1 //===- BasicAliasAnalysis.cpp - Local Alias Analysis Impl -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the default implementation of the Alias Analysis interface 11 // that simply implements a few identities (two different globals cannot alias, 12 // etc), but otherwise does no analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/Passes.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/Function.h" 21 #include "llvm/GlobalVariable.h" 22 #include "llvm/Instructions.h" 23 #include "llvm/IntrinsicInst.h" 24 #include "llvm/Operator.h" 25 #include "llvm/Pass.h" 26 #include "llvm/Analysis/CaptureTracking.h" 27 #include "llvm/Analysis/MemoryBuiltins.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/Target/TargetData.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include <algorithm> 34 using namespace llvm; 35 36 //===----------------------------------------------------------------------===// 37 // Useful predicates 38 //===----------------------------------------------------------------------===// 39 40 /// isKnownNonNull - Return true if we know that the specified value is never 41 /// null. 42 static bool isKnownNonNull(const Value *V) { 43 // Alloca never returns null, malloc might. 44 if (isa<AllocaInst>(V)) return true; 45 46 // A byval argument is never null. 47 if (const Argument *A = dyn_cast<Argument>(V)) 48 return A->hasByValAttr(); 49 50 // Global values are not null unless extern weak. 51 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 52 return !GV->hasExternalWeakLinkage(); 53 return false; 54 } 55 56 /// isNonEscapingLocalObject - Return true if the pointer is to a function-local 57 /// object that never escapes from the function. 58 static bool isNonEscapingLocalObject(const Value *V, bool Interprocedural) { 59 // If this is a local allocation, check to see if it escapes. 60 if (isa<AllocaInst>(V) || 61 (!Interprocedural && isNoAliasCall(V))) 62 // Set StoreCaptures to True so that we can assume in our callers that the 63 // pointer is not the result of a load instruction. Currently 64 // PointerMayBeCaptured doesn't have any special analysis for the 65 // StoreCaptures=false case; if it did, our callers could be refined to be 66 // more precise. 67 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 68 69 // If this is an argument that corresponds to a byval or noalias argument, 70 // then it has not escaped before entering the function. Check if it escapes 71 // inside the function. 72 if (!Interprocedural) 73 if (const Argument *A = dyn_cast<Argument>(V)) 74 if (A->hasByValAttr() || A->hasNoAliasAttr()) { 75 // Don't bother analyzing arguments already known not to escape. 76 if (A->hasNoCaptureAttr()) 77 return true; 78 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 79 } 80 return false; 81 } 82 83 /// isEscapeSource - Return true if the pointer is one which would have 84 /// been considered an escape by isNonEscapingLocalObject. 85 static bool isEscapeSource(const Value *V, bool Interprocedural) { 86 if (!Interprocedural) 87 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V)) 88 return true; 89 90 // The load case works because isNonEscapingLocalObject considers all 91 // stores to be escapes (it passes true for the StoreCaptures argument 92 // to PointerMayBeCaptured). 93 if (isa<LoadInst>(V)) 94 return true; 95 96 return false; 97 } 98 99 /// isObjectSmallerThan - Return true if we can prove that the object specified 100 /// by V is smaller than Size. 101 static bool isObjectSmallerThan(const Value *V, unsigned Size, 102 const TargetData &TD) { 103 const Type *AccessTy; 104 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 105 AccessTy = GV->getType()->getElementType(); 106 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 107 if (!AI->isArrayAllocation()) 108 AccessTy = AI->getType()->getElementType(); 109 else 110 return false; 111 } else if (const CallInst* CI = extractMallocCall(V)) { 112 if (!isArrayMalloc(V, &TD)) 113 // The size is the argument to the malloc call. 114 if (const ConstantInt* C = dyn_cast<ConstantInt>(CI->getArgOperand(0))) 