1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the primary stateless implementation of the
11 // Alias Analysis interface that implements identities (two different
12 // globals cannot alias, etc), but does no stateful analysis.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Analysis/BasicAliasAnalysis.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GetElementPtrTypeIterator.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/Metadata.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/User.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/KnownBits.h"
58 #include <cassert>
59 #include <cstdint>
60 #include <cstdlib>
61 #include <utility>
62 
63 #define DEBUG_TYPE "basicaa"
64 
65 using namespace llvm;
66 
67 /// Enable analysis of recursive PHI nodes.
68 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden,
69                                           cl::init(false));
70 /// SearchLimitReached / SearchTimes shows how often the limit of
71 /// to decompose GEPs is reached. It will affect the precision
72 /// of basic alias analysis.
73 STATISTIC(SearchLimitReached, "Number of times the limit to "
74                               "decompose GEPs is reached");
75 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
76 
77 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
78 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
79 /// careful with value equivalence. We use reachability to make sure a value
80 /// cannot be involved in a cycle.
81 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
82 
83 // The max limit of the search depth in DecomposeGEPExpression() and
84 // GetUnderlyingObject(), both functions need to use the same search
85 // depth otherwise the algorithm in aliasGEP will assert.
86 static const unsigned MaxLookupSearchDepth = 6;
87 
88 bool BasicAAResult::invalidate(Function &F, const PreservedAnalyses &PA,
89                                FunctionAnalysisManager::Invalidator &Inv) {
90   // We don't care if this analysis itself is preserved, it has no state. But
91   // we need to check that the analyses it depends on have been. Note that we
92   // may be created without handles to some analyses and in that case don't
93   // depend on them.
94   if (Inv.invalidate<AssumptionAnalysis>(F, PA) ||
95       (DT && Inv.invalidate<DominatorTreeAnalysis>(F, PA)) ||
96       (LI && Inv.invalidate<LoopAnalysis>(F, PA)))
97     return true;
98 
99   // Otherwise this analysis result remains valid.
100   return false;
101 }
102 
103 //===----------------------------------------------------------------------===//
104 // Useful predicates
105 //===----------------------------------------------------------------------===//
106 
107 /// Returns true if the pointer is to a function-local object that never
108 /// escapes from the function.
109 static bool isNonEscapingLocalObject(const Value *V) {
110   // If this is a local allocation, check to see if it escapes.
111   if (isa<AllocaInst>(V) || isNoAliasCall(V))
112     // Set StoreCaptures to True so that we can assume in our callers that the
113     // pointer is not the result of a load instruction. Currently
114     // PointerMayBeCaptured doesn't have any special analysis for the
115     // StoreCaptures=false case; if it did, our callers could be refined to be
116     // more precise.
117     return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
118 
119   // If this is an argument that corresponds to a byval or noalias argument,
120   // then it has not escaped before entering the function.  Check if it escapes
121   // inside the function.
122   if (const Argument *A = dyn_cast<Argument>(V))
123     if (A->hasByValAttr() || A->hasNoAliasAttr())
124       // Note even if the argument is marked nocapture, we still need to check
125       // for copies made inside the function. The nocapture attribute only
126       // specifies that there are no copies made that outlive the function.
127       return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
128 
129   return false;
130 }
131 
132 /// Returns true if the pointer is one which would have been considered an
133 /// escape by isNonEscapingLocalObject.
134 static bool isEscapeSource(const Value *V) {
135   if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
136     return true;
137 
138   // The load case works because isNonEscapingLocalObject considers all
139   // stores to be escapes (it passes true for the StoreCaptures argument
140   // to PointerMayBeCaptured).
141   if (isa<LoadInst>(V))
142     return true;
143 
144   return false;
145 }
146 
147 /// Returns the size of the object specified by V or UnknownSize if unknown.
148 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
149                               const TargetLibraryInfo &TLI,
150                               bool RoundToAlign = false) {
151   uint64_t Size;
152   ObjectSizeOpts Opts;
153   Opts.RoundToAlign = RoundToAlign;
154   if (getObjectSize(V, Size, DL, &TLI, Opts))
155     return Size;
156   return MemoryLocation::UnknownSize;
157 }
158 
159 /// Returns true if we can prove that the object specified by V is smaller than
160 /// Size.
161 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
162                                 const DataLayout &DL,
163                                 const TargetLibraryInfo &TLI) {
164   // Note that the meanings of the "object" are slightly different in the
165   // following contexts:
166   //    c1: llvm::getObjectSize()
167   //    c2: llvm.objectsize() intrinsic
168   //    c3: isObjectSmallerThan()
169   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
170   // refers to the "entire object".
171   //
172   //  Consider this example:
173   //     char *p = (char*)malloc(100)
174   //     char *q = p+80;
175   //
176   //  In the context of c1 and c2, the "object" pointed by q refers to the
177   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
178   //
179   //  However, in the context of c3, the "object" refers to the chunk of memory
180   // being allocated. So, the "object" has 100 bytes, and q points to the middle
181   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
182   // parameter, before the llvm::getObjectSize() is called to get the size of
183   // entire object, we should:
184   //    - either rewind the pointer q to the base-address of the object in
185   //      question (in this case rewind to p), or
186   //    - just give up. It is up to caller to make sure the pointer is pointing
187   //      to the base address the object.
188   //
189   // We go for 2nd option for simplicity.
190   if (!isIdentifiedObject(V))
191     return false;
192 
193   // This function needs to use the aligned object size because we allow
194   // reads a bit past the end given sufficient alignment.
195   uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/ true);
196 
197   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
198 }
199 
200 /// Returns true if we can prove that the object specified by V has size Size.
201 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
202                          const TargetLibraryInfo &TLI) {
203   uint64_t ObjectSize = getObjectSize(V, DL, TLI);
204   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
205 }
206 
207 //===----------------------------------------------------------------------===//
208 // GetElementPtr Instruction Decomposition and Analysis
209 //===----------------------------------------------------------------------===//
210 
211 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
212 /// B are constant integers.
213 ///
214 /// Returns the scale and offset values as APInts and return V as a Value*, and
215 /// return whether we looked through any sign or zero extends.  The incoming
216 /// Value is known to have IntegerType, and it may already be sign or zero
217 /// extended.
218 ///
219 /// Note that this looks through extends, so the high bits may not be
220 /// represented in the result.
221 /*static*/ const Value *BasicAAResult::GetLinearExpression(
222     const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
223     unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
224     AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
225   assert(V->getType()->isIntegerTy() && "Not an integer value");
226 
227   // Limit our recursion depth.
228   if (Depth == 6) {
229     Scale = 1;
230     Offset = 0;
231     return V;
232   }
233 
234   if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
235     // If it's a constant, just convert it to an offset and remove the variable.
236     // If we've been called recursively, the Offset bit width will be greater
237     // than the constant's (the Offset's always as wide as the outermost call),
238     // so we'll zext here and process any extension in the isa<SExtInst> &
239     // isa<ZExtInst> cases below.
240     Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
241     assert(Scale == 0 && "Constant values don't have a scale");
242     return V;
243   }
244 
245   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
246     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
247       // If we've been called recursively, then Offset and Scale will be wider
248       // than the BOp operands. We'll always zext it here as we'll process sign
249       // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
250       APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
251 
252       switch (BOp->getOpcode()) {
253       default:
254         // We don't understand this instruction, so we can't decompose it any
255         // further.
256         Scale = 1;
257         Offset = 0;
258         return V;
259       case Instruction::Or:
260         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
261         // analyze it.
262         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
263                                BOp, DT)) {
264           Scale = 1;
265           Offset = 0;
266           return V;
267         }
268         LLVM_FALLTHROUGH;
269       case Instruction::Add:
270         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
271                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
272         Offset += RHS;
273         break;
274       case Instruction::Sub:
275         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
276                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
277         Offset -= RHS;
278         break;
279       case Instruction::Mul:
280         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
281                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
282         Offset *= RHS;
283         Scale *= RHS;
284         break;
285       case Instruction::Shl:
286         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
287                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
288 
289         // We're trying to linearize an expression of the kind:
290         //   shl i8 -128, 36
291         // where the shift count exceeds the bitwidth of the type.
292         // We can't decompose this further (the expression would return
293         // a poison value).
294         if (Offset.getBitWidth() < RHS.getLimitedValue() ||
295             Scale.getBitWidth() < RHS.getLimitedValue()) {
296           Scale = 1;
297           Offset = 0;
298           return V;
299         }
300 
301         Offset <<= RHS.getLimitedValue();
302         Scale <<= RHS.getLimitedValue();
303         // the semantics of nsw and nuw for left shifts don't match those of
304         // multiplications, so we won't propagate them.
