1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the primary stateless implementation of the
10 // Alias Analysis interface that implements identities (two different
11 // globals cannot alias, etc), but does no stateful analysis.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/BasicAliasAnalysis.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/PhiValues.h"
30 #include "llvm/Analysis/TargetLibraryInfo.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/Argument.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GetElementPtrTypeIterator.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/Metadata.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/User.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/KnownBits.h"
59 #include <cassert>
60 #include <cstdint>
61 #include <cstdlib>
62 #include <utility>
63 
64 #define DEBUG_TYPE "basicaa"
65 
66 using namespace llvm;
67 
68 /// Enable analysis of recursive PHI nodes.
69 static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden,
70                                           cl::init(true));
71 
72 /// By default, even on 32-bit architectures we use 64-bit integers for
73 /// calculations. This will allow us to more-aggressively decompose indexing
74 /// expressions calculated using i64 values (e.g., long long in C) which is
75 /// common enough to worry about.
76 static cl::opt<bool> ForceAtLeast64Bits("basic-aa-force-at-least-64b",
77                                         cl::Hidden, cl::init(true));
78 static cl::opt<bool> DoubleCalcBits("basic-aa-double-calc-bits",
79                                     cl::Hidden, cl::init(false));
80 
81 /// SearchLimitReached / SearchTimes shows how often the limit of
82 /// to decompose GEPs is reached. It will affect the precision
83 /// of basic alias analysis.
84 STATISTIC(SearchLimitReached, "Number of times the limit to "
85                               "decompose GEPs is reached");
86 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
87 
88 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
89 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
90 /// careful with value equivalence. We use reachability to make sure a value
91 /// cannot be involved in a cycle.
92 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
93 
94 // The max limit of the search depth in DecomposeGEPExpression() and
95 // getUnderlyingObject(), both functions need to use the same search
96 // depth otherwise the algorithm in aliasGEP will assert.
97 static const unsigned MaxLookupSearchDepth = 6;
98 
99 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
100                                FunctionAnalysisManager::Invalidator &Inv) {
101   // We don't care if this analysis itself is preserved, it has no state. But
102   // we need to check that the analyses it depends on have been. Note that we
103   // may be created without handles to some analyses and in that case don't
104   // depend on them.
105   if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
106       (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) ||
107       (LI && Inv.invalidate<LoopAnalysis>(Fn, PA)) ||
108       (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA)))
109     return true;
110 
111   // Otherwise this analysis result remains valid.
112   return false;
113 }
114 
115 //===----------------------------------------------------------------------===//
116 // Useful predicates
117 //===----------------------------------------------------------------------===//
118 
119 /// Returns true if the pointer is one which would have been considered an
120 /// escape by isNonEscapingLocalObject.
121 static bool isEscapeSource(const Value *V) {
122   if (isa<CallBase>(V))
123     return true;
124 
125   if (isa<Argument>(V))
126     return true;
127 
128   // The load case works because isNonEscapingLocalObject considers all
129   // stores to be escapes (it passes true for the StoreCaptures argument
130   // to PointerMayBeCaptured).
131   if (isa<LoadInst>(V))
132     return true;
133 
134   return false;
135 }
136 
137 /// Returns the size of the object specified by V or UnknownSize if unknown.
138 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
139                               const TargetLibraryInfo &TLI,
140                               bool NullIsValidLoc,
141                               bool RoundToAlign = false) {
142   uint64_t Size;
143   ObjectSizeOpts Opts;
144   Opts.RoundToAlign = RoundToAlign;
145   Opts.NullIsUnknownSize = NullIsValidLoc;
146   if (getObjectSize(V, Size, DL, &TLI, Opts))
147     return Size;
148   return MemoryLocation::UnknownSize;
149 }
150 
151 /// Returns true if we can prove that the object specified by V is smaller than
152 /// Size.
153 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
154                                 const DataLayout &DL,
155                                 const TargetLibraryInfo &TLI,
156                                 bool NullIsValidLoc) {
157   // Note that the meanings of the "object" are slightly different in the
158   // following contexts:
159   //    c1: llvm::getObjectSize()
160   //    c2: llvm.objectsize() intrinsic
161   //    c3: isObjectSmallerThan()
162   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
163   // refers to the "entire object".
164   //
165   //  Consider this example:
166   //     char *p = (char*)malloc(100)
167   //     char *q = p+80;
168   //
169   //  In the context of c1 and c2, the "object" pointed by q refers to the
170   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
171   //
172   //  However, in the context of c3, the "object" refers to the chunk of memory
173   // being allocated. So, the "object" has 100 bytes, and q points to the middle
174   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
175   // parameter, before the llvm::getObjectSize() is called to get the size of
176   // entire object, we should:
177   //    - either rewind the pointer q to the base-address of the object in
178   //      question (in this case rewind to p), or
179   //    - just give up. It is up to caller to make sure the pointer is pointing
180   //      to the base address the object.
181   //
182   // We go for 2nd option for simplicity.
183   if (!isIdentifiedObject(V))
184     return false;
185 
186   // This function needs to use the aligned object size because we allow
187   // reads a bit past the end given sufficient alignment.
188   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
189                                       /*RoundToAlign*/ true);
190 
191   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
192 }
193 
194 /// Return the minimal extent from \p V to the end of the underlying object,
195 /// assuming the result is used in an aliasing query. E.g., we do use the query
196 /// location size and the fact that null pointers cannot alias here.
197 static uint64_t getMinimalExtentFrom(const Value &V,
198                                      const LocationSize &LocSize,
199                                      const DataLayout &DL,
200                                      bool NullIsValidLoc) {
201   // If we have dereferenceability information we know a lower bound for the
202   // extent as accesses for a lower offset would be valid. We need to exclude
203   // the "or null" part if null is a valid pointer.
204   bool CanBeNull;
205   uint64_t DerefBytes = V.getPointerDereferenceableBytes(DL, CanBeNull);
206   DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes;
207   // If queried with a precise location size, we assume that location size to be
208   // accessed, thus valid.
209   if (LocSize.isPrecise())
210     DerefBytes = std::max(DerefBytes, LocSize.getValue());
211   return DerefBytes;
212 }
213 
214 /// Returns true if we can prove that the object specified by V has size Size.
215 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
216                          const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
217   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc);
218   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
219 }
220 
221 //===----------------------------------------------------------------------===//
222 // GetElementPtr Instruction Decomposition and Analysis
223 //===----------------------------------------------------------------------===//
224 
225 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
226 /// B are constant integers.
227 ///
228 /// Returns the scale and offset values as APInts and return V as a Value*, and
229 /// return whether we looked through any sign or zero extends.  The incoming
230 /// Value is known to have IntegerType, and it may already be sign or zero
231 /// extended.
232 ///
233 /// Note that this looks through extends, so the high bits may not be
234 /// represented in the result.
235 /*static*/ const Value *BasicAAResult::GetLinearExpression(
236     const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
237     unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
238     AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
239   assert(V->getType()->isIntegerTy() && "Not an integer value");
240 
241   // Limit our recursion depth.
242   if (Depth == 6) {
243     Scale = 1;
244     Offset = 0;
245     return V;
246   }
247 
248   if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
249     // If it's a constant, just convert it to an offset and remove the variable.
250     // If we've been called recursively, the Offset bit width will be greater
251     // than the constant's (the Offset's always as wide as the outermost call),
252     // so we'll zext here and process any extension in the isa<SExtInst> &
253     // isa<ZExtInst> cases below.
254     Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
255     assert(Scale == 0 && "Constant values don't have a scale");
256     return V;
257   }
258 
259   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
260     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
261       // If we've been called recursively, then Offset and Scale will be wider
262       // than the BOp operands. We'll always zext it here as we'll process sign
263       // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
264       APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
265 
266       switch (BOp->getOpcode()) {
267       default:
268         // We don't understand this instruction, so we can't decompose it any
269         // further.
270         Scale = 1;
271         Offset = 0;
272         return V;
273       case Instruction::Or:
274         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
275         // analyze it.
276         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
277                                BOp, DT)) {
278           Scale = 1;
279           Offset = 0;
280           return V;
281         }
282         LLVM_FALLTHROUGH;
283       case Instruction::Add:
284         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
285                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
286         Offset += RHS;
287         break;
288       case Instruction::Sub:
289         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
290                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
291         Offset -= RHS;
292         break;
293       case Instruction::Mul:
294         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
295                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
296         Offset *= RHS;
297         Scale *= RHS;
298         break;
299       case Instruction::Shl:
300         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
301                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
302 
303         // We're trying to linearize an expression of the kind:
304         //   shl i8 -128, 36
305         // where the shift count exceeds the bitwidth of the type.
306         // We can't decompose this further (the expression would return
307         // a poison value).
