1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the primary stateless implementation of the 11 // Alias Analysis interface that implements identities (two different 12 // globals cannot alias, etc), but does no stateful analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/Passes.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/CFG.h" 21 #include "llvm/Analysis/CaptureTracking.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GetElementPtrTypeIterator.h" 32 #include "llvm/IR/GlobalAlias.h" 33 #include "llvm/IR/GlobalVariable.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Target/TargetLibraryInfo.h" 41 #include <algorithm> 42 using namespace llvm; 43 44 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 45 /// in a cycle. Because we are analysing 'through' phi nodes we need to be 46 /// careful with value equivalence. We use reachability to make sure a value 47 /// cannot be involved in a cycle. 48 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 49 50 // The max limit of the search depth in DecomposeGEPExpression() and 51 // GetUnderlyingObject(), both functions need to use the same search 52 // depth otherwise the algorithm in aliasGEP will assert. 53 static const unsigned MaxLookupSearchDepth = 6; 54 55 //===----------------------------------------------------------------------===// 56 // Useful predicates 57 //===----------------------------------------------------------------------===// 58 59 /// isNonEscapingLocalObject - Return true if the pointer is to a function-local 60 /// object that never escapes from the function. 61 static bool isNonEscapingLocalObject(const Value *V) { 62 // If this is a local allocation, check to see if it escapes. 63 if (isa<AllocaInst>(V) || isNoAliasCall(V)) 64 // Set StoreCaptures to True so that we can assume in our callers that the 65 // pointer is not the result of a load instruction. Currently 66 // PointerMayBeCaptured doesn't have any special analysis for the 67 // StoreCaptures=false case; if it did, our callers could be refined to be 68 // more precise. 69 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 70 71 // If this is an argument that corresponds to a byval or noalias argument, 72 // then it has not escaped before entering the function. Check if it escapes 73 // inside the function. 74 if (const Argument *A = dyn_cast<Argument>(V)) 75 if (A->hasByValAttr() || A->hasNoAliasAttr()) 76 // Note even if the argument is marked nocapture we still need to check 77 // for copies made inside the function. The nocapture attribute only 78 // specifies that there are no copies made that outlive the function. 79 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 80 81 return false; 82 } 83 84 /// isEscapeSource - Return true if the pointer is one which would have 85 /// been considered an escape by isNonEscapingLocalObject. 86 static bool isEscapeSource(const Value *V) { 87 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V)) 88 return true; 89 90 // The load case works because isNonEscapingLocalObject considers all 91 // stores to be escapes (it passes true for the StoreCaptures argument 92 // to PointerMayBeCaptured). 93 if (isa<LoadInst>(V)) 94 return true; 95 96 return false; 97 } 98 99 /// getObjectSize - Return the size of the object specified by V, or 100 /// UnknownSize if unknown. 101 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 102 const TargetLibraryInfo &TLI, 103 bool RoundToAlign = false) { 104 uint64_t Size; 105 if (getObjectSize(V, Size, &DL, &TLI, RoundToAlign)) 106 return Size; 107 return AliasAnalysis::UnknownSize; 108 } 109 110 /// isObjectSmallerThan - Return true if we can prove that the object specified 111 /// by V is smaller than Size. 112 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 113 const DataLayout &DL, 114 const TargetLibraryInfo &TLI) { 115 // Note that the meanings of the "object" are slightly different in the 116 // following contexts: 117 // c1: llvm::getObjectSize() 118 // c2: llvm.objectsize() intrinsic 119 // c3: isObjectSmallerThan() 120 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 121 // refers to the "entire object". 122 // 123 // Consider this example: 124 // char *p = (char*)malloc(100) 125 // char *q = p+80; 126 // 127 // In the context of c1 and c2, the "object" pointed by q refers to the 128 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 129 // 130 // However, in the context of c3, the "object" refers to the chunk of memory 131 // being allocated. So, the "object" has 100 bytes, and q points to the middle 132 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 133 // parameter, before the llvm::getObjectSize() is called to get the size of 134 // entire object, we should: 135 // - either rewind the pointer q to the base-address of the object in 136 // question (in this case rewind to p), or 137 // - just give up. It is up to caller to make sure the pointer is pointing 138 // to the base address the object. 139 // 140 // We go for 2nd option for simplicity. 141 if (!isIdentifiedObject(V)) 142 return false; 143 144 // This function needs to use the aligned object size because we allow 145 // reads a bit past the end given sufficient alignment. 146 uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/true); 147 148 return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size; 149 } 150 151 /// isObjectSize - Return true if we can prove that the object specified 152 /// by V has size Size. 153 static bool isObjectSize(const Value *V, uint64_t Size, 154 const DataLayout &DL, const TargetLibraryInfo &TLI) { 155 uint64_t ObjectSize = getObjectSize(V, DL, TLI); 156 return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size; 157 } 158 159 /// isIdentifiedFunctionLocal - Return true if V is umabigously identified 160 /// at the function-level. Different IdentifiedFunctionLocals can't alias. 161 /// Further, an IdentifiedFunctionLocal can not alias with any function 162 /// arguments other than itself, which is not necessarily true for 163 /// IdentifiedObjects. 164 static bool isIdentifiedFunctionLocal(const Value *V) 165 { 166 return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V); 167 } 168 169 170 //===----------------------------------------------------------------------===// 171 // GetElementPtr Instruction Decomposition and Analysis 172 //===----------------------------------------------------------------------===// 173 174 namespace { 175 enum ExtensionKind { 176 EK_NotExtended, 177 EK_SignExt, 178 EK_ZeroExt 179 }; 180 181 struct VariableGEPIndex { 182 const Value *V; 183 ExtensionKind Extension; 184 int64_t Scale; 185 186 bool operator==(const VariableGEPIndex &Other) const { 187 return V == Other.V && Extension == Other.Extension && 188 Scale == Other.Scale; 189 } 190 191 bool operator!