1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the primary stateless implementation of the 11 // Alias Analysis interface that implements identities (two different 12 // globals cannot alias, etc), but does no stateful analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/Passes.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/CFG.h" 21 #include "llvm/Analysis/CaptureTracking.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GetElementPtrTypeIterator.h" 32 #include "llvm/IR/GlobalAlias.h" 33 #include "llvm/IR/GlobalVariable.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Target/TargetLibraryInfo.h" 41 #include <algorithm> 42 using namespace llvm; 43 44 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 45 /// in a cycle. Because we are analysing 'through' phi nodes we need to be 46 /// careful with value equivalence. We use reachability to make sure a value 47 /// cannot be involved in a cycle. 48 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 49 50 //===----------------------------------------------------------------------===// 51 // Useful predicates 52 //===----------------------------------------------------------------------===// 53 54 /// isNonEscapingLocalObject - Return true if the pointer is to a function-local 55 /// object that never escapes from the function. 56 static bool isNonEscapingLocalObject(const Value *V) { 57 // If this is a local allocation, check to see if it escapes. 58 if (isa<AllocaInst>(V) || isNoAliasCall(V)) 59 // Set StoreCaptures to True so that we can assume in our callers that the 60 // pointer is not the result of a load instruction. Currently 61 // PointerMayBeCaptured doesn't have any special analysis for the 62 // StoreCaptures=false case; if it did, our callers could be refined to be 63 // more precise. 64 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 65 66 // If this is an argument that corresponds to a byval or noalias argument, 67 // then it has not escaped before entering the function. Check if it escapes 68 // inside the function. 69 if (const Argument *A = dyn_cast<Argument>(V)) 70 if (A->hasByValAttr() || A->hasNoAliasAttr()) 71 // Note even if the argument is marked nocapture we still need to check 72 // for copies made inside the function. The nocapture attribute only 73 // specifies that there are no copies made that outlive the function. 74 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 75 76 return false; 77 } 78 79 /// isEscapeSource - Return true if the pointer is one which would have 80 /// been considered an escape by isNonEscapingLocalObject. 81 static bool isEscapeSource(const Value *V) { 82 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V)) 83 return true; 