects are partially overlapping.  If the difference is
1461   // greater, we know they do not overlap.
1462   if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) {
1463     if (GEP1BaseOffset.sge(0)) {
1464       if (V2Size != LocationSize::unknown()) {
1465         if (GEP1BaseOffset.ult(V2Size.getValue()))
1466           return PartialAlias;
1467         return NoAlias;
1468       }
1469     } else {
1470       // We have the situation where:
1471       // +                +
1472       // | BaseOffset     |
1473       // ---------------->|
1474       // |-->V1Size       |-------> V2Size
1475       // GEP1             V2
1476       // We need to know that V2Size is not unknown, otherwise we might have
1477       // stripped a gep with negative index ('gep <ptr>, -1, ...).
1478       if (V1Size != LocationSize::unknown() &&
1479           V2Size != LocationSize::unknown()) {
1480         if ((-GEP1BaseOffset).ult(V1Size.getValue()))
1481           return PartialAlias;
1482         return NoAlias;
1483       }
1484     }
1485   }
1486 
1487   if (!DecompGEP1.VarIndices.empty()) {
1488     APInt Modulo(MaxPointerSize, 0);
1489     bool AllPositive = true;
1490     for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1491 
1492       // Try to distinguish something like &A[i][1] against &A[42][0].
1493       // Grab the least significant bit set in any of the scales. We
1494       // don't need std::abs here (even if the scale's negative) as we'll
1495       // be ^'ing Modulo with itself later.
1496       Modulo |= DecompGEP1.VarIndices[i].Scale;
1497 
1498       if (AllPositive) {
1499         // If the Value could change between cycles, then any reasoning about
1500         // the Value this cycle may not hold in the next cycle. We'll just
1501         // give up if we can't determine conditions that hold for every cycle:
1502         const Value *V = DecompGEP1.VarIndices[i].V;
1503 
1504         KnownBits Known =
1505             computeKnownBits(V, DL, 0, &AC, dyn_cast<Instruction>(GEP1), DT);
1506         bool SignKnownZero = Known.isNonNegative();
1507         bool SignKnownOne = Known.isNegative();
1508 
1509         // Zero-extension widens the variable, and so forces the sign
1510         // bit to zero.
1511         bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
1512         SignKnownZero |= IsZExt;
1513         SignKnownOne &= !IsZExt;
1514 
1515         // If the variable begins with a zero then we know it's
1516         // positive, regardless of whether the value is signed or
1517         // unsigned.
1518         APInt Scale = DecompGEP1.VarIndices[i].Scale;
1519         AllPositive =
1520             (SignKnownZero && Scale.sge(0)) || (SignKnownOne && Scale.slt(0));
1521       }
1522     }
1523 
1524     Modulo = Modulo ^ (Modulo & (Modulo - 1));
1525 
1526     // We can compute the difference between the two addresses
1527     // mod Modulo. Check whether that difference guarantees that the
1528     // two locations do not alias.
1529     APInt ModOffset = GEP1BaseOffset & (Modulo - 1);
1530     if (V1Size != LocationSize::unknown() &&
1531         V2Size != LocationSize::unknown() && ModOffset.uge(V2Size.getValue()) &&
1532         (Modulo - ModOffset).uge(V1Size.getValue()))
1533       return NoAlias;
1534 
1535     // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
1536     // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
1537     // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
1538     if (AllPositive && GEP1BaseOffset.sgt(0) &&
1539         V2Size != LocationSize::unknown() &&
1540         GEP1BaseOffset.uge(V2Size.getValue()))
1541       return NoAlias;
1542 
1543     if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
1544                                 GEP1BaseOffset, &AC, DT))
1545       return NoAlias;
1546   }
1547 
1548   // Statically, we can see that the base objects are the same, but the
1549   // pointers have dynamic offsets which we can't resolve. And none of our
1550   // little tricks above worked.
1551   return MayAlias;
1552 }
1553 
1554 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1555   // If the results agree, take it.
1556   if (A == B)
1557     return A;
1558   // A mix of PartialAlias and MustAlias is PartialAlias.
1559   if ((A == PartialAlias && B == MustAlias) ||
1560       (B == PartialAlias && A == MustAlias))
1561     return PartialAlias;
1562   // Otherwise, we don't know anything.