=(const VariableGEPIndex &Other) const { 192 return !operator==(Other); 193 } 194 }; 195 } 196 197 198 /// GetLinearExpression - Analyze the specified value as a linear expression: 199 /// "A*V + B", where A and B are constant integers. Return the scale and offset 200 /// values as APInts and return V as a Value*, and return whether we looked 201 /// through any sign or zero extends. The incoming Value is known to have 202 /// IntegerType and it may already be sign or zero extended. 203 /// 204 /// Note that this looks through extends, so the high bits may not be 205 /// represented in the result. 206 static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset, 207 ExtensionKind &Extension, 208 const DataLayout &DL, unsigned Depth) { 209 assert(V->getType()->isIntegerTy() && "Not an integer value"); 210 211 // Limit our recursion depth. 212 if (Depth == 6) { 213 Scale = 1; 214 Offset = 0; 215 return V; 216 } 217 218 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 219 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 220 switch (BOp->getOpcode()) { 221 default: break; 222 case Instruction::Or: 223 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 224 // analyze it. 225 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &DL)) 226 break; 227 // FALL THROUGH. 228 case Instruction::Add: 229 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 230 DL, Depth+1); 231 Offset += RHSC->getValue(); 232 return V; 233 case Instruction::Mul: 234 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 235 DL, Depth+1); 236 Offset *= RHSC->getValue(); 237 Scale *= RHSC->getValue(); 238 return V; 239 case Instruction::Shl: 240 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 241 DL, Depth+1); 242 Offset <<= RHSC->getValue().getLimitedValue(); 243 Scale <<= RHSC->getValue().getLimitedValue(); 244 return V; 245 } 246 } 247 } 248 249 // Since GEP indices are sign extended anyway, we don't care about the high 250 // bits of a sign or zero extended value - just scales and offsets. The 251 // extensions have to be consistent though. 252 if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) || 253 (isa<ZExtInst>(V) && Extension != EK_SignExt)) { 254 Value *CastOp = cast<CastInst>(V)->getOperand(0); 255 unsigned OldWidth = Scale.getBitWidth(); 256 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 257 Scale = Scale.trunc(SmallWidth); 258 Offset = Offset.trunc(SmallWidth); 259 Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt; 260 261 Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension, 262 DL, Depth+1); 263 Scale = Scale.zext(OldWidth); 264 Offset = Offset.zext(OldWidth); 265 266 return Result; 267 } 268 269 Scale = 1; 270 Offset = 0; 271 return V; 272 } 273 274 /// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it 275 /// into a base pointer with a constant offset and a number of scaled symbolic 276 /// offsets. 277 /// 278 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale in 279 /// the VarIndices vector) are Value*'s that are known to be scaled by the 280 /// specified amount, but which may have other unrepresented high bits. As such, 281 /// the gep cannot necessarily be reconstructed from its decomposed form. 282 /// 283 /// When DataLayout is around, this function is capable of analyzing everything 284 /// that GetUnderlyingObject can look through. To be able to do that 285 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search 286 /// depth (MaxLookupSearchDepth). 287 /// When DataLayout not is around, it just looks through pointer casts. 288 /// 289 static const Value * 290 DecomposeGEPExpression(const Value *V, int64_t &BaseOffs, 291 SmallVectorImpl<VariableGEPIndex> &VarIndices, 292 bool &MaxLookupReached, const DataLayout *DL) { 293 // Limit recursion depth to limit compile time in crazy cases. 294 unsigned MaxLookup = MaxLookupSearchDepth; 295 MaxLookupReached = false; 296 297 BaseOffs = 0; 298 do { 299 // See if this is a bitcast or GEP. 300 const Operator *Op = dyn_cast<Operator>(V); 301 if (!Op) { 302 // The only non-operator case we can handle are GlobalAliases. 303 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 304 if (!GA->mayBeOverridden()) { 305 V = GA->getAliasee(); 306 continue; 307 } 308 } 309 return V; 310 } 311 312 if (Op->getOpcode() == Instruction::BitCast || 313 Op->getOpcode() == Instruction::AddrSpaceCast) { 314 V = Op->getOperand(0); 315 continue; 316 } 317 318 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 319 if (!GEPOp) { 320 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 321 // can come up with something. This matches what GetUnderlyingObject does. 322 if (const Instruction *I = dyn_cast<Instruction>(V)) 323 // TODO: Get a DominatorTree and use it here. 324 if (const Value *Simplified = 325 SimplifyInstruction(const_cast<Instruction *>(I), DL)) { 326 V = Simplified; 327 continue; 328 } 329 330 return V; 331 } 332 333 // Don't attempt to analyze GEPs over unsized objects. 334 if (!GEPOp->getOperand(0)->getType()->getPointerElementType()->isSized()) 335 return V; 336 337 // If we are lacking DataLayout information, we can't compute the offets of 338 // elements computed by GEPs. However, we can handle bitcast equivalent 339 // GEPs. 340 if (!DL) { 341 if (!GEPOp->hasAllZeroIndices()) 342 return V; 343 V = GEPOp->getOperand(0); 344 continue; 345 } 346 347 unsigned AS = GEPOp->getPointerAddressSpace(); 348 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 349 gep_type_iterator GTI = gep_type_begin(GEPOp); 350 for (User::const_op_iterator I = GEPOp->op_begin()+1, 351 E = GEPOp->op_end(); I != E; ++I) { 352 Value *Index = *I; 353 // Compute the (potentially symbolic) offset in bytes for this index. 354 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 355 // For a struct, add the member offset. 356 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 357 if (FieldNo == 0) continue; 358 359 BaseOffs += DL->getStructLayout(STy)->getElementOffset(FieldNo); 360 continue; 361 } 362 363 // For an array/pointer, add the element offset, explicitly scaled. 