308         if (Offset.getBitWidth() < RHS.getLimitedValue() ||
309             Scale.getBitWidth() < RHS.getLimitedValue()) {
310           Scale = 1;
311           Offset = 0;
312           return V;
313         }
314 
315         Offset <<= RHS.getLimitedValue();
316         Scale <<= RHS.getLimitedValue();
317         // the semantics of nsw and nuw for left shifts don't match those of
318         // multiplications, so we won't propagate them.
319         NSW = NUW = false;
320         return V;
321       }
322 
323       if (isa<OverflowingBinaryOperator>(BOp)) {
324         NUW &= BOp->hasNoUnsignedWrap();
325         NSW &= BOp->hasNoSignedWrap();
326       }
327       return V;
328     }
329   }
330 
331   // Since GEP indices are sign extended anyway, we don't care about the high
332   // bits of a sign or zero extended value - just scales and offsets.  The
333   // extensions have to be consistent though.
334   if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
335     Value *CastOp = cast<CastInst>(V)->getOperand(0);
336     unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
337     unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
338     unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
339     const Value *Result =
340         GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
341                             Depth + 1, AC, DT, NSW, NUW);
342 
343     // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this
344     // by just incrementing the number of bits we've extended by.
345     unsigned ExtendedBy = NewWidth - SmallWidth;
346 
347     if (isa<SExtInst>(V) && ZExtBits == 0) {
348       // sext(sext(%x, a), b) == sext(%x, a + b)
349 
350       if (NSW) {
351         // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
352         // into sext(%x) + sext(c). We'll sext the Offset ourselves:
353         unsigned OldWidth = Offset.getBitWidth();
354         Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
355       } else {
356         // We may have signed-wrapped, so don't decompose sext(%x + c) into
357         // sext(%x) + sext(c)
358         Scale = 1;
359         Offset = 0;
360         Result = CastOp;
361         ZExtBits = OldZExtBits;
362         SExtBits = OldSExtBits;
363       }
364       SExtBits += ExtendedBy;
365     } else {
366       // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
367 
368       if (!NUW) {
369         // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
370         // zext(%x) + zext(c)
371         Scale = 1;
372         Offset = 0;
373         Result = CastOp;
374         ZExtBits = OldZExtBits;
375         SExtBits = OldSExtBits;
376       }
377       ZExtBits += ExtendedBy;
378     }
379 
380     return Result;
381   }
382 
383   Scale = 1;
384   Offset = 0;
385   return V;
386 }
387 
388 /// To ensure a pointer offset fits in an integer of size PointerSize
389 /// (in bits) when that size is smaller than the maximum pointer size. This is
390 /// an issue, for example, in particular for 32b pointers with negative indices
391 /// that rely on two's complement wrap-arounds for precise alias information
392 /// where the maximum pointer size is 64b.
393 static APInt adjustToPointerSize(const APInt &Offset, unsigned PointerSize) {
394   assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!");
395   unsigned ShiftBits = Offset.getBitWidth() - PointerSize;
396   return (Offset << ShiftBits).ashr(ShiftBits);
397 }
398 
399 static unsigned getMaxPointerSize(const DataLayout &DL) {
400   unsigned MaxPointerSize = DL.getMaxPointerSizeInBits();
401   if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64;
402   if (DoubleCalcBits) MaxPointerSize *= 2;
403 
404   return MaxPointerSize;
405 }
406 
407 /// If V is a symbolic pointer expression, decompose it into a base pointer
408 /// with a constant offset and a number of scaled symbolic offsets.
409 ///
410 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
411 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
412 /// specified amount, but which may have other unrepresented high bits. As
413 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
414 ///
415 /// This function is capable of analyzing everything that getUnderlyingObject
416 /// can look through. To be able to do that getUnderlyingObject and
417 /// DecomposeGEPExpression must use the same search depth
418 /// (MaxLookupSearchDepth).
419 BasicAAResult::DecomposedGEP
420 BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL,
421                                       AssumptionCache *AC, DominatorTree *DT) {
422   // Limit recursion depth to limit compile time in crazy cases.
423   unsigned MaxLookup = MaxLookupSearchDepth;
424   SearchTimes++;
425   const Instruction *CxtI = dyn_cast<Instruction>(V);
426 
427   unsigned MaxPointerSize = getMaxPointerSize(DL);
428   DecomposedGEP Decomposed;
429   Decomposed.Offset = APInt(MaxPointerSize, 0);
430   Decomposed.HasCompileTimeConstantScale = true;
431   do {
432     // See if this is a bitcast or GEP.
433     const Operator *Op = dyn_cast<Operator>(V);
434     if (!Op) {
435       // The only non-operator case we can handle are GlobalAliases.
436       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
437         if (!GA->isInterposable()) {
438           V = GA->getAliasee();
439           continue;
440         }
441       }
442       Decomposed.Base = V;
443       return Decomposed;
444     }
445 
446     if (Op->getOpcode() == Instruction::BitCast ||
447         Op->getOpcode() == Instruction::AddrSpaceCast) {
448       V = Op->getOperand(0);
449       continue;
450     }
451 
452     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
453     if (!GEPOp) {
454       if (const auto *PHI = dyn_cast<PHINode>(V)) {
455         // Look through single-arg phi nodes created by LCSSA.
456         if (PHI->getNumIncomingValues() == 1) {
457           V = PHI->getIncomingValue(0);
458           continue;
459         }
460       } else if (const auto *Call = dyn_cast<CallBase>(V)) {
461         // CaptureTracking can know about special capturing properties of some
462         // intrinsics like launder.invariant.group, that can't be expressed with
463         // the attributes, but have properties like returning aliasing pointer.
464         // Because some analysis may assume that nocaptured pointer is not
465         // returned from some special intrinsic (because function would have to
466         // be marked with returns attribute), it is crucial to use this function
467         // because it should be in sync with CaptureTracking. Not using it may
468         // cause weird miscompilations where 2 aliasing pointers are assumed to
469         // noalias.
470         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
471           V = RP;
472           continue;
473         }
474       }
475 
476       Decomposed.Base = V;
477       return Decomposed;
478     }
479 
480     // Don't attempt to analyze GEPs over unsized objects.
481     if (!GEPOp->getSourceElementType()->isSized()) {
482       Decomposed.Base = V;
483       return Decomposed;
484     }
485 
486     // Don't attempt to analyze GEPs if index scale is not a compile-time
487     // constant.
488     if (isa<ScalableVectorType>(GEPOp->getSourceElementType())) {
489       Decomposed.Base = V;
490       Decomposed.HasCompileTimeConstantScale = false;
491       return Decomposed;
492     }
493 
494     unsigned AS = GEPOp->getPointerAddressSpace();
495     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
496     gep_type_iterator GTI = gep_type_begin(GEPOp);
497     unsigned PointerSize = DL.getPointerSizeInBits(AS);
498     // Assume all GEP operands are constants until proven otherwise.
499     bool GepHasConstantOffset = true;
500     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
501          I != E; ++I, ++GTI) {
502       const Value *Index = *I;
503       // Compute the (potentially symbolic) offset in bytes for this index.
504       if (StructType *STy = GTI.getStructTypeOrNull()) {
505         // For a struct, add the member offset.
506         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
507         if (FieldNo == 0)
508           continue;
509 
510         Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo);
511         continue;
512       }
513 
514       // For an array/pointer, add the element offset, explicitly scaled.
515       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
516         if (CIdx->isZero())
517           continue;
518         Decomposed.Offset +=
519             DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize() *
520             CIdx->getValue().sextOrTrunc(MaxPointerSize);
521         continue;
522       }
523 
524       GepHasConstantOffset = false;
525 
526       APInt Scale(MaxPointerSize,
527                   DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize());
528       unsigned ZExtBits = 0, SExtBits = 0;
529 
530       // If the integer type is smaller than the pointer size, it is implicitly
531       // sign extended to pointer size.
532       unsigned Width = Index->getType()->getIntegerBitWidth();
533       if (PointerSize > Width)
534         SExtBits += PointerSize - Width;
535 
536       // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
537       APInt IndexScale(Width, 0), IndexOffset(Width, 0);
538       bool NSW = true, NUW = true;
539       const Value *OrigIndex = Index;
540       Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
541                                   SExtBits, DL, 0, AC, DT, NSW, NUW);
542 
543       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
544       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
545 
546       // It can be the case that, even through C1*V+C2 does not overflow for
547       // relevant values of V, (C2*Scale) can overflow. In that case, we cannot
548       // decompose the expression in this way.
549       //
550       // FIXME: C1*Scale and the other operations in the decomposed
551       // (C1*Scale)*V+C2*Scale can also overflow. We should check for this
552       // possibility.