115 return (C->getZExtValue() < Size); 116 return false; 117 } else if (const Argument *A = dyn_cast<Argument>(V)) { 118 if (A->hasByValAttr()) 119 AccessTy = cast<PointerType>(A->getType())->getElementType(); 120 else 121 return false; 122 } else { 123 return false; 124 } 125 126 if (AccessTy->isSized()) 127 return TD.getTypeAllocSize(AccessTy) < Size; 128 return false; 129 } 130 131 //===----------------------------------------------------------------------===// 132 // NoAA Pass 133 //===----------------------------------------------------------------------===// 134 135 namespace { 136 /// NoAA - This class implements the -no-aa pass, which always returns "I 137 /// don't know" for alias queries. NoAA is unlike other alias analysis 138 /// implementations, in that it does not chain to a previous analysis. As 139 /// such it doesn't follow many of the rules that other alias analyses must. 140 /// 141 struct NoAA : public ImmutablePass, public AliasAnalysis { 142 static char ID; // Class identification, replacement for typeinfo 143 NoAA() : ImmutablePass(&ID) {} 144 explicit NoAA(void *PID) : ImmutablePass(PID) { } 145 146 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 147 } 148 149 virtual void initializePass() { 150 TD = getAnalysisIfAvailable<TargetData>(); 151 } 152 153 virtual AliasResult alias(const Value *V1, unsigned V1Size, 154 const Value *V2, unsigned V2Size) { 155 return MayAlias; 156 } 157 158 virtual void getArgumentAccesses(Function *F, CallSite CS, 159 std::vector<PointerAccessInfo> &Info) { 160 llvm_unreachable("This method may not be called on this function!"); 161 } 162 163 virtual bool pointsToConstantMemory(const Value *P) { return false; } 164 virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size) { 165 return ModRef; 166 } 167 virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2) { 168 return ModRef; 169 } 170 171 virtual void deleteValue(Value *V) {} 172 virtual void copyValue(Value *From, Value *To) {} 173 174 /// getAdjustedAnalysisPointer - This method is used when a pass implements 175 /// an analysis interface through multiple inheritance. If needed, it should 176 /// override this to adjust the this pointer as needed for the specified pass 177 /// info. 178 virtual void *getAdjustedAnalysisPointer(const PassInfo *PI) { 179 if (PI->isPassID(&AliasAnalysis::ID)) 180 return (AliasAnalysis*)this; 181 return this; 182 } 183 }; 184 } // End of anonymous namespace 185 186 // Register this pass... 187 char NoAA::ID = 0; 188 static RegisterPass<NoAA> 189 U("no-aa", "No Alias Analysis (always returns 'may' alias)", true, true); 190 191 // Declare that we implement the AliasAnalysis interface 192 static RegisterAnalysisGroup<AliasAnalysis> V(U); 193 194 ImmutablePass *llvm::createNoAAPass() { return new NoAA(); } 195 196 //===----------------------------------------------------------------------===// 197 // BasicAliasAnalysis Pass 198 //===----------------------------------------------------------------------===// 199 200 #ifdef XDEBUG 201 static const Function *getParent(const Value *V) { 202 if (const Instruction *inst = dyn_cast<Instruction>(V)) 203 return inst->getParent()->getParent(); 204 205 if (const Argument *arg = dyn_cast<Argument>(V)) 206 return arg->getParent(); 207 208 return NULL; 209 } 210 211 static bool sameParent(const Value *O1, const Value *O2) { 212 213 const Function *F1 = getParent(O1); 214 const Function *F2 = getParent(O2); 215 216 return !F1 || !F2 || F1 == F2; 217 } 218 #endif 219 220 namespace { 221 /// BasicAliasAnalysis - This is the default alias analysis implementation. 222 /// Because it doesn't chain to a previous alias analysis (like -no-aa), it 223 /// derives from the NoAA class. 224 struct BasicAliasAnalysis : public NoAA { 225 /// Interprocedural - Flag for "interprocedural" mode, where we must 226 /// support queries of values which live in different functions. 