305         NSW = NUW = false;
306         return V;
307       }
308 
309       if (isa<OverflowingBinaryOperator>(BOp)) {
310         NUW &= BOp->hasNoUnsignedWrap();
311         NSW &= BOp->hasNoSignedWrap();
312       }
313       return V;
314     }
315   }
316 
317   // Since GEP indices are sign extended anyway, we don't care about the high
318   // bits of a sign or zero extended value - just scales and offsets.  The
319   // extensions have to be consistent though.
320   if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
321     Value *CastOp = cast<CastInst>(V)->getOperand(0);
322     unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
323     unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
324     unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
325     const Value *Result =
326         GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
327                             Depth + 1, AC, DT, NSW, NUW);
328 
329     // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this
330     // by just incrementing the number of bits we've extended by.
331     unsigned ExtendedBy = NewWidth - SmallWidth;
332 
333     if (isa<SExtInst>(V) && ZExtBits == 0) {
334       // sext(sext(%x, a), b) == sext(%x, a + b)
335 
336       if (NSW) {
337         // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
338         // into sext(%x) + sext(c). We'll sext the Offset ourselves:
339         unsigned OldWidth = Offset.getBitWidth();
340         Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
341       } else {
342         // We may have signed-wrapped, so don't decompose sext(%x + c) into
343         // sext(%x) + sext(c)
344         Scale = 1;
345         Offset = 0;
346         Result = CastOp;
347         ZExtBits = OldZExtBits;
348         SExtBits = OldSExtBits;
349       }
350       SExtBits += ExtendedBy;
351     } else {
352       // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
353 
354       if (!NUW) {
355         // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
356         // zext(%x) + zext(c)
357         Scale = 1;
358         Offset = 0;
359         Result = CastOp;
360         ZExtBits = OldZExtBits;
361         SExtBits = OldSExtBits;
362       }
363       ZExtBits += ExtendedBy;
364     }
365 
366     return Result;
367   }
368 
369   Scale = 1;
370   Offset = 0;
371   return V;
372 }
373 
374 /// To ensure a pointer offset fits in an integer of size PointerSize
375 /// (in bits) when that size is smaller than 64. This is an issue in
376 /// particular for 32b programs with negative indices that rely on two's
377 /// complement wrap-arounds for precise alias information.
378 static int64_t adjustToPointerSize(int64_t Offset, unsigned PointerSize) {
379   assert(PointerSize <= 64 && "Invalid PointerSize!");
380   unsigned ShiftBits = 64 - PointerSize;
381   return (int64_t)((uint64_t)Offset << ShiftBits) >> ShiftBits;
382 }
383 
384 /// If V is a symbolic pointer expression, decompose it into a base pointer
385 /// with a constant offset and a number of scaled symbolic offsets.
386 ///
387 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
388 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
389 /// specified amount, but which may have other unrepresented high bits. As
390 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
391 ///
392 /// When DataLayout is around, this function is capable of analyzing everything
393 /// that GetUnderlyingObject can look through. To be able to do that
394 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search
395 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks
396 /// through pointer casts.
397 bool BasicAAResult::DecomposeGEPExpression(const Value *V,
398        DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC,
399        DominatorTree *DT) {
400   // Limit recursion depth to limit compile time in crazy cases.
401   unsigned MaxLookup = MaxLookupSearchDepth;
402   SearchTimes++;
403 
404   Decomposed.StructOffset = 0;
405   Decomposed.OtherOffset = 0;
406   Decomposed.VarIndices.clear();
407   do {
408     // See if this is a bitcast or GEP.
409     const Operator *Op = dyn_cast<Operator>(V);
410     if (!Op) {
411       // The only non-operator case we can handle are GlobalAliases.
412       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
413         if (!GA->isInterposable()) {
414           V = GA->getAliasee();
415           continue;
416         }
417       }
418       Decomposed.Base = V;
419       return false;
420     }
421 
422     if (Op->getOpcode() == Instruction::BitCast ||
423         Op->getOpcode() == Instruction::AddrSpaceCast) {
424       V = Op->getOperand(0);
425       continue;
426     }
427 
428     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
429     if (!GEPOp) {
430       if (auto CS = ImmutableCallSite(V))
431         if (const Value *RV = CS.getReturnedArgOperand()) {
432           V = RV;
433           continue;
434         }
435 
436       // If it's not a GEP, hand it off to SimplifyInstruction to see if it
437       // can come up with something. This matches what GetUnderlyingObject does.
438       if (const Instruction *I = dyn_cast<Instruction>(V))
439         // TODO: Get a DominatorTree and AssumptionCache and use them here
440         // (these are both now available in this function, but this should be
441         // updated when GetUnderlyingObject is updated). TLI should be
442         // provided also.
443         if (const Value *Simplified =
444                 SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
445           V = Simplified;
446           continue;
447         }
448 
449       Decomposed.Base = V;
450       return false;
451     }
452 
453     // Don't attempt to analyze GEPs over unsized objects.
454     if (!GEPOp->getSourceElementType()->isSized()) {
455       Decomposed.Base = V;
456       return false;
457     }
458 
459     unsigned AS = GEPOp->getPointerAddressSpace();
460     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
461     gep_type_iterator GTI = gep_type_begin(GEPOp);
462     unsigned PointerSize = DL.getPointerSizeInBits(AS);
463     // Assume all GEP operands are constants until proven otherwise.
464     bool GepHasConstantOffset = true;
465     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
466          I != E; ++I, ++GTI) {
467       const Value *Index = *I;
468       // Compute the (potentially symbolic) offset in bytes for this index.
469       if (StructType *STy = GTI.getStructTypeOrNull()) {
470         // For a struct, add the member offset.
471         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
472         if (FieldNo == 0)
473           continue;
474 
475         Decomposed.StructOffset +=
476           DL.getStructLayout(STy)->getElementOffset(FieldNo);
477         continue;
478       }
479 
480       // For an array/pointer, add the element offset, explicitly scaled.
481       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
482         if (CIdx->isZero())
483           continue;
484         Decomposed.OtherOffset +=
485           DL.getTypeAllocSize(GTI.getIndexedType()) * CIdx->getSExtValue();
486         continue;
487       }
488 
489       GepHasConstantOffset = false;
490 
491       uint64_t Scale = DL.getTypeAllocSize(GTI.getIndexedType());
492       unsigned ZExtBits = 0, SExtBits = 0;
493 
494       // If the integer type is smaller than the pointer size, it is implicitly
495       // sign extended to pointer size.
496       unsigned Width = Index->getType()->getIntegerBitWidth();
497       if (PointerSize > Width)
498         SExtBits += PointerSize - Width;
499 
500       // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
501       APInt IndexScale(Width, 0), IndexOffset(Width, 0);
502       bool NSW = true, NUW = true;
503       Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
504                                   SExtBits, DL, 0, AC, DT, NSW, NUW);
505 
506       // All GEP math happens in the width of the pointer type,
507       // so we can truncate the value to 64-bits as we don't handle
508       // currently pointers larger than 64 bits and we would crash
509       // later. TODO: Make `Scale` an APInt to avoid this problem.
510       if (IndexScale.getBitWidth() > 64)
511         IndexScale = IndexScale.sextOrTrunc(64);
512 
513       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
514       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
515       Decomposed.OtherOffset += IndexOffset.getSExtValue() * Scale;
516       Scale *= IndexScale.getSExtValue();
517 
518       // If we already had an occurrence of this index variable, merge this
519       // scale into it.  For example, we want to handle:
520       //   A[x][x] -> x*16 + x*4 -> x*20
521       // This also ensures that 'x' only appears in the index list once.
522       for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
523         if (Decomposed.VarIndices[i].V == Index &&
524             Decomposed.VarIndices[i].ZExtBits == ZExtBits &&
525             Decomposed.VarIndices[i].SExtBits == SExtBits) {
526           Scale += Decomposed.VarIndices[i].Scale;
527           Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
528           break;
529         }
530       }
531 
532       // Make sure that we have a scale that makes sense for this target's
533       // pointer size.
534       Scale = adjustToPointerSize(Scale, PointerSize);
535 
536       if (Scale) {
537         VariableGEPIndex Entry = {Index, ZExtBits, SExtBits,
538                                   static_cast<int64_t>(Scale)};
539         Decomposed.VarIndices.push_back(Entry);
540       }
541     }
542 
543     // Take care of wrap-arounds
544     if (GepHasConstantOffset) {
545       Decomposed.StructOffset =
546           adjustToPointerSize(Decomposed.StructOffset, PointerSize);
547       Decomposed.OtherOffset =
548           adjustToPointerSize(Decomposed.OtherOffset, PointerSize);
549     }
550 
551     // Analyze the base pointer next.