553       bool Overflow;
554       APInt ScaledOffset = IndexOffset.sextOrTrunc(MaxPointerSize)
555                            .smul_ov(Scale, Overflow);
556       if (Overflow) {
557         Index = OrigIndex;
558         IndexScale = 1;
559         IndexOffset = 0;
560 
561         ZExtBits = SExtBits = 0;
562         if (PointerSize > Width)
563           SExtBits += PointerSize - Width;
564       } else {
565         Decomposed.Offset += ScaledOffset;
566         Scale *= IndexScale.sextOrTrunc(MaxPointerSize);
567       }
568 
569       // If we already had an occurrence of this index variable, merge this
570       // scale into it.  For example, we want to handle:
571       //   A[x][x] -> x*16 + x*4 -> x*20
572       // This also ensures that 'x' only appears in the index list once.
573       for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
574         if (Decomposed.VarIndices[i].V == Index &&
575             Decomposed.VarIndices[i].ZExtBits == ZExtBits &&
576             Decomposed.VarIndices[i].SExtBits == SExtBits) {
577           Scale += Decomposed.VarIndices[i].Scale;
578           Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
579           break;
580         }
581       }
582 
583       // Make sure that we have a scale that makes sense for this target's
584       // pointer size.
585       Scale = adjustToPointerSize(Scale, PointerSize);
586 
587       if (!!Scale) {
588         VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, Scale, CxtI};
589         Decomposed.VarIndices.push_back(Entry);
590       }
591     }
592 
593     // Take care of wrap-arounds
594     if (GepHasConstantOffset)
595       Decomposed.Offset = adjustToPointerSize(Decomposed.Offset, PointerSize);
596 
597     // Analyze the base pointer next.
598     V = GEPOp->getOperand(0);
599   } while (--MaxLookup);
600 
601   // If the chain of expressions is too deep, just return early.
602   Decomposed.Base = V;
603   SearchLimitReached++;
604   return Decomposed;
605 }
606 
607 /// Returns whether the given pointer value points to memory that is local to
608 /// the function, with global constants being considered local to all
609 /// functions.
610 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
611                                            AAQueryInfo &AAQI, bool OrLocal) {
612   assert(Visited.empty() && "Visited must be cleared after use!");
613 
614   unsigned MaxLookup = 8;
615   SmallVector<const Value *, 16> Worklist;
616   Worklist.push_back(Loc.Ptr);
617   do {
618     const Value *V = getUnderlyingObject(Worklist.pop_back_val());
619     if (!Visited.insert(V).second) {
620       Visited.clear();
621       return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
622     }
623 
624     // An alloca instruction defines local memory.
625     if (OrLocal && isa<AllocaInst>(V))
626       continue;
627 
628     // A global constant counts as local memory for our purposes.
629     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
630       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
631       // global to be marked constant in some modules and non-constant in
632       // others.  GV may even be a declaration, not a definition.
633       if (!GV->isConstant()) {
634         Visited.clear();
635         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
636       }
637       continue;
638     }
639 
640     // If both select values point to local memory, then so does the select.
641     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
642       Worklist.push_back(SI->getTrueValue());
643       Worklist.push_back(SI->getFalseValue());
644       continue;
645     }
646 
647     // If all values incoming to a phi node point to local memory, then so does
648     // the phi.
649     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
650       // Don't bother inspecting phi nodes with many operands.
651       if (PN->getNumIncomingValues() > MaxLookup) {
652         Visited.clear();
653         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
654       }
655       for (Value *IncValue : PN->incoming_values())
656         Worklist.push_back(IncValue);
657       continue;
658     }
659 
660     // Otherwise be conservative.
661     Visited.clear();
662     return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
663   } while (!Worklist.empty() && --MaxLookup);
664 
665   Visited.clear();
666   return Worklist.empty();
667 }
668 
669 /// Returns the behavior when calling the given call site.
670 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) {
671   if (Call->doesNotAccessMemory())
672     // Can't do better than this.
673     return FMRB_DoesNotAccessMemory;
674 
675   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
676 
677   // If the callsite knows it only reads memory, don't return worse
678   // than that.
679   if (Call->onlyReadsMemory())
680     Min = FMRB_OnlyReadsMemory;
681   else if (Call->doesNotReadMemory())
682     Min = FMRB_OnlyWritesMemory;
683 
684   if (Call->onlyAccessesArgMemory())
685     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
686   else if (Call->onlyAccessesInaccessibleMemory())
687     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
688   else if (Call->onlyAccessesInaccessibleMemOrArgMem())
689     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
690 
691   // If the call has operand bundles then aliasing attributes from the function
692   // it calls do not directly apply to the call.  This can be made more precise
693   // in the future.
694   if (!Call->hasOperandBundles())
695     if (const Function *F = Call->getCalledFunction())
696       Min =
697           FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
698 
699   return Min;
700 }
701 
702 /// Returns the behavior when calling the given function. For use when the call
703 /// site is not known.
704 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
705   // If the function declares it doesn't access memory, we can't do better.
706   if (F->doesNotAccessMemory())
707     return FMRB_DoesNotAccessMemory;
708 
709   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
710 
711   // If the function declares it only reads memory, go with that.
712   if (F->onlyReadsMemory())
713     Min = FMRB_OnlyReadsMemory;
714   else if (F->doesNotReadMemory())
715     Min = FMRB_OnlyWritesMemory;
716 
717   if (F->onlyAccessesArgMemory())
718     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
719   else if (F->onlyAccessesInaccessibleMemory())
720     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
721   else if (F->onlyAccessesInaccessibleMemOrArgMem())
722     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
723 
724   return Min;
725 }
726 
727 /// Returns true if this is a writeonly (i.e Mod only) parameter.
728 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx,
729                              const TargetLibraryInfo &TLI) {
730   if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly))
731     return true;
732 
733   // We can bound the aliasing properties of memset_pattern16 just as we can
734   // for memcpy/memset.  This is particularly important because the
735   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
736   // whenever possible.
737   // FIXME Consider handling this in InferFunctionAttr.cpp together with other
738   // attributes.
739   LibFunc F;
740   if (Call->getCalledFunction() &&
741       TLI.getLibFunc(*Call->getCalledFunction(), F) &&
742       F == LibFunc_memset_pattern16 && TLI.has(F))
743     if (ArgIdx == 0)
744       return true;
745 
746   // TODO: memset_pattern4, memset_pattern8
747   // TODO: _chk variants
748   // TODO: strcmp, strcpy
749 
750   return false;
751 }
752 
753 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
754                                            unsigned ArgIdx) {
755   // Checking for known builtin intrinsics and target library functions.
756   if (isWriteOnlyParam(Call, ArgIdx, TLI))
757     return ModRefInfo::Mod;
758 
759   if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly))
760     return ModRefInfo::Ref;
761 
762   if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone))
763     return ModRefInfo::NoModRef;
764 
765   return AAResultBase::getArgModRefInfo(Call, ArgIdx);
766 }
767 
768 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
769   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
770   return II && II->getIntrinsicID() == IID;
771 }
772 
773 #ifndef NDEBUG
774 static const Function *getParent(const Value *V) {
775   if (const Instruction *inst = dyn_cast<Instruction>(V)) {
776     if (!inst->getParent())
777       return nullptr;
778     return inst->getParent()->getParent();
779   }
780 
781   if (const Argument *arg = dyn_cast<Argument>(V))
782     return arg->getParent();
783 
784   return nullptr;
785 }
786 
787 static bool notDifferentParent(const Value *O1, const Value *O2) {
788 
789   const Function *F1 = getParent(O1);
790   const Function *F2 = getParent(O2);
791 
792   return !F1 || !F2 || F1 == F2;
793 }
794 #endif
795 
796 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
797                                  const MemoryLocation &LocB,
798                                  AAQueryInfo &AAQI) {
799   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
800          "BasicAliasAnalysis doesn't support interprocedural queries.");
801 
802   // If we have a directly cached entry for these locations, we have recursed
803   // through this once, so just return the cached results. Notably, when this
804   // happens, we don't clear the cache.
805   AAQueryInfo::LocPair Locs(LocA, LocB);
806   if (Locs.first.Ptr > Locs.second.Ptr)
807     std::swap(Locs.first, Locs.second);
808   auto CacheIt = AAQI.AliasCache.find(Locs);
809   if (CacheIt != AAQI.AliasCache.end()) {
810     // This code exists to skip a second BasicAA call while recursing into
811     // BestAA. Don't make use of assumptions here.
812     const auto &Entry = CacheIt->second;
813     return Entry.isDefinitive() ? Entry.Result : MayAlias;
814   }
815 
816   AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
817                                  LocB.Size, LocB.AATags, AAQI);
818 
819   assert(VisitedPhiBBs.empty());
820   return Alias;
821 }
822 
823 /// Checks to see if the specified callsite can clobber the specified memory
824 /// object.
825 ///
826 /// Since we only look at local properties of this function, we really can't
827 /// say much about this query.  We do, however, use simple "address taken"
828 /// analysis on local objects.