1563   return MayAlias;
1564 }
1565 
1566 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1567 /// against another.
1568 AliasResult
1569 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize,
1570                            const AAMDNodes &SIAAInfo, const Value *V2,
1571                            LocationSize V2Size, const AAMDNodes &V2AAInfo,
1572                            const Value *UnderV2, AAQueryInfo &AAQI) {
1573   // If the values are Selects with the same condition, we can do a more precise
1574   // check: just check for aliases between the values on corresponding arms.
1575   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1576     if (SI->getCondition() == SI2->getCondition()) {
1577       AliasResult Alias =
1578           aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, SI2->getTrueValue(),
1579                      V2Size, V2AAInfo, AAQI);
1580       if (Alias == MayAlias)
1581         return MayAlias;
1582       AliasResult ThisAlias =
1583           aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
1584                      SI2->getFalseValue(), V2Size, V2AAInfo, AAQI);
1585       return MergeAliasResults(ThisAlias, Alias);
1586     }
1587 
1588   // If both arms of the Select node NoAlias or MustAlias V2, then returns
1589   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1590   AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(),
1591                                  SISize, SIAAInfo, AAQI, UnderV2);
1592   if (Alias == MayAlias)
1593     return MayAlias;
1594 
1595   AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(),
1596                                      SISize, SIAAInfo, AAQI, UnderV2);
1597   return MergeAliasResults(ThisAlias, Alias);
1598 }
1599 
1600 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1601 /// another.
1602 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
1603                                     const AAMDNodes &PNAAInfo, const Value *V2,
1604                                     LocationSize V2Size,
1605                                     const AAMDNodes &V2AAInfo,
1606                                     const Value *UnderV2, AAQueryInfo &AAQI) {
1607   // Track phi nodes we have visited. We use this information when we determine
1608   // value equivalence.
1609   VisitedPhiBBs.insert(PN->getParent());
1610 
1611   // If the values are PHIs in the same block, we can do a more precise
1612   // as well as efficient check: just check for aliases between the values
1613   // on corresponding edges.
1614   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1615     if (PN2->getParent() == PN->getParent()) {
1616       AAQueryInfo::LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
1617                                 MemoryLocation(V2, V2Size, V2AAInfo));
1618       if (PN > V2)
1619         std::swap(Locs.first, Locs.second);
1620       // Analyse the PHIs' inputs under the assumption that the PHIs are
1621       // NoAlias.
1622       // If the PHIs are May/MustAlias there must be (recursively) an input
1623       // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1624       // there must be an operation on the PHIs within the PHIs' value cycle
1625       // that causes a MayAlias.
1626       // Pretend the phis do not alias.
1627       AliasResult Alias = NoAlias;
1628       AliasResult OrigAliasResult;
1629       {
1630         // Limited lifetime iterator invalidated by the aliasCheck call below.
1631         auto CacheIt = AAQI.AliasCache.find(Locs);
1632         assert((CacheIt != AAQI.AliasCache.end()) &&
1633                "There must exist an entry for the phi node");
1634         OrigAliasResult = CacheIt->second;
1635         CacheIt->second = NoAlias;
1636       }
1637 
1638       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1639         AliasResult ThisAlias =
1640             aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
1641                        PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1642                        V2Size, V2AAInfo, AAQI);
1643         Alias = MergeAliasResults(ThisAlias, Alias);
1644         if (Alias == MayAlias)
1645           break;
1646       }
1647 
1648       // Reset if speculation failed.
1649       if (Alias != NoAlias) {
1650         auto Pair =
1651             AAQI.AliasCache.insert(std::make_pair(Locs, OrigAliasResult));
1652         assert(!Pair.second && "Entry must have existed");
1653         Pair.first->second = OrigAliasResult;
1654       }
1655       return Alias;
1656     }
1657 
1658   SmallVector<Value *, 4> V1Srcs;
1659   bool isRecursive = false;
1660   if (PV)  {
1661     // If we have PhiValues then use it to get the underlying phi values.
1662     const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN);
1663     // If we have more phi values than the search depth then return MayAlias
1664     // conservatively to avoid compile time explosion. The worst possible case
1665     // is if both sides are PHI nodes. In which case, this is O(m x n) time
1666     // where 'm' and 'n' are the number of PHI sources.