227 bool Interprocedural; 228 229 static char ID; // Class identification, replacement for typeinfo 230 BasicAliasAnalysis() 231 : NoAA(&ID), Interprocedural(false) {} 232 BasicAliasAnalysis(void *PID, bool interprocedural) 233 : NoAA(PID), Interprocedural(interprocedural) {} 234 235 AliasResult alias(const Value *V1, unsigned V1Size, 236 const Value *V2, unsigned V2Size) { 237 assert(Visited.empty() && "Visited must be cleared after use!"); 238 #ifdef XDEBUG 239 assert((Interprocedural || sameParent(V1, V2)) && 240 "BasicAliasAnalysis (-basicaa) doesn't support interprocedural " 241 "queries; use InterproceduralAliasAnalysis " 242 "(-interprocedural-basic-aa) instead."); 243 #endif 244 AliasResult Alias = aliasCheck(V1, V1Size, V2, V2Size); 245 Visited.clear(); 246 return Alias; 247 } 248 249 ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size); 250 ModRefResult getModRefInfo(CallSite CS1, CallSite CS2); 251 252 /// pointsToConstantMemory - Chase pointers until we find a (constant 253 /// global) or not. 254 bool pointsToConstantMemory(const Value *P); 255 256 /// getAdjustedAnalysisPointer - This method is used when a pass implements 257 /// an analysis interface through multiple inheritance. If needed, it should 258 /// override this to adjust the this pointer as needed for the specified pass 259 /// info. 260 virtual void *getAdjustedAnalysisPointer(const PassInfo *PI) { 261 if (PI->isPassID(&AliasAnalysis::ID)) 262 return (AliasAnalysis*)this; 263 return this; 264 } 265 266 private: 267 // Visited - Track instructions visited by a aliasPHI, aliasSelect(), and aliasGEP(). 268 SmallPtrSet<const Value*, 16> Visited; 269 270 // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP 271 // instruction against another. 272 AliasResult aliasGEP(const GEPOperator *V1, unsigned V1Size, 273 const Value *V2, unsigned V2Size, 274 const Value *UnderlyingV1, const Value *UnderlyingV2); 275 276 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI 277 // instruction against another. 278 AliasResult aliasPHI(const PHINode *PN, unsigned PNSize, 279 const Value *V2, unsigned V2Size); 280 281 /// aliasSelect - Disambiguate a Select instruction against another value. 282 AliasResult aliasSelect(const SelectInst *SI, unsigned SISize, 283 const Value *V2, unsigned V2Size); 284 285 AliasResult aliasCheck(const Value *V1, unsigned V1Size, 286 const Value *V2, unsigned V2Size); 287 }; 288 } // End of anonymous namespace 289 290 // Register this pass... 291 char BasicAliasAnalysis::ID = 0; 292 static RegisterPass<BasicAliasAnalysis> 293 X("basicaa", "Basic Alias Analysis (default AA impl)", false, true); 294 295 // Declare that we implement the AliasAnalysis interface 296 static RegisterAnalysisGroup<AliasAnalysis, true> Y(X); 297 298 ImmutablePass *llvm::createBasicAliasAnalysisPass() { 299 return new BasicAliasAnalysis(); 300 } 301 302 303 /// pointsToConstantMemory - Chase pointers until we find a (constant 304 /// global) or not. 305 bool BasicAliasAnalysis::pointsToConstantMemory(const Value *P) { 306 if (const GlobalVariable *GV = 307 dyn_cast<GlobalVariable>(P->getUnderlyingObject())) 308 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 309 // global to be marked constant in some modules and non-constant in others. 310 // GV may even be a declaration, not a definition. 311 return GV->isConstant(); 312 return false; 313 } 314 315 316 /// getModRefInfo - Check to see if the specified callsite can clobber the 317 /// specified memory object. Since we only look at local properties of this 318 /// function, we really can't say much about this query. We do, however, use 319 /// simple "address taken" analysis on local objects. 320 AliasAnalysis::ModRefResult 321 BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) { 322 const Value *Object = P->getUnderlyingObject(); 323 324 // If this is a tail call and P points to a stack location, we know that 325 // the tail call cannot access or modify the local stack. 