829 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
830                                         const MemoryLocation &Loc,
831                                         AAQueryInfo &AAQI) {
832   assert(notDifferentParent(Call, Loc.Ptr) &&
833          "AliasAnalysis query involving multiple functions!");
834 
835   const Value *Object = getUnderlyingObject(Loc.Ptr);
836 
837   // Calls marked 'tail' cannot read or write allocas from the current frame
838   // because the current frame might be destroyed by the time they run. However,
839   // a tail call may use an alloca with byval. Calling with byval copies the
840   // contents of the alloca into argument registers or stack slots, so there is
841   // no lifetime issue.
842   if (isa<AllocaInst>(Object))
843     if (const CallInst *CI = dyn_cast<CallInst>(Call))
844       if (CI->isTailCall() &&
845           !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal))
846         return ModRefInfo::NoModRef;
847 
848   // Stack restore is able to modify unescaped dynamic allocas. Assume it may
849   // modify them even though the alloca is not escaped.
850   if (auto *AI = dyn_cast<AllocaInst>(Object))
851     if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore))
852       return ModRefInfo::Mod;
853 
854   // If the pointer is to a locally allocated object that does not escape,
855   // then the call can not mod/ref the pointer unless the call takes the pointer
856   // as an argument, and itself doesn't capture it.
857   if (!isa<Constant>(Object) && Call != Object &&
858       isNonEscapingLocalObject(Object, &AAQI.IsCapturedCache)) {
859 
860     // Optimistically assume that call doesn't touch Object and check this
861     // assumption in the following loop.
862     ModRefInfo Result = ModRefInfo::NoModRef;
863     bool IsMustAlias = true;
864 
865     unsigned OperandNo = 0;
866     for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
867          CI != CE; ++CI, ++OperandNo) {
868       // Only look at the no-capture or byval pointer arguments.  If this
869       // pointer were passed to arguments that were neither of these, then it
870       // couldn't be no-capture.
871       if (!(*CI)->getType()->isPointerTy() ||
872           (!Call->doesNotCapture(OperandNo) &&
873            OperandNo < Call->getNumArgOperands() &&
874            !Call->isByValArgument(OperandNo)))
875         continue;
876 
877       // Call doesn't access memory through this operand, so we don't care
878       // if it aliases with Object.
879       if (Call->doesNotAccessMemory(OperandNo))
880         continue;
881 
882       // If this is a no-capture pointer argument, see if we can tell that it
883       // is impossible to alias the pointer we're checking.
884       AliasResult AR = getBestAAResults().alias(
885           MemoryLocation::getBeforeOrAfter(*CI),
886           MemoryLocation::getBeforeOrAfter(Object), AAQI);
887       if (AR != MustAlias)
888         IsMustAlias = false;
889       // Operand doesn't alias 'Object', continue looking for other aliases
890       if (AR == NoAlias)
891         continue;
892       // Operand aliases 'Object', but call doesn't modify it. Strengthen
893       // initial assumption and keep looking in case if there are more aliases.
894       if (Call->onlyReadsMemory(OperandNo)) {
895         Result = setRef(Result);
896         continue;
897       }
898       // Operand aliases 'Object' but call only writes into it.
899       if (Call->doesNotReadMemory(OperandNo)) {
900         Result = setMod(Result);
901         continue;
902       }
903       // This operand aliases 'Object' and call reads and writes into it.
904       // Setting ModRef will not yield an early return below, MustAlias is not
905       // used further.
906       Result = ModRefInfo::ModRef;
907       break;
908     }
909 
910     // No operand aliases, reset Must bit. Add below if at least one aliases
911     // and all aliases found are MustAlias.
912     if (isNoModRef(Result))
913       IsMustAlias = false;
914 
915     // Early return if we improved mod ref information
916     if (!isModAndRefSet(Result)) {
917       if (isNoModRef(Result))
918         return ModRefInfo::NoModRef;
919       return IsMustAlias ? setMust(Result) : clearMust(Result);
920     }
921   }
922 
923   // If the call is malloc/calloc like, we can assume that it doesn't
924   // modify any IR visible value.  This is only valid because we assume these
925   // routines do not read values visible in the IR.  TODO: Consider special
926   // casing realloc and strdup routines which access only their arguments as
927   // well.  Or alternatively, replace all of this with inaccessiblememonly once
928   // that's implemented fully.
929   if (isMallocOrCallocLikeFn(Call, &TLI)) {
930     // Be conservative if the accessed pointer may alias the allocation -
931     // fallback to the generic handling below.
932     if (getBestAAResults().alias(MemoryLocation::getBeforeOrAfter(Call),
933                                  Loc, AAQI) == NoAlias)
934       return ModRefInfo::NoModRef;
935   }
936 
937   // The semantics of memcpy intrinsics either exactly overlap or do not
938   // overlap, i.e., source and destination of any given memcpy are either
939   // no-alias or must-alias.
940   if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) {
941     AliasResult SrcAA =
942         getBestAAResults().alias(MemoryLocation::getForSource(Inst), Loc, AAQI);
943     AliasResult DestAA =
944         getBestAAResults().alias(MemoryLocation::getForDest(Inst), Loc, AAQI);
945     // It's also possible for Loc to alias both src and dest, or neither.
946     ModRefInfo rv = ModRefInfo::NoModRef;
947     if (SrcAA != NoAlias)
948       rv = setRef(rv);
949     if (DestAA != NoAlias)
950       rv = setMod(rv);
951     return rv;
952   }
953 
954   // While the assume intrinsic is marked as arbitrarily writing so that
955   // proper control dependencies will be maintained, it never aliases any
956   // particular memory location.
957   if (isIntrinsicCall(Call, Intrinsic::assume))
958     return ModRefInfo::NoModRef;
959 
960   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
961   // that proper control dependencies are maintained but they never mods any
962   // particular memory location.
963   //
964   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
965   // heap state at the point the guard is issued needs to be consistent in case
966   // the guard invokes the "deopt" continuation.
967   if (isIntrinsicCall(Call, Intrinsic::experimental_guard))
968     return ModRefInfo::Ref;
969   // The same applies to deoptimize which is essentially a guard(false).
970   if (isIntrinsicCall(Call, Intrinsic::experimental_deoptimize))
971     return ModRefInfo::Ref;
972 
973   // Like assumes, invariant.start intrinsics were also marked as arbitrarily
974   // writing so that proper control dependencies are maintained but they never
975   // mod any particular memory location visible to the IR.
976   // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
977   // intrinsic is now modeled as reading memory. This prevents hoisting the
978   // invariant.start intrinsic over stores. Consider:
979   // *ptr = 40;
980   // *ptr = 50;
981   // invariant_start(ptr)
982   // int val = *ptr;
983   // print(val);
984   //
985   // This cannot be transformed to:
986   //
987   // *ptr = 40;
988   // invariant_start(ptr)
989   // *ptr = 50;
990   // int val = *ptr;
991   // print(val);
992   //
993   // The transformation will cause the second store to be ignored (based on
994   // rules of invariant.start)  and print 40, while the first program always
995   // prints 50.
996   if (isIntrinsicCall(Call, Intrinsic::invariant_start))
997     return ModRefInfo::Ref;
998 
999   // The AAResultBase base class has some smarts, lets use them.
1000   return AAResultBase::getModRefInfo(Call, Loc, AAQI);
1001 }
1002 
1003 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
1004                                         const CallBase *Call2,
1005                                         AAQueryInfo &AAQI) {
1006   // While the assume intrinsic is marked as arbitrarily writing so that
1007   // proper control dependencies will be maintained, it never aliases any
1008   // particular memory location.
1009   if (isIntrinsicCall(Call1, Intrinsic::assume) ||
1010       isIntrinsicCall(Call2, Intrinsic::assume))
1011     return ModRefInfo::NoModRef;
1012 
1013   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
1014   // that proper control dependencies are maintained but they never mod any
1015   // particular memory location.
1016   //
1017   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1018   // heap state at the point the guard is issued needs to be consistent in case
1019   // the guard invokes the "deopt" continuation.
1020 
1021   // NB! This function is *not* commutative, so we special case two
1022   // possibilities for guard intrinsics.
1023 
1024   if (isIntrinsicCall(Call1, Intrinsic::experimental_guard))
1025     return isModSet(createModRefInfo(getModRefBehavior(Call2)))
1026                ? ModRefInfo::Ref
1027                : ModRefInfo::NoModRef;
1028 
1029   if (isIntrinsicCall(Call2, Intrinsic::experimental_guard))
1030     return isModSet(createModRefInfo(getModRefBehavior(Call1)))
1031                ? ModRefInfo::Mod
1032                : ModRefInfo::NoModRef;
1033 
1034   // The AAResultBase base class has some smarts, lets use them.
1035   return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
1036 }
1037 
1038 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the
1039 // beginning of the object the GEP points would have a negative offset with
1040 // repsect to the alloca, that means the GEP can not alias pointer (b).
1041 // Note that the pointer based on the alloca may not be a GEP. For
1042 // example, it may be the alloca itself.