1667     if (PhiValueSet.size() > MaxLookupSearchDepth)
1668       return MayAlias;
1669     // Add the values to V1Srcs
1670     for (Value *PV1 : PhiValueSet) {
1671       if (EnableRecPhiAnalysis) {
1672         if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
1673           // Check whether the incoming value is a GEP that advances the pointer
1674           // result of this PHI node (e.g. in a loop). If this is the case, we
1675           // would recurse and always get a MayAlias. Handle this case specially
1676           // below.
1677           if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
1678               isa<ConstantInt>(PV1GEP->idx_begin())) {
1679             isRecursive = true;
1680             continue;
1681           }
1682         }
1683       }
1684       V1Srcs.push_back(PV1);
1685     }
1686   } else {
1687     // If we don't have PhiInfo then just look at the operands of the phi itself
1688     // FIXME: Remove this once we can guarantee that we have PhiInfo always
1689     SmallPtrSet<Value *, 4> UniqueSrc;
1690     for (Value *PV1 : PN->incoming_values()) {
1691       if (isa<PHINode>(PV1))
1692         // If any of the source itself is a PHI, return MayAlias conservatively
1693         // to avoid compile time explosion. The worst possible case is if both
1694         // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1695         // and 'n' are the number of PHI sources.
1696         return MayAlias;
1697 
1698       if (EnableRecPhiAnalysis)
1699         if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
1700           // Check whether the incoming value is a GEP that advances the pointer
1701           // result of this PHI node (e.g. in a loop). If this is the case, we
1702           // would recurse and always get a MayAlias. Handle this case specially
1703           // below.
1704           if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
1705               isa<ConstantInt>(PV1GEP->idx_begin())) {
1706             isRecursive = true;
1707             continue;
1708           }
1709         }
1710 
1711       if (UniqueSrc.insert(PV1).second)
1712         V1Srcs.push_back(PV1);
1713     }
1714   }
1715 
1716   // If V1Srcs is empty then that means that the phi has no underlying non-phi
1717   // value. This should only be possible in blocks unreachable from the entry
1718   // block, but return MayAlias just in case.
1719   if (V1Srcs.empty())
1720     return MayAlias;
1721 
1722   // If this PHI node is recursive, set the size of the accessed memory to
1723   // unknown to represent all the possible values the GEP could advance the
1724   // pointer to.
1725   if (isRecursive)
1726     PNSize = LocationSize::unknown();
1727 
1728   AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize,
1729                                  PNAAInfo, AAQI, UnderV2);
1730 
1731   // Early exit if the check of the first PHI source against V2 is MayAlias.
1732   // Other results are not possible.
1733   if (Alias == MayAlias)
1734     return MayAlias;
1735 
1736   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1737   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1738   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1739     Value *V = V1Srcs[i];
1740 
1741     AliasResult ThisAlias =
1742         aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, AAQI, UnderV2);
1743     Alias = MergeAliasResults(ThisAlias, Alias);
1744     if (Alias == MayAlias)
1745       break;
1746   }
1747 
1748   return Alias;
1749 }
1750 
1751 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1752 /// array references.
1753 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
1754                                       AAMDNodes V1AAInfo, const Value *V2,
1755                                       LocationSize V2Size, AAMDNodes V2AAInfo,
1756                                       AAQueryInfo &AAQI, const Value *O1,
1757                                       const Value *O2) {
1758   // If either of the memory references is empty, it doesn't matter what the
1759   // pointer values are.
1760   if (V1Size.isZero() || V2Size.isZero())
1761     return NoAlias;
1762 
1763   // Strip off any casts if they exist.
1764   V1 = V1->stripPointerCastsAndInvariantGroups();
1765   V2 = V2->stripPointerCastsAndInvariantGroups();
1766 
1767   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1768   // value for undef that aliases nothing in the program.
1769   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1770     return NoAlias;
1771 
1772   // Are we checking for alias of the same value?
1773   // Because we look 'through' phi nodes, we could look at "Value" pointers from
1774   // different iterations. We must therefore make sure that this is not the
1775   // case. The function isValueEqualInPotentialCycles ensures that this cannot
1776   // happen by looking at the visited phi nodes and making sure they cannot
1777   // reach the value.
