1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the primary stateless implementation of the 10 // Alias Analysis interface that implements identities (two different 11 // globals cannot alias, etc), but does no stateful analysis. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/BasicAliasAnalysis.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/CFG.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/MemoryBuiltins.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/PhiValues.h" 30 #include "llvm/Analysis/TargetLibraryInfo.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/IR/Argument.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GetElementPtrTypeIterator.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/Metadata.h" 49 #include "llvm/IR/Operator.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/User.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/KnownBits.h" 59 #include <cassert> 60 #include <cstdint> 61 #include <cstdlib> 62 #include <utility> 63 64 #define DEBUG_TYPE "basicaa" 65 66 using namespace llvm; 67 68 /// Enable analysis of recursive PHI nodes. 69 static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden, 70 cl::init(true)); 71 72 /// By default, even on 32-bit architectures we use 64-bit integers for 73 /// calculations. This will allow us to more-aggressively decompose indexing 74 /// expressions calculated using i64 values (e.g., long long in C) which is 75 /// common enough to worry about. 76 static cl::opt<bool> ForceAtLeast64Bits("basic-aa-force-at-least-64b", 77 cl::Hidden, cl::init(true)); 78 static cl::opt<bool> DoubleCalcBits("basic-aa-double-calc-bits", 79 cl::Hidden, cl::init(false)); 80 81 /// SearchLimitReached / SearchTimes shows how often the limit of 82 /// to decompose GEPs is reached. It will affect the precision 83 /// of basic alias analysis. 84 STATISTIC(SearchLimitReached, "Number of times the limit to " 85 "decompose GEPs is reached"); 86 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 87 88 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 89 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be 90 /// careful with value equivalence. We use reachability to make sure a value 91 /// cannot be involved in a cycle. 92 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 93 94 // The max limit of the search depth in DecomposeGEPExpression() and 95 // getUnderlyingObject(), both functions need to use the same search 96 // depth otherwise the algorithm in aliasGEP will assert. 97 static const unsigned MaxLookupSearchDepth = 6; 98 99 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA, 100 FunctionAnalysisManager::Invalidator &Inv) { 101 // We don't care if this analysis itself is preserved, it has no state. But 102 // we need to check that the analyses it depends on have been. Note that we 103 // may be created without handles to some analyses and in that case don't 104 // depend on them. 105 if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) || 106 (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) || 107 (LI && Inv.invalidate<LoopAnalysis>(Fn, PA)) || 108 (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA))) 109 return true; 110 111 // Otherwise this analysis result remains valid. 112 return false; 113 } 114 115 //===----------------------------------------------------------------------===// 116 // Useful predicates 117 //===----------------------------------------------------------------------===// 118 119 /// Returns true if the pointer is one which would have been considered an 120 /// escape by isNonEscapingLocalObject. 121 static bool isEscapeSource(const Value *V) { 122 if (isa<CallBase>(V)) 123 return true; 124 125 if (isa<Argument>(V)) 126 return true; 127 128 // The load case works because isNonEscapingLocalObject considers all 129 // stores to be escapes (it passes true for the StoreCaptures argument 130 // to PointerMayBeCaptured). 131 if (isa<LoadInst>(V)) 132 return true; 133 134 return false; 135 } 136 137 /// Returns the size of the object specified by V or UnknownSize if unknown. 138 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 139 const TargetLibraryInfo &TLI, 140 bool NullIsValidLoc, 141 bool RoundToAlign = false) { 142 uint64_t Size; 143 ObjectSizeOpts Opts; 144 Opts.RoundToAlign = RoundToAlign; 145 Opts.NullIsUnknownSize = NullIsValidLoc; 146 if (getObjectSize(V, Size, DL, &TLI, Opts)) 147 return Size; 148 return MemoryLocation::UnknownSize; 149 } 150 151 /// Returns true if we can prove that the object specified by V is smaller than 152 /// Size. 153 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 154 const DataLayout &DL, 155 const TargetLibraryInfo &TLI, 156 bool NullIsValidLoc) { 157 // Note that the meanings of the "object" are slightly different in the 158 // following contexts: 159 // c1: llvm::getObjectSize() 160 // c2: llvm.objectsize() intrinsic 161 // c3: isObjectSmallerThan() 162 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 163 // refers to the "entire object". 164 // 165 // Consider this example: 166 // char *p = (char*)malloc(100) 167 // char *q = p+80; 168 // 169 // In the context of c1 and c2, the "object" pointed by q refers to the 170 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 171 // 172 // However, in the context of c3, the "object" refers to the chunk of memory 173 // being allocated. So, the "object" has 100 bytes, and q points to the middle 174 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 175 // parameter, before the llvm::getObjectSize() is called to get the size of 176 // entire object, we should: 177 // - either rewind the pointer q to the base-address of the object in 178 // question (in this case rewind to p), or 179 // - just give up. It is up to caller to make sure the pointer is pointing 180 // to the base address the object. 181 // 182 // We go for 2nd option for simplicity. 183 if (!isIdentifiedObject(V)) 184 return false; 185 186 // This function needs to use the aligned object size because we allow 187 // reads a bit past the end given sufficient alignment. 188 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc, 189 /*RoundToAlign*/ true); 190 191 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; 192 } 193 194 /// Return the minimal extent from \p V to the end of the underlying object, 195 /// assuming the result is used in an aliasing query. E.g., we do use the query 196 /// location size and the fact that null pointers cannot alias here. 197 static uint64_t getMinimalExtentFrom(const Value &V, 198 const LocationSize &LocSize, 199 const DataLayout &DL, 200 bool NullIsValidLoc) { 201 // If we have dereferenceability information we know a lower bound for the 202 // extent as accesses for a lower offset would be valid. We need to exclude 203 // the "or null" part if null is a valid pointer. 204 bool CanBeNull; 205 uint64_t DerefBytes = V.getPointerDereferenceableBytes(DL, CanBeNull); 206 DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes; 207 // If queried with a precise location size, we assume that location size to be 208 // accessed, thus valid. 209 if (LocSize.isPrecise()) 210 DerefBytes = std::max(DerefBytes, LocSize.getValue()); 211 return DerefBytes; 212 } 213 214 /// Returns true if we can prove that the object specified by V has size Size. 215 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, 216 const TargetLibraryInfo &TLI, bool NullIsValidLoc) { 217 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc); 218 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; 219 } 220 221 //===----------------------------------------------------------------------===// 222 // GetElementPtr Instruction Decomposition and Analysis 223 //===----------------------------------------------------------------------===// 224 225 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 226 /// B are constant integers. 227 /// 228 /// Returns the scale and offset values as APInts and return V as a Value*, and 229 /// return whether we looked through any sign or zero extends. The incoming 230 /// Value is known to have IntegerType, and it may already be sign or zero 231 /// extended. 232 /// 233 /// Note that this looks through extends, so the high bits may not be 234 /// represented in the result. 235 /*static*/ const Value *BasicAAResult::GetLinearExpression( 236 const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits, 237 unsigned &SExtBits, const DataLayout &DL, unsigned Depth, 238 AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) { 239 assert(V->getType()->isIntegerTy() && "Not an integer value"); 240 241 // Limit our recursion depth. 242 if (Depth == 6) { 243 Scale = 1; 244 Offset = 0; 245 return V; 246 } 247 248 if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) { 249 // If it's a constant, just convert it to an offset and remove the variable. 250 // If we've been called recursively, the Offset bit width will be greater 251 // than the constant's (the Offset's always as wide as the outermost call), 252 // so we'll zext here and process any extension in the isa<SExtInst> & 253 // isa<ZExtInst> cases below. 254 Offset += Const->getValue().zextOrSelf(Offset.getBitWidth()); 255 assert(Scale == 0 && "Constant values don't have a scale"); 256 return V; 257 } 258 259 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 260 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 261 // If we've been called recursively, then Offset and Scale will be wider 262 // than the BOp operands. We'll always zext it here as we'll process sign 263 // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases). 264 APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth()); 265 266 switch (BOp->getOpcode()) { 267 default: 268 // We don't understand this instruction, so we can't decompose it any 269 // further. 