1043 // The same applies if (b) is based on a GlobalVariable. Note that just being
1044 // based on isIdentifiedObject() is not enough - we need an identified object
1045 // that does not permit access to negative offsets. For example, a negative
1046 // offset from a noalias argument or call can be inbounds w.r.t the actual
1047 // underlying object.
1048 //
1049 // For example, consider:
1050 //
1051 //   struct { int f0, int f1, ...} foo;
1052 //   foo alloca;
1053 //   foo* random = bar(alloca);
1054 //   int *f0 = &alloca.f0
1055 //   int *f1 = &random->f1;
1056 //
1057 // Which is lowered, approximately, to:
1058 //
1059 //  %alloca = alloca %struct.foo
1060 //  %random = call %struct.foo* @random(%struct.foo* %alloca)
1061 //  %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0
1062 //  %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1
1063 //
1064 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated
1065 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also
1066 // point into the same object. But since %f0 points to the beginning of %alloca,
1067 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher
1068 // than (%alloca - 1), and so is not inbounds, a contradiction.
1069 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp,
1070       const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject,
1071       LocationSize MaybeObjectAccessSize) {
1072   // If the object access size is unknown, or the GEP isn't inbounds, bail.
1073   if (!MaybeObjectAccessSize.hasValue() || !GEPOp->isInBounds())
1074     return false;
1075 
1076   const uint64_t ObjectAccessSize = MaybeObjectAccessSize.getValue();
1077 
1078   // We need the object to be an alloca or a globalvariable, and want to know
1079   // the offset of the pointer from the object precisely, so no variable
1080   // indices are allowed.
1081   if (!(isa<AllocaInst>(DecompObject.Base) ||
1082         isa<GlobalVariable>(DecompObject.Base)) ||
1083       !DecompObject.VarIndices.empty())
1084     return false;
1085 
1086   // If the GEP has no variable indices, we know the precise offset
1087   // from the base, then use it. If the GEP has variable indices,
1088   // we can't get exact GEP offset to identify pointer alias. So return
1089   // false in that case.
1090   if (!DecompGEP.VarIndices.empty())
1091     return false;
1092 
1093   return DecompGEP.Offset.sge(DecompObject.Offset + (int64_t)ObjectAccessSize);
1094 }
1095 
1096 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1097 /// another pointer.
1098 ///
1099 /// We know that V1 is a GEP, but we don't know anything about V2.
1100 /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for
1101 /// V2.
1102 AliasResult BasicAAResult::aliasGEP(
1103     const GEPOperator *GEP1, LocationSize V1Size, const AAMDNodes &V1AAInfo,
1104     const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo,
1105     const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) {
1106   DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT);
1107   DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT);
1108 
1109   // Don't attempt to analyze the decomposed GEP if index scale is not a
1110   // compile-time constant.
1111   if (!DecompGEP1.HasCompileTimeConstantScale ||
1112       !DecompGEP2.HasCompileTimeConstantScale)
1113     return MayAlias;
1114 
1115   assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
1116          "DecomposeGEPExpression returned a result different from "
1117          "getUnderlyingObject");
1118 
1119   // If the GEP's offset relative to its base is such that the base would
1120   // fall below the start of the object underlying V2, then the GEP and V2
1121   // cannot alias.
1122   if (isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size))
1123     return NoAlias;
1124   // If we have two gep instructions with must-alias or not-alias'ing base
1125   // pointers, figure out if the indexes to the GEP tell us anything about the
1126   // derived pointer.
1127   if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
1128     // Check for the GEP base being at a negative offset, this time in the other
1129     // direction.
1130     if (isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size))
1131       return NoAlias;
1132     // Do the base pointers alias?
1133     AliasResult BaseAlias = aliasCheck(
1134         UnderlyingV1, LocationSize::beforeOrAfterPointer(), AAMDNodes(),
1135         UnderlyingV2, LocationSize::beforeOrAfterPointer(), AAMDNodes(), AAQI);
1136 
1137     // For GEPs with identical offsets, we can preserve the size and AAInfo
1138     // when performing the alias check on the underlying objects.
1139     if (BaseAlias == MayAlias && DecompGEP1.Offset == DecompGEP2.Offset &&
1140         DecompGEP1.VarIndices == DecompGEP2.VarIndices) {
1141       AliasResult PreciseBaseAlias = aliasCheck(
1142           UnderlyingV1, V1Size, V1AAInfo, UnderlyingV2, V2Size, V2AAInfo, AAQI);
1143       if (PreciseBaseAlias == NoAlias)
1144         return NoAlias;
1145     }
1146 
1147     // If we get a No or May, then return it immediately, no amount of analysis
1148     // will improve this situation.
1149     if (BaseAlias != MustAlias) {
1150       assert(BaseAlias == NoAlias || BaseAlias == MayAlias);
1151       return BaseAlias;
1152     }
1153 
1154     // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1155     // symbolic difference.
1156     DecompGEP1.Offset -= DecompGEP2.Offset;
1157     GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);
1158 
1159   } else {
1160     // Check to see if these two pointers are related by the getelementptr
1161     // instruction.  If one pointer is a GEP with a non-zero index of the other
1162     // pointer, we know they cannot alias.
1163 
1164     // If both accesses are unknown size, we can't do anything useful here.
1165     if (!V1Size.hasValue() && !V2Size.hasValue())
1166       return MayAlias;
1167 
1168     AliasResult R = aliasCheck(
1169         UnderlyingV1, LocationSize::beforeOrAfterPointer(), AAMDNodes(),
1170         V2, V2Size, V2AAInfo, AAQI, nullptr, UnderlyingV2);
1171     if (R != MustAlias) {
1172       // If V2 may alias GEP base pointer, conservatively returns MayAlias.
1173       // If V2 is known not to alias GEP base pointer, then the two values
1174       // cannot alias per GEP semantics: "Any memory access must be done through
1175       // a pointer value associated with an address range of the memory access,
1176       // otherwise the behavior is undefined.".
1177       assert(R == NoAlias || R == MayAlias);
1178       return R;
1179     }
1180   }
1181 
1182   // In the two GEP Case, if there is no difference in the offsets of the
1183   // computed pointers, the resultant pointers are a must alias.  This
1184   // happens when we have two lexically identical GEP's (for example).
1185   //
1186   // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
1187   // must aliases the GEP, the end result is a must alias also.
1188   if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty())
1189     return MustAlias;
1190 
1191   // If there is a constant difference between the pointers, but the difference
1192   // is less than the size of the associated memory object, then we know
1193   // that the objects are partially overlapping.  If the difference is
1194   // greater, we know they do not overlap.
1195   if (DecompGEP1.Offset != 0 && DecompGEP1.VarIndices.empty()) {
1196     if (DecompGEP1.Offset.sge(0)) {
1197       if (V2Size.hasValue()) {
1198         if (DecompGEP1.Offset.ult(V2Size.getValue()))
1199           return PartialAlias;
1200         return NoAlias;
1201       }
1202     } else {
1203       // We have the situation where:
1204       // +                +
1205       // | BaseOffset     |
1206       // ---------------->|
1207       // |-->V1Size       |-------> V2Size
1208       // GEP1             V2
1209       if (V1Size.hasValue()) {
1210         if ((-DecompGEP1.Offset).ult(V1Size.getValue()))
1211           return PartialAlias;
1212         return NoAlias;
1213       }
1214     }
1215   }
1216 
1217   if (!DecompGEP1.VarIndices.empty()) {
1218     APInt GCD;
1219     bool AllNonNegative = DecompGEP1.Offset.isNonNegative();
1220     bool AllNonPositive = DecompGEP1.Offset.isNonPositive();
1221     for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1222       const APInt &Scale = DecompGEP1.VarIndices[i].Scale;
1223       if (i == 0)
1224         GCD = Scale.abs();
1225       else
1226         GCD = APIntOps::GreatestCommonDivisor(GCD, Scale.abs());
1227 
1228       if (AllNonNegative || AllNonPositive) {
1229         // If the Value could change between cycles, then any reasoning about
1230         // the Value this cycle may not hold in the next cycle. We'll just
1231         // give up if we can't determine conditions that hold for every cycle:
1232         const Value *V = DecompGEP1.VarIndices[i].V;
1233         const Instruction *CxtI = DecompGEP1.VarIndices[i].CxtI;
1234 
1235         KnownBits Known = computeKnownBits(V, DL, 0, &AC, CxtI, DT);
1236         bool SignKnownZero = Known.isNonNegative();
1237         bool SignKnownOne = Known.isNegative();
1238 
1239         // Zero-extension widens the variable, and so forces the sign
1240         // bit to zero.