326 // We cannot exclude byval arguments here; these belong to the caller of 327 // the current function not to the current function, and a tail callee 328 // may reference them. 329 if (isa<AllocaInst>(Object)) 330 if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) 331 if (CI->isTailCall()) 332 return NoModRef; 333 334 // If the pointer is to a locally allocated object that does not escape, 335 // then the call can not mod/ref the pointer unless the call takes the pointer 336 // as an argument, and itself doesn't capture it. 337 if (!isa<Constant>(Object) && CS.getInstruction() != Object && 338 isNonEscapingLocalObject(Object, Interprocedural)) { 339 bool PassedAsArg = false; 340 unsigned ArgNo = 0; 341 for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end(); 342 CI != CE; ++CI, ++ArgNo) { 343 // Only look at the no-capture pointer arguments. 344 if (!(*CI)->getType()->isPointerTy() || 345 !CS.paramHasAttr(ArgNo+1, Attribute::NoCapture)) 346 continue; 347 348 // If this is a no-capture pointer argument, see if we can tell that it 349 // is impossible to alias the pointer we're checking. If not, we have to 350 // assume that the call could touch the pointer, even though it doesn't 351 // escape. 352 if (!isNoAlias(cast<Value>(CI), ~0U, P, ~0U)) { 353 PassedAsArg = true; 354 break; 355 } 356 } 357 358 if (!PassedAsArg) 359 return NoModRef; 360 } 361 362 // Finally, handle specific knowledge of intrinsics. 363 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 364 if (II == 0) 365 return AliasAnalysis::getModRefInfo(CS, P, Size); 366 367 switch (II->getIntrinsicID()) { 368 default: break; 369 case Intrinsic::memcpy: 370 case Intrinsic::memmove: { 371 unsigned Len = ~0U; 372 if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) 373 Len = LenCI->getZExtValue(); 374 Value *Dest = II->getArgOperand(0); 375 Value *Src = II->getArgOperand(1); 376 if (isNoAlias(Dest, Len, P, Size)) { 377 if (isNoAlias(Src, Len, P, Size)) 378 return NoModRef; 379 return Ref; 380 } 381 break; 382 } 383 case Intrinsic::memset: 384 // Since memset is 'accesses arguments' only, the AliasAnalysis base class 385 // will handle it for the variable length case. 386 if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) { 387 unsigned Len = LenCI->getZExtValue(); 388 Value *Dest = II->getArgOperand(0); 389 if (isNoAlias(Dest, Len, P, Size)) 390 return NoModRef; 391 } 392 break; 393 case Intrinsic::atomic_cmp_swap: 394 case Intrinsic::atomic_swap: 395 case Intrinsic::atomic_load_add: 396 case Intrinsic::atomic_load_sub: 397 case Intrinsic::atomic_load_and: 398 case Intrinsic::atomic_load_nand: 399 case Intrinsic::atomic_load_or: 400 case Intrinsic::atomic_load_xor: 401 case Intrinsic::atomic_load_max: 402 case Intrinsic::atomic_load_min: 403 case Intrinsic::atomic_load_umax: 404 case Intrinsic::atomic_load_umin: 405 if (TD) { 406 Value *Op1 = II->getArgOperand(0); 407 unsigned Op1Size = TD->getTypeStoreSize(Op1->getType()); 408 if (isNoAlias(Op1, Op1Size, P, Size)) 409 return NoModRef; 410 } 411 break; 412 case Intrinsic::lifetime_start: 413 case Intrinsic::lifetime_end: 414 case Intrinsic::invariant_start: { 415 unsigned PtrSize = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(); 416 if (isNoAlias(II->getArgOperand(1), PtrSize, P, Size)) 417 return NoModRef; 418 break; 419 } 420 case Intrinsic::invariant_end: { 421 unsigned PtrSize = cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(); 422 if (isNoAlias(II->getArgOperand(2), PtrSize, P, Size)) 423 return NoModRef; 424 break; 425 } 426 } 427 428 // The AliasAnalysis base class has some smarts, lets use them. 429 return AliasAnalysis::getModRefInfo(CS, P, Size); 430 } 431 432 433 AliasAnalysis::ModRefResult 434 BasicAliasAnalysis::getModRefInfo(CallSite CS1, CallSite CS2) { 435 // If CS1 or CS2 are readnone, they don't interact. 436 ModRefBehavior CS1B = AliasAnalysis::getModRefBehavior(CS1); 437 if (CS1B == DoesNotAccessMemory) return NoModRef; 438 439 ModRefBehavior CS2B = AliasAnalysis::getModRefBehavior(CS2); 440 if (CS2B == DoesNotAccessMemory) return NoModRef; 441 442 // If they both only read from memory, just return ref. 443 if (CS1B == OnlyReadsMemory && CS2B == OnlyReadsMemory) 444 return Ref; 445 446 // Otherwise, fall back to NoAA (mod+ref). 