270 Scale = 1; 271 Offset = 0; 272 return V; 273 case Instruction::Or: 274 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 275 // analyze it. 276 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, 277 BOp, DT)) { 278 Scale = 1; 279 Offset = 0; 280 return V; 281 } 282 LLVM_FALLTHROUGH; 283 case Instruction::Add: 284 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 285 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 286 Offset += RHS; 287 break; 288 case Instruction::Sub: 289 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 290 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 291 Offset -= RHS; 292 break; 293 case Instruction::Mul: 294 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 295 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 296 Offset *= RHS; 297 Scale *= RHS; 298 break; 299 case Instruction::Shl: 300 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 301 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 302 303 // We're trying to linearize an expression of the kind: 304 // shl i8 -128, 36 305 // where the shift count exceeds the bitwidth of the type. 306 // We can't decompose this further (the expression would return 307 // a poison value). 308 if (Offset.getBitWidth() < RHS.getLimitedValue() || 309 Scale.getBitWidth() < RHS.getLimitedValue()) { 310 Scale = 1; 311 Offset = 0; 312 return V; 313 } 314 315 Offset <<= RHS.getLimitedValue(); 316 Scale <<= RHS.getLimitedValue(); 317 // the semantics of nsw and nuw for left shifts don't match those of 318 // multiplications, so we won't propagate them. 319 NSW = NUW = false; 320 return V; 321 } 322 323 if (isa<OverflowingBinaryOperator>(BOp)) { 324 NUW &= BOp->hasNoUnsignedWrap(); 325 NSW &= BOp->hasNoSignedWrap(); 326 } 327 return V; 328 } 329 } 330 331 // Since GEP indices are sign extended anyway, we don't care about the high 332 // bits of a sign or zero extended value - just scales and offsets. The 333 // extensions have to be consistent though. 334 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) { 335 Value *CastOp = cast<CastInst>(V)->getOperand(0); 336 unsigned NewWidth = V->getType()->getPrimitiveSizeInBits(); 337 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 338 unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits; 339 const Value *Result = 340 GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL, 341 Depth + 1, AC, DT, NSW, NUW); 342 343 // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this 344 // by just incrementing the number of bits we've extended by. 345 unsigned ExtendedBy = NewWidth - SmallWidth; 346 347 if (isa<SExtInst>(V) && ZExtBits == 0) { 348 // sext(sext(%x, a), b) == sext(%x, a + b) 349 350 if (NSW) { 351 // We haven't sign-wrapped, so it's valid to decompose sext(%x + c) 352 // into sext(%x) + sext(c). We'll sext the Offset ourselves: 353 unsigned OldWidth = Offset.getBitWidth(); 354 Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth); 355 } else { 356 // We may have signed-wrapped, so don't decompose sext(%x + c) into 357 // sext(%x) + sext(c) 358 Scale = 1; 359 Offset = 0; 360 Result = CastOp; 361 ZExtBits = OldZExtBits; 362 SExtBits = OldSExtBits; 363 } 364 SExtBits += ExtendedBy; 365 } else { 366 // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b) 367 368 if (!NUW) { 369 // We may have unsigned-wrapped, so don't decompose zext(%x + c) into 370 // zext(%x) + zext(c) 371 Scale = 1; 372 Offset = 0; 373 Result = CastOp; 374 ZExtBits = OldZExtBits; 375 SExtBits = OldSExtBits; 376 } 377 ZExtBits += ExtendedBy; 378 } 379 380 return Result; 381 } 382 383 Scale = 1; 384 Offset = 0; 385 return V; 386 } 387 388 /// To ensure a pointer offset fits in an integer of size PointerSize 389 /// (in bits) when that size is smaller than the maximum pointer size. This is 390 /// an issue, for example, in particular for 32b pointers with negative indices 391 /// that rely on two's complement wrap-arounds for precise alias information 392 /// where the maximum pointer size is 64b. 393 static APInt adjustToPointerSize(const APInt &Offset, unsigned PointerSize) { 394 assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!"); 395 unsigned ShiftBits = Offset.getBitWidth() - PointerSize; 396 return (Offset << ShiftBits).ashr(ShiftBits); 397 } 398 399 static unsigned getMaxPointerSize(const DataLayout &DL) { 400 unsigned MaxPointerSize = DL.getMaxPointerSizeInBits(); 401 if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64; 402 if (DoubleCalcBits) MaxPointerSize *= 2; 403 404 return MaxPointerSize; 405 } 406 407 /// If V is a symbolic pointer expression, decompose it into a base pointer 408 /// with a constant offset and a number of scaled symbolic offsets. 409 /// 410 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 411 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 412 /// specified amount, but which may have other unrepresented high bits. As 413 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 414 /// 415 /// This function is capable of analyzing everything that getUnderlyingObject 416 /// can look through. To be able to do that getUnderlyingObject and 417 /// DecomposeGEPExpression must use the same search depth 418 /// (MaxLookupSearchDepth). 419 bool BasicAAResult::DecomposeGEPExpression(const Value *V, 420 DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC, 421 DominatorTree *DT) { 422 // Limit recursion depth to limit compile time in crazy cases. 423 unsigned MaxLookup = MaxLookupSearchDepth; 424 SearchTimes++; 425 426 unsigned MaxPointerSize = getMaxPointerSize(DL); 427 Decomposed.VarIndices.clear(); 428 do { 429 // See if this is a bitcast or GEP. 430 const Operator *Op = dyn_cast<Operator>(V); 431 if (!Op) { 432 // The only non-operator case we can handle are GlobalAliases. 433 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 434 if (!GA->isInterposable()) { 435 V = GA->getAliasee(); 436 continue; 437 } 438 } 439 Decomposed.Base = V; 440 return false; 441 } 442 443 if (Op->getOpcode() == Instruction::BitCast || 444 Op->getOpcode() == Instruction::AddrSpaceCast) { 445 V = Op->getOperand(0); 446 continue; 447 } 448 449 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 450 if (!GEPOp) { 451 if (const auto *PHI = dyn_cast<PHINode>(V)) { 452 // Look through single-arg phi nodes created by LCSSA. 453 if (PHI->getNumIncomingValues() == 1) { 454 V = PHI->getIncomingValue(0); 455 continue; 456 } 457 } else if (const auto *Call = dyn_cast<CallBase>(V)) { 458 // CaptureTracking can know about special capturing properties of some 459 // intrinsics like launder.invariant.group, that can't be expressed with 460 // the attributes, but have properties like returning aliasing pointer. 461 // Because some analysis may assume that nocaptured pointer is not 462 // returned from some special intrinsic (because function would have to 463 // be marked with returns attribute), it is crucial to use this function 464 // because it should be in sync with CaptureTracking. Not using it may 465 // cause weird miscompilations where 2 aliasing pointers are assumed to 466 // noalias. 467 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 468 V = RP; 469 continue; 470 } 471 } 472 473 Decomposed.Base = V; 474 return false; 475 } 476 477 // Don't attempt to analyze GEPs over unsized objects. 478 if (!GEPOp->getSourceElementType()->isSized()) { 479 Decomposed.Base = V; 480 return false; 481 } 482 483 // Don't attempt to analyze GEPs if index scale is not a compile-time 484 // constant. 485 if (isa<ScalableVectorType>(GEPOp->getSourceElementType())) { 486 Decomposed.Base = V; 487 Decomposed.HasCompileTimeConstantScale = false; 488 return false; 489 } 490 491 unsigned AS = GEPOp->getPointerAddressSpace(); 492 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 493 gep_type_iterator GTI = gep_type_begin(GEPOp); 494 unsigned PointerSize = DL.getPointerSizeInBits(AS); 495 // Assume all GEP operands are constants until proven otherwise. 496 bool GepHasConstantOffset = true; 497 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 498 I != E; ++I, ++GTI) { 499 const Value *Index = *I; 500 // Compute the (potentially symbolic) offset in bytes for this index. 501 if (StructType *STy = GTI.getStructTypeOrNull()) { 502 // For a struct, add the member offset. 503 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 504 if (FieldNo == 0) 505 continue; 506 507 Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo); 508 continue; 509 } 510 511 // For an array/pointer, add the element offset, explicitly scaled. 512 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 513 if (CIdx->isZero()) 514 continue; 515 Decomposed.Offset += 516 (DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize() * 517 CIdx->getValue().sextOrSelf(MaxPointerSize)) 518 .sextOrTrunc(MaxPointerSize); 519 continue; 520 } 521 522 GepHasConstantOffset = false; 523 524 APInt Scale(MaxPointerSize, 525 DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize()); 526 unsigned ZExtBits = 0, SExtBits = 0; 527 528 // If the integer type is smaller than the pointer size, it is implicitly 529 // sign extended to pointer size. 530 unsigned Width = Index->getType()->getIntegerBitWidth(); 531 if (PointerSize > Width) 532 SExtBits += PointerSize - Width; 533 534 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 535 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 536 bool NSW = true, NUW = true; 537 const Value *OrigIndex = Index; 538 Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits, 539 SExtBits, DL, 0, AC, DT, NSW, NUW); 540 541 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 542 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 543 544 // It can be the case that, even through C1*V+C2 does not overflow for 545 // relevant values of V, (C2*Scale) can overflow. In that case, we cannot 546 // decompose the expression in this way. 547 // 548 // FIXME: C1*Scale and the other operations in the decomposed 549 // (C1*Scale)*V+C2*Scale can also overflow. We should check for this 550 // possibility. 