552     V = GEPOp->getOperand(0);
553   } while (--MaxLookup);
554 
555   // If the chain of expressions is too deep, just return early.
556   Decomposed.Base = V;
557   SearchLimitReached++;
558   return true;
559 }
560 
561 /// Returns whether the given pointer value points to memory that is local to
562 /// the function, with global constants being considered local to all
563 /// functions.
564 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
565                                            bool OrLocal) {
566   assert(Visited.empty() && "Visited must be cleared after use!");
567 
568   unsigned MaxLookup = 8;
569   SmallVector<const Value *, 16> Worklist;
570   Worklist.push_back(Loc.Ptr);
571   do {
572     const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
573     if (!Visited.insert(V).second) {
574       Visited.clear();
575       return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
576     }
577 
578     // An alloca instruction defines local memory.
579     if (OrLocal && isa<AllocaInst>(V))
580       continue;
581 
582     // A global constant counts as local memory for our purposes.
583     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
584       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
585       // global to be marked constant in some modules and non-constant in
586       // others.  GV may even be a declaration, not a definition.
587       if (!GV->isConstant()) {
588         Visited.clear();
589         return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
590       }
591       continue;
592     }
593 
594     // If both select values point to local memory, then so does the select.
595     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
596       Worklist.push_back(SI->getTrueValue());
597       Worklist.push_back(SI->getFalseValue());
598       continue;
599     }
600 
601     // If all values incoming to a phi node point to local memory, then so does
602     // the phi.
603     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
604       // Don't bother inspecting phi nodes with many operands.
605       if (PN->getNumIncomingValues() > MaxLookup) {
606         Visited.clear();
607         return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
608       }
609       for (Value *IncValue : PN->incoming_values())
610         Worklist.push_back(IncValue);
611       continue;
612     }
613 
614     // Otherwise be conservative.
615     Visited.clear();
616     return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
617   } while (!Worklist.empty() && --MaxLookup);
618 
619   Visited.clear();
620   return Worklist.empty();
621 }
622 
623 /// Returns the behavior when calling the given call site.
624 FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) {
625   if (CS.doesNotAccessMemory())
626     // Can't do better than this.
627     return FMRB_DoesNotAccessMemory;
628 
629   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
630 
631   // If the callsite knows it only reads memory, don't return worse
632   // than that.
633   if (CS.onlyReadsMemory())
634     Min = FMRB_OnlyReadsMemory;
635   else if (CS.doesNotReadMemory())
636     Min = FMRB_DoesNotReadMemory;
637 
638   if (CS.onlyAccessesArgMemory())
639     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
640   else if (CS.onlyAccessesInaccessibleMemory())
641     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
642   else if (CS.onlyAccessesInaccessibleMemOrArgMem())
643     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
644 
645   // If CS has operand bundles then aliasing attributes from the function it
646   // calls do not directly apply to the CallSite.  This can be made more
647   // precise in the future.
648   if (!CS.hasOperandBundles())
649     if (const Function *F = CS.getCalledFunction())
650       Min =
651           FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
652 
653   return Min;
654 }
655 
656 /// Returns the behavior when calling the given function. For use when the call
657 /// site is not known.
658 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
659   // If the function declares it doesn't access memory, we can't do better.
660   if (F->doesNotAccessMemory())
661     return FMRB_DoesNotAccessMemory;
662 
663   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
664 
665   // If the function declares it only reads memory, go with that.
666   if (F->onlyReadsMemory())
667     Min = FMRB_OnlyReadsMemory;
668   else if (F->doesNotReadMemory())
669     Min = FMRB_DoesNotReadMemory;
670 
671   if (F->onlyAccessesArgMemory())
672     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
673   else if (F->onlyAccessesInaccessibleMemory())
674     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
675   else if (F->onlyAccessesInaccessibleMemOrArgMem())
676     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
677 
678   return Min;
679 }
680 
681 /// Returns true if this is a writeonly (i.e Mod only) parameter.
682 static bool isWriteOnlyParam(ImmutableCallSite CS, unsigned ArgIdx,
683                              const TargetLibraryInfo &TLI) {
684   if (CS.paramHasAttr(ArgIdx, Attribute::WriteOnly))
685     return true;
686 
687   // We can bound the aliasing properties of memset_pattern16 just as we can
688   // for memcpy/memset.  This is particularly important because the
689   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
690   // whenever possible.
691   // FIXME Consider handling this in InferFunctionAttr.cpp together with other
692   // attributes.
693   LibFunc F;
694   if (CS.getCalledFunction() && TLI.getLibFunc(*CS.getCalledFunction(), F) &&
695       F == LibFunc_memset_pattern16 && TLI.has(F))
696     if (ArgIdx == 0)
697       return true;
698 
699   // TODO: memset_pattern4, memset_pattern8
700   // TODO: _chk variants
701   // TODO: strcmp, strcpy
702 
703   return false;
704 }
705 
706 ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS,
707                                            unsigned ArgIdx) {
708   // Checking for known builtin intrinsics and target library functions.
709   if (isWriteOnlyParam(CS, ArgIdx, TLI))
710     return ModRefInfo::Mod;
711 
712   if (CS.paramHasAttr(ArgIdx, Attribute::ReadOnly))
713     return ModRefInfo::Ref;
714 
715   if (CS.paramHasAttr(ArgIdx, Attribute::ReadNone))
716     return ModRefInfo::NoModRef;
717 
718   return AAResultBase::getArgModRefInfo(CS, ArgIdx);
719 }
720 
721 static bool isIntrinsicCall(ImmutableCallSite CS, Intrinsic::ID IID) {
722   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
723   return II && II->getIntrinsicID() == IID;
724 }
725 
726 #ifndef NDEBUG
727 static const Function *getParent(const Value *V) {
728   if (const Instruction *inst = dyn_cast<Instruction>(V)) {
729     if (!inst->getParent())
730       return nullptr;
731     return inst->getParent()->getParent();
732   }
733 
734   if (const Argument *arg = dyn_cast<Argument>(V))
735     return arg->getParent();
736 
737   return nullptr;
738 }
739 
740 static bool notDifferentParent(const Value *O1, const Value *O2) {
741 
742   const Function *F1 = getParent(O1);
743   const Function *F2 = getParent(O2);
744 
745   return !F1 || !F2 || F1 == F2;
746 }
747 #endif
748 
749 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
750                                  const MemoryLocation &LocB) {
751   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
752          "BasicAliasAnalysis doesn't support interprocedural queries.");
753 
754   // If we have a directly cached entry for these locations, we have recursed
755   // through this once, so just return the cached results. Notably, when this
756   // happens, we don't clear the cache.
757   auto CacheIt = AliasCache.find(LocPair(LocA, LocB));
758   if (CacheIt != AliasCache.end())
759     return CacheIt->second;
760 
761   AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
762                                  LocB.Size, LocB.AATags);
763   // AliasCache rarely has more than 1 or 2 elements, always use
764   // shrink_and_clear so it quickly returns to the inline capacity of the
765   // SmallDenseMap if it ever grows larger.
766   // FIXME: This should really be shrink_to_inline_capacity_and_clear().
767   AliasCache.shrink_and_clear();
768   VisitedPhiBBs.clear();
769   return Alias;
770 }
771 
772 /// Checks to see if the specified callsite can clobber the specified memory
773 /// object.
774 ///
775 /// Since we only look at local properties of this function, we really can't
776 /// say much about this query.  We do, however, use simple "address taken"
777 /// analysis on local objects.
778 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS,
779                                         const MemoryLocation &Loc) {
780   assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
781          "AliasAnalysis query involving multiple functions!");
782 
783   const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);
784 
785   // If this is a tail call and Loc.Ptr points to a stack location, we know that
786   // the tail call cannot access or modify the local stack.
787   // We cannot exclude byval arguments here; these belong to the caller of
788   // the current function not to the current function, and a tail callee
789   // may reference them.
790   if (isa<AllocaInst>(Object))
791     if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
792       if (CI->isTailCall())
793         return ModRefInfo::NoModRef;
794 
795   // If the pointer is to a locally allocated object that does not escape,
796   // then the call can not mod/ref the pointer unless the call takes the pointer
797   // as an argument, and itself doesn't capture it.
798   if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
799       isNonEscapingLocalObject(Object)) {
800 
801     // Optimistically assume that call doesn't touch Object and check this
802     // assumption in the following loop.