364 if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 365 if (CIdx->isZero()) continue; 366 BaseOffs += DL->getTypeAllocSize(*GTI)*CIdx->getSExtValue(); 367 continue; 368 } 369 370 uint64_t Scale = DL->getTypeAllocSize(*GTI); 371 ExtensionKind Extension = EK_NotExtended; 372 373 // If the integer type is smaller than the pointer size, it is implicitly 374 // sign extended to pointer size. 375 unsigned Width = Index->getType()->getIntegerBitWidth(); 376 if (DL->getPointerSizeInBits(AS) > Width) 377 Extension = EK_SignExt; 378 379 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 380 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 381 Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension, 382 *DL, 0); 383 384 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 385 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 386 BaseOffs += IndexOffset.getSExtValue()*Scale; 387 Scale *= IndexScale.getSExtValue(); 388 389 // If we already had an occurrence of this index variable, merge this 390 // scale into it. For example, we want to handle: 391 // A[x][x] -> x*16 + x*4 -> x*20 392 // This also ensures that 'x' only appears in the index list once. 393 for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) { 394 if (VarIndices[i].V == Index && 395 VarIndices[i].Extension == Extension) { 396 Scale += VarIndices[i].Scale; 397 VarIndices.erase(VarIndices.begin()+i); 398 break; 399 } 400 } 401 402 // Make sure that we have a scale that makes sense for this target's 403 // pointer size. 404 if (unsigned ShiftBits = 64 - DL->getPointerSizeInBits(AS)) { 405 Scale <<= ShiftBits; 406 Scale = (int64_t)Scale >> ShiftBits; 407 } 408 409 if (Scale) { 410 VariableGEPIndex Entry = {Index, Extension, 411 static_cast<int64_t>(Scale)}; 412 VarIndices.push_back(Entry); 413 } 414 } 415 416 // Analyze the base pointer next. 417 V = GEPOp->getOperand(0); 418 } while (--MaxLookup); 419 420 // If the chain of expressions is too deep, just return early. 421 MaxLookupReached = true; 422 return V; 423 } 424 425 //===----------------------------------------------------------------------===// 426 // BasicAliasAnalysis Pass 427 //===----------------------------------------------------------------------===// 428 429 #ifndef NDEBUG 430 static const Function *getParent(const Value *V) { 431 if (const Instruction *inst = dyn_cast<Instruction>(V)) 432 return inst->getParent()->getParent(); 433 434 if (const Argument *arg = dyn_cast<Argument>(V)) 435 return arg->getParent(); 436 437 return nullptr; 438 } 439 440 static bool notDifferentParent(const Value *O1, const Value *O2) { 441 442 const Function *F1 = getParent(O1); 443 const Function *F2 = getParent(O2); 444 445 return !F1 || !F2 || F1 == F2; 446 } 447 #endif 448 449 namespace { 450 /// BasicAliasAnalysis - This is the primary alias analysis implementation. 451 struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis { 452 static char ID; // Class identification, replacement for typeinfo 453 BasicAliasAnalysis() : ImmutablePass(ID) { 454 initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry()); 455 } 456 457 void initializePass() override { 458 InitializeAliasAnalysis(this); 459 } 460 461 void getAnalysisUsage(AnalysisUsage &AU) const override { 462 AU.addRequired<AliasAnalysis>(); 463 AU.addRequired<TargetLibraryInfo>(); 464 } 465 466 AliasResult alias(const Location &LocA, const Location &LocB) override { 467 assert(AliasCache.empty() && "AliasCache must be cleared after use!"); 468 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 469 "BasicAliasAnalysis doesn't support interprocedural queries."); 470 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.TBAATag, 471 LocB.Ptr, LocB.Size, LocB.TBAATag); 472 // AliasCache rarely has more than 1 or 2 elements, always use 473 // shrink_and_clear so it quickly returns to the inline capacity of the 474 // SmallDenseMap if it ever grows larger. 475 // FIXME: This should really be shrink_to_inline_capacity_and_clear(). 476 AliasCache.shrink_and_clear(); 477 VisitedPhiBBs.clear(); 478 return Alias; 479 } 480 481 ModRefResult getModRefInfo(ImmutableCallSite CS, 482 const Location &Loc) override; 483 484 ModRefResult getModRefInfo(ImmutableCallSite CS1, 485 ImmutableCallSite CS2) override { 486 // The AliasAnalysis base class has some smarts, lets use them. 487 return AliasAnalysis::getModRefInfo(CS1, CS2); 488 } 489 490 /// pointsToConstantMemory - Chase pointers until we find a (constant 491 /// global) or not. 492 bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override; 493 494 /// Get the location associated with a pointer argument of a callsite. 495 Location getArgLocation(ImmutableCallSite CS, unsigned ArgIdx, 496 ModRefResult &Mask) override; 497 498 /// getModRefBehavior - Return the behavior when calling the given 499 /// call site. 500 ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override; 501 502 /// getModRefBehavior - Return the behavior when calling the given function. 503 /// For use when the call site is not known. 504 ModRefBehavior getModRefBehavior(const Function *F) override; 505 506 /// getAdjustedAnalysisPointer - This method is used when a pass implements 507 /// an analysis interface through multiple inheritance. If needed, it 508 /// should override this to adjust the this pointer as needed for the 509 /// specified pass info. 510 void *getAdjustedAnalysisPointer(const void *ID) override { 511 if (ID == &AliasAnalysis::ID) 512 return (AliasAnalysis*)this; 513 return this; 514 } 515 516 private: 517 // AliasCache - Track alias queries to guard against recursion. 518 typedef std::pair<Location, Location> LocPair; 519 typedef SmallDenseMap<LocPair, AliasResult, 8> AliasCacheTy; 520 AliasCacheTy AliasCache; 521 522 /// \brief Track phi nodes we have visited. When interpret "Value" pointer 523 /// equality as value equality we need to make sure that the "Value" is not 524 /// part of a cycle. Otherwise, two uses could come from different 525 /// "iterations" of a cycle and see different values for the same "Value" 526 /// pointer. 527 /// The following example shows the problem: 528 /// %p = phi(%alloca1, %addr2) 529 /// %l = load %ptr 530 /// %addr1 = gep, %alloca2, 0, %l 531 /// %addr2 = gep %alloca2, 0, (%l + 1) 532 /// alias(%p, %addr1) -> MayAlias ! 533 /// store %l, ... 534 SmallPtrSet<const BasicBlock*, 8> VisitedPhiBBs; 535 536 // Visited - Track instructions visited by pointsToConstantMemory. 537 SmallPtrSet<const Value*, 16> Visited; 538 539 /// \brief Check whether two Values can be considered equivalent. 540 /// 541 /// In addition to pointer equivalence of \p V1 and \p V2 this checks 542 /// whether they can not be part of a cycle in the value graph by looking at 543 /// all visited phi nodes an making sure that the phis cannot reach the 544 /// value. We have to do this because we are looking through phi nodes (That 545 /// is we say noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 546 bool isValueEqualInPotentialCycles(const Value *V1, const Value *V2); 547 548 /// \brief Dest and Src are the variable indices from two decomposed 549 /// GetElementPtr instructions GEP1 and GEP2 which have common base 550 /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic 551 /// difference between the two pointers. 