551 bool Overflow; 552 APInt ScaledOffset = IndexOffset.sextOrTrunc(MaxPointerSize) 553 .smul_ov(Scale, Overflow); 554 if (Overflow) { 555 Index = OrigIndex; 556 IndexScale = 1; 557 IndexOffset = 0; 558 559 ZExtBits = SExtBits = 0; 560 if (PointerSize > Width) 561 SExtBits += PointerSize - Width; 562 } else { 563 Decomposed.Offset += ScaledOffset; 564 Scale *= IndexScale.sextOrTrunc(MaxPointerSize); 565 } 566 567 // If we already had an occurrence of this index variable, merge this 568 // scale into it. For example, we want to handle: 569 // A[x][x] -> x*16 + x*4 -> x*20 570 // This also ensures that 'x' only appears in the index list once. 571 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { 572 if (Decomposed.VarIndices[i].V == Index && 573 Decomposed.VarIndices[i].ZExtBits == ZExtBits && 574 Decomposed.VarIndices[i].SExtBits == SExtBits) { 575 Scale += Decomposed.VarIndices[i].Scale; 576 Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i); 577 break; 578 } 579 } 580 581 // Make sure that we have a scale that makes sense for this target's 582 // pointer size. 583 Scale = adjustToPointerSize(Scale, PointerSize); 584 585 if (!!Scale) { 586 VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, Scale}; 587 Decomposed.VarIndices.push_back(Entry); 588 } 589 } 590 591 // Take care of wrap-arounds 592 if (GepHasConstantOffset) 593 Decomposed.Offset = adjustToPointerSize(Decomposed.Offset, PointerSize); 594 595 // Analyze the base pointer next. 596 V = GEPOp->getOperand(0); 597 } while (--MaxLookup); 598 599 // If the chain of expressions is too deep, just return early. 600 Decomposed.Base = V; 601 SearchLimitReached++; 602 return true; 603 } 604 605 /// Returns whether the given pointer value points to memory that is local to 606 /// the function, with global constants being considered local to all 607 /// functions. 608 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc, 609 AAQueryInfo &AAQI, bool OrLocal) { 610 assert(Visited.empty() && "Visited must be cleared after use!"); 611 612 unsigned MaxLookup = 8; 613 SmallVector<const Value *, 16> Worklist; 614 Worklist.push_back(Loc.Ptr); 615 do { 616 const Value *V = getUnderlyingObject(Worklist.pop_back_val()); 617 if (!Visited.insert(V).second) { 618 Visited.clear(); 619 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 620 } 621 622 // An alloca instruction defines local memory. 623 if (OrLocal && isa<AllocaInst>(V)) 624 continue; 625 626 // A global constant counts as local memory for our purposes. 627 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 628 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 629 // global to be marked constant in some modules and non-constant in 630 // others. GV may even be a declaration, not a definition. 631 if (!GV->isConstant()) { 632 Visited.clear(); 633 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 634 } 635 continue; 636 } 637 638 // If both select values point to local memory, then so does the select. 639 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 640 Worklist.push_back(SI->getTrueValue()); 641 Worklist.push_back(SI->getFalseValue()); 642 continue; 643 } 644 645 // If all values incoming to a phi node point to local memory, then so does 646 // the phi. 647 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 648 // Don't bother inspecting phi nodes with many operands. 649 if (PN->getNumIncomingValues() > MaxLookup) { 650 Visited.clear(); 651 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 652 } 653 for (Value *IncValue : PN->incoming_values()) 654 Worklist.push_back(IncValue); 655 continue; 656 } 657 658 // Otherwise be conservative. 659 Visited.clear(); 660 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 661 } while (!Worklist.empty() && --MaxLookup); 662 663 Visited.clear(); 664 return Worklist.empty(); 665 } 666 667 /// Returns the behavior when calling the given call site. 668 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) { 669 if (Call->doesNotAccessMemory()) 670 // Can't do better than this. 671 return FMRB_DoesNotAccessMemory; 672 673 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 674 675 // If the callsite knows it only reads memory, don't return worse 676 // than that. 677 if (Call->onlyReadsMemory()) 678 Min = FMRB_OnlyReadsMemory; 679 else if (Call->doesNotReadMemory()) 680 Min = FMRB_OnlyWritesMemory; 681 682 if (Call->onlyAccessesArgMemory()) 683 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 684 else if (Call->onlyAccessesInaccessibleMemory()) 685 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 686 else if (Call->onlyAccessesInaccessibleMemOrArgMem()) 687 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 688 689 // If the call has operand bundles then aliasing attributes from the function 690 // it calls do not directly apply to the call. This can be made more precise 691 // in the future. 692 if (!Call->hasOperandBundles()) 693 if (const Function *F = Call->getCalledFunction()) 694 Min = 695 FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F)); 696 697 return Min; 698 } 699 700 /// Returns the behavior when calling the given function. For use when the call 701 /// site is not known. 702 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) { 703 // If the function declares it doesn't access memory, we can't do better. 704 if (F->doesNotAccessMemory()) 705 return FMRB_DoesNotAccessMemory; 706 707 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 708 709 // If the function declares it only reads memory, go with that. 710 if (F->onlyReadsMemory()) 711 Min = FMRB_OnlyReadsMemory; 712 else if (F->doesNotReadMemory()) 713 Min = FMRB_OnlyWritesMemory; 714 715 if (F->onlyAccessesArgMemory()) 716 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 717 else if (F->onlyAccessesInaccessibleMemory()) 718 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 719 else if (F->onlyAccessesInaccessibleMemOrArgMem()) 720 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 721 722 return Min; 723 } 724 725 /// Returns true if this is a writeonly (i.e Mod only) parameter. 726 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx, 727 const TargetLibraryInfo &TLI) { 728 if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly)) 729 return true; 730 731 // We can bound the aliasing properties of memset_pattern16 just as we can 732 // for memcpy/memset. This is particularly important because the 733 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 734 // whenever possible. 735 // FIXME Consider handling this in InferFunctionAttr.cpp together with other 736 // attributes. 737 LibFunc F; 738 if (Call->getCalledFunction() && 739 TLI.getLibFunc(*Call->getCalledFunction(), F) && 740 F == LibFunc_memset_pattern16 && TLI.has(F)) 741 if (ArgIdx == 0) 742 return true; 743 744 // TODO: memset_pattern4, memset_pattern8 745 // TODO: _chk variants 746 // TODO: strcmp, strcpy 747 748 return false; 749 } 750 751 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call, 752 unsigned ArgIdx) { 753 // Checking for known builtin intrinsics and target library functions. 754 if (isWriteOnlyParam(Call, ArgIdx, TLI)) 755 return ModRefInfo::Mod; 756 757 if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly)) 758 return ModRefInfo::Ref; 759 760 if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone)) 761 return ModRefInfo::NoModRef; 762 763 return AAResultBase::getArgModRefInfo(Call, ArgIdx); 764 } 765 766 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) { 767 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call); 768 return II && II->getIntrinsicID() == IID; 769 } 770 771 #ifndef NDEBUG 772 static const Function *getParent(const Value *V) { 773 if (const Instruction *inst = dyn_cast<Instruction>(V)) { 774 if (!inst->getParent()) 775 return nullptr; 776 return inst->getParent()->getParent(); 777 } 778 779 if (const Argument *arg = dyn_cast<Argument>(V)) 780 return arg->getParent(); 781 782 return nullptr; 783 } 784 785 static bool notDifferentParent(const Value *O1, const Value *O2) { 786 787 const Function *F1 = getParent(O1); 788 const Function *F2 = getParent(O2); 789 790 return !F1 || !F2 || F1 == F2; 791 } 792 #endif 793 794 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 795 const MemoryLocation &LocB, 796 AAQueryInfo &AAQI) { 797 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 798 "BasicAliasAnalysis doesn't support interprocedural queries."); 799 800 // If we have a directly cached entry for these locations, we have recursed 801 // through this once, so just return the cached results. Notably, when this 802 // happens, we don't clear the cache. 803 AAQueryInfo::LocPair Locs(LocA, LocB); 804 if (Locs.first.Ptr > Locs.second.Ptr) 805 std::swap(Locs.first, Locs.second); 806 auto CacheIt = AAQI.AliasCache.find(Locs); 807 if (CacheIt != AAQI.AliasCache.end()) 808 return CacheIt->second; 809 810 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr, 811 LocB.Size, LocB.AATags, AAQI); 812 813 assert(VisitedPhiBBs.empty()); 814 return Alias; 815 } 816 817 /// Checks to see if the specified callsite can clobber the specified memory 818 /// object. 819 /// 820 /// Since we only look at local properties of this function, we really can't 821 /// say much about this query. We do, however, use simple "address taken" 822 /// analysis on local objects. 823 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call, 824 const MemoryLocation &Loc, 825 AAQueryInfo &AAQI) { 826 assert(notDifferentParent(Call, Loc.Ptr) && 827 "AliasAnalysis query involving multiple functions!"); 828 829 const Value *Object = getUnderlyingObject(Loc.Ptr); 830 831 // Calls marked 'tail' cannot read or write allocas from the current frame 832 // because the current frame might be destroyed by the time they run. However, 833 // a tail call may use an alloca with byval. Calling with byval copies the 834 // contents of the alloca into argument registers or stack slots, so there is 835 // no lifetime issue. 836 if (isa<AllocaInst>(Object)) 837 if (const CallInst *CI = dyn_cast<CallInst>(Call)) 838 if (CI->isTailCall() && 839 !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal)) 840 return ModRefInfo::NoModRef; 841 842 // Stack restore is able to modify unescaped dynamic allocas. Assume it may 843 // modify them even though the alloca is not escaped. 