1241         bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
1242         SignKnownZero |= IsZExt;
1243         SignKnownOne &= !IsZExt;
1244 
1245         AllNonNegative &= (SignKnownZero && Scale.isNonNegative()) ||
1246                           (SignKnownOne && Scale.isNonPositive());
1247         AllNonPositive &= (SignKnownZero && Scale.isNonPositive()) ||
1248                           (SignKnownOne && Scale.isNonNegative());
1249       }
1250     }
1251 
1252     // We now have accesses at two offsets from the same base:
1253     //  1. (...)*GCD + DecompGEP1.Offset with size V1Size
1254     //  2. 0 with size V2Size
1255     // Using arithmetic modulo GCD, the accesses are at
1256     // [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits
1257     // into the range [V2Size..GCD), then we know they cannot overlap.
1258     APInt ModOffset = DecompGEP1.Offset.srem(GCD);
1259     if (ModOffset.isNegative())
1260       ModOffset += GCD; // We want mod, not rem.
1261     if (V1Size.hasValue() && V2Size.hasValue() &&
1262         ModOffset.uge(V2Size.getValue()) &&
1263         (GCD - ModOffset).uge(V1Size.getValue()))
1264       return NoAlias;
1265 
1266     // If we know all the variables are non-negative, then the total offset is
1267     // also non-negative and >= DecompGEP1.Offset. We have the following layout:
1268     // [0, V2Size) ... [TotalOffset, TotalOffer+V1Size]
1269     // If DecompGEP1.Offset >= V2Size, the accesses don't alias.
1270     if (AllNonNegative && V2Size.hasValue() &&
1271         DecompGEP1.Offset.uge(V2Size.getValue()))
1272       return NoAlias;
1273     // Similarly, if the variables are non-positive, then the total offset is
1274     // also non-positive and <= DecompGEP1.Offset. We have the following layout:
1275     // [TotalOffset, TotalOffset+V1Size) ... [0, V2Size)
1276     // If -DecompGEP1.Offset >= V1Size, the accesses don't alias.
1277     if (AllNonPositive && V1Size.hasValue() &&
1278         (-DecompGEP1.Offset).uge(V1Size.getValue()))
1279       return NoAlias;
1280 
1281     if (V1Size.hasValue() && V2Size.hasValue()) {
1282       // Try to determine whether abs(VarIndex) > 0.
1283       Optional<APInt> MinAbsVarIndex;
1284       if (DecompGEP1.VarIndices.size() == 1) {
1285         // VarIndex = Scale*V. If V != 0 then abs(VarIndex) >= abs(Scale).
1286         const VariableGEPIndex &Var = DecompGEP1.VarIndices[0];
1287         if (isKnownNonZero(Var.V, DL, 0, &AC, Var.CxtI, DT))
1288           MinAbsVarIndex = Var.Scale.abs();
1289       } else if (DecompGEP1.VarIndices.size() == 2) {
1290         // VarIndex = Scale*V0 + (-Scale)*V1.
1291         // If V0 != V1 then abs(VarIndex) >= abs(Scale).
1292         // Check that VisitedPhiBBs is empty, to avoid reasoning about
1293         // inequality of values across loop iterations.
1294         const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0];
1295         const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1];
1296         if (Var0.Scale == -Var1.Scale && Var0.ZExtBits == Var1.ZExtBits &&
1297             Var0.SExtBits == Var1.SExtBits && VisitedPhiBBs.empty() &&
1298             isKnownNonEqual(Var0.V, Var1.V, DL, &AC, /* CxtI */ nullptr, DT))
1299           MinAbsVarIndex = Var0.Scale.abs();
1300       }
1301 
1302       if (MinAbsVarIndex) {
1303         // The constant offset will have added at least +/-MinAbsVarIndex to it.
1304         APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex;
1305         APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex;
1306         // Check that an access at OffsetLo or lower, and an access at OffsetHi
1307         // or higher both do not alias.
1308         if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) &&
1309             OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue()))
1310           return NoAlias;
1311       }
1312     }
1313 
1314     if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
1315                                 DecompGEP1.Offset, &AC, DT))
1316       return NoAlias;
1317   }
1318 
1319   // Statically, we can see that the base objects are the same, but the
1320   // pointers have dynamic offsets which we can't resolve. And none of our
1321   // little tricks above worked.
1322   return MayAlias;
1323 }
1324 
1325 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1326   // If the results agree, take it.
1327   if (A == B)
1328     return A;
1329   // A mix of PartialAlias and MustAlias is PartialAlias.
1330   if ((A == PartialAlias && B == MustAlias) ||
1331       (B == PartialAlias && A == MustAlias))
1332     return PartialAlias;
1333   // Otherwise, we don't know anything.
1334   return MayAlias;
1335 }
1336 
1337 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1338 /// against another.
1339 AliasResult
1340 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize,
1341                            const AAMDNodes &SIAAInfo, const Value *V2,
1342                            LocationSize V2Size, const AAMDNodes &V2AAInfo,
1343                            const Value *UnderV2, AAQueryInfo &AAQI) {
1344   // If the values are Selects with the same condition, we can do a more precise
1345   // check: just check for aliases between the values on corresponding arms.
1346   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1347     if (SI->getCondition() == SI2->getCondition()) {
1348       AliasResult Alias =
1349           aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, SI2->getTrueValue(),
1350                      V2Size, V2AAInfo, AAQI);
1351       if (Alias == MayAlias)
1352         return MayAlias;
1353       AliasResult ThisAlias =
1354           aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
1355                      SI2->getFalseValue(), V2Size, V2AAInfo, AAQI);
1356       return MergeAliasResults(ThisAlias, Alias);
1357     }
1358 
1359   // If both arms of the Select node NoAlias or MustAlias V2, then returns
1360   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1361   AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(),
1362                                  SISize, SIAAInfo, AAQI, UnderV2);
1363   if (Alias == MayAlias)
1364     return MayAlias;
1365 
1366   AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(),
1367                                      SISize, SIAAInfo, AAQI, UnderV2);
1368   return MergeAliasResults(ThisAlias, Alias);
1369 }
1370 
1371 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1372 /// another.
1373 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
1374                                     const AAMDNodes &PNAAInfo, const Value *V2,
1375                                     LocationSize V2Size,
1376                                     const AAMDNodes &V2AAInfo,
1377                                     const Value *UnderV2, AAQueryInfo &AAQI) {
1378   // If the values are PHIs in the same block, we can do a more precise
1379   // as well as efficient check: just check for aliases between the values
1380   // on corresponding edges.
1381   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1382     if (PN2->getParent() == PN->getParent()) {
1383       Optional<AliasResult> Alias;
1384       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1385         AliasResult ThisAlias =
1386             aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
1387                        PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1388                        V2Size, V2AAInfo, AAQI);
1389         if (Alias)
1390           *Alias = MergeAliasResults(*Alias, ThisAlias);
1391         else
1392           Alias = ThisAlias;
1393         if (*Alias == MayAlias)
1394           break;
1395       }
1396       return *Alias;
1397     }
1398 
1399   SmallVector<Value *, 4> V1Srcs;
1400   // If a phi operand recurses back to the phi, we can still determine NoAlias
1401   // if we don't alias the underlying objects of the other phi operands, as we
1402   // know that the recursive phi needs to be based on them in some way.
1403   bool isRecursive = false;
1404   auto CheckForRecPhi = [&](Value *PV) {
1405     if (!EnableRecPhiAnalysis)
1406       return false;
1407     if (getUnderlyingObject(PV) == PN) {
1408       isRecursive = true;
1409       return true;
1410     }
1411     return false;
1412   };
1413 
1414   if (PV) {
1415     // If we have PhiValues then use it to get the underlying phi values.
1416     const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN);
1417     // If we have more phi values than the search depth then return MayAlias
1418     // conservatively to avoid compile time explosion. The worst possible case
1419     // is if both sides are PHI nodes. In which case, this is O(m x n) time
1420     // where 'm' and 'n' are the number of PHI sources.
1421     if (PhiValueSet.size() > MaxLookupSearchDepth)
1422       return MayAlias;
1423     // Add the values to V1Srcs
1424     for (Value *PV1 : PhiValueSet) {
1425       if (CheckForRecPhi(PV1))
1426         continue;
1427       V1Srcs.push_back(PV1);
1428     }
1429   } else {
1430     // If we don't have PhiInfo then just look at the operands of the phi itself
1431     // FIXME: Remove this once we can guarantee that we have PhiInfo always
1432     SmallPtrSet<Value *, 4> UniqueSrc;
1433     for (Value *PV1 : PN->incoming_values()) {
1434       if (isa<PHINode>(PV1))
1435         // If any of the source itself is a PHI, return MayAlias conservatively
1436         // to avoid compile time explosion. The worst possible case is if both
1437         // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1438         // and 'n' are the number of PHI sources.
1439         return MayAlias;
1440 
1441       if (CheckForRecPhi(PV1))
1442         continue;
1443 
1444       if (UniqueSrc.insert(PV1).second)
1445         V1Srcs.push_back(PV1);
1446     }
1447   }
1448 
1449   // If V1Srcs is empty then that means that the phi has no underlying non-phi
1450   // value. This should only be possible in blocks unreachable from the entry
1451   // block, but return MayAlias just in case.