1778   if (isValueEqualInPotentialCycles(V1, V2))
1779     return MustAlias;
1780 
1781   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1782     return NoAlias; // Scalars cannot alias each other
1783 
1784   // Figure out what objects these things are pointing to if we can.
1785   if (O1 == nullptr)
1786     O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
1787 
1788   if (O2 == nullptr)
1789     O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);
1790 
1791   // Null values in the default address space don't point to any object, so they
1792   // don't alias any other pointer.
1793   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1794     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1795       return NoAlias;
1796   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1797     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1798       return NoAlias;
1799 
1800   if (O1 != O2) {
1801     // If V1/V2 point to two different objects, we know that we have no alias.
1802     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1803       return NoAlias;
1804 
1805     // Constant pointers can't alias with non-const isIdentifiedObject objects.
1806     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1807         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1808       return NoAlias;
1809 
1810     // Function arguments can't alias with things that are known to be
1811     // unambigously identified at the function level.
1812     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1813         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1814       return NoAlias;
1815 
1816     // If one pointer is the result of a call/invoke or load and the other is a
1817     // non-escaping local object within the same function, then we know the
1818     // object couldn't escape to a point where the call could return it.
1819     //
1820     // Note that if the pointers are in different functions, there are a
1821     // variety of complications. A call with a nocapture argument may still
1822     // temporary store the nocapture argument's value in a temporary memory
1823     // location if that memory location doesn't escape. Or it may pass a
1824     // nocapture value to other functions as long as they don't capture it.
1825     if (isEscapeSource(O1) &&
1826         isNonEscapingLocalObject(O2, &AAQI.IsCapturedCache))
1827       return NoAlias;
1828     if (isEscapeSource(O2) &&
1829         isNonEscapingLocalObject(O1, &AAQI.IsCapturedCache))
1830       return NoAlias;
1831   }
1832 
1833   // If the size of one access is larger than the entire object on the other
1834   // side, then we know such behavior is undefined and can assume no alias.
1835   bool NullIsValidLocation = NullPointerIsDefined(&F);
1836   if ((isObjectSmallerThan(
1837           O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL,
1838           TLI, NullIsValidLocation)) ||
1839       (isObjectSmallerThan(
1840           O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL,
1841           TLI, NullIsValidLocation)))
1842     return NoAlias;
1843 
1844   // Check the cache before climbing up use-def chains. This also terminates
1845   // otherwise infinitely recursive queries.
1846   AAQueryInfo::LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
1847                             MemoryLocation(V2, V2Size, V2AAInfo));
1848   if (V1 > V2)
1849     std::swap(Locs.first, Locs.second);
1850   std::pair<AAQueryInfo::AliasCacheT::iterator, bool> Pair =
1851       AAQI.AliasCache.try_emplace(Locs, MayAlias);
1852   if (!Pair.second)
1853     return Pair.first->second;
1854 
1855   // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1856   // GEP can't simplify, we don't even look at the PHI cases.
1857   if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1858     std::swap(V1, V2);
1859     std::swap(V1Size, V2Size);
1860     std::swap(O1, O2);
1861     std::swap(V1AAInfo, V2AAInfo);
1862   }
1863   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1864     AliasResult Result =
1865         aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2, AAQI);
1866     if (Result != MayAlias) {
1867       auto ItInsPair = AAQI.AliasCache.insert(std::make_pair(Locs, Result));
1868       assert(!ItInsPair.second && "Entry must have existed");
1869       ItInsPair.first->second = Result;
1870       return Result;
1871     }
1872   }
1873 
1874   if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1875     std::swap(V1, V2);
1876     std::swap(O1, O2);
1877     std::swap(V1Size, V2Size);
1878     std::swap(V1AAInfo, V2AAInfo);
1879   }
1880   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1881     AliasResult Result =
1882         aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI);
1883     if (Result != MayAlias) {
1884       Pair = AAQI.AliasCache.try_emplace(Locs, Result);
1885       assert(!Pair.second && "Entry must have existed");
1886       return Pair.first->second = Result;
1887     }
1888   }
1889 
1890   if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1891     std::swap(V1, V2);
1892     std::swap(O1, O2);
1893     std::swap(V1Size, V2Size);
1894     std::swap(V1AAInfo, V2AAInfo);
1895   }
1896   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1897     AliasResult Result =
1898         aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI);
1899     if (Result != MayAlias) {
1900       Pair = AAQI.AliasCache.try_emplace(Locs, Result);
1901       assert(!Pair.second && "Entry must have existed");
1902       return Pair.first->second = Result;
1903     }
1904   }
1905 
1906   // If both pointers are pointing into the same object and one of them
1907   // accesses the entire object, then the accesses must overlap in some way.