844 if (auto *AI = dyn_cast<AllocaInst>(Object)) 845 if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore)) 846 return ModRefInfo::Mod; 847 848 // If the pointer is to a locally allocated object that does not escape, 849 // then the call can not mod/ref the pointer unless the call takes the pointer 850 // as an argument, and itself doesn't capture it. 851 if (!isa<Constant>(Object) && Call != Object && 852 isNonEscapingLocalObject(Object, &AAQI.IsCapturedCache)) { 853 854 // Optimistically assume that call doesn't touch Object and check this 855 // assumption in the following loop. 856 ModRefInfo Result = ModRefInfo::NoModRef; 857 bool IsMustAlias = true; 858 859 unsigned OperandNo = 0; 860 for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end(); 861 CI != CE; ++CI, ++OperandNo) { 862 // Only look at the no-capture or byval pointer arguments. If this 863 // pointer were passed to arguments that were neither of these, then it 864 // couldn't be no-capture. 865 if (!(*CI)->getType()->isPointerTy() || 866 (!Call->doesNotCapture(OperandNo) && 867 OperandNo < Call->getNumArgOperands() && 868 !Call->isByValArgument(OperandNo))) 869 continue; 870 871 // Call doesn't access memory through this operand, so we don't care 872 // if it aliases with Object. 873 if (Call->doesNotAccessMemory(OperandNo)) 874 continue; 875 876 // If this is a no-capture pointer argument, see if we can tell that it 877 // is impossible to alias the pointer we're checking. 878 AliasResult AR = getBestAAResults().alias(MemoryLocation(*CI), 879 MemoryLocation(Object), AAQI); 880 if (AR != MustAlias) 881 IsMustAlias = false; 882 // Operand doesn't alias 'Object', continue looking for other aliases 883 if (AR == NoAlias) 884 continue; 885 // Operand aliases 'Object', but call doesn't modify it. Strengthen 886 // initial assumption and keep looking in case if there are more aliases. 887 if (Call->onlyReadsMemory(OperandNo)) { 888 Result = setRef(Result); 889 continue; 890 } 891 // Operand aliases 'Object' but call only writes into it. 892 if (Call->doesNotReadMemory(OperandNo)) { 893 Result = setMod(Result); 894 continue; 895 } 896 // This operand aliases 'Object' and call reads and writes into it. 897 // Setting ModRef will not yield an early return below, MustAlias is not 898 // used further. 899 Result = ModRefInfo::ModRef; 900 break; 901 } 902 903 // No operand aliases, reset Must bit. Add below if at least one aliases 904 // and all aliases found are MustAlias. 905 if (isNoModRef(Result)) 906 IsMustAlias = false; 907 908 // Early return if we improved mod ref information 909 if (!isModAndRefSet(Result)) { 910 if (isNoModRef(Result)) 911 return ModRefInfo::NoModRef; 912 return IsMustAlias ? setMust(Result) : clearMust(Result); 913 } 914 } 915 916 // If the call is malloc/calloc like, we can assume that it doesn't 917 // modify any IR visible value. This is only valid because we assume these 918 // routines do not read values visible in the IR. TODO: Consider special 919 // casing realloc and strdup routines which access only their arguments as 920 // well. Or alternatively, replace all of this with inaccessiblememonly once 921 // that's implemented fully. 922 if (isMallocOrCallocLikeFn(Call, &TLI)) { 923 // Be conservative if the accessed pointer may alias the allocation - 924 // fallback to the generic handling below. 925 if (getBestAAResults().alias(MemoryLocation(Call), Loc, AAQI) == NoAlias) 926 return ModRefInfo::NoModRef; 927 } 928 929 // The semantics of memcpy intrinsics either exactly overlap or do not 930 // overlap, i.e., source and destination of any given memcpy are either 931 // no-alias or must-alias. 932 if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) { 933 AliasResult SrcAA = 934 getBestAAResults().alias(MemoryLocation::getForSource(Inst), Loc, AAQI); 935 AliasResult DestAA = 936 getBestAAResults().alias(MemoryLocation::getForDest(Inst), Loc, AAQI); 937 // It's also possible for Loc to alias both src and dest, or neither. 938 ModRefInfo rv = ModRefInfo::NoModRef; 939 if (SrcAA != NoAlias) 940 rv = setRef(rv); 941 if (DestAA != NoAlias) 942 rv = setMod(rv); 943 return rv; 944 } 945 946 // While the assume intrinsic is marked as arbitrarily writing so that 947 // proper control dependencies will be maintained, it never aliases any 948 // particular memory location. 949 if (isIntrinsicCall(Call, Intrinsic::assume)) 950 return ModRefInfo::NoModRef; 951 952 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 953 // that proper control dependencies are maintained but they never mods any 954 // particular memory location. 955 // 956 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 957 // heap state at the point the guard is issued needs to be consistent in case 958 // the guard invokes the "deopt" continuation. 959 if (isIntrinsicCall(Call, Intrinsic::experimental_guard)) 960 return ModRefInfo::Ref; 961 962 // Like assumes, invariant.start intrinsics were also marked as arbitrarily 963 // writing so that proper control dependencies are maintained but they never 964 // mod any particular memory location visible to the IR. 965 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start 966 // intrinsic is now modeled as reading memory. This prevents hoisting the 967 // invariant.start intrinsic over stores. Consider: 968 // *ptr = 40; 969 // *ptr = 50; 970 // invariant_start(ptr) 971 // int val = *ptr; 972 // print(val); 973 // 974 // This cannot be transformed to: 975 // 976 // *ptr = 40; 977 // invariant_start(ptr) 978 // *ptr = 50; 979 // int val = *ptr; 980 // print(val); 981 // 982 // The transformation will cause the second store to be ignored (based on 983 // rules of invariant.start) and print 40, while the first program always 984 // prints 50. 985 if (isIntrinsicCall(Call, Intrinsic::invariant_start)) 986 return ModRefInfo::Ref; 987 988 // The AAResultBase base class has some smarts, lets use them. 989 return AAResultBase::getModRefInfo(Call, Loc, AAQI); 990 } 991 992 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1, 993 const CallBase *Call2, 994 AAQueryInfo &AAQI) { 995 // While the assume intrinsic is marked as arbitrarily writing so that 996 // proper control dependencies will be maintained, it never aliases any 997 // particular memory location. 998 if (isIntrinsicCall(Call1, Intrinsic::assume) || 999 isIntrinsicCall(Call2, Intrinsic::assume)) 1000 return ModRefInfo::NoModRef; 1001 1002 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 1003 // that proper control dependencies are maintained but they never mod any 1004 // particular memory location. 1005 // 1006 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 1007 // heap state at the point the guard is issued needs to be consistent in case 1008 // the guard invokes the "deopt" continuation. 1009 1010 // NB! This function is *not* commutative, so we special case two 1011 // possibilities for guard intrinsics. 1012 1013 if (isIntrinsicCall(Call1, Intrinsic::experimental_guard)) 1014 return isModSet(createModRefInfo(getModRefBehavior(Call2))) 1015 ? ModRefInfo::Ref 1016 : ModRefInfo::NoModRef; 1017 1018 if (isIntrinsicCall(Call2, Intrinsic::experimental_guard)) 1019 return isModSet(createModRefInfo(getModRefBehavior(Call1))) 1020 ? ModRefInfo::Mod 1021 : ModRefInfo::NoModRef; 1022 1023 // The AAResultBase base class has some smarts, lets use them. 1024 return AAResultBase::getModRefInfo(Call1, Call2, AAQI); 1025 } 1026 1027 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators, 1028 /// both having the exact same pointer operand. 1029 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1, 1030 LocationSize MaybeV1Size, 1031 const GEPOperator *GEP2, 1032 LocationSize MaybeV2Size, 1033 const DataLayout &DL) { 1034 assert(GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() == 1035 GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() && 1036 GEP1->getPointerOperandType() == GEP2->getPointerOperandType() && 1037 "Expected GEPs with the same pointer operand"); 1038 1039 // Try to determine whether GEP1 and GEP2 index through arrays, into structs, 1040 // such that the struct field accesses provably cannot alias. 1041 // We also need at least two indices (the pointer, and the struct field). 1042 if (GEP1->getNumIndices() != GEP2->getNumIndices() || 1043 GEP1->getNumIndices() < 2) 1044 return MayAlias; 1045 1046 // If we don't know the size of the accesses through both GEPs, we can't 1047 // determine whether the struct fields accessed can't alias. 1048 if (MaybeV1Size == LocationSize::unknown() || 1049 MaybeV2Size == LocationSize::unknown()) 1050 return MayAlias; 1051 1052 const uint64_t V1Size = MaybeV1Size.getValue(); 1053 const uint64_t V2Size = MaybeV2Size.getValue(); 1054 1055 ConstantInt *C1 = 1056 dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1)); 1057 ConstantInt *C2 = 1058 dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1)); 1059 1060 // If the last (struct) indices are constants and are equal, the other indices 1061 // might be also be dynamically equal, so the GEPs can alias. 1062 if (C1 && C2) { 1063 unsigned BitWidth = std::max(C1->getBitWidth(), C2->getBitWidth()); 1064 if (C1->getValue().sextOrSelf(BitWidth) == 1065 C2->getValue().sextOrSelf(BitWidth)) 1066 return MayAlias; 1067 } 1068 1069 // Find the last-indexed type of the GEP, i.e., the type you'd get if 1070 // you stripped the last index. 1071 // On the way, look at each indexed type. If there's something other 1072 // than an array, different indices can lead to different final types. 1073 SmallVector<Value *, 8> IntermediateIndices; 1074 1075 // Insert the first index; we don't need to check the type indexed 1076 // through it as it only drops the pointer indirection. 1077 assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine"); 1078 IntermediateIndices.push_back(GEP1->getOperand(1)); 1079 1080 // Insert all the remaining indices but the last one. 1081 // Also, check that they all index through arrays. 