552 void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest, 553 const SmallVectorImpl<VariableGEPIndex> &Src); 554 555 // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP 556 // instruction against another. 557 AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size, 558 const MDNode *V1TBAAInfo, 559 const Value *V2, uint64_t V2Size, 560 const MDNode *V2TBAAInfo, 561 const Value *UnderlyingV1, const Value *UnderlyingV2); 562 563 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI 564 // instruction against another. 565 AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize, 566 const MDNode *PNTBAAInfo, 567 const Value *V2, uint64_t V2Size, 568 const MDNode *V2TBAAInfo); 569 570 /// aliasSelect - Disambiguate a Select instruction against another value. 571 AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize, 572 const MDNode *SITBAAInfo, 573 const Value *V2, uint64_t V2Size, 574 const MDNode *V2TBAAInfo); 575 576 AliasResult aliasCheck(const Value *V1, uint64_t V1Size, 577 const MDNode *V1TBAATag, 578 const Value *V2, uint64_t V2Size, 579 const MDNode *V2TBAATag); 580 }; 581 } // End of anonymous namespace 582 583 // Register this pass... 584 char BasicAliasAnalysis::ID = 0; 585 INITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa", 586 "Basic Alias Analysis (stateless AA impl)", 587 false, true, false) 588 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 589 INITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa", 590 "Basic Alias Analysis (stateless AA impl)", 591 false, true, false) 592 593 594 ImmutablePass *llvm::createBasicAliasAnalysisPass() { 595 return new BasicAliasAnalysis(); 596 } 597 598 /// pointsToConstantMemory - Returns whether the given pointer value 599 /// points to memory that is local to the function, with global constants being 600 /// considered local to all functions. 601 bool 602 BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) { 603 assert(Visited.empty() && "Visited must be cleared after use!"); 604 605 unsigned MaxLookup = 8; 606 SmallVector<const Value *, 16> Worklist; 607 Worklist.push_back(Loc.Ptr); 608 do { 609 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL); 610 if (!Visited.insert(V)) { 611 Visited.clear(); 612 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 613 } 614 615 // An alloca instruction defines local memory. 616 if (OrLocal && isa<AllocaInst>(V)) 617 continue; 618 619 // A global constant counts as local memory for our purposes. 620 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 621 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 622 // global to be marked constant in some modules and non-constant in 623 // others. GV may even be a declaration, not a definition. 624 if (!GV->isConstant()) { 625 Visited.clear(); 626 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 627 } 628 continue; 629 } 630 631 // If both select values point to local memory, then so does the select. 632 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 633 Worklist.push_back(SI->getTrueValue()); 634 Worklist.push_back(SI->getFalseValue()); 635 continue; 636 } 637 638 // If all values incoming to a phi node point to local memory, then so does 639 // the phi. 640 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 641 // Don't bother inspecting phi nodes with many operands. 642 if (PN->getNumIncomingValues() > MaxLookup) { 643 Visited.clear(); 644 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 645 } 646 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 647 Worklist.push_back(PN->getIncomingValue(i)); 648 continue; 649 } 650 651 // Otherwise be conservative. 652 Visited.clear(); 653 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 654 655 } while (!Worklist.empty() && --MaxLookup); 656 657 Visited.clear(); 658 return Worklist.empty(); 659 } 660 661 static bool isMemsetPattern16(const Function *MS, 662 const TargetLibraryInfo &TLI) { 663 if (TLI.has(LibFunc::memset_pattern16) && 664 MS->getName() == "memset_pattern16") { 665 FunctionType *MemsetType = MS->getFunctionType(); 666 if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 && 667 isa<PointerType>(MemsetType->getParamType(0)) && 668 isa<PointerType>(MemsetType->getParamType(1)) && 669 isa<IntegerType>(MemsetType->getParamType(2))) 670 return true; 671 } 672 673 return false; 674 } 675 676 /// getModRefBehavior - Return the behavior when calling the given call site. 677 AliasAnalysis::ModRefBehavior 678 BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) { 679 if (CS.doesNotAccessMemory()) 680 // Can't do better than this. 681 return DoesNotAccessMemory; 682 683 ModRefBehavior Min = UnknownModRefBehavior; 684 685 // If the callsite knows it only reads memory, don't return worse 686 // than that. 687 if (CS.onlyReadsMemory()) 688 Min = OnlyReadsMemory; 689 690 // The AliasAnalysis base class has some smarts, lets use them. 691 return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min); 692 } 693 694 /// getModRefBehavior - Return the behavior when calling the given function. 695 /// For use when the call site is not known. 696 AliasAnalysis::ModRefBehavior 697 BasicAliasAnalysis::getModRefBehavior(const Function *F) { 698 // If the function declares it doesn't access memory, we can't do better. 699 if (F->doesNotAccessMemory()) 700 return DoesNotAccessMemory; 701 702 // For intrinsics, we can check the table. 703 if (unsigned iid = F->getIntrinsicID()) { 704 #define GET_INTRINSIC_MODREF_BEHAVIOR 705 #include "llvm/IR/Intrinsics.gen" 706 #undef GET_INTRINSIC_MODREF_BEHAVIOR 707 } 708 709 ModRefBehavior Min = UnknownModRefBehavior; 710 711 // If the function declares it only reads memory, go with that. 712 if (F->onlyReadsMemory()) 713 Min = OnlyReadsMemory; 714 715 const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>(); 716 if (isMemsetPattern16(F, TLI)) 717 Min = OnlyAccessesArgumentPointees; 718 719 // Otherwise be conservative. 