803     ModRefInfo Result = ModRefInfo::NoModRef;
804     bool IsMustAlias = true;
805 
806     unsigned OperandNo = 0;
807     for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end();
808          CI != CE; ++CI, ++OperandNo) {
809       // Only look at the no-capture or byval pointer arguments.  If this
810       // pointer were passed to arguments that were neither of these, then it
811       // couldn't be no-capture.
812       if (!(*CI)->getType()->isPointerTy() ||
813           (!CS.doesNotCapture(OperandNo) &&
814            OperandNo < CS.getNumArgOperands() && !CS.isByValArgument(OperandNo)))
815         continue;
816 
817       // Call doesn't access memory through this operand, so we don't care
818       // if it aliases with Object.
819       if (CS.doesNotAccessMemory(OperandNo))
820         continue;
821 
822       // If this is a no-capture pointer argument, see if we can tell that it
823       // is impossible to alias the pointer we're checking.
824       AliasResult AR =
825           getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object));
826       if (AR != MustAlias)
827         IsMustAlias = false;
828       // Operand doesnt alias 'Object', continue looking for other aliases
829       if (AR == NoAlias)
830         continue;
831       // Operand aliases 'Object', but call doesn't modify it. Strengthen
832       // initial assumption and keep looking in case if there are more aliases.
833       if (CS.onlyReadsMemory(OperandNo)) {
834         Result = setRef(Result);
835         continue;
836       }
837       // Operand aliases 'Object' but call only writes into it.
838       if (CS.doesNotReadMemory(OperandNo)) {
839         Result = setMod(Result);
840         continue;
841       }
842       // This operand aliases 'Object' and call reads and writes into it.
843       // Setting ModRef will not yield an early return below, MustAlias is not
844       // used further.
845       Result = ModRefInfo::ModRef;
846       break;
847     }
848 
849     // No operand aliases, reset Must bit. Add below if at least one aliases
850     // and all aliases found are MustAlias.
851     if (isNoModRef(Result))
852       IsMustAlias = false;
853 
854     // Early return if we improved mod ref information
855     if (!isModAndRefSet(Result)) {
856       if (isNoModRef(Result))
857         return ModRefInfo::NoModRef;
858       return IsMustAlias ? setMust(Result) : clearMust(Result);
859     }
860   }
861 
862   // If the CallSite is to malloc or calloc, we can assume that it doesn't
863   // modify any IR visible value.  This is only valid because we assume these
864   // routines do not read values visible in the IR.  TODO: Consider special
865   // casing realloc and strdup routines which access only their arguments as
866   // well.  Or alternatively, replace all of this with inaccessiblememonly once
867   // that's implemented fully.
868   auto *Inst = CS.getInstruction();
869   if (isMallocOrCallocLikeFn(Inst, &TLI)) {
870     // Be conservative if the accessed pointer may alias the allocation -
871     // fallback to the generic handling below.
872     if (getBestAAResults().alias(MemoryLocation(Inst), Loc) == NoAlias)
873       return ModRefInfo::NoModRef;
874   }
875 
876   // The semantics of memcpy intrinsics forbid overlap between their respective
877   // operands, i.e., source and destination of any given memcpy must no-alias.
878   // If Loc must-aliases either one of these two locations, then it necessarily
879   // no-aliases the other.
880   if (auto *Inst = dyn_cast<MemCpyInst>(CS.getInstruction())) {
881     AliasResult SrcAA, DestAA;
882 
883     if ((SrcAA = getBestAAResults().alias(MemoryLocation::getForSource(Inst),
884                                           Loc)) == MustAlias)
885       // Loc is exactly the memcpy source thus disjoint from memcpy dest.
886       return ModRefInfo::Ref;
887     if ((DestAA = getBestAAResults().alias(MemoryLocation::getForDest(Inst),
888                                            Loc)) == MustAlias)
889       // The converse case.
890       return ModRefInfo::Mod;
891 
892     // It's also possible for Loc to alias both src and dest, or neither.
893     ModRefInfo rv = ModRefInfo::NoModRef;
894     if (SrcAA != NoAlias)
895       rv = setRef(rv);
896     if (DestAA != NoAlias)
897       rv = setMod(rv);
898     return rv;
899   }
900 
901   // While the assume intrinsic is marked as arbitrarily writing so that
902   // proper control dependencies will be maintained, it never aliases any
903   // particular memory location.
904   if (isIntrinsicCall(CS, Intrinsic::assume))
905     return ModRefInfo::NoModRef;
906 
907   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
908   // that proper control dependencies are maintained but they never mods any
909   // particular memory location.
910   //
911   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
912   // heap state at the point the guard is issued needs to be consistent in case
913   // the guard invokes the "deopt" continuation.
914   if (isIntrinsicCall(CS, Intrinsic::experimental_guard))
915     return ModRefInfo::Ref;
916 
917   // Like assumes, invariant.start intrinsics were also marked as arbitrarily
918   // writing so that proper control dependencies are maintained but they never
919   // mod any particular memory location visible to the IR.
920   // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
921   // intrinsic is now modeled as reading memory. This prevents hoisting the
922   // invariant.start intrinsic over stores. Consider:
923   // *ptr = 40;
924   // *ptr = 50;
925   // invariant_start(ptr)
926   // int val = *ptr;
927   // print(val);
928   //
929   // This cannot be transformed to:
930   //
931   // *ptr = 40;
932   // invariant_start(ptr)
933   // *ptr = 50;
934   // int val = *ptr;
935   // print(val);
936   //
937   // The transformation will cause the second store to be ignored (based on
938   // rules of invariant.start)  and print 40, while the first program always
939   // prints 50.
940   if (isIntrinsicCall(CS, Intrinsic::invariant_start))
941     return ModRefInfo::Ref;
942 
943   // The AAResultBase base class has some smarts, lets use them.
944   return AAResultBase::getModRefInfo(CS, Loc);
945 }
946 
947 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1,
948                                         ImmutableCallSite CS2) {
949   // While the assume intrinsic is marked as arbitrarily writing so that
950   // proper control dependencies will be maintained, it never aliases any
951   // particular memory location.
952   if (isIntrinsicCall(CS1, Intrinsic::assume) ||
953       isIntrinsicCall(CS2, Intrinsic::assume))
954     return ModRefInfo::NoModRef;
955 
956   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
957   // that proper control dependencies are maintained but they never mod any
958   // particular memory location.
959   //
960   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
961   // heap state at the point the guard is issued needs to be consistent in case
962   // the guard invokes the "deopt" continuation.
963 
964   // NB! This function is *not* commutative, so we specical case two
965   // possibilities for guard intrinsics.
966 
967   if (isIntrinsicCall(CS1, Intrinsic::experimental_guard))
968     return isModSet(createModRefInfo(getModRefBehavior(CS2)))
969                ? ModRefInfo::Ref
970                : ModRefInfo::NoModRef;
971 
972   if (isIntrinsicCall(CS2, Intrinsic::experimental_guard))
973     return isModSet(createModRefInfo(getModRefBehavior(CS1)))
974                ? ModRefInfo::Mod
975                : ModRefInfo::NoModRef;
976 
977   // The AAResultBase base class has some smarts, lets use them.
978   return AAResultBase::getModRefInfo(CS1, CS2);
979 }
980 
981 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
982 /// both having the exact same pointer operand.
983 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
984                                             uint64_t V1Size,
985                                             const GEPOperator *GEP2,
986                                             uint64_t V2Size,
987                                             const DataLayout &DL) {
988   assert(GEP1->getPointerOperand()->stripPointerCastsAndBarriers() ==
989              GEP2->getPointerOperand()->stripPointerCastsAndBarriers() &&
990          GEP1->getPointerOperandType() == GEP2->getPointerOperandType() &&
991          "Expected GEPs with the same pointer operand");
992 
993   // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
994   // such that the struct field accesses provably cannot alias.
995   // We also need at least two indices (the pointer, and the struct field).
996   if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
997       GEP1->getNumIndices() < 2)
998     return MayAlias;
999 
1000   // If we don't know the size of the accesses through both GEPs, we can't
1001   // determine whether the struct fields accessed can't alias.
1002   if (V1Size == MemoryLocation::UnknownSize ||
1003       V2Size == MemoryLocation::UnknownSize)
1004     return MayAlias;
1005 
1006   ConstantInt *C1 =
1007       dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
1008   ConstantInt *C2 =
1009       dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
1010 
1011   // If the last (struct) indices are constants and are equal, the other indices
1012   // might be also be dynamically equal, so the GEPs can alias.