1908   if (O1 == O2)
1909     if (V1Size.isPrecise() && V2Size.isPrecise() &&
1910         (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
1911          isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation))) {
1912       Pair = AAQI.AliasCache.try_emplace(Locs, PartialAlias);
1913       assert(!Pair.second && "Entry must have existed");
1914       return Pair.first->second = PartialAlias;
1915     }
1916 
1917   // Recurse back into the best AA results we have, potentially with refined
1918   // memory locations. We have already ensured that BasicAA has a MayAlias
1919   // cache result for these, so any recursion back into BasicAA won't loop.
1920   AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second, AAQI);
1921   Pair = AAQI.AliasCache.try_emplace(Locs, Result);
1922   assert(!Pair.second && "Entry must have existed");
1923   return Pair.first->second = Result;
1924 }
1925 
1926 /// Check whether two Values can be considered equivalent.
1927 ///
1928 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1929 /// they can not be part of a cycle in the value graph by looking at all
1930 /// visited phi nodes an making sure that the phis cannot reach the value. We
1931 /// have to do this because we are looking through phi nodes (That is we say
1932 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1933 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1934                                                   const Value *V2) {
1935   if (V != V2)
1936     return false;
1937 
1938   const Instruction *Inst = dyn_cast<Instruction>(V);
1939   if (!Inst)
1940     return true;
1941 
1942   if (VisitedPhiBBs.empty())
1943     return true;
1944 
1945   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1946     return false;
1947 
1948   // Make sure that the visited phis cannot reach the Value. This ensures that
1949   // the Values cannot come from different iterations of a potential cycle the
1950   // phi nodes could be involved in.
1951   for (auto *P : VisitedPhiBBs)
1952     if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT, LI))
1953       return false;
1954 
1955   return true;
1956 }
1957 
1958 /// Computes the symbolic difference between two de-composed GEPs.
1959 ///
1960 /// Dest and Src are the variable indices from two decomposed GetElementPtr
1961 /// instructions GEP1 and GEP2 which have common base pointers.
1962 void BasicAAResult::GetIndexDifference(
1963     SmallVectorImpl<VariableGEPIndex> &Dest,
1964     const SmallVectorImpl<VariableGEPIndex> &Src) {
1965   if (Src.empty())
1966     return;
1967 
1968   for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1969     const Value *V = Src[i].V;
1970     unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
1971     APInt Scale = Src[i].Scale;
1972 
1973     // Find V in Dest.  This is N^2, but pointer indices almost never have more
1974     // than a few variable indexes.
1975     for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1976       if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1977           Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
1978         continue;
1979 
1980       // If we found it, subtract off Scale V's from the entry in Dest.  If it
1981       // goes to zero, remove the entry.
1982       if (Dest[j].Scale != Scale)
1983         Dest[j].Scale -= Scale;
1984       else
1985         Dest.erase(Dest.begin() + j);
1986       Scale = 0;
1987       break;
1988     }
1989 
1990     // If we didn't consume this entry, add it to the end of the Dest list.