1082 for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) { 1083 if (!isa<ArrayType>(GetElementPtrInst::getIndexedType( 1084 GEP1->getSourceElementType(), IntermediateIndices))) 1085 return MayAlias; 1086 IntermediateIndices.push_back(GEP1->getOperand(i + 1)); 1087 } 1088 1089 auto *Ty = GetElementPtrInst::getIndexedType( 1090 GEP1->getSourceElementType(), IntermediateIndices); 1091 StructType *LastIndexedStruct = dyn_cast<StructType>(Ty); 1092 1093 if (isa<ArrayType>(Ty) || isa<VectorType>(Ty)) { 1094 // We know that: 1095 // - both GEPs begin indexing from the exact same pointer; 1096 // - the last indices in both GEPs are constants, indexing into a sequential 1097 // type (array or vector); 1098 // - both GEPs only index through arrays prior to that. 1099 // 1100 // Because array indices greater than the number of elements are valid in 1101 // GEPs, unless we know the intermediate indices are identical between 1102 // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't 1103 // partially overlap. We also need to check that the loaded size matches 1104 // the element size, otherwise we could still have overlap. 1105 Type *LastElementTy = GetElementPtrInst::getTypeAtIndex(Ty, (uint64_t)0); 1106 const uint64_t ElementSize = 1107 DL.getTypeStoreSize(LastElementTy).getFixedSize(); 1108 if (V1Size != ElementSize || V2Size != ElementSize) 1109 return MayAlias; 1110 1111 for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i) 1112 if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1)) 1113 return MayAlias; 1114 1115 // Now we know that the array/pointer that GEP1 indexes into and that 1116 // that GEP2 indexes into must either precisely overlap or be disjoint. 1117 // Because they cannot partially overlap and because fields in an array 1118 // cannot overlap, if we can prove the final indices are different between 1119 // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias. 1120 1121 // If the last indices are constants, we've already checked they don't 1122 // equal each other so we can exit early. 1123 if (C1 && C2) 1124 return NoAlias; 1125 { 1126 Value *GEP1LastIdx = GEP1->getOperand(GEP1->getNumOperands() - 1); 1127 Value *GEP2LastIdx = GEP2->getOperand(GEP2->getNumOperands() - 1); 1128 if (isa<PHINode>(GEP1LastIdx) || isa<PHINode>(GEP2LastIdx)) { 1129 // If one of the indices is a PHI node, be safe and only use 1130 // computeKnownBits so we don't make any assumptions about the 1131 // relationships between the two indices. This is important if we're 1132 // asking about values from different loop iterations. See PR32314. 1133 // TODO: We may be able to change the check so we only do this when 1134 // we definitely looked through a PHINode. 1135 if (GEP1LastIdx != GEP2LastIdx && 1136 GEP1LastIdx->getType() == GEP2LastIdx->getType()) { 1137 KnownBits Known1 = computeKnownBits(GEP1LastIdx, DL); 1138 KnownBits Known2 = computeKnownBits(GEP2LastIdx, DL); 1139 if (Known1.Zero.intersects(Known2.One) || 1140 Known1.One.intersects(Known2.Zero)) 1141 return NoAlias; 1142 } 1143 } else if (isKnownNonEqual(GEP1LastIdx, GEP2LastIdx, DL)) 1144 return NoAlias; 1145 } 1146 return MayAlias; 1147 } else if (!LastIndexedStruct || !C1 || !C2) { 1148 return MayAlias; 1149 } 1150 1151 if (C1->getValue().getActiveBits() > 64 || 1152 C2->getValue().getActiveBits() > 64) 1153 return MayAlias; 1154 1155 // We know that: 1156 // - both GEPs begin indexing from the exact same pointer; 1157 // - the last indices in both GEPs are constants, indexing into a struct; 1158 // - said indices are different, hence, the pointed-to fields are different; 1159 // - both GEPs only index through arrays prior to that. 1160 // 1161 // This lets us determine that the struct that GEP1 indexes into and the 1162 // struct that GEP2 indexes into must either precisely overlap or be 1163 // completely disjoint. Because they cannot partially overlap, indexing into 1164 // different non-overlapping fields of the struct will never alias. 1165 1166 // Therefore, the only remaining thing needed to show that both GEPs can't 1167 // alias is that the fields are not overlapping. 1168 const StructLayout *SL = DL.getStructLayout(LastIndexedStruct); 1169 const uint64_t StructSize = SL->getSizeInBytes(); 1170 const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue()); 1171 const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue()); 1172 1173 auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size, 1174 uint64_t V2Off, uint64_t V2Size) { 1175 return V1Off < V2Off && V1Off + V1Size <= V2Off && 1176 ((V2Off + V2Size <= StructSize) || 1177 (V2Off + V2Size - StructSize <= V1Off)); 1178 }; 1179 1180 if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) || 1181 EltsDontOverlap(V2Off, V2Size, V1Off, V1Size)) 1182 return NoAlias; 1183 1184 return MayAlias; 1185 } 1186 1187 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the 1188 // beginning of the object the GEP points would have a negative offset with 1189 // repsect to the alloca, that means the GEP can not alias pointer (b). 1190 // Note that the pointer based on the alloca may not be a GEP. For 1191 // example, it may be the alloca itself. 1192 // The same applies if (b) is based on a GlobalVariable. Note that just being 1193 // based on isIdentifiedObject() is not enough - we need an identified object 1194 // that does not permit access to negative offsets. For example, a negative 1195 // offset from a noalias argument or call can be inbounds w.r.t the actual 1196 // underlying object. 1197 // 1198 // For example, consider: 1199 // 1200 // struct { int f0, int f1, ...} foo; 1201 // foo alloca; 1202 // foo* random = bar(alloca); 1203 // int *f0 = &alloca.f0 1204 // int *f1 = &random->f1; 1205 // 1206 // Which is lowered, approximately, to: 1207 // 1208 // %alloca = alloca %struct.foo 1209 // %random = call %struct.foo* @random(%struct.foo* %alloca) 1210 // %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0 1211 // %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1 1212 // 1213 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated 1214 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also 1215 // point into the same object. But since %f0 points to the beginning of %alloca, 1216 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher 1217 // than (%alloca - 1), and so is not inbounds, a contradiction. 1218 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp, 1219 const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject, 1220 LocationSize MaybeObjectAccessSize) { 1221 // If the object access size is unknown, or the GEP isn't inbounds, bail. 1222 if (MaybeObjectAccessSize == LocationSize::unknown() || !GEPOp->isInBounds()) 1223 return false; 1224 1225 const uint64_t ObjectAccessSize = MaybeObjectAccessSize.getValue(); 1226 1227 // We need the object to be an alloca or a globalvariable, and want to know 1228 // the offset of the pointer from the object precisely, so no variable 1229 // indices are allowed. 1230 if (!(isa<AllocaInst>(DecompObject.Base) || 1231 isa<GlobalVariable>(DecompObject.Base)) || 1232 !DecompObject.VarIndices.empty()) 1233 return false; 1234 1235 // If the GEP has no variable indices, we know the precise offset 1236 // from the base, then use it. If the GEP has variable indices, 1237 // we can't get exact GEP offset to identify pointer alias. So return 1238 // false in that case. 1239 if (!DecompGEP.VarIndices.empty()) 1240 return false; 1241 1242 return DecompGEP.Offset.sge(DecompObject.Offset + (int64_t)ObjectAccessSize); 1243 } 1244 1245 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 1246 /// another pointer. 1247 /// 1248 /// We know that V1 is a GEP, but we don't know anything about V2. 1249 /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for 1250 /// V2. 1251 AliasResult BasicAAResult::aliasGEP( 1252 const GEPOperator *GEP1, LocationSize V1Size, const AAMDNodes &V1AAInfo, 1253 const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo, 1254 const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) { 1255 DecomposedGEP DecompGEP1, DecompGEP2; 1256 unsigned MaxPointerSize = getMaxPointerSize(DL); 1257 DecompGEP1.Offset = APInt(MaxPointerSize, 0); 1258 DecompGEP2.Offset = APInt(MaxPointerSize, 0); 1259 DecompGEP1.HasCompileTimeConstantScale = 1260 DecompGEP2.HasCompileTimeConstantScale = true; 1261 1262 bool GEP1MaxLookupReached = 1263 DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT); 1264 bool GEP2MaxLookupReached = 1265 DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT); 1266 1267 // Don't attempt to analyze the decomposed GEP if index scale is not a 1268 // compile-time constant. 1269 if (!DecompGEP1.HasCompileTimeConstantScale || 1270 !DecompGEP2.HasCompileTimeConstantScale) 1271 return MayAlias; 1272 1273 APInt GEP1BaseOffset = DecompGEP1.Offset; 1274 APInt GEP2BaseOffset = DecompGEP2.Offset; 1275 1276 assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 && 1277 "DecomposeGEPExpression returned a result different from " 1278 "getUnderlyingObject"); 1279 1280 // If the GEP's offset relative to its base is such that the base would 1281 // fall below the start of the object underlying V2, then the GEP and V2 1282 // cannot alias. 1283 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1284 isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size)) 1285 return NoAlias; 1286 // If we have two gep instructions with must-alias or not-alias'ing base 1287 // pointers, figure out if the indexes to the GEP tell us anything about the 1288 // derived pointer. 1289 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 1290 // Check for the GEP base being at a negative offset, this time in the other 1291 // direction. 1292 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1293 isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size)) 1294 return NoAlias; 1295 // Do the base pointers alias? 1296 AliasResult BaseAlias = 1297 aliasCheck(UnderlyingV1, LocationSize::unknown(), AAMDNodes(), 1298 UnderlyingV2, LocationSize::unknown(), AAMDNodes(), AAQI); 1299 1300 // For GEPs with identical sizes and offsets, we can preserve the size 1301 // and AAInfo when performing the alias check on the underlying objects. 