1452   if (V1Srcs.empty())
1453     return MayAlias;
1454 
1455   // If this PHI node is recursive, indicate that the pointer may be moved
1456   // across iterations. We can only prove NoAlias if different underlying
1457   // objects are involved.
1458   if (isRecursive)
1459     PNSize = LocationSize::beforeOrAfterPointer();
1460 
1461   // In the recursive alias queries below, we may compare values from two
1462   // different loop iterations. Keep track of visited phi blocks, which will
1463   // be used when determining value equivalence.
1464   bool BlockInserted = VisitedPhiBBs.insert(PN->getParent()).second;
1465   auto _ = make_scope_exit([&]() {
1466     if (BlockInserted)
1467       VisitedPhiBBs.erase(PN->getParent());
1468   });
1469 
1470   // If we inserted a block into VisitedPhiBBs, alias analysis results that
1471   // have been cached earlier may no longer be valid. Perform recursive queries
1472   // with a new AAQueryInfo.
1473   AAQueryInfo NewAAQI;
1474   AAQueryInfo *UseAAQI = BlockInserted ? &NewAAQI : &AAQI;
1475 
1476   AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize,
1477                                  PNAAInfo, *UseAAQI, UnderV2);
1478 
1479   // Early exit if the check of the first PHI source against V2 is MayAlias.
1480   // Other results are not possible.
1481   if (Alias == MayAlias)
1482     return MayAlias;
1483   // With recursive phis we cannot guarantee that MustAlias/PartialAlias will
1484   // remain valid to all elements and needs to conservatively return MayAlias.
1485   if (isRecursive && Alias != NoAlias)
1486     return MayAlias;
1487 
1488   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1489   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1490   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1491     Value *V = V1Srcs[i];
1492 
1493     AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo, V, PNSize,
1494                                        PNAAInfo, *UseAAQI, UnderV2);
1495     Alias = MergeAliasResults(ThisAlias, Alias);
1496     if (Alias == MayAlias)
1497       break;
1498   }
1499 
1500   return Alias;
1501 }
1502 
1503 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1504 /// array references.
1505 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
1506                                       const AAMDNodes &V1AAInfo,
1507                                       const Value *V2, LocationSize V2Size,
1508                                       const AAMDNodes &V2AAInfo,
1509                                       AAQueryInfo &AAQI, const Value *O1,
1510                                       const Value *O2) {
1511   // If either of the memory references is empty, it doesn't matter what the
1512   // pointer values are.
1513   if (V1Size.isZero() || V2Size.isZero())
1514     return NoAlias;
1515 
1516   // Strip off any casts if they exist.
1517   V1 = V1->stripPointerCastsAndInvariantGroups();
1518   V2 = V2->stripPointerCastsAndInvariantGroups();
1519 
1520   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1521   // value for undef that aliases nothing in the program.
1522   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1523     return NoAlias;
1524 
1525   // Are we checking for alias of the same value?
1526   // Because we look 'through' phi nodes, we could look at "Value" pointers from
1527   // different iterations. We must therefore make sure that this is not the
1528   // case. The function isValueEqualInPotentialCycles ensures that this cannot
1529   // happen by looking at the visited phi nodes and making sure they cannot
1530   // reach the value.
1531   if (isValueEqualInPotentialCycles(V1, V2))
1532     return MustAlias;
1533 
1534   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1535     return NoAlias; // Scalars cannot alias each other
1536 
1537   // Figure out what objects these things are pointing to if we can.
1538   if (O1 == nullptr)
1539     O1 = getUnderlyingObject(V1, MaxLookupSearchDepth);
1540 
1541   if (O2 == nullptr)
1542     O2 = getUnderlyingObject(V2, MaxLookupSearchDepth);
1543 
1544   // Null values in the default address space don't point to any object, so they
1545   // don't alias any other pointer.
1546   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1547     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1548       return NoAlias;
1549   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1550     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1551       return NoAlias;
1552 
1553   if (O1 != O2) {
1554     // If V1/V2 point to two different objects, we know that we have no alias.
1555     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1556       return NoAlias;
1557 
1558     // Constant pointers can't alias with non-const isIdentifiedObject objects.
1559     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1560         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1561       return NoAlias;
1562 
1563     // Function arguments can't alias with things that are known to be
1564     // unambigously identified at the function level.
1565     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1566         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1567       return NoAlias;
1568 
1569     // If one pointer is the result of a call/invoke or load and the other is a
1570     // non-escaping local object within the same function, then we know the
1571     // object couldn't escape to a point where the call could return it.
1572     //
1573     // Note that if the pointers are in different functions, there are a
1574     // variety of complications. A call with a nocapture argument may still
1575     // temporary store the nocapture argument's value in a temporary memory
1576     // location if that memory location doesn't escape. Or it may pass a
1577     // nocapture value to other functions as long as they don't capture it.
1578     if (isEscapeSource(O1) &&
1579         isNonEscapingLocalObject(O2, &AAQI.IsCapturedCache))
1580       return NoAlias;
1581     if (isEscapeSource(O2) &&
1582         isNonEscapingLocalObject(O1, &AAQI.IsCapturedCache))
1583       return NoAlias;
1584   }
1585 
1586   // If the size of one access is larger than the entire object on the other
1587   // side, then we know such behavior is undefined and can assume no alias.
1588   bool NullIsValidLocation = NullPointerIsDefined(&F);
1589   if ((isObjectSmallerThan(
1590           O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL,
1591           TLI, NullIsValidLocation)) ||
1592       (isObjectSmallerThan(
1593           O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL,
1594           TLI, NullIsValidLocation)))
1595     return NoAlias;
1596 
1597   // If one the accesses may be before the accessed pointer, canonicalize this
1598   // by using unknown after-pointer sizes for both accesses. This is
1599   // equivalent, because regardless of which pointer is lower, one of them
1600   // will always came after the other, as long as the underlying objects aren't
1601   // disjoint. We do this so that the rest of BasicAA does not have to deal
1602   // with accesses before the base pointer, and to improve cache utilization by
1603   // merging equivalent states.
1604   if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) {
1605     V1Size = LocationSize::afterPointer();
1606     V2Size = LocationSize::afterPointer();
1607   }
1608 
1609   // Check the cache before climbing up use-def chains. This also terminates
1610   // otherwise infinitely recursive queries.
1611   AAQueryInfo::LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
1612                             MemoryLocation(V2, V2Size, V2AAInfo));
1613   if (V1 > V2)
1614     std::swap(Locs.first, Locs.second);
1615   const auto &Pair = AAQI.AliasCache.try_emplace(
1616       Locs, AAQueryInfo::CacheEntry{NoAlias, 0});
1617   if (!Pair.second) {
1618     auto &Entry = Pair.first->second;
1619     if (!Entry.isDefinitive()) {
1620       // Remember that we used an assumption.
1621       ++Entry.NumAssumptionUses;
1622       ++NumAssumptionUses;
1623     }
1624     return Entry.Result;
1625   }
1626 
1627   int OrigNumAssumptionUses = NumAssumptionUses;
1628   unsigned OrigNumAssumptionBasedResults = AssumptionBasedResults.size();
1629   AliasResult Result = aliasCheckRecursive(V1, V1Size, V1AAInfo, V2, V2Size,
1630                                            V2AAInfo, AAQI, O1, O2);
1631 
1632   auto It = AAQI.AliasCache.find(Locs);
1633   assert(It != AAQI.AliasCache.end() && "Must be in cache");
1634   auto &Entry = It->second;
1635 
1636   // Check whether a NoAlias assumption has been used, but disproven.
1637   bool AssumptionDisproven = Entry.NumAssumptionUses > 0 && Result != NoAlias;
1638   if (AssumptionDisproven)
1639     Result = MayAlias;
1640 
1641   // This is a definitive result now, when considered as a root query.
1642   NumAssumptionUses -= Entry.NumAssumptionUses;
1643   Entry.Result = Result;
1644   Entry.NumAssumptionUses = -1;
1645 
1646   // If the assumption has been disproven, remove any results that may have
1647   // been based on this assumption. Do this after the Entry updates above to
1648   // avoid iterator invalidation.
1649   if (AssumptionDisproven)
1650     while (AssumptionBasedResults.size() > OrigNumAssumptionBasedResults)
1651       AAQI.AliasCache.erase(AssumptionBasedResults.pop_back_val());
1652 
1653   // The result may still be based on assumptions higher up in the chain.
1654   // Remember it, so it can be purged from the cache later.