1013   if (C1 && C2 && C1->getSExtValue() == C2->getSExtValue())
1014     return MayAlias;
1015 
1016   // Find the last-indexed type of the GEP, i.e., the type you'd get if
1017   // you stripped the last index.
1018   // On the way, look at each indexed type.  If there's something other
1019   // than an array, different indices can lead to different final types.
1020   SmallVector<Value *, 8> IntermediateIndices;
1021 
1022   // Insert the first index; we don't need to check the type indexed
1023   // through it as it only drops the pointer indirection.
1024   assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
1025   IntermediateIndices.push_back(GEP1->getOperand(1));
1026 
1027   // Insert all the remaining indices but the last one.
1028   // Also, check that they all index through arrays.
1029   for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
1030     if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
1031             GEP1->getSourceElementType(), IntermediateIndices)))
1032       return MayAlias;
1033     IntermediateIndices.push_back(GEP1->getOperand(i + 1));
1034   }
1035 
1036   auto *Ty = GetElementPtrInst::getIndexedType(
1037     GEP1->getSourceElementType(), IntermediateIndices);
1038   StructType *LastIndexedStruct = dyn_cast<StructType>(Ty);
1039 
1040   if (isa<SequentialType>(Ty)) {
1041     // We know that:
1042     // - both GEPs begin indexing from the exact same pointer;
1043     // - the last indices in both GEPs are constants, indexing into a sequential
1044     //   type (array or pointer);
1045     // - both GEPs only index through arrays prior to that.
1046     //
1047     // Because array indices greater than the number of elements are valid in
1048     // GEPs, unless we know the intermediate indices are identical between
1049     // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
1050     // partially overlap. We also need to check that the loaded size matches
1051     // the element size, otherwise we could still have overlap.
1052     const uint64_t ElementSize =
1053         DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType());
1054     if (V1Size != ElementSize || V2Size != ElementSize)
1055       return MayAlias;
1056 
1057     for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i)
1058       if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1))
1059         return MayAlias;
1060 
1061     // Now we know that the array/pointer that GEP1 indexes into and that
1062     // that GEP2 indexes into must either precisely overlap or be disjoint.
1063     // Because they cannot partially overlap and because fields in an array
1064     // cannot overlap, if we can prove the final indices are different between
1065     // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
1066 
1067     // If the last indices are constants, we've already checked they don't
1068     // equal each other so we can exit early.
1069     if (C1 && C2)
1070       return NoAlias;
1071     {
1072       Value *GEP1LastIdx = GEP1->getOperand(GEP1->getNumOperands() - 1);
1073       Value *GEP2LastIdx = GEP2->getOperand(GEP2->getNumOperands() - 1);
1074       if (isa<PHINode>(GEP1LastIdx) || isa<PHINode>(GEP2LastIdx)) {
1075         // If one of the indices is a PHI node, be safe and only use
1076         // computeKnownBits so we don't make any assumptions about the
1077         // relationships between the two indices. This is important if we're
1078         // asking about values from different loop iterations. See PR32314.
1079         // TODO: We may be able to change the check so we only do this when
1080         // we definitely looked through a PHINode.
1081         if (GEP1LastIdx != GEP2LastIdx &&
1082             GEP1LastIdx->getType() == GEP2LastIdx->getType()) {
1083           KnownBits Known1 = computeKnownBits(GEP1LastIdx, DL);
1084           KnownBits Known2 = computeKnownBits(GEP2LastIdx, DL);
1085           if (Known1.Zero.intersects(Known2.One) ||
1086               Known1.One.intersects(Known2.Zero))
1087             return NoAlias;
1088         }
1089       } else if (isKnownNonEqual(GEP1LastIdx, GEP2LastIdx, DL))
1090         return NoAlias;
1091     }
1092     return MayAlias;
1093   } else if (!LastIndexedStruct || !C1 || !C2) {
1094     return MayAlias;
1095   }
1096 
1097   // We know that:
1098   // - both GEPs begin indexing from the exact same pointer;
1099   // - the last indices in both GEPs are constants, indexing into a struct;
1100   // - said indices are different, hence, the pointed-to fields are different;
1101   // - both GEPs only index through arrays prior to that.
1102   //
1103   // This lets us determine that the struct that GEP1 indexes into and the
1104   // struct that GEP2 indexes into must either precisely overlap or be
1105   // completely disjoint.  Because they cannot partially overlap, indexing into
1106   // different non-overlapping fields of the struct will never alias.
1107 
1108   // Therefore, the only remaining thing needed to show that both GEPs can't
1109   // alias is that the fields are not overlapping.
1110   const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
1111   const uint64_t StructSize = SL->getSizeInBytes();
1112   const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
1113   const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
1114 
1115   auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
1116                                       uint64_t V2Off, uint64_t V2Size) {
1117     return V1Off < V2Off && V1Off + V1Size <= V2Off &&
1118            ((V2Off + V2Size <= StructSize) ||
1119             (V2Off + V2Size - StructSize <= V1Off));
1120   };
1121 
1122   if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
1123       EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
1124     return NoAlias;
1125 
1126   return MayAlias;
1127 }
1128 
1129 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the
1130 // beginning of the object the GEP points would have a negative offset with
1131 // repsect to the alloca, that means the GEP can not alias pointer (b).
1132 // Note that the pointer based on the alloca may not be a GEP. For
1133 // example, it may be the alloca itself.
1134 // The same applies if (b) is based on a GlobalVariable. Note that just being
1135 // based on isIdentifiedObject() is not enough - we need an identified object
1136 // that does not permit access to negative offsets. For example, a negative
1137 // offset from a noalias argument or call can be inbounds w.r.t the actual
1138 // underlying object.
1139 //
1140 // For example, consider:
1141 //
1142 //   struct { int f0, int f1, ...} foo;
1143 //   foo alloca;
1144 //   foo* random = bar(alloca);
1145 //   int *f0 = &alloca.f0
1146 //   int *f1 = &random->f1;
1147 //
1148 // Which is lowered, approximately, to:
1149 //
1150 //  %alloca = alloca %struct.foo
1151 //  %random = call %struct.foo* @random(%struct.foo* %alloca)
1152 //  %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0
1153 //  %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1
1154 //
1155 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated
1156 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also
1157 // point into the same object. But since %f0 points to the beginning of %alloca,
1158 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher
1159 // than (%alloca - 1), and so is not inbounds, a contradiction.
1160 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp,
1161       const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject,
1162       uint64_t ObjectAccessSize) {
1163   // If the object access size is unknown, or the GEP isn't inbounds, bail.
1164   if (ObjectAccessSize == MemoryLocation::UnknownSize || !GEPOp->isInBounds())
1165     return false;
1166 
1167   // We need the object to be an alloca or a globalvariable, and want to know
1168   // the offset of the pointer from the object precisely, so no variable
1169   // indices are allowed.
1170   if (!(isa<AllocaInst>(DecompObject.Base) ||
1171         isa<GlobalVariable>(DecompObject.Base)) ||
1172       !DecompObject.VarIndices.empty())
1173     return false;
1174 
1175   int64_t ObjectBaseOffset = DecompObject.StructOffset +
1176                              DecompObject.OtherOffset;
1177 
1178   // If the GEP has no variable indices, we know the precise offset
1179   // from the base, then use it. If the GEP has variable indices, we're in
1180   // a bit more trouble: we can't count on the constant offsets that come
1181   // from non-struct sources, since these can be "rewound" by a negative
1182   // variable offset. So use only offsets that came from structs.
1183   int64_t GEPBaseOffset = DecompGEP.StructOffset;
1184   if (DecompGEP.VarIndices.empty())
1185     GEPBaseOffset += DecompGEP.OtherOffset;
1186 
1187   return (GEPBaseOffset >= ObjectBaseOffset + (int64_t)ObjectAccessSize);
1188 }
1189 
1190 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1191 /// another pointer.
1192 ///
1193 /// We know that V1 is a GEP, but we don't know anything about V2.
1194 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for
1195 /// V2.
1196 AliasResult BasicAAResult::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
1197                                     const AAMDNodes &V1AAInfo, const Value *V2,
1198                                     uint64_t V2Size, const AAMDNodes &V2AAInfo,
1199                                     const Value *UnderlyingV1,
1200                                     const Value *UnderlyingV2) {
1201   DecomposedGEP DecompGEP1, DecompGEP2;
1202   bool GEP1MaxLookupReached =
1203     DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT);
1204   bool GEP2MaxLookupReached =
1205     DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT);
1206 
1207   int64_t GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset;
1208   int64_t GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset;
1209 
1210   assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
1211          "DecomposeGEPExpression returned a result different from "
1212          "GetUnderlyingObject");
1213 
1214   // If the GEP's offset relative to its base is such that the base would
1215   // fall below the start of the object underlying V2, then the GEP and V2
1216   // cannot alias.