1302 if (BaseAlias == MayAlias && V1Size == V2Size && 1303 GEP1BaseOffset == GEP2BaseOffset && 1304 DecompGEP1.VarIndices == DecompGEP2.VarIndices && 1305 !GEP1MaxLookupReached && !GEP2MaxLookupReached) { 1306 AliasResult PreciseBaseAlias = aliasCheck( 1307 UnderlyingV1, V1Size, V1AAInfo, UnderlyingV2, V2Size, V2AAInfo, AAQI); 1308 if (PreciseBaseAlias == NoAlias) 1309 return NoAlias; 1310 } 1311 1312 // If we get a No or May, then return it immediately, no amount of analysis 1313 // will improve this situation. 1314 if (BaseAlias != MustAlias) { 1315 assert(BaseAlias == NoAlias || BaseAlias == MayAlias); 1316 return BaseAlias; 1317 } 1318 1319 // Otherwise, we have a MustAlias. Since the base pointers alias each other 1320 // exactly, see if the computed offset from the common pointer tells us 1321 // about the relation of the resulting pointer. 1322 // If we know the two GEPs are based off of the exact same pointer (and not 1323 // just the same underlying object), see if that tells us anything about 1324 // the resulting pointers. 1325 if (GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() == 1326 GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() && 1327 GEP1->getPointerOperandType() == GEP2->getPointerOperandType()) { 1328 AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL); 1329 // If we couldn't find anything interesting, don't abandon just yet. 1330 if (R != MayAlias) 1331 return R; 1332 } 1333 1334 // If the max search depth is reached, the result is undefined 1335 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1336 return MayAlias; 1337 1338 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1339 // symbolic difference. 1340 GEP1BaseOffset -= GEP2BaseOffset; 1341 GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices); 1342 1343 } else { 1344 // Check to see if these two pointers are related by the getelementptr 1345 // instruction. If one pointer is a GEP with a non-zero index of the other 1346 // pointer, we know they cannot alias. 1347 1348 // If both accesses are unknown size, we can't do anything useful here. 1349 if (V1Size == LocationSize::unknown() && V2Size == LocationSize::unknown()) 1350 return MayAlias; 1351 1352 AliasResult R = aliasCheck(UnderlyingV1, LocationSize::unknown(), 1353 AAMDNodes(), V2, LocationSize::unknown(), 1354 V2AAInfo, AAQI, nullptr, UnderlyingV2); 1355 if (R != MustAlias) { 1356 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 1357 // If V2 is known not to alias GEP base pointer, then the two values 1358 // cannot alias per GEP semantics: "Any memory access must be done through 1359 // a pointer value associated with an address range of the memory access, 1360 // otherwise the behavior is undefined.". 1361 assert(R == NoAlias || R == MayAlias); 1362 return R; 1363 } 1364 1365 // If the max search depth is reached the result is undefined 1366 if (GEP1MaxLookupReached) 1367 return MayAlias; 1368 } 1369 1370 // In the two GEP Case, if there is no difference in the offsets of the 1371 // computed pointers, the resultant pointers are a must alias. This 1372 // happens when we have two lexically identical GEP's (for example). 1373 // 1374 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 1375 // must aliases the GEP, the end result is a must alias also. 1376 if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty()) 1377 return MustAlias; 1378 1379 // If there is a constant difference between the pointers, but the difference 1380 // is less than the size of the associated memory object, then we know 1381 // that the objects are partially overlapping. If the difference is 1382 // greater, we know they do not overlap. 1383 if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) { 1384 if (GEP1BaseOffset.sge(0)) { 1385 if (V2Size != LocationSize::unknown()) { 1386 if (GEP1BaseOffset.ult(V2Size.getValue())) 1387 return PartialAlias; 1388 return NoAlias; 1389 } 1390 } else { 1391 // We have the situation where: 1392 // + + 1393 // | BaseOffset | 1394 // ---------------->| 1395 // |-->V1Size |-------> V2Size 1396 // GEP1 V2 1397 // We need to know that V2Size is not unknown, otherwise we might have 1398 // stripped a gep with negative index ('gep <ptr>, -1, ...). 1399 if (V1Size != LocationSize::unknown() && 1400 V2Size != LocationSize::unknown()) { 1401 if ((-GEP1BaseOffset).ult(V1Size.getValue())) 1402 return PartialAlias; 1403 return NoAlias; 1404 } 1405 } 1406 } 1407 1408 if (!DecompGEP1.VarIndices.empty()) { 1409 APInt Modulo(MaxPointerSize, 0); 1410 bool AllPositive = true; 1411 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { 1412 1413 // Try to distinguish something like &A[i][1] against &A[42][0]. 1414 // Grab the least significant bit set in any of the scales. We 1415 // don't need std::abs here (even if the scale's negative) as we'll 1416 // be ^'ing Modulo with itself later. 1417 Modulo |= DecompGEP1.VarIndices[i].Scale; 1418 1419 if (AllPositive) { 1420 // If the Value could change between cycles, then any reasoning about 1421 // the Value this cycle may not hold in the next cycle. We'll just 1422 // give up if we can't determine conditions that hold for every cycle: 1423 const Value *V = DecompGEP1.VarIndices[i].V; 1424 1425 KnownBits Known = 1426 computeKnownBits(V, DL, 0, &AC, dyn_cast<Instruction>(GEP1), DT); 1427 bool SignKnownZero = Known.isNonNegative(); 1428 bool SignKnownOne = Known.isNegative(); 1429 1430 // Zero-extension widens the variable, and so forces the sign 1431 // bit to zero. 1432 bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V); 1433 SignKnownZero |= IsZExt; 1434 SignKnownOne &= !IsZExt; 1435 1436 // If the variable begins with a zero then we know it's 1437 // positive, regardless of whether the value is signed or 1438 // unsigned. 1439 APInt Scale = DecompGEP1.VarIndices[i].Scale; 1440 AllPositive = 1441 (SignKnownZero && Scale.sge(0)) || (SignKnownOne && Scale.slt(0)); 1442 } 1443 } 1444 1445 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1446 1447 // We can compute the difference between the two addresses 1448 // mod Modulo. Check whether that difference guarantees that the 1449 // two locations do not alias. 1450 APInt ModOffset = GEP1BaseOffset & (Modulo - 1); 1451 if (V1Size != LocationSize::unknown() && 1452 V2Size != LocationSize::unknown() && ModOffset.uge(V2Size.getValue()) && 1453 (Modulo - ModOffset).uge(V1Size.getValue())) 1454 return NoAlias; 1455 1456 // If we know all the variables are positive, then GEP1 >= GEP1BasePtr. 1457 // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers 1458 // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr. 1459 if (AllPositive && GEP1BaseOffset.sgt(0) && 1460 V2Size != LocationSize::unknown() && 1461 GEP1BaseOffset.uge(V2Size.getValue())) 1462 return NoAlias; 1463 1464 if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size, 1465 GEP1BaseOffset, &AC, DT)) 1466 return NoAlias; 1467 } 1468 1469 // Statically, we can see that the base objects are the same, but the 1470 // pointers have dynamic offsets which we can't resolve. And none of our 1471 // little tricks above worked. 1472 return MayAlias; 1473 } 1474 1475 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1476 // If the results agree, take it. 1477 if (A == B) 1478 return A; 1479 // A mix of PartialAlias and MustAlias is PartialAlias. 1480 if ((A == PartialAlias && B == MustAlias) || 1481 (B == PartialAlias && A == MustAlias)) 1482 return PartialAlias; 1483 // Otherwise, we don't know anything. 1484 return MayAlias; 1485 } 1486 1487 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1488 /// against another. 1489 AliasResult 1490 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize, 1491 const AAMDNodes &SIAAInfo, const Value *V2, 1492 LocationSize V2Size, const AAMDNodes &V2AAInfo, 1493 const Value *UnderV2, AAQueryInfo &AAQI) { 1494 // If the values are Selects with the same condition, we can do a more precise 1495 // check: just check for aliases between the values on corresponding arms. 1496 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1497 if (SI->getCondition() == SI2->getCondition()) { 1498 AliasResult Alias = 1499 aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, SI2->getTrueValue(), 1500 V2Size, V2AAInfo, AAQI); 1501 if (Alias == MayAlias) 1502 return MayAlias; 1503 AliasResult ThisAlias = 1504 aliasCheck(SI->getFalseValue(), SISize, SIAAInfo, 1505 SI2->getFalseValue(), V2Size, V2AAInfo, AAQI); 1506 return MergeAliasResults(ThisAlias, Alias); 1507 } 1508 1509 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1510 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1511 AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), 1512 SISize, SIAAInfo, AAQI, UnderV2); 1513 if (Alias == MayAlias) 1514 return MayAlias; 1515 1516 AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), 1517 SISize, SIAAInfo, AAQI, UnderV2); 1518 return MergeAliasResults(ThisAlias, Alias); 1519 } 1520 1521 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1522 /// another. 1523 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize, 1524 const AAMDNodes &PNAAInfo, const Value *V2, 1525 LocationSize V2Size, 1526 const AAMDNodes &V2AAInfo, 1527 const Value *UnderV2, AAQueryInfo &AAQI) { 1528 // If the values are PHIs in the same block, we can do a more precise 1529 // as well as efficient check: just check for aliases between the values 1530 // on corresponding edges. 1531 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1532 if (PN2->getParent() == PN->getParent()) { 1533 AAQueryInfo::LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo), 1534 MemoryLocation(V2, V2Size, V2AAInfo)); 1535 if (PN > V2) 1536 std::swap(Locs.first, Locs.second); 1537 // Analyse the PHIs' inputs under the assumption that the PHIs are 1538 // NoAlias. 1539 // If the PHIs are May/MustAlias there must be (recursively) an input 1540 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1541 // there must be an operation on the PHIs within the PHIs' value cycle 1542 // that causes a MayAlias. 1543 // Pretend the phis do not alias. 1544 AliasResult Alias = NoAlias; 1545 AliasResult OrigAliasResult; 1546 { 1547 // Limited lifetime iterator invalidated by the aliasCheck call below. 