447 return NoAA::getModRefInfo(CS1, CS2); 448 } 449 450 /// GetIndiceDifference - Dest and Src are the variable indices from two 451 /// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base 452 /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic 453 /// difference between the two pointers. 454 static void GetIndiceDifference( 455 SmallVectorImpl<std::pair<const Value*, int64_t> > &Dest, 456 const SmallVectorImpl<std::pair<const Value*, int64_t> > &Src) { 457 if (Src.empty()) return; 458 459 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 460 const Value *V = Src[i].first; 461 int64_t Scale = Src[i].second; 462 463 // Find V in Dest. This is N^2, but pointer indices almost never have more 464 // than a few variable indexes. 465 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 466 if (Dest[j].first != V) continue; 467 468 // If we found it, subtract off Scale V's from the entry in Dest. If it 469 // goes to zero, remove the entry. 470 if (Dest[j].second != Scale) 471 Dest[j].second -= Scale; 472 else 473 Dest.erase(Dest.begin()+j); 474 Scale = 0; 475 break; 476 } 477 478 // If we didn't consume this entry, add it to the end of the Dest list. 479 if (Scale) 480 Dest.push_back(std::make_pair(V, -Scale)); 481 } 482 } 483 484 /// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction 485 /// against another pointer. We know that V1 is a GEP, but we don't know 486 /// anything about V2. UnderlyingV1 is GEP1->getUnderlyingObject(), 487 /// UnderlyingV2 is the same for V2. 488 /// 489 AliasAnalysis::AliasResult 490 BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, unsigned V1Size, 491 const Value *V2, unsigned V2Size, 492 const Value *UnderlyingV1, 493 const Value *UnderlyingV2) { 494 // If this GEP has been visited before, we're on a use-def cycle. 495 // Such cycles are only valid when PHI nodes are involved or in unreachable 496 // code. The visitPHI function catches cycles containing PHIs, but there 497 // could still be a cycle without PHIs in unreachable code. 498 if (!Visited.insert(GEP1)) 499 return MayAlias; 500 501 int64_t GEP1BaseOffset; 502 SmallVector<std::pair<const Value*, int64_t>, 4> GEP1VariableIndices; 503 504 // If we have two gep instructions with must-alias'ing base pointers, figure 505 // out if the indexes to the GEP tell us anything about the derived pointer. 506 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 507 // Do the base pointers alias? 508 AliasResult BaseAlias = aliasCheck(UnderlyingV1, ~0U, UnderlyingV2, ~0U); 509 510 // If we get a No or May, then return it immediately, no amount of analysis 511 // will improve this situation. 512 if (BaseAlias != MustAlias) return BaseAlias; 513 514 // Otherwise, we have a MustAlias. Since the base pointers alias each other 515 // exactly, see if the computed offset from the common pointer tells us 516 // about the relation of the resulting pointer. 517 const Value *GEP1BasePtr = 518 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD); 519 520 int64_t GEP2BaseOffset; 521 SmallVector<std::pair<const Value*, int64_t>, 4> GEP2VariableIndices; 522 const Value *GEP2BasePtr = 523 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD); 524 525 // If DecomposeGEPExpression isn't able to look all the way through the 526 // addressing operation, we must not have TD and this is too complex for us 527 // to handle without it. 528 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 529 assert(TD == 0 && 530 "DecomposeGEPExpression and getUnderlyingObject disagree!"); 531 return MayAlias; 532 } 533 534 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 535 // symbolic difference. 536 GEP1BaseOffset -= GEP2BaseOffset; 537 GetIndiceDifference(GEP1VariableIndices, GEP2VariableIndices); 538 539 } else { 540 // Check to see if these two pointers are related by the getelementptr 541 // instruction. If one pointer is a GEP with a non-zero index of the other 542 // pointer, we know they cannot alias. 