1655   if (OrigNumAssumptionUses != NumAssumptionUses && Result != MayAlias)
1656     AssumptionBasedResults.push_back(Locs);
1657   return Result;
1658 }
1659 
1660 AliasResult BasicAAResult::aliasCheckRecursive(
1661     const Value *V1, LocationSize V1Size, const AAMDNodes &V1AAInfo,
1662     const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo,
1663     AAQueryInfo &AAQI, const Value *O1, const Value *O2) {
1664   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1665     AliasResult Result =
1666         aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2, AAQI);
1667     if (Result != MayAlias)
1668       return Result;
1669   } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) {
1670     AliasResult Result =
1671         aliasGEP(GV2, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, O2, O1, AAQI);
1672     if (Result != MayAlias)
1673       return Result;
1674   }
1675 
1676   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1677     AliasResult Result =
1678         aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI);
1679     if (Result != MayAlias)
1680       return Result;
1681   } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) {
1682     AliasResult Result =
1683         aliasPHI(PN, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, O1, AAQI);
1684     if (Result != MayAlias)
1685       return Result;
1686   }
1687 
1688   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1689     AliasResult Result =
1690         aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI);
1691     if (Result != MayAlias)
1692       return Result;
1693   } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) {
1694     AliasResult Result =
1695         aliasSelect(S2, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, O1, AAQI);
1696     if (Result != MayAlias)
1697       return Result;
1698   }
1699 
1700   // If both pointers are pointing into the same object and one of them
1701   // accesses the entire object, then the accesses must overlap in some way.
1702   if (O1 == O2) {
1703     bool NullIsValidLocation = NullPointerIsDefined(&F);
1704     if (V1Size.isPrecise() && V2Size.isPrecise() &&
1705         (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
1706          isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation)))
1707       return PartialAlias;
1708   }
1709 
1710   // Recurse back into the best AA results we have, potentially with refined
1711   // memory locations. We have already ensured that BasicAA has a MayAlias
1712   // cache result for these, so any recursion back into BasicAA won't loop.
1713   return getBestAAResults().alias(MemoryLocation(V1, V1Size, V1AAInfo),
1714                                   MemoryLocation(V2, V2Size, V2AAInfo), AAQI);
1715 }
1716 
1717 /// Check whether two Values can be considered equivalent.
1718 ///
1719 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1720 /// they can not be part of a cycle in the value graph by looking at all
1721 /// visited phi nodes an making sure that the phis cannot reach the value. We
1722 /// have to do this because we are looking through phi nodes (That is we say
1723 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1724 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1725                                                   const Value *V2) {
1726   if (V != V2)
1727     return false;
1728 
1729   const Instruction *Inst = dyn_cast<Instruction>(V);
1730   if (!Inst)
1731     return true;
1732 
1733   if (VisitedPhiBBs.empty())
1734     return true;
1735 
1736   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1737     return false;
1738 
1739   // Make sure that the visited phis cannot reach the Value. This ensures that
1740   // the Values cannot come from different iterations of a potential cycle the
1741   // phi nodes could be involved in.
1742   for (auto *P : VisitedPhiBBs)
1743     if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT, LI))
1744       return false;
1745 
1746   return true;
1747 }
1748 
1749 /// Computes the symbolic difference between two de-composed GEPs.
1750 ///
1751 /// Dest and Src are the variable indices from two decomposed GetElementPtr
1752 /// instructions GEP1 and GEP2 which have common base pointers.
1753 void BasicAAResult::GetIndexDifference(
1754     SmallVectorImpl<VariableGEPIndex> &Dest,
1755     const SmallVectorImpl<VariableGEPIndex> &Src) {
1756   if (Src.empty())
1757     return;
1758 
1759   for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1760     const Value *V = Src[i].V;
1761     unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
1762     APInt Scale = Src[i].Scale;
1763 
1764     // Find V in Dest.  This is N^2, but pointer indices almost never have more
1765     // than a few variable indexes.
1766     for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1767       if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1768           Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
1769         continue;
1770 
1771       // If we found it, subtract off Scale V's from the entry in Dest.  If it
1772       // goes to zero, remove the entry.
1773       if (Dest[j].Scale != Scale)
1774         Dest[j].Scale -= Scale;
1775       else
1776         Dest.erase(Dest.begin() + j);
1777       Scale = 0;
1778       break;
1779     }
1780 
1781     // If we didn't consume this entry, add it to the end of the Dest list.
1782     if (!!Scale) {
1783       VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale, Src[i].CxtI};
1784       Dest.push_back(Entry);
1785     }
1786   }
1787 }
1788 
1789 bool BasicAAResult::constantOffsetHeuristic(
1790     const SmallVectorImpl<VariableGEPIndex> &VarIndices,
1791     LocationSize MaybeV1Size, LocationSize MaybeV2Size, const APInt &BaseOffset,
1792     AssumptionCache *AC, DominatorTree *DT) {
1793   if (VarIndices.size() != 2 || !MaybeV1Size.hasValue() ||
1794       !MaybeV2Size.hasValue())
1795     return false;
1796 
1797   const uint64_t V1Size = MaybeV1Size.getValue();
1798   const uint64_t V2Size = MaybeV2Size.getValue();
1799 
1800   const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
1801 
1802   if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
1803       Var0.Scale != -Var1.Scale)
1804     return false;
1805 
1806   unsigned Width = Var1.V->getType()->getIntegerBitWidth();
1807 
1808   // We'll strip off the Extensions of Var0 and Var1 and do another round
1809   // of GetLinearExpression decomposition. In the example above, if Var0
1810   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1811 
1812   APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
1813       V1Offset(Width, 0);
1814   bool NSW = true, NUW = true;
1815   unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
1816   const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
1817                                         V0SExtBits, DL, 0, AC, DT, NSW, NUW);
1818   NSW = true;
1819   NUW = true;
1820   const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
1821                                         V1SExtBits, DL, 0, AC, DT, NSW, NUW);
1822 
1823   if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
1824       V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
1825     return false;
1826 
1827   // We have a hit - Var0 and Var1 only differ by a constant offset!
1828 
1829   // If we've been sext'ed then zext'd the maximum difference between Var0 and
1830   // Var1 is possible to calculate, but we're just interested in the absolute
1831   // minimum difference between the two. The minimum distance may occur due to
1832   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1833   // the minimum distance between %i and %i + 5 is 3.
1834   APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
1835   MinDiff = APIntOps::umin(MinDiff, Wrapped);
1836   APInt MinDiffBytes =
1837     MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs();
1838 
1839   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
1840   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
1841   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
1842   // V2Size can fit in the MinDiffBytes gap.
1843   return MinDiffBytes.uge(V1Size + BaseOffset.abs()) &&
1844          MinDiffBytes.uge(V2Size + BaseOffset.abs());
1845 }
1846 
1847 //===----------------------------------------------------------------------===//
1848 // BasicAliasAnalysis Pass
1849 //===----------------------------------------------------------------------===//
1850 
1851 AnalysisKey BasicAA::Key;
1852 
1853 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
1854   return BasicAAResult(F.getParent()->getDataLayout(),
1855                        F,
1856                        AM.getResult<TargetLibraryAnalysis>(F),
1857                        AM.getResult<AssumptionAnalysis>(F),
1858                        &AM.getResult<DominatorTreeAnalysis>(F),
1859                        AM.getCachedResult<LoopAnalysis>(F),
1860                        AM.getCachedResult<PhiValuesAnalysis>(F));
1861 }
1862 
1863 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
1864   initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
1865 }
1866 
1867 char BasicAAWrapperPass::ID = 0;
1868 
1869 void BasicAAWrapperPass::anchor() {}
1870 
1871 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa",
1872                       "Basic Alias Analysis (stateless AA impl)", true, true)
1873 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1874 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1875 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1876 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
1877 INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa",
1878                     "Basic Alias Analysis (stateless AA impl)", true, true)
1879 
1880 FunctionPass *llvm::createBasicAAWrapperPass() {
1881   return new BasicAAWrapperPass();
1882 }
1883 
1884 bool BasicAAWrapperPass::runOnFunction(Function &F) {
1885   auto &ACT = getAnalysis<AssumptionCacheTracker>();
1886   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
1887   auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
1888   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
1889   auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>();
1890 
1891   Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F,
1892                                  TLIWP.getTLI(F), ACT.getAssumptionCache(F),
1893                                  &DTWP.getDomTree(),
1894                                  LIWP ? &LIWP->getLoopInfo() : nullptr,
1895                                  PVWP ? &PVWP->getResult() : nullptr));
1896 
1897   return false;
1898 }
1899 
1900 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1901   AU.setPreservesAll();
1902   AU.addRequired<AssumptionCacheTracker>();
1903   AU.addRequired<DominatorTreeWrapperPass>();
1904   AU.addRequired<TargetLibraryInfoWrapperPass>();
1905   AU.addUsedIfAvailable<PhiValuesWrapperPass>();
1906 }
1907 
1908 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
1909   return BasicAAResult(
1910       F.getParent()->getDataLayout(), F,
1911       P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
1912       P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
1913 }
1914