1217   if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1218       isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size))
1219     return NoAlias;
1220   // If we have two gep instructions with must-alias or not-alias'ing base
1221   // pointers, figure out if the indexes to the GEP tell us anything about the
1222   // derived pointer.
1223   if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
1224     // Check for the GEP base being at a negative offset, this time in the other
1225     // direction.
1226     if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1227         isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size))
1228       return NoAlias;
1229     // Do the base pointers alias?
1230     AliasResult BaseAlias =
1231         aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(),
1232                    UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes());
1233 
1234     // Check for geps of non-aliasing underlying pointers where the offsets are
1235     // identical.
1236     if ((BaseAlias == MayAlias) && V1Size == V2Size) {
1237       // Do the base pointers alias assuming type and size.
1238       AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo,
1239                                                 UnderlyingV2, V2Size, V2AAInfo);
1240       if (PreciseBaseAlias == NoAlias) {
1241         // See if the computed offset from the common pointer tells us about the
1242         // relation of the resulting pointer.
1243         // If the max search depth is reached the result is undefined
1244         if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1245           return MayAlias;
1246 
1247         // Same offsets.
1248         if (GEP1BaseOffset == GEP2BaseOffset &&
1249             DecompGEP1.VarIndices == DecompGEP2.VarIndices)
1250           return NoAlias;
1251       }
1252     }
1253 
1254     // If we get a No or May, then return it immediately, no amount of analysis
1255     // will improve this situation.
1256     if (BaseAlias != MustAlias) {
1257       assert(BaseAlias == NoAlias || BaseAlias == MayAlias);
1258       return BaseAlias;
1259     }
1260 
1261     // Otherwise, we have a MustAlias.  Since the base pointers alias each other
1262     // exactly, see if the computed offset from the common pointer tells us
1263     // about the relation of the resulting pointer.
1264     // If we know the two GEPs are based off of the exact same pointer (and not
1265     // just the same underlying object), see if that tells us anything about
1266     // the resulting pointers.
1267     if (GEP1->getPointerOperand()->stripPointerCastsAndBarriers() ==
1268             GEP2->getPointerOperand()->stripPointerCastsAndBarriers() &&
1269         GEP1->getPointerOperandType() == GEP2->getPointerOperandType()) {
1270       AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL);
1271       // If we couldn't find anything interesting, don't abandon just yet.
1272       if (R != MayAlias)
1273         return R;
1274     }
1275 
1276     // If the max search depth is reached, the result is undefined
1277     if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1278       return MayAlias;
1279 
1280     // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1281     // symbolic difference.
1282     GEP1BaseOffset -= GEP2BaseOffset;
1283     GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);
1284 
1285   } else {
1286     // Check to see if these two pointers are related by the getelementptr
1287     // instruction.  If one pointer is a GEP with a non-zero index of the other
1288     // pointer, we know they cannot alias.
1289 
1290     // If both accesses are unknown size, we can't do anything useful here.
1291     if (V1Size == MemoryLocation::UnknownSize &&
1292         V2Size == MemoryLocation::UnknownSize)
1293       return MayAlias;
1294 
1295     AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize,
1296                                AAMDNodes(), V2, MemoryLocation::UnknownSize,
1297                                V2AAInfo, nullptr, UnderlyingV2);
1298     if (R != MustAlias) {
1299       // If V2 may alias GEP base pointer, conservatively returns MayAlias.
1300       // If V2 is known not to alias GEP base pointer, then the two values
1301       // cannot alias per GEP semantics: "Any memory access must be done through
1302       // a pointer value associated with an address range of the memory access,
1303       // otherwise the behavior is undefined.".
1304       assert(R == NoAlias || R == MayAlias);
1305       return R;
1306     }
1307 
1308     // If the max search depth is reached the result is undefined
1309     if (GEP1MaxLookupReached)
1310       return MayAlias;
1311   }
1312 
1313   // In the two GEP Case, if there is no difference in the offsets of the
1314   // computed pointers, the resultant pointers are a must alias.  This
1315   // happens when we have two lexically identical GEP's (for example).
1316   //
1317   // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
1318   // must aliases the GEP, the end result is a must alias also.
1319   if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty())
1320     return MustAlias;
1321 
1322   // If there is a constant difference between the pointers, but the difference
1323   // is less than the size of the associated memory object, then we know
1324   // that the objects are partially overlapping.  If the difference is
1325   // greater, we know they do not overlap.
1326   if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) {
1327     if (GEP1BaseOffset >= 0) {
1328       if (V2Size != MemoryLocation::UnknownSize) {
1329         if ((uint64_t)GEP1BaseOffset < V2Size)
1330           return PartialAlias;
1331         return NoAlias;
1332       }
1333     } else {
1334       // We have the situation where:
1335       // +                +
1336       // | BaseOffset     |
1337       // ---------------->|
1338       // |-->V1Size       |-------> V2Size
1339       // GEP1             V2
1340       // We need to know that V2Size is not unknown, otherwise we might have
1341       // stripped a gep with negative index ('gep <ptr>, -1, ...).
1342       if (V1Size != MemoryLocation::UnknownSize &&
1343           V2Size != MemoryLocation::UnknownSize) {
1344         if (-(uint64_t)GEP1BaseOffset < V1Size)
1345           return PartialAlias;
1346         return NoAlias;
1347       }
1348     }
1349   }
1350 
1351   if (!DecompGEP1.VarIndices.empty()) {
1352     uint64_t Modulo = 0;
1353     bool AllPositive = true;
1354     for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1355 
1356       // Try to distinguish something like &A[i][1] against &A[42][0].
1357       // Grab the least significant bit set in any of the scales. We
1358       // don't need std::abs here (even if the scale's negative) as we'll
1359       // be ^'ing Modulo with itself later.
1360       Modulo |= (uint64_t)DecompGEP1.VarIndices[i].Scale;
1361 
1362       if (AllPositive) {
1363         // If the Value could change between cycles, then any reasoning about
1364         // the Value this cycle may not hold in the next cycle. We'll just
1365         // give up if we can't determine conditions that hold for every cycle:
1366         const Value *V = DecompGEP1.VarIndices[i].V;
1367 
1368         KnownBits Known = computeKnownBits(V, DL, 0, &AC, nullptr, DT);
1369         bool SignKnownZero = Known.isNonNegative();
1370         bool SignKnownOne = Known.isNegative();
1371 
1372         // Zero-extension widens the variable, and so forces the sign
1373         // bit to zero.
1374         bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
1375         SignKnownZero |= IsZExt;
1376         SignKnownOne &= !IsZExt;
1377 
1378         // If the variable begins with a zero then we know it's
1379         // positive, regardless of whether the value is signed or
1380         // unsigned.
1381         int64_t Scale = DecompGEP1.VarIndices[i].Scale;
1382         AllPositive =
1383             (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0);
1384       }
1385     }
1386 
1387     Modulo = Modulo ^ (Modulo & (Modulo - 1));
1388 
1389     // We can compute the difference between the two addresses
1390     // mod Modulo. Check whether that difference guarantees that the
1391     // two locations do not alias.
1392     uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
1393     if (V1Size != MemoryLocation::UnknownSize &&
1394         V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size &&
1395         V1Size <= Modulo - ModOffset)
1396       return NoAlias;
1397 
1398     // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
1399     // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
1400     // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
1401     if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset)
1402       return NoAlias;
1403 
1404     if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
1405                                 GEP1BaseOffset, &AC, DT))
1406       return NoAlias;
1407   }
1408 
1409   // Statically, we can see that the base objects are the same, but the
1410   // pointers have dynamic offsets which we can't resolve. And none of our
1411   // little tricks above worked.
1412   return MayAlias;
1413 }
1414 
1415 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1416   // If the results agree, take it.
1417   if (A == B)
1418     return A;
1419   // A mix of PartialAlias and MustAlias is PartialAlias.
1420   if ((A == PartialAlias && B == MustAlias) ||
1421       (B == PartialAlias && A == MustAlias))
1422     return PartialAlias;
1423   // Otherwise, we don't know anything.
1424   return MayAlias;
1425 }
1426 
1427 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1428 /// against another.