1548 auto CacheIt = AAQI.AliasCache.find(Locs); 1549 assert((CacheIt != AAQI.AliasCache.end()) && 1550 "There must exist an entry for the phi node"); 1551 OrigAliasResult = CacheIt->second; 1552 CacheIt->second = NoAlias; 1553 } 1554 1555 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1556 AliasResult ThisAlias = 1557 aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo, 1558 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1559 V2Size, V2AAInfo, AAQI); 1560 Alias = MergeAliasResults(ThisAlias, Alias); 1561 if (Alias == MayAlias) 1562 break; 1563 } 1564 1565 // Reset if speculation failed. 1566 if (Alias != NoAlias) 1567 AAQI.updateResult(Locs, OrigAliasResult); 1568 return Alias; 1569 } 1570 1571 SmallVector<Value *, 4> V1Srcs; 1572 // For a recursive phi, that recurses through a contant gep, we can perform 1573 // aliasing calculations using the other phi operands with an unknown size to 1574 // specify that an unknown number of elements after the initial value are 1575 // potentially accessed. 1576 bool isRecursive = false; 1577 auto CheckForRecPhi = [&](Value *PV) { 1578 if (!EnableRecPhiAnalysis) 1579 return false; 1580 if (GEPOperator *PVGEP = dyn_cast<GEPOperator>(PV)) { 1581 // Check whether the incoming value is a GEP that advances the pointer 1582 // result of this PHI node (e.g. in a loop). If this is the case, we 1583 // would recurse and always get a MayAlias. Handle this case specially 1584 // below. We need to ensure that the phi is inbounds and has a constant 1585 // positive operand so that we can check for alias with the initial value 1586 // and an unknown but positive size. 1587 if (PVGEP->getPointerOperand() == PN && PVGEP->isInBounds() && 1588 PVGEP->getNumIndices() == 1 && isa<ConstantInt>(PVGEP->idx_begin()) && 1589 !cast<ConstantInt>(PVGEP->idx_begin())->isNegative()) { 1590 isRecursive = true; 1591 return true; 1592 } 1593 } 1594 return false; 1595 }; 1596 1597 if (PV) { 1598 // If we have PhiValues then use it to get the underlying phi values. 1599 const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN); 1600 // If we have more phi values than the search depth then return MayAlias 1601 // conservatively to avoid compile time explosion. The worst possible case 1602 // is if both sides are PHI nodes. In which case, this is O(m x n) time 1603 // where 'm' and 'n' are the number of PHI sources. 1604 if (PhiValueSet.size() > MaxLookupSearchDepth) 1605 return MayAlias; 1606 // Add the values to V1Srcs 1607 for (Value *PV1 : PhiValueSet) { 1608 if (CheckForRecPhi(PV1)) 1609 continue; 1610 V1Srcs.push_back(PV1); 1611 } 1612 } else { 1613 // If we don't have PhiInfo then just look at the operands of the phi itself 1614 // FIXME: Remove this once we can guarantee that we have PhiInfo always 1615 SmallPtrSet<Value *, 4> UniqueSrc; 1616 for (Value *PV1 : PN->incoming_values()) { 1617 if (isa<PHINode>(PV1)) 1618 // If any of the source itself is a PHI, return MayAlias conservatively 1619 // to avoid compile time explosion. The worst possible case is if both 1620 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1621 // and 'n' are the number of PHI sources. 1622 return MayAlias; 1623 1624 if (CheckForRecPhi(PV1)) 1625 continue; 1626 1627 if (UniqueSrc.insert(PV1).second) 1628 V1Srcs.push_back(PV1); 1629 } 1630 } 1631 1632 // If V1Srcs is empty then that means that the phi has no underlying non-phi 1633 // value. This should only be possible in blocks unreachable from the entry 1634 // block, but return MayAlias just in case. 1635 if (V1Srcs.empty()) 1636 return MayAlias; 1637 1638 // If this PHI node is recursive, set the size of the accessed memory to 1639 // unknown to represent all the possible values the GEP could advance the 1640 // pointer to. 1641 if (isRecursive) 1642 PNSize = LocationSize::unknown(); 1643 1644 // In the recursive alias queries below, we may compare values from two 1645 // different loop iterations. Keep track of visited phi blocks, which will 1646 // be used when determining value equivalence. 1647 bool BlockInserted = VisitedPhiBBs.insert(PN->getParent()).second; 1648 auto _ = make_scope_exit([&]() { 1649 if (BlockInserted) 1650 VisitedPhiBBs.erase(PN->getParent()); 1651 }); 1652 1653 // If we inserted a block into VisitedPhiBBs, alias analysis results that 1654 // have been cached earlier may no longer be valid. Perform recursive queries 1655 // with a new AAQueryInfo. 1656 AAQueryInfo NewAAQI; 1657 AAQueryInfo *UseAAQI = BlockInserted ? &NewAAQI : &AAQI; 1658 1659 AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize, 1660 PNAAInfo, *UseAAQI, UnderV2); 1661 1662 // Early exit if the check of the first PHI source against V2 is MayAlias. 1663 // Other results are not possible. 1664 if (Alias == MayAlias) 1665 return MayAlias; 1666 // With recursive phis we cannot guarantee that MustAlias/PartialAlias will 1667 // remain valid to all elements and needs to conservatively return MayAlias. 1668 if (isRecursive && Alias != NoAlias) 1669 return MayAlias; 1670 1671 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1672 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1673 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1674 Value *V = V1Srcs[i]; 1675 1676 AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, 1677 PNAAInfo, *UseAAQI, UnderV2); 1678 Alias = MergeAliasResults(ThisAlias, Alias); 1679 if (Alias == MayAlias) 1680 break; 1681 } 1682 1683 return Alias; 1684 } 1685 1686 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1687 /// array references. 1688 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size, 1689 const AAMDNodes &V1AAInfo, 1690 const Value *V2, LocationSize V2Size, 1691 const AAMDNodes &V2AAInfo, 1692 AAQueryInfo &AAQI, const Value *O1, 1693 const Value *O2) { 1694 // If either of the memory references is empty, it doesn't matter what the 1695 // pointer values are. 1696 if (V1Size.isZero() || V2Size.isZero()) 1697 return NoAlias; 1698 1699 // Strip off any casts if they exist. 1700 V1 = V1->stripPointerCastsAndInvariantGroups(); 1701 V2 = V2->stripPointerCastsAndInvariantGroups(); 1702 1703 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1704 // value for undef that aliases nothing in the program. 1705 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1706 return NoAlias; 1707 1708 // Are we checking for alias of the same value? 1709 // Because we look 'through' phi nodes, we could look at "Value" pointers from 1710 // different iterations. We must therefore make sure that this is not the 1711 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1712 // happen by looking at the visited phi nodes and making sure they cannot 1713 // reach the value. 1714 if (isValueEqualInPotentialCycles(V1, V2)) 1715 return MustAlias; 1716 1717 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1718 return NoAlias; // Scalars cannot alias each other 1719 1720 // Figure out what objects these things are pointing to if we can. 1721 if (O1 == nullptr) 1722 O1 = getUnderlyingObject(V1, MaxLookupSearchDepth); 1723 1724 if (O2 == nullptr) 1725 O2 = getUnderlyingObject(V2, MaxLookupSearchDepth); 1726 1727 // Null values in the default address space don't point to any object, so they 1728 // don't alias any other pointer. 1729 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1730 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1731 return NoAlias; 1732 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1733 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1734 return NoAlias; 1735 1736 if (O1 != O2) { 1737 // If V1/V2 point to two different objects, we know that we have no alias. 1738 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1739 return NoAlias; 1740 1741 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1742 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1743 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1744 return NoAlias; 1745 1746 // Function arguments can't alias with things that are known to be 1747 // unambigously identified at the function level. 1748 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1749 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1750 return NoAlias; 1751 1752 // If one pointer is the result of a call/invoke or load and the other is a 1753 // non-escaping local object within the same function, then we know the 1754 // object couldn't escape to a point where the call could return it. 1755 // 1756 // Note that if the pointers are in different functions, there are a 1757 // variety of complications. A call with a nocapture argument may still 1758 // temporary store the nocapture argument's value in a temporary memory 1759 // location if that memory location doesn't escape. Or it may pass a 1760 // nocapture value to other functions as long as they don't capture it. 1761 if (isEscapeSource(O1) && 1762 isNonEscapingLocalObject(O2, &AAQI.IsCapturedCache)) 1763 return NoAlias; 1764 if (isEscapeSource(O2) && 1765 isNonEscapingLocalObject(O1, &AAQI.IsCapturedCache)) 1766 return NoAlias; 1767 } 1768 1769 // If the size of one access is larger than the entire object on the other 1770 // side, then we know such behavior is undefined and can assume no alias. 1771 bool NullIsValidLocation = NullPointerIsDefined(&F); 1772 if ((isObjectSmallerThan( 1773 O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL, 1774 TLI, NullIsValidLocation)) || 1775 (isObjectSmallerThan( 1776 O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL, 1777 TLI, NullIsValidLocation))) 1778 return NoAlias; 1779 1780 // Check the cache before climbing up use-def chains. This also terminates 1781 // otherwise infinitely recursive queries. 1782 AAQueryInfo::LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo), 1783 MemoryLocation(V2, V2Size, V2AAInfo)); 1784 if (V1 > V2) 1785 std::swap(Locs.first, Locs.second); 1786 std::pair<AAQueryInfo::AliasCacheT::iterator, bool> Pair = 1787 AAQI.AliasCache.try_emplace(Locs, MayAlias); 1788 if (!Pair.second) 1789 return Pair.first->second; 1790 1791 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1792 // GEP can't simplify, we don't even look at the PHI cases. 