543 544 // If both accesses are unknown size, we can't do anything useful here. 545 if (V1Size == ~0U && V2Size == ~0U) 546 return MayAlias; 547 548 AliasResult R = aliasCheck(UnderlyingV1, ~0U, V2, V2Size); 549 if (R != MustAlias) 550 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 551 // If V2 is known not to alias GEP base pointer, then the two values 552 // cannot alias per GEP semantics: "A pointer value formed from a 553 // getelementptr instruction is associated with the addresses associated 554 // with the first operand of the getelementptr". 555 return R; 556 557 const Value *GEP1BasePtr = 558 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD); 559 560 // If DecomposeGEPExpression isn't able to look all the way through the 561 // addressing operation, we must not have TD and this is too complex for us 562 // to handle without it. 563 if (GEP1BasePtr != UnderlyingV1) { 564 assert(TD == 0 && 565 "DecomposeGEPExpression and getUnderlyingObject disagree!"); 566 return MayAlias; 567 } 568 } 569 570 // In the two GEP Case, if there is no difference in the offsets of the 571 // computed pointers, the resultant pointers are a must alias. This 572 // hapens when we have two lexically identical GEP's (for example). 573 // 574 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 575 // must aliases the GEP, the end result is a must alias also. 576 if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty()) 577 return MustAlias; 578 579 // If we have a known constant offset, see if this offset is larger than the 580 // access size being queried. If so, and if no variable indices can remove 581 // pieces of this constant, then we know we have a no-alias. For example, 582 // &A[100] != &A. 583 584 // In order to handle cases like &A[100][i] where i is an out of range 585 // subscript, we have to ignore all constant offset pieces that are a multiple 586 // of a scaled index. Do this by removing constant offsets that are a 587 // multiple of any of our variable indices. This allows us to transform 588 // things like &A[i][1] because i has a stride of (e.g.) 8 bytes but the 1 589 // provides an offset of 4 bytes (assuming a <= 4 byte access). 590 for (unsigned i = 0, e = GEP1VariableIndices.size(); 591 i != e && GEP1BaseOffset;++i) 592 if (int64_t RemovedOffset = GEP1BaseOffset/GEP1VariableIndices[i].second) 593 GEP1BaseOffset -= RemovedOffset*GEP1VariableIndices[i].second; 594 595 // If our known offset is bigger than the access size, we know we don't have 596 // an alias. 597 if (GEP1BaseOffset) { 598 if (GEP1BaseOffset >= (int64_t)V2Size || 599 GEP1BaseOffset <= -(int64_t)V1Size) 600 return NoAlias; 601 } 602 603 return MayAlias; 604 } 605 606 /// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select 607 /// instruction against another. 608 AliasAnalysis::AliasResult 609 BasicAliasAnalysis::aliasSelect(const SelectInst *SI, unsigned SISize, 610 const Value *V2, unsigned V2Size) { 611 // If this select has been visited before, we're on a use-def cycle. 612 // Such cycles are only valid when PHI nodes are involved or in unreachable 613 // code. The visitPHI function catches cycles containing PHIs, but there 614 // could still be a cycle without PHIs in unreachable code. 615 if (!Visited.insert(SI)) 616 return MayAlias; 617 618 // If the values are Selects with the same condition, we can do a more precise 619 // check: just check for aliases between the values on corresponding arms. 620 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 621 if (SI->getCondition() == SI2->getCondition()) { 622 AliasResult Alias = 623 aliasCheck(SI->getTrueValue(), SISize, 624 SI2->getTrueValue(), V2Size); 625 if (Alias == MayAlias) 626 return MayAlias; 627 AliasResult ThisAlias = 628 aliasCheck(SI->getFalseValue(), SISize, 629 SI2->getFalseValue(), V2Size); 630 if (ThisAlias != Alias) 631 return MayAlias; 632 return Alias; 633 } 634 635 // If both arms of the Select node NoAlias or MustAlias V2, then returns 636 // NoAlias / MustAlias. Otherwise, returns MayAlias. 637 AliasResult Alias = 638 aliasCheck(V2, V2Size, SI->getTrueValue(), SISize); 639 if (Alias == MayAlias) 640 return MayAlias; 641 642 // If V2 is visited, the recursive case will have been caught in the 643 // above aliasCheck call, so these subsequent calls to aliasCheck 644 // don't need to assume that V2 is being visited recursively. 