1991     if (!!Scale) {
1992       VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale};
1993       Dest.push_back(Entry);
1994     }
1995   }
1996 }
1997 
1998 bool BasicAAResult::constantOffsetHeuristic(
1999     const SmallVectorImpl<VariableGEPIndex> &VarIndices,
2000     LocationSize MaybeV1Size, LocationSize MaybeV2Size, APInt BaseOffset,
2001     AssumptionCache *AC, DominatorTree *DT) {
2002   if (VarIndices.size() != 2 || MaybeV1Size == LocationSize::unknown() ||
2003       MaybeV2Size == LocationSize::unknown())
2004     return false;
2005 
2006   const uint64_t V1Size = MaybeV1Size.getValue();
2007   const uint64_t V2Size = MaybeV2Size.getValue();
2008 
2009   const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
2010 
2011   if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
2012       Var0.Scale != -Var1.Scale)
2013     return false;
2014 
2015   unsigned Width = Var1.V->getType()->getIntegerBitWidth();
2016 
2017   // We'll strip off the Extensions of Var0 and Var1 and do another round
2018   // of GetLinearExpression decomposition. In the example above, if Var0
2019   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
2020 
2021   APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
2022       V1Offset(Width, 0);
2023   bool NSW = true, NUW = true;
2024   unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
2025   const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
2026                                         V0SExtBits, DL, 0, AC, DT, NSW, NUW);
2027   NSW = true;
2028   NUW = true;
2029   const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
2030                                         V1SExtBits, DL, 0, AC, DT, NSW, NUW);
2031 
2032   if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
2033       V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
2034     return false;
2035 
2036   // We have a hit - Var0 and Var1 only differ by a constant offset!
2037 
2038   // If we've been sext'ed then zext'd the maximum difference between Var0 and
2039   // Var1 is possible to calculate, but we're just interested in the absolute
2040   // minimum difference between the two. The minimum distance may occur due to
2041   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
2042   // the minimum distance between %i and %i + 5 is 3.
2043   APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
2044   MinDiff = APIntOps::umin(MinDiff, Wrapped);
2045   APInt MinDiffBytes =
2046     MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs();
2047 
2048   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
2049   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
2050   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
2051   // V2Size can fit in the MinDiffBytes gap.
2052   return MinDiffBytes.uge(V1Size + BaseOffset.abs()) &&
2053          MinDiffBytes.uge(V2Size + BaseOffset.abs());
2054 }
2055 
2056 //===----------------------------------------------------------------------===//
2057 // BasicAliasAnalysis Pass
2058 //===----------------------------------------------------------------------===//
2059 
2060 AnalysisKey BasicAA::Key;
2061 
2062 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
2063   return BasicAAResult(F.getParent()->getDataLayout(),
2064                        F,
2065                        AM.getResult<TargetLibraryAnalysis>(F),
2066                        AM.getResult<AssumptionAnalysis>(F),
2067                        &AM.getResult<DominatorTreeAnalysis>(F),
2068                        AM.getCachedResult<LoopAnalysis>(F),
2069                        AM.getCachedResult<PhiValuesAnalysis>(F));
2070 }
2071 
2072 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
2073   initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
2074 }
2075 
2076 char BasicAAWrapperPass::ID = 0;
2077 
2078 void BasicAAWrapperPass::anchor() {}
2079 
2080 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa",
2081                       "Basic Alias Analysis (stateless AA impl)", true, true)
2082 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2083 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2084 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2085 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
2086 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa",
2087                     "Basic Alias Analysis (stateless AA impl)", true, true)
2088 
2089 FunctionPass *llvm::createBasicAAWrapperPass() {
2090   return new BasicAAWrapperPass();
2091 }
2092 
2093 bool BasicAAWrapperPass::runOnFunction(Function &F) {
2094   auto &ACT = getAnalysis<AssumptionCacheTracker>();
2095   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
2096   auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
2097   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
2098   auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>();
2099 
2100   Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F,
2101                                  TLIWP.getTLI(F), ACT.getAssumptionCache(F),
2102                                  &DTWP.getDomTree(),
2103                                  LIWP ? &LIWP->getLoopInfo() : nullptr,
2104                                  PVWP ? &PVWP->getResult() : nullptr));
2105 
2106   return false;
2107 }
2108 
2109 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
2110   AU.setPreservesAll();
2111   AU.addRequired<AssumptionCacheTracker>();
2112   AU.addRequired<DominatorTreeWrapperPass>();
2113   AU.addRequired<TargetLibraryInfoWrapperPass>();
2114   AU.addUsedIfAvailable<PhiValuesWrapperPass>();
2115 }
2116 
2117 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
2118   return BasicAAResult(
2119       F.getParent()->getDataLayout(), F,
2120       P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
2121       P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
2122 }
2123