1793 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1794 AliasResult Result = 1795 aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2, AAQI); 1796 if (Result != MayAlias) 1797 return AAQI.updateResult(Locs, Result); 1798 } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) { 1799 AliasResult Result = 1800 aliasGEP(GV2, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, O2, O1, AAQI); 1801 if (Result != MayAlias) 1802 return AAQI.updateResult(Locs, Result); 1803 } 1804 1805 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1806 AliasResult Result = 1807 aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI); 1808 if (Result != MayAlias) 1809 return AAQI.updateResult(Locs, Result); 1810 } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) { 1811 AliasResult Result = 1812 aliasPHI(PN, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, O1, AAQI); 1813 if (Result != MayAlias) 1814 return AAQI.updateResult(Locs, Result); 1815 } 1816 1817 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1818 AliasResult Result = 1819 aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI); 1820 if (Result != MayAlias) 1821 return AAQI.updateResult(Locs, Result); 1822 } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) { 1823 AliasResult Result = 1824 aliasSelect(S2, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, O1, AAQI); 1825 if (Result != MayAlias) 1826 return AAQI.updateResult(Locs, Result); 1827 } 1828 1829 // If both pointers are pointing into the same object and one of them 1830 // accesses the entire object, then the accesses must overlap in some way. 1831 if (O1 == O2) 1832 if (V1Size.isPrecise() && V2Size.isPrecise() && 1833 (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) || 1834 isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation))) 1835 return AAQI.updateResult(Locs, PartialAlias); 1836 1837 // Recurse back into the best AA results we have, potentially with refined 1838 // memory locations. We have already ensured that BasicAA has a MayAlias 1839 // cache result for these, so any recursion back into BasicAA won't loop. 1840 AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second, AAQI); 1841 return AAQI.updateResult(Locs, Result); 1842 } 1843 1844 /// Check whether two Values can be considered equivalent. 1845 /// 1846 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether 1847 /// they can not be part of a cycle in the value graph by looking at all 1848 /// visited phi nodes an making sure that the phis cannot reach the value. We 1849 /// have to do this because we are looking through phi nodes (That is we say 1850 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1851 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1852 const Value *V2) { 1853 if (V != V2) 1854 return false; 1855 1856 const Instruction *Inst = dyn_cast<Instruction>(V); 1857 if (!Inst) 1858 return true; 1859 1860 if (VisitedPhiBBs.empty()) 1861 return true; 1862 1863 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1864 return false; 1865 1866 // Make sure that the visited phis cannot reach the Value. This ensures that 1867 // the Values cannot come from different iterations of a potential cycle the 1868 // phi nodes could be involved in. 1869 for (auto *P : VisitedPhiBBs) 1870 if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT, LI)) 1871 return false; 1872 1873 return true; 1874 } 1875 1876 /// Computes the symbolic difference between two de-composed GEPs. 1877 /// 1878 /// Dest and Src are the variable indices from two decomposed GetElementPtr 1879 /// instructions GEP1 and GEP2 which have common base pointers. 1880 void BasicAAResult::GetIndexDifference( 1881 SmallVectorImpl<VariableGEPIndex> &Dest, 1882 const SmallVectorImpl<VariableGEPIndex> &Src) { 1883 if (Src.empty()) 1884 return; 1885 1886 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1887 const Value *V = Src[i].V; 1888 unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits; 1889 APInt Scale = Src[i].Scale; 1890 1891 // Find V in Dest. This is N^2, but pointer indices almost never have more 1892 // than a few variable indexes. 1893 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1894 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1895 Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits) 1896 continue; 1897 1898 // If we found it, subtract off Scale V's from the entry in Dest. If it 1899 // goes to zero, remove the entry. 1900 if (Dest[j].Scale != Scale) 1901 Dest[j].Scale -= Scale; 1902 else 1903 Dest.erase(Dest.begin() + j); 1904 Scale = 0; 1905 break; 1906 } 1907 1908 // If we didn't consume this entry, add it to the end of the Dest list. 1909 if (!!Scale) { 1910 VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale}; 1911 Dest.push_back(Entry); 1912 } 1913 } 1914 } 1915 1916 bool BasicAAResult::constantOffsetHeuristic( 1917 const SmallVectorImpl<VariableGEPIndex> &VarIndices, 1918 LocationSize MaybeV1Size, LocationSize MaybeV2Size, const APInt &BaseOffset, 1919 AssumptionCache *AC, DominatorTree *DT) { 1920 if (VarIndices.size() != 2 || MaybeV1Size == LocationSize::unknown() || 1921 MaybeV2Size == LocationSize::unknown()) 1922 return false; 1923 1924 const uint64_t V1Size = MaybeV1Size.getValue(); 1925 const uint64_t V2Size = MaybeV2Size.getValue(); 1926 1927 const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1]; 1928 1929 if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits || 1930 Var0.Scale != -Var1.Scale) 1931 return false; 1932 1933 unsigned Width = Var1.V->getType()->getIntegerBitWidth(); 1934 1935 // We'll strip off the Extensions of Var0 and Var1 and do another round 1936 // of GetLinearExpression decomposition. In the example above, if Var0 1937 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 1938 1939 APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0), 1940 V1Offset(Width, 0); 1941 bool NSW = true, NUW = true; 1942 unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0; 1943 const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits, 1944 V0SExtBits, DL, 0, AC, DT, NSW, NUW); 1945 NSW = true; 1946 NUW = true; 1947 const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits, 1948 V1SExtBits, DL, 0, AC, DT, NSW, NUW); 1949 1950 if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits || 1951 V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1)) 1952 return false; 1953 1954 // We have a hit - Var0 and Var1 only differ by a constant offset! 1955 1956 // If we've been sext'ed then zext'd the maximum difference between Var0 and 1957 // Var1 is possible to calculate, but we're just interested in the absolute 1958 // minimum difference between the two. The minimum distance may occur due to 1959 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 1960 // the minimum distance between %i and %i + 5 is 3. 1961 APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff; 1962 MinDiff = APIntOps::umin(MinDiff, Wrapped); 1963 APInt MinDiffBytes = 1964 MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs(); 1965 1966 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 1967 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 1968 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 1969 // V2Size can fit in the MinDiffBytes gap. 1970 return MinDiffBytes.uge(V1Size + BaseOffset.abs()) && 1971 MinDiffBytes.uge(V2Size + BaseOffset.abs()); 1972 } 1973 1974 //===----------------------------------------------------------------------===// 1975 // BasicAliasAnalysis Pass 1976 //===----------------------------------------------------------------------===// 1977 1978 AnalysisKey BasicAA::Key; 1979 1980 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) { 1981 return BasicAAResult(F.getParent()->getDataLayout(), 1982 F, 1983 AM.getResult<TargetLibraryAnalysis>(F), 1984 AM.getResult<AssumptionAnalysis>(F), 1985 &AM.getResult<DominatorTreeAnalysis>(F), 1986 AM.getCachedResult<LoopAnalysis>(F), 1987 AM.getCachedResult<PhiValuesAnalysis>(F)); 1988 } 1989 1990 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 1991 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1992 } 1993 1994 char BasicAAWrapperPass::ID = 0; 1995 1996 void BasicAAWrapperPass::anchor() {} 1997 1998 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa", 1999 "Basic Alias Analysis (stateless AA impl)", true, true) 2000 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2001 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2002 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2003 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass) 2004 INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa", 2005 "Basic Alias Analysis (stateless AA impl)", true, true) 2006 2007 FunctionPass *llvm::createBasicAAWrapperPass() { 2008 return new BasicAAWrapperPass(); 2009 } 2010 2011 bool BasicAAWrapperPass::runOnFunction(Function &F) { 2012 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 2013 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 2014 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); 2015 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 2016 auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>(); 2017 2018 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F, 2019 TLIWP.getTLI(F), ACT.getAssumptionCache(F), 2020 &DTWP.getDomTree(), 2021 LIWP ? &LIWP->getLoopInfo() : nullptr, 2022 PVWP ? &PVWP->getResult() : nullptr)); 2023 2024 return false; 2025 } 2026 2027 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 2028 AU.setPreservesAll(); 2029 AU.addRequired<AssumptionCacheTracker>(); 2030 AU.addRequired<DominatorTreeWrapperPass>(); 2031 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2032 AU.addUsedIfAvailable<PhiValuesWrapperPass>(); 2033 } 2034 2035 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { 2036 return BasicAAResult( 2037 F.getParent()->getDataLayout(), F, 2038 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 2039 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 2040 } 2041