720 return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min); 721 } 722 723 AliasAnalysis::Location 724 BasicAliasAnalysis::getArgLocation(ImmutableCallSite CS, unsigned ArgIdx, 725 ModRefResult &Mask) { 726 Location Loc = AliasAnalysis::getArgLocation(CS, ArgIdx, Mask); 727 const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>(); 728 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 729 if (II != nullptr) 730 switch (II->getIntrinsicID()) { 731 default: break; 732 case Intrinsic::memset: 733 case Intrinsic::memcpy: 734 case Intrinsic::memmove: { 735 assert((ArgIdx == 0 || ArgIdx == 1) && 736 "Invalid argument index for memory intrinsic"); 737 if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) 738 Loc.Size = LenCI->getZExtValue(); 739 assert(Loc.Ptr == II->getArgOperand(ArgIdx) && 740 "Memory intrinsic location pointer not argument?"); 741 Mask = ArgIdx ? Ref : Mod; 742 break; 743 } 744 case Intrinsic::lifetime_start: 745 case Intrinsic::lifetime_end: 746 case Intrinsic::invariant_start: { 747 assert(ArgIdx == 1 && "Invalid argument index"); 748 assert(Loc.Ptr == II->getArgOperand(ArgIdx) && 749 "Intrinsic location pointer not argument?"); 750 Loc.Size = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(); 751 break; 752 } 753 case Intrinsic::invariant_end: { 754 assert(ArgIdx == 2 && "Invalid argument index"); 755 assert(Loc.Ptr == II->getArgOperand(ArgIdx) && 756 "Intrinsic location pointer not argument?"); 757 Loc.Size = cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(); 758 break; 759 } 760 case Intrinsic::arm_neon_vld1: { 761 assert(ArgIdx == 0 && "Invalid argument index"); 762 assert(Loc.Ptr == II->getArgOperand(ArgIdx) && 763 "Intrinsic location pointer not argument?"); 764 // LLVM's vld1 and vst1 intrinsics currently only support a single 765 // vector register. 766 if (DL) 767 Loc.Size = DL->getTypeStoreSize(II->getType()); 768 break; 769 } 770 case Intrinsic::arm_neon_vst1: { 771 assert(ArgIdx == 0 && "Invalid argument index"); 772 assert(Loc.Ptr == II->getArgOperand(ArgIdx) && 773 "Intrinsic location pointer not argument?"); 774 if (DL) 775 Loc.Size = DL->getTypeStoreSize(II->getArgOperand(1)->getType()); 776 break; 777 } 778 } 779 780 // We can bound the aliasing properties of memset_pattern16 just as we can 781 // for memcpy/memset. This is particularly important because the 782 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 783 // whenever possible. 784 else if (CS.getCalledFunction() && 785 isMemsetPattern16(CS.getCalledFunction(), TLI)) { 786 assert((ArgIdx == 0 || ArgIdx == 1) && 787 "Invalid argument index for memset_pattern16"); 788 if (ArgIdx == 1) 789 Loc.Size = 16; 790 else if (const ConstantInt *LenCI = 791 dyn_cast<ConstantInt>(CS.getArgument(2))) 792 Loc.Size = LenCI->getZExtValue(); 793 assert(Loc.Ptr == CS.getArgument(ArgIdx) && 794 "memset_pattern16 location pointer not argument?"); 795 Mask = ArgIdx ? Ref : Mod; 796 } 797 // FIXME: Handle memset_pattern4 and memset_pattern8 also. 798 799 return Loc; 800 } 801 802 /// getModRefInfo - Check to see if the specified callsite can clobber the 803 /// specified memory object. Since we only look at local properties of this 804 /// function, we really can't say much about this query. We do, however, use 805 /// simple "address taken" analysis on local objects. 806 AliasAnalysis::ModRefResult 807 BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS, 808 const Location &Loc) { 809 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && 810 "AliasAnalysis query involving multiple functions!"); 811 812 const Value *Object = GetUnderlyingObject(Loc.Ptr, DL); 813 814 // If this is a tail call and Loc.Ptr points to a stack location, we know that 815 // the tail call cannot access or modify the local stack. 816 // We cannot exclude byval arguments here; these belong to the caller of 817 // the current function not to the current function, and a tail callee 818 // may reference them. 819 if (isa<AllocaInst>(Object)) 820 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) 821 if (CI->isTailCall()) 822 return NoModRef; 823 824 // If the pointer is to a locally allocated object that does not escape, 825 // then the call can not mod/ref the pointer unless the call takes the pointer 826 // as an argument, and itself doesn't capture it. 827 if (!isa<Constant>(Object) && CS.getInstruction() != Object && 828 isNonEscapingLocalObject(Object)) { 829 bool PassedAsArg = false; 830 unsigned ArgNo = 0; 831 for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end(); 832 CI != CE; ++CI, ++ArgNo) { 833 // Only look at the no-capture or byval pointer arguments. If this 834 // pointer were passed to arguments that were neither of these, then it 835 // couldn't be no-capture. 836 if (!(*CI)->getType()->isPointerTy() || 837 (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo))) 838 continue; 839 840 // If this is a no-capture pointer argument, see if we can tell that it 841 // is impossible to alias the pointer we're checking. If not, we have to 842 // assume that the call could touch the pointer, even though it doesn't 843 // escape. 844 if (!isNoAlias(Location(*CI), Location(Object))) { 845 PassedAsArg = true; 846 break; 847 } 848 } 849 850 if (!PassedAsArg) 851 return NoModRef; 852 } 853 854 // The AliasAnalysis base class has some smarts, lets use them. 855 return AliasAnalysis::getModRefInfo(CS, Loc); 856 } 857 858 /// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction 859 /// against another pointer. We know that V1 is a GEP, but we don't know 860 /// anything about V2. UnderlyingV1 is GetUnderlyingObject(GEP1, DL), 861 /// UnderlyingV2 is the same for V2. 862 /// 863 AliasAnalysis::AliasResult 864 BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, 865 const MDNode *V1TBAAInfo, 866 const Value *V2, uint64_t V2Size, 867 const MDNode *V2TBAAInfo, 868 const Value *UnderlyingV1, 869 const Value *UnderlyingV2) { 870 int64_t GEP1BaseOffset; 871 bool GEP1MaxLookupReached; 872 SmallVector<VariableGEPIndex, 4> GEP1VariableIndices; 873 874 // If we have two gep instructions with must-alias or not-alias'ing base 875 // pointers, figure out if the indexes to the GEP tell us anything about the 876 // derived pointer. 877 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 878 // Do the base pointers alias? 879 AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, nullptr, 880 UnderlyingV2, UnknownSize, nullptr); 881 882 // Check for geps of non-aliasing underlying pointers where the offsets are 883 // identical. 884 if ((BaseAlias == MayAlias) && V1Size == V2Size) { 885 // Do the base pointers alias assuming type and size. 886 AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, 887 V1TBAAInfo, UnderlyingV2, 888 V2Size, V2TBAAInfo); 889 if (PreciseBaseAlias == NoAlias) { 890 // See if the computed offset from the common pointer tells us about the 891 // relation of the resulting pointer. 