645 Visited.erase(V2); 646 647 AliasResult ThisAlias = 648 aliasCheck(V2, V2Size, SI->getFalseValue(), SISize); 649 if (ThisAlias != Alias) 650 return MayAlias; 651 return Alias; 652 } 653 654 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction 655 // against another. 656 AliasAnalysis::AliasResult 657 BasicAliasAnalysis::aliasPHI(const PHINode *PN, unsigned PNSize, 658 const Value *V2, unsigned V2Size) { 659 // The PHI node has already been visited, avoid recursion any further. 660 if (!Visited.insert(PN)) 661 return MayAlias; 662 663 // If the values are PHIs in the same block, we can do a more precise 664 // as well as efficient check: just check for aliases between the values 665 // on corresponding edges. 666 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 667 if (PN2->getParent() == PN->getParent()) { 668 AliasResult Alias = 669 aliasCheck(PN->getIncomingValue(0), PNSize, 670 PN2->getIncomingValueForBlock(PN->getIncomingBlock(0)), 671 V2Size); 672 if (Alias == MayAlias) 673 return MayAlias; 674 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 675 AliasResult ThisAlias = 676 aliasCheck(PN->getIncomingValue(i), PNSize, 677 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 678 V2Size); 679 if (ThisAlias != Alias) 680 return MayAlias; 681 } 682 return Alias; 683 } 684 685 SmallPtrSet<Value*, 4> UniqueSrc; 686 SmallVector<Value*, 4> V1Srcs; 687 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 688 Value *PV1 = PN->getIncomingValue(i); 689 if (isa<PHINode>(PV1)) 690 // If any of the source itself is a PHI, return MayAlias conservatively 691 // to avoid compile time explosion. The worst possible case is if both 692 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 693 // and 'n' are the number of PHI sources. 694 return MayAlias; 695 if (UniqueSrc.insert(PV1)) 696 V1Srcs.push_back(PV1); 697 } 698 699 AliasResult Alias = aliasCheck(V2, V2Size, V1Srcs[0], PNSize); 700 // Early exit if the check of the first PHI source against V2 is MayAlias. 701 // Other results are not possible. 702 if (Alias == MayAlias) 703 return MayAlias; 704 705 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 706 // NoAlias / MustAlias. Otherwise, returns MayAlias. 707 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 708 Value *V = V1Srcs[i]; 709 710 // If V2 is visited, the recursive case will have been caught in the 711 // above aliasCheck call, so these subsequent calls to aliasCheck 712 // don't need to assume that V2 is being visited recursively. 713 Visited.erase(V2); 714 715 AliasResult ThisAlias = aliasCheck(V2, V2Size, V, PNSize); 716 if (ThisAlias != Alias || ThisAlias == MayAlias) 717 return MayAlias; 718 } 719 720 return Alias; 721 } 722 723 // aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases, 724 // such as array references. 725 // 726 AliasAnalysis::AliasResult 727 BasicAliasAnalysis::aliasCheck(const Value *V1, unsigned V1Size, 728 const Value *V2, unsigned V2Size) { 729 // If either of the memory references is empty, it doesn't matter what the 730 // pointer values are. 731 if (V1Size == 0 || V2Size == 0) 732 return NoAlias; 733 734 // Strip off any casts if they exist. 735 V1 = V1->stripPointerCasts(); 736 V2 = V2->stripPointerCasts(); 737 738 // Are we checking for alias of the same value? 739 if (V1 == V2) return MustAlias; 740 741 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 742 return NoAlias; // Scalars cannot alias each other 743 744 // Figure out what objects these things are pointing to if we can. 745 const Value *O1 = V1->getUnderlyingObject(); 746 const Value *O2 = V2->getUnderlyingObject(); 747 748 // Null values in the default address space don't point to any object, so they 749 // don't alias any other pointer. 750 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 751 if (CPN->getType()->getAddressSpace() == 0) 752 return NoAlias; 753 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 754 if (CPN->getType()->getAddressSpace() == 0) 755 return NoAlias; 756 757 if (O1 != O2) { 758 // If V1/V2 point to two different objects we know that we have no alias. 