1429 AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, uint64_t SISize,
1430                                        const AAMDNodes &SIAAInfo,
1431                                        const Value *V2, uint64_t V2Size,
1432                                        const AAMDNodes &V2AAInfo,
1433                                        const Value *UnderV2) {
1434   // If the values are Selects with the same condition, we can do a more precise
1435   // check: just check for aliases between the values on corresponding arms.
1436   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1437     if (SI->getCondition() == SI2->getCondition()) {
1438       AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo,
1439                                      SI2->getTrueValue(), V2Size, V2AAInfo);
1440       if (Alias == MayAlias)
1441         return MayAlias;
1442       AliasResult ThisAlias =
1443           aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
1444                      SI2->getFalseValue(), V2Size, V2AAInfo);
1445       return MergeAliasResults(ThisAlias, Alias);
1446     }
1447 
1448   // If both arms of the Select node NoAlias or MustAlias V2, then returns
1449   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1450   AliasResult Alias =
1451       aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(),
1452                  SISize, SIAAInfo, UnderV2);
1453   if (Alias == MayAlias)
1454     return MayAlias;
1455 
1456   AliasResult ThisAlias =
1457       aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo,
1458                  UnderV2);
1459   return MergeAliasResults(ThisAlias, Alias);
1460 }
1461 
1462 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1463 /// another.
1464 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, uint64_t PNSize,
1465                                     const AAMDNodes &PNAAInfo, const Value *V2,
1466                                     uint64_t V2Size, const AAMDNodes &V2AAInfo,
1467                                     const Value *UnderV2) {
1468   // Track phi nodes we have visited. We use this information when we determine
1469   // value equivalence.
1470   VisitedPhiBBs.insert(PN->getParent());
1471 
1472   // If the values are PHIs in the same block, we can do a more precise
1473   // as well as efficient check: just check for aliases between the values
1474   // on corresponding edges.
1475   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1476     if (PN2->getParent() == PN->getParent()) {
1477       LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
1478                    MemoryLocation(V2, V2Size, V2AAInfo));
1479       if (PN > V2)
1480         std::swap(Locs.first, Locs.second);
1481       // Analyse the PHIs' inputs under the assumption that the PHIs are
1482       // NoAlias.
1483       // If the PHIs are May/MustAlias there must be (recursively) an input
1484       // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1485       // there must be an operation on the PHIs within the PHIs' value cycle
1486       // that causes a MayAlias.
1487       // Pretend the phis do not alias.
1488       AliasResult Alias = NoAlias;
1489       assert(AliasCache.count(Locs) &&
1490              "There must exist an entry for the phi node");
1491       AliasResult OrigAliasResult = AliasCache[Locs];
1492       AliasCache[Locs] = NoAlias;
1493 
1494       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1495         AliasResult ThisAlias =
1496             aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
1497                        PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1498                        V2Size, V2AAInfo);
1499         Alias = MergeAliasResults(ThisAlias, Alias);
1500         if (Alias == MayAlias)
1501           break;
1502       }
1503 
1504       // Reset if speculation failed.
1505       if (Alias != NoAlias)
1506         AliasCache[Locs] = OrigAliasResult;
1507 
1508       return Alias;
1509     }
1510 
1511   SmallPtrSet<Value *, 4> UniqueSrc;
1512   SmallVector<Value *, 4> V1Srcs;
1513   bool isRecursive = false;
1514   for (Value *PV1 : PN->incoming_values()) {
1515     if (isa<PHINode>(PV1))
1516       // If any of the source itself is a PHI, return MayAlias conservatively
1517       // to avoid compile time explosion. The worst possible case is if both
1518       // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1519       // and 'n' are the number of PHI sources.
1520       return MayAlias;
1521 
1522     if (EnableRecPhiAnalysis)
1523       if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
1524         // Check whether the incoming value is a GEP that advances the pointer
1525         // result of this PHI node (e.g. in a loop). If this is the case, we
1526         // would recurse and always get a MayAlias. Handle this case specially
1527         // below.
1528         if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
1529             isa<ConstantInt>(PV1GEP->idx_begin())) {
1530           isRecursive = true;
1531           continue;
1532         }
1533       }
1534 
1535     if (UniqueSrc.insert(PV1).second)
1536       V1Srcs.push_back(PV1);
1537   }
1538 
1539   // If this PHI node is recursive, set the size of the accessed memory to
1540   // unknown to represent all the possible values the GEP could advance the
1541   // pointer to.
1542   if (isRecursive)
1543     PNSize = MemoryLocation::UnknownSize;
1544 
1545   AliasResult Alias =
1546       aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0],
1547                  PNSize, PNAAInfo, UnderV2);
1548 
1549   // Early exit if the check of the first PHI source against V2 is MayAlias.
1550   // Other results are not possible.
1551   if (Alias == MayAlias)
1552     return MayAlias;
1553 
1554   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1555   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1556   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1557     Value *V = V1Srcs[i];
1558 
1559     AliasResult ThisAlias =
1560         aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, UnderV2);
1561     Alias = MergeAliasResults(ThisAlias, Alias);
1562     if (Alias == MayAlias)
1563       break;
1564   }
1565 
1566   return Alias;
1567 }
1568 
1569 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1570 /// array references.
1571 AliasResult BasicAAResult::aliasCheck(const Value *V1, uint64_t V1Size,
1572                                       AAMDNodes V1AAInfo, const Value *V2,
1573                                       uint64_t V2Size, AAMDNodes V2AAInfo,
1574                                       const Value *O1, const Value *O2) {
1575   // If either of the memory references is empty, it doesn't matter what the
1576   // pointer values are.
1577   if (V1Size == 0 || V2Size == 0)
1578     return NoAlias;
1579 
1580   // Strip off any casts if they exist.
1581   V1 = V1->stripPointerCastsAndBarriers();
1582   V2 = V2->stripPointerCastsAndBarriers();
1583 
1584   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1585   // value for undef that aliases nothing in the program.
1586   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1587     return NoAlias;
1588 
1589   // Are we checking for alias of the same value?
1590   // Because we look 'through' phi nodes, we could look at "Value" pointers from
1591   // different iterations. We must therefore make sure that this is not the
1592   // case. The function isValueEqualInPotentialCycles ensures that this cannot
1593   // happen by looking at the visited phi nodes and making sure they cannot
1594   // reach the value.
1595   if (isValueEqualInPotentialCycles(V1, V2))
1596     return MustAlias;
1597 
1598   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1599     return NoAlias; // Scalars cannot alias each other
1600 
1601   // Figure out what objects these things are pointing to if we can.
1602   if (O1 == nullptr)
1603     O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
1604 
1605   if (O2 == nullptr)
1606     O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);
1607 
1608   // Null values in the default address space don't point to any object, so they
1609   // don't alias any other pointer.
1610   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1611     if (CPN->getType()->getAddressSpace() == 0)
1612       return NoAlias;
1613   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1614     if (CPN->getType()->getAddressSpace() == 0)
1615       return NoAlias;
1616 
1617   if (O1 != O2) {
1618     // If V1/V2 point to two different objects, we know that we have no alias.
1619     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1620       return NoAlias;
1621 
1622     // Constant pointers can't alias with non-const isIdentifiedObject objects.
1623     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1624         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1625       return NoAlias;
1626 
1627     // Function arguments can't alias with things that are known to be
1628     // unambigously identified at the function level.
1629     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1630         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1631       return NoAlias;
1632 
1633     // If one pointer is the result of a call/invoke or load and the other is a
1634     // non-escaping local object within the same function, then we know the
1635     // object couldn't escape to a point where the call could return it.
1636     //
1637     // Note that if the pointers are in different functions, there are a
1638     // variety of complications. A call with a nocapture argument may still
1639     // temporary store the nocapture argument's value in a temporary memory
1640     // location if that memory location doesn't escape. Or it may pass a
1641     // nocapture value to other functions as long as they don't capture it.
1642     if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
1643       return NoAlias;
1644     if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
1645       return NoAlias;
1646   }
1647 
1648   // If the size of one access is larger than the entire object on the other
1649   // side, then we know such behavior is undefined and can assume no alias.
1650   if ((V1Size != MemoryLocation::UnknownSize &&
1651        isObjectSmallerThan(O2, V1Size, DL, TLI)) ||
1652       (V2Size != MemoryLocation::UnknownSize &&
1653        isObjectSmallerThan(O1, V2Size, DL, TLI)))
1654     return NoAlias;
1655 
1656   // Check the cache before climbing up use-def chains. This also terminates
1657   // otherwise infinitely recursive queries.