892 int64_t GEP2BaseOffset; 893 bool GEP2MaxLookupReached; 894 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 895 const Value *GEP2BasePtr = 896 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, 897 GEP2MaxLookupReached, DL); 898 const Value *GEP1BasePtr = 899 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 900 GEP1MaxLookupReached, DL); 901 // DecomposeGEPExpression and GetUnderlyingObject should return the 902 // same result except when DecomposeGEPExpression has no DataLayout. 903 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 904 assert(!DL && 905 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 906 return MayAlias; 907 } 908 // If the max search depth is reached the result is undefined 909 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 910 return MayAlias; 911 912 // Same offsets. 913 if (GEP1BaseOffset == GEP2BaseOffset && 914 GEP1VariableIndices == GEP2VariableIndices) 915 return NoAlias; 916 GEP1VariableIndices.clear(); 917 } 918 } 919 920 // If we get a No or May, then return it immediately, no amount of analysis 921 // will improve this situation. 922 if (BaseAlias != MustAlias) return BaseAlias; 923 924 // Otherwise, we have a MustAlias. Since the base pointers alias each other 925 // exactly, see if the computed offset from the common pointer tells us 926 // about the relation of the resulting pointer. 927 const Value *GEP1BasePtr = 928 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 929 GEP1MaxLookupReached, DL); 930 931 int64_t GEP2BaseOffset; 932 bool GEP2MaxLookupReached; 933 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 934 const Value *GEP2BasePtr = 935 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, 936 GEP2MaxLookupReached, DL); 937 938 // DecomposeGEPExpression and GetUnderlyingObject should return the 939 // same result except when DecomposeGEPExpression has no DataLayout. 940 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 941 assert(!DL && 942 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 943 return MayAlias; 944 } 945 // If the max search depth is reached the result is undefined 946 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 947 return MayAlias; 948 949 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 950 // symbolic difference. 951 GEP1BaseOffset -= GEP2BaseOffset; 952 GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices); 953 954 } else { 955 // Check to see if these two pointers are related by the getelementptr 956 // instruction. If one pointer is a GEP with a non-zero index of the other 957 // pointer, we know they cannot alias. 958 959 // If both accesses are unknown size, we can't do anything useful here. 960 if (V1Size == UnknownSize && V2Size == UnknownSize) 961 return MayAlias; 962 963 AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, nullptr, 964 V2, V2Size, V2TBAAInfo); 965 if (R != MustAlias) 966 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 967 // If V2 is known not to alias GEP base pointer, then the two values 968 // cannot alias per GEP semantics: "A pointer value formed from a 969 // getelementptr instruction is associated with the addresses associated 970 // with the first operand of the getelementptr". 971 return R; 972 973 const Value *GEP1BasePtr = 974 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 975 GEP1MaxLookupReached, DL); 976 977 // DecomposeGEPExpression and GetUnderlyingObject should return the 978 // same result except when DecomposeGEPExpression has no DataLayout. 979 if (GEP1BasePtr != UnderlyingV1) { 980 assert(!DL && 981 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 982 return MayAlias; 983 } 984 // If the max search depth is reached the result is undefined 985 if (GEP1MaxLookupReached) 986 return MayAlias; 987 } 988 989 // In the two GEP Case, if there is no difference in the offsets of the 990 // computed pointers, the resultant pointers are a must alias. This 991 // hapens when we have two lexically identical GEP's (for example). 992 // 993 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 994 // must aliases the GEP, the end result is a must alias also. 995 if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty()) 996 return MustAlias; 997 998 // If there is a constant difference between the pointers, but the difference 999 // is less than the size of the associated memory object, then we know 1000 // that the objects are partially overlapping. If the difference is 1001 // greater, we know they do not overlap. 1002 if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) { 1003 if (GEP1BaseOffset >= 0) { 1004 if (V2Size != UnknownSize) { 1005 if ((uint64_t)GEP1BaseOffset < V2Size) 1006 return PartialAlias; 1007 return NoAlias; 1008 } 1009 } else { 1010 // We have the situation where: 1011 // + + 1012 // | BaseOffset | 1013 // ---------------->| 1014 // |-->V1Size |-------> V2Size 1015 // GEP1 V2 1016 // We need to know that V2Size is not unknown, otherwise we might have 1017 // stripped a gep with negative index ('gep <ptr>, -1, ...). 1018 if (V1Size != UnknownSize && V2Size != UnknownSize) { 1019 if (-(uint64_t)GEP1BaseOffset < V1Size) 1020 return PartialAlias; 1021 return NoAlias; 1022 } 1023 } 1024 } 1025 1026 // Try to distinguish something like &A[i][1] against &A[42][0]. 1027 // Grab the least significant bit set in any of the scales. 1028 if (!GEP1VariableIndices.empty()) { 1029 uint64_t Modulo = 0; 1030 for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) 1031 Modulo |= (uint64_t)GEP1VariableIndices[i].Scale; 1032 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1033 1034 // We can compute the difference between the two addresses 1035 // mod Modulo. Check whether that difference guarantees that the 1036 // two locations do not alias. 1037 uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1); 1038 if (V1Size != UnknownSize && V2Size != UnknownSize && 1039 ModOffset >= V2Size && V1Size <= Modulo - ModOffset) 1040 return NoAlias; 1041 } 1042 1043 // Statically, we can see that the base objects are the same, but the 1044 // pointers have dynamic offsets which we can't resolve. And none of our 1045 // little tricks above worked. 1046 // 1047 // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the 1048 // practical effect of this is protecting TBAA in the case of dynamic 1049 // indices into arrays of unions or malloc'd memory. 1050 return PartialAlias; 1051 } 1052 1053 static AliasAnalysis::AliasResult 1054 MergeAliasResults(AliasAnalysis::AliasResult A, AliasAnalysis::AliasResult B) { 1055 // If the results agree, take it. 1056 if (A == B) 1057 return A; 1058 // A mix of PartialAlias and MustAlias is PartialAlias. 1059 if ((A == AliasAnalysis::PartialAlias && B == AliasAnalysis::MustAlias) || 1060 (B == AliasAnalysis::PartialAlias && A == AliasAnalysis::MustAlias)) 1061 return AliasAnalysis::PartialAlias; 1062 // Otherwise, we don't know anything. 