759 if (isIdentifiedObject(O1, Interprocedural) && 760 isIdentifiedObject(O2, Interprocedural)) 761 return NoAlias; 762 763 // Constant pointers can't alias with non-const isIdentifiedObject objects. 764 if ((isa<Constant>(O1) && 765 isIdentifiedObject(O2, Interprocedural) && 766 !isa<Constant>(O2)) || 767 (isa<Constant>(O2) && 768 isIdentifiedObject(O1, Interprocedural) && 769 !isa<Constant>(O1))) 770 return NoAlias; 771 772 // Arguments can't alias with local allocations or noalias calls, unless 773 // we have to consider interprocedural aliasing. 774 if (!Interprocedural) 775 if ((isa<Argument>(O1) && (isa<AllocaInst>(O2) || isNoAliasCall(O2))) || 776 (isa<Argument>(O2) && (isa<AllocaInst>(O1) || isNoAliasCall(O1)))) 777 return NoAlias; 778 779 // Most objects can't alias null. 780 if ((isa<ConstantPointerNull>(V2) && isKnownNonNull(O1)) || 781 (isa<ConstantPointerNull>(V1) && isKnownNonNull(O2))) 782 return NoAlias; 783 } 784 785 // If the size of one access is larger than the entire object on the other 786 // side, then we know such behavior is undefined and can assume no alias. 787 if (TD) 788 if ((V1Size != ~0U && isObjectSmallerThan(O2, V1Size, *TD)) || 789 (V2Size != ~0U && isObjectSmallerThan(O1, V2Size, *TD))) 790 return NoAlias; 791 792 // If one pointer is the result of a call/invoke or load and the other is a 793 // non-escaping local object, then we know the object couldn't escape to a 794 // point where the call could return it. 795 if (O1 != O2) { 796 if (isEscapeSource(O1, Interprocedural) && 797 isNonEscapingLocalObject(O2, Interprocedural)) 798 return NoAlias; 799 if (isEscapeSource(O2, Interprocedural) && 800 isNonEscapingLocalObject(O1, Interprocedural)) 801 return NoAlias; 802 } 803 804 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 805 // GEP can't simplify, we don't even look at the PHI cases. 806 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 807 std::swap(V1, V2); 808 std::swap(V1Size, V2Size); 809 std::swap(O1, O2); 810 } 811 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) 812 return aliasGEP(GV1, V1Size, V2, V2Size, O1, O2); 813 814 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 815 std::swap(V1, V2); 816 std::swap(V1Size, V2Size); 817 } 818 if (const PHINode *PN = dyn_cast<PHINode>(V1)) 819 return aliasPHI(PN, V1Size, V2, V2Size); 820 821 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 822 std::swap(V1, V2); 823 std::swap(V1Size, V2Size); 824 } 825 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) 826 return aliasSelect(S1, V1Size, V2, V2Size); 827 828 return MayAlias; 829 } 830 831 // Make sure that anything that uses AliasAnalysis pulls in this file. 832 DEFINING_FILE_FOR(BasicAliasAnalysis) 833 834 //===----------------------------------------------------------------------===// 835 // InterproceduralBasicAliasAnalysis Pass 836 //===----------------------------------------------------------------------===// 837 838 namespace { 839 /// InterproceduralBasicAliasAnalysis - This is similar to basicaa, except 840 /// that it properly supports queries to values which live in different 841 /// functions. 842 /// 843 /// Note that we don't currently take this to the extreme, analyzing all 844 /// call sites of a function to answer a query about an Argument. 845 /// 846 struct InterproceduralBasicAliasAnalysis : public BasicAliasAnalysis { 847 static char ID; // Class identification, replacement for typeinfo 848 InterproceduralBasicAliasAnalysis() : BasicAliasAnalysis(&ID, true) {} 849 }; 850 } 851 852 // Register this pass... 853 char InterproceduralBasicAliasAnalysis::ID = 0; 854 static RegisterPass<InterproceduralBasicAliasAnalysis> 855 W("interprocedural-basic-aa", "Interprocedural Basic Alias Analysis", false, true); 856 857 // Declare that we implement the AliasAnalysis interface 858 static RegisterAnalysisGroup<AliasAnalysis> Z(W); 859 860 ImmutablePass *llvm::createInterproceduralBasicAliasAnalysisPass() { 861 return new InterproceduralBasicAliasAnalysis(); 862 } 863