1658   LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
1659                MemoryLocation(V2, V2Size, V2AAInfo));
1660   if (V1 > V2)
1661     std::swap(Locs.first, Locs.second);
1662   std::pair<AliasCacheTy::iterator, bool> Pair =
1663       AliasCache.insert(std::make_pair(Locs, MayAlias));
1664   if (!Pair.second)
1665     return Pair.first->second;
1666 
1667   // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1668   // GEP can't simplify, we don't even look at the PHI cases.
1669   if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1670     std::swap(V1, V2);
1671     std::swap(V1Size, V2Size);
1672     std::swap(O1, O2);
1673     std::swap(V1AAInfo, V2AAInfo);
1674   }
1675   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1676     AliasResult Result =
1677         aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2);
1678     if (Result != MayAlias)
1679       return AliasCache[Locs] = Result;
1680   }
1681 
1682   if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1683     std::swap(V1, V2);
1684     std::swap(O1, O2);
1685     std::swap(V1Size, V2Size);
1686     std::swap(V1AAInfo, V2AAInfo);
1687   }
1688   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1689     AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo,
1690                                   V2, V2Size, V2AAInfo, O2);
1691     if (Result != MayAlias)
1692       return AliasCache[Locs] = Result;
1693   }
1694 
1695   if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1696     std::swap(V1, V2);
1697     std::swap(O1, O2);
1698     std::swap(V1Size, V2Size);
1699     std::swap(V1AAInfo, V2AAInfo);
1700   }
1701   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1702     AliasResult Result =
1703         aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2);
1704     if (Result != MayAlias)
1705       return AliasCache[Locs] = Result;
1706   }
1707 
1708   // If both pointers are pointing into the same object and one of them
1709   // accesses the entire object, then the accesses must overlap in some way.
1710   if (O1 == O2)
1711     if (V1Size != MemoryLocation::UnknownSize &&
1712         V2Size != MemoryLocation::UnknownSize &&
1713         (isObjectSize(O1, V1Size, DL, TLI) ||
1714          isObjectSize(O2, V2Size, DL, TLI)))
1715       return AliasCache[Locs] = PartialAlias;
1716 
1717   // Recurse back into the best AA results we have, potentially with refined
1718   // memory locations. We have already ensured that BasicAA has a MayAlias
1719   // cache result for these, so any recursion back into BasicAA won't loop.
1720   AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second);
1721   return AliasCache[Locs] = Result;
1722 }
1723 
1724 /// Check whether two Values can be considered equivalent.
1725 ///
1726 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1727 /// they can not be part of a cycle in the value graph by looking at all
1728 /// visited phi nodes an making sure that the phis cannot reach the value. We
1729 /// have to do this because we are looking through phi nodes (That is we say
1730 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1731 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1732                                                   const Value *V2) {
1733   if (V != V2)
1734     return false;
1735 
1736   const Instruction *Inst = dyn_cast<Instruction>(V);
1737   if (!Inst)
1738     return true;
1739 
1740   if (VisitedPhiBBs.empty())
1741     return true;
1742 
1743   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1744     return false;
1745 
1746   // Make sure that the visited phis cannot reach the Value. This ensures that
1747   // the Values cannot come from different iterations of a potential cycle the
1748   // phi nodes could be involved in.
1749   for (auto *P : VisitedPhiBBs)
1750     if (isPotentiallyReachable(&P->front(), Inst, DT, LI))
1751       return false;
1752 
1753   return true;
1754 }
1755 
1756 /// Computes the symbolic difference between two de-composed GEPs.
1757 ///
1758 /// Dest and Src are the variable indices from two decomposed GetElementPtr
1759 /// instructions GEP1 and GEP2 which have common base pointers.
1760 void BasicAAResult::GetIndexDifference(
1761     SmallVectorImpl<VariableGEPIndex> &Dest,
1762     const SmallVectorImpl<VariableGEPIndex> &Src) {
1763   if (Src.empty())
1764     return;
1765 
1766   for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1767     const Value *V = Src[i].V;
1768     unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
1769     int64_t Scale = Src[i].Scale;
1770 
1771     // Find V in Dest.  This is N^2, but pointer indices almost never have more
1772     // than a few variable indexes.
1773     for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1774       if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1775           Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
1776         continue;
1777 
1778       // If we found it, subtract off Scale V's from the entry in Dest.  If it
1779       // goes to zero, remove the entry.
1780       if (Dest[j].Scale != Scale)
1781         Dest[j].Scale -= Scale;
1782       else
1783         Dest.erase(Dest.begin() + j);
1784       Scale = 0;
1785       break;
1786     }
1787 
1788     // If we didn't consume this entry, add it to the end of the Dest list.
1789     if (Scale) {
1790       VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale};
1791       Dest.push_back(Entry);
1792     }
1793   }
1794 }
1795 
1796 bool BasicAAResult::constantOffsetHeuristic(
1797     const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size,
1798     uint64_t V2Size, int64_t BaseOffset, AssumptionCache *AC,
1799     DominatorTree *DT) {
1800   if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize ||
1801       V2Size == MemoryLocation::UnknownSize)
1802     return false;
1803 
1804   const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
1805 
1806   if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
1807       Var0.Scale != -Var1.Scale)
1808     return false;
1809 
1810   unsigned Width = Var1.V->getType()->getIntegerBitWidth();
1811 
1812   // We'll strip off the Extensions of Var0 and Var1 and do another round
1813   // of GetLinearExpression decomposition. In the example above, if Var0
1814   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1815 
1816   APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
1817       V1Offset(Width, 0);
1818   bool NSW = true, NUW = true;
1819   unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
1820   const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
1821                                         V0SExtBits, DL, 0, AC, DT, NSW, NUW);
1822   NSW = true;
1823   NUW = true;
1824   const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
1825                                         V1SExtBits, DL, 0, AC, DT, NSW, NUW);
1826 
1827   if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
1828       V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
1829     return false;
1830 
1831   // We have a hit - Var0 and Var1 only differ by a constant offset!
1832 
1833   // If we've been sext'ed then zext'd the maximum difference between Var0 and
1834   // Var1 is possible to calculate, but we're just interested in the absolute
1835   // minimum difference between the two. The minimum distance may occur due to
1836   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1837   // the minimum distance between %i and %i + 5 is 3.
1838   APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
1839   MinDiff = APIntOps::umin(MinDiff, Wrapped);
1840   uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale);
1841 
1842   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
1843   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
1844   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
1845   // V2Size can fit in the MinDiffBytes gap.
1846   return V1Size + std::abs(BaseOffset) <= MinDiffBytes &&
1847          V2Size + std::abs(BaseOffset) <= MinDiffBytes;
1848 }
1849 
1850 //===----------------------------------------------------------------------===//
1851 // BasicAliasAnalysis Pass
1852 //===----------------------------------------------------------------------===//
1853 
1854 AnalysisKey BasicAA::Key;
1855 
1856 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
1857   return BasicAAResult(F.getParent()->getDataLayout(),
1858                        AM.getResult<TargetLibraryAnalysis>(F),
1859                        AM.getResult<AssumptionAnalysis>(F),
1860                        &AM.getResult<DominatorTreeAnalysis>(F),
1861                        AM.getCachedResult<LoopAnalysis>(F));
1862 }
1863 
1864 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
1865     initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
1866 }
1867 
1868 char BasicAAWrapperPass::ID = 0;
1869 
1870 void BasicAAWrapperPass::anchor() {}
1871 
1872 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa",
1873                       "Basic Alias Analysis (stateless AA impl)", true, true)
1874 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1875 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1876 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1877 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa",
1878                     "Basic Alias Analysis (stateless AA impl)", true, true)
1879 
1880 FunctionPass *llvm::createBasicAAWrapperPass() {
1881   return new BasicAAWrapperPass();
1882 }
1883 
1884 bool BasicAAWrapperPass::runOnFunction(Function &F) {
1885   auto &ACT = getAnalysis<AssumptionCacheTracker>();
1886   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
1887   auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
1888   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
1889 
1890   Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), TLIWP.getTLI(),
1891                                  ACT.getAssumptionCache(F), &DTWP.getDomTree(),
1892                                  LIWP ? &LIWP->getLoopInfo() : nullptr));
1893 
1894   return false;
1895 }
1896 
1897 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1898   AU.setPreservesAll();
1899   AU.addRequired<AssumptionCacheTracker>();
1900   AU.addRequired<DominatorTreeWrapperPass>();
1901   AU.addRequired<TargetLibraryInfoWrapperPass>();
1902 }
1903 
1904 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
1905   return BasicAAResult(
1906       F.getParent()->getDataLayout(),
1907       P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
1908       P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
1909 }
1910