1063 return AliasAnalysis::MayAlias; 1064 } 1065 1066 /// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select 1067 /// instruction against another. 1068 AliasAnalysis::AliasResult 1069 BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize, 1070 const MDNode *SITBAAInfo, 1071 const Value *V2, uint64_t V2Size, 1072 const MDNode *V2TBAAInfo) { 1073 // If the values are Selects with the same condition, we can do a more precise 1074 // check: just check for aliases between the values on corresponding arms. 1075 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1076 if (SI->getCondition() == SI2->getCondition()) { 1077 AliasResult Alias = 1078 aliasCheck(SI->getTrueValue(), SISize, SITBAAInfo, 1079 SI2->getTrueValue(), V2Size, V2TBAAInfo); 1080 if (Alias == MayAlias) 1081 return MayAlias; 1082 AliasResult ThisAlias = 1083 aliasCheck(SI->getFalseValue(), SISize, SITBAAInfo, 1084 SI2->getFalseValue(), V2Size, V2TBAAInfo); 1085 return MergeAliasResults(ThisAlias, Alias); 1086 } 1087 1088 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1089 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1090 AliasResult Alias = 1091 aliasCheck(V2, V2Size, V2TBAAInfo, SI->getTrueValue(), SISize, SITBAAInfo); 1092 if (Alias == MayAlias) 1093 return MayAlias; 1094 1095 AliasResult ThisAlias = 1096 aliasCheck(V2, V2Size, V2TBAAInfo, SI->getFalseValue(), SISize, SITBAAInfo); 1097 return MergeAliasResults(ThisAlias, Alias); 1098 } 1099 1100 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction 1101 // against another. 1102 AliasAnalysis::AliasResult 1103 BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize, 1104 const MDNode *PNTBAAInfo, 1105 const Value *V2, uint64_t V2Size, 1106 const MDNode *V2TBAAInfo) { 1107 // Track phi nodes we have visited. We use this information when we determine 1108 // value equivalence. 1109 VisitedPhiBBs.insert(PN->getParent()); 1110 1111 // If the values are PHIs in the same block, we can do a more precise 1112 // as well as efficient check: just check for aliases between the values 1113 // on corresponding edges. 1114 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1115 if (PN2->getParent() == PN->getParent()) { 1116 LocPair Locs(Location(PN, PNSize, PNTBAAInfo), 1117 Location(V2, V2Size, V2TBAAInfo)); 1118 if (PN > V2) 1119 std::swap(Locs.first, Locs.second); 1120 // Analyse the PHIs' inputs under the assumption that the PHIs are 1121 // NoAlias. 1122 // If the PHIs are May/MustAlias there must be (recursively) an input 1123 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1124 // there must be an operation on the PHIs within the PHIs' value cycle 1125 // that causes a MayAlias. 1126 // Pretend the phis do not alias. 1127 AliasResult Alias = NoAlias; 1128 assert(AliasCache.count(Locs) && 1129 "There must exist an entry for the phi node"); 1130 AliasResult OrigAliasResult = AliasCache[Locs]; 1131 AliasCache[Locs] = NoAlias; 1132 1133 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1134 AliasResult ThisAlias = 1135 aliasCheck(PN->getIncomingValue(i), PNSize, PNTBAAInfo, 1136 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1137 V2Size, V2TBAAInfo); 1138 Alias = MergeAliasResults(ThisAlias, Alias); 1139 if (Alias == MayAlias) 1140 break; 1141 } 1142 1143 // Reset if speculation failed. 1144 if (Alias != NoAlias) 1145 AliasCache[Locs] = OrigAliasResult; 1146 1147 return Alias; 1148 } 1149 1150 SmallPtrSet<Value*, 4> UniqueSrc; 1151 SmallVector<Value*, 4> V1Srcs; 1152 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1153 Value *PV1 = PN->getIncomingValue(i); 1154 if (isa<PHINode>(PV1)) 1155 // If any of the source itself is a PHI, return MayAlias conservatively 1156 // to avoid compile time explosion. The worst possible case is if both 1157 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1158 // and 'n' are the number of PHI sources. 1159 return MayAlias; 1160 if (UniqueSrc.insert(PV1)) 1161 V1Srcs.push_back(PV1); 1162 } 1163 1164 AliasResult Alias = aliasCheck(V2, V2Size, V2TBAAInfo, 1165 V1Srcs[0], PNSize, PNTBAAInfo); 1166 // Early exit if the check of the first PHI source against V2 is MayAlias. 1167 // Other results are not possible. 1168 if (Alias == MayAlias) 1169 return MayAlias; 1170 1171 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1172 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1173 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1174 Value *V = V1Srcs[i]; 1175 1176 AliasResult ThisAlias = aliasCheck(V2, V2Size, V2TBAAInfo, 1177 V, PNSize, PNTBAAInfo); 1178 Alias = MergeAliasResults(ThisAlias, Alias); 1179 if (Alias == MayAlias) 1180 break; 1181 } 1182 1183 return Alias; 1184 } 1185 1186 // aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases, 1187 // such as array references. 1188 // 1189 AliasAnalysis::AliasResult 1190 BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size, 1191 const MDNode *V1TBAAInfo, 1192 const Value *V2, uint64_t V2Size, 1193 const MDNode *V2TBAAInfo) { 1194 // If either of the memory references is empty, it doesn't matter what the 1195 // pointer values are. 1196 if (V1Size == 0 || V2Size == 0) 1197 return NoAlias; 1198 1199 // Strip off any casts if they exist. 1200 V1 = V1->stripPointerCasts(); 1201 V2 = V2->stripPointerCasts(); 1202 1203 // Are we checking for alias of the same value? 1204 // Because we look 'through' phi nodes we could look at "Value" pointers from 1205 // different iterations. We must therefore make sure that this is not the 1206 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1207 // happen by looking at the visited phi nodes and making sure they cannot 1208 // reach the value. 1209 if (isValueEqualInPotentialCycles(V1, V2)) 1210 return MustAlias; 1211 1212 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1213 return NoAlias; // Scalars cannot alias each other 1214 1215 // Figure out what objects these things are pointing to if we can. 1216 const Value *O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth); 1217 const Value *O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth); 1218 1219 // Null values in the default address space don't point to any object, so they 1220 // don't alias any other pointer. 1221 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1222 if (CPN->getType()->getAddressSpace() == 0) 1223 return NoAlias; 1224 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1225 if (CPN->getType()->getAddressSpace() == 0) 1226 return NoAlias; 1227 1228 if (O1 != O2) { 1229 // If V1/V2 point to two different objects we know that we have no alias. 1230 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1231 return NoAlias; 1232 1233 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1234 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1235 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1236 return NoAlias; 1237 1238 // Function arguments can't alias with things that are known to be 1239 // unambigously identified at the function level. 1240 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1241 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1242 return NoAlias; 1243 1244 // Most objects can't alias null. 1245 if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) || 1246 (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2))) 1247 return NoAlias; 1248 1249 // If one pointer is the result of a call/invoke or load and the other is a 1250 // non-escaping local object within the same function, then we know the 1251 // object couldn't escape to a point where the call could return it. 1252 // 1253 // Note that if the pointers are in different functions, there are a 1254 // variety of complications. A call with a nocapture argument may still 1255 // temporary store the nocapture argument's value in a temporary memory 1256 // location if that memory location doesn't escape. Or it may pass a 1257 // nocapture value to other functions as long as they don't capture it. 1258 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) 1259 return NoAlias; 1260 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) 1261 return NoAlias; 1262 } 1263 1264 // If the size of one access is larger than the entire object on the other 1265 // side, then we know such behavior is undefined and can assume no alias. 1266 if (DL) 1267 if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *DL, *TLI)) || 1268 (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *DL, *TLI))) 1269 return NoAlias; 1270 1271 // Check the cache before climbing up use-def chains. This also terminates 1272 // otherwise infinitely recursive queries. 1273 LocPair Locs(Location(V1, V1Size, V1TBAAInfo), 1274 Location(V2, V2Size, V2TBAAInfo)); 1275 if (V1 > V2) 1276 std::swap(Locs.first, Locs.second); 1277 std::pair<AliasCacheTy::iterator, bool> Pair = 1278 AliasCache.insert(std::make_pair(Locs, MayAlias)); 1279 if (!Pair.second) 1280 return Pair.first->second; 1281 1282 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1283 // GEP can't simplify, we don't even look at the PHI cases. 1284 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1285 std::swap(V1, V2); 1286 std::swap(V1Size, V2Size); 1287 std::swap(O1, O2); 1288 std::swap(V1TBAAInfo, V2TBAAInfo); 1289 } 1290 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1291 AliasResult Result = aliasGEP(GV1, V1Size, V1TBAAInfo, V2, V2Size, V2TBAAInfo, O1, O2); 1292 if (Result != MayAlias) return AliasCache[Locs] = Result; 1293 } 1294 1295 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1296 std::swap(V1, V2); 1297 std::swap(V1Size, V2Size); 1298 std::swap(V1TBAAInfo, V2TBAAInfo); 1299 } 1300 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1301 AliasResult Result = aliasPHI(PN, V1Size, V1TBAAInfo, 1302 V2, V2Size, V2TBAAInfo); 1303 if (Result != MayAlias) return AliasCache[Locs] = Result; 1304 } 1305 1306 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1307 std::swap(V1, V2); 1308 std::swap(V1Size, V2Size); 1309 std::swap(V1TBAAInfo, V2TBAAInfo); 1310 } 1311 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1312 AliasResult Result = aliasSelect(S1, V1Size, V1TBAAInfo, 1313 V2, V2Size, V2TBAAInfo); 1314 if (Result != MayAlias) return AliasCache[Locs] = Result; 1315 } 1316 1317 // If both pointers are pointing into the same object and one of them 1318 // accesses is accessing the entire object, then the accesses must 1319 // overlap in some way. 1320 if (DL && O1 == O2) 1321 if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *DL, *TLI)) || 1322 (V2Size != UnknownSize && isObjectSize(O2, V2Size, *DL, *TLI))) 1323 return AliasCache[Locs] = PartialAlias; 1324 1325 AliasResult Result = 1326 AliasAnalysis::alias(Location(V1, V1Size, V1TBAAInfo), 1327 Location(V2, V2Size, V2TBAAInfo)); 1328 return AliasCache[Locs] = Result; 1329 } 1330 1331 bool BasicAliasAnalysis::isValueEqualInPotentialCycles(const Value *V, 1332 const Value *V2) { 1333 if (V != V2) 1334 return false; 1335 1336 const Instruction *Inst = dyn_cast<Instruction>(V); 1337 if (!Inst) 1338 return true; 1339 1340 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1341 return false; 1342 1343 // Use dominance or loop info if available. 1344 DominatorTreeWrapperPass *DTWP = 1345 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1346 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 1347 LoopInfo *LI = getAnalysisIfAvailable<LoopInfo>(); 1348 1349 // Make sure that the visited phis cannot reach the Value. This ensures that 1350 // the Values cannot come from different iterations of a potential cycle the 1351 // phi nodes could be involved in. 1352 for (SmallPtrSet<const BasicBlock *, 8>::iterator PI = VisitedPhiBBs.begin(), 1353 PE = VisitedPhiBBs.end(); 1354 PI != PE; ++PI) 1355 if (isPotentiallyReachable((*PI)->begin(), Inst, DT, LI)) 1356 return false; 1357 1358 return true; 1359 } 1360 1361 /// GetIndexDifference - Dest and Src are the variable indices from two 1362 /// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base 1363 /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic 1364 /// difference between the two pointers. 1365 void BasicAliasAnalysis::GetIndexDifference( 1366 SmallVectorImpl<VariableGEPIndex> &Dest, 1367 const SmallVectorImpl<VariableGEPIndex> &Src) { 1368 if (Src.empty()) 1369 return; 1370 1371 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1372 const Value *V = Src[i].V; 1373 ExtensionKind Extension = Src[i].Extension; 1374 int64_t Scale = Src[i].Scale; 1375 1376 // Find V in Dest. This is N^2, but pointer indices almost never have more 1377 // than a few variable indexes. 1378 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1379 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1380 Dest[j].Extension != Extension) 1381 continue; 1382 1383 // If we found it, subtract off Scale V's from the entry in Dest. If it 1384 // goes to zero, remove the entry. 1385 if (Dest[j].Scale != Scale) 1386 Dest[j].Scale -= Scale; 1387 else 1388 Dest.erase(Dest.begin() + j); 1389 Scale = 0; 1390 break; 1391 } 1392 1393 // If we didn't consume this entry, add it to the end of the Dest list. 1394 if (Scale) { 1395 VariableGEPIndex Entry = { V, Extension, -Scale }; 1396 Dest.push_back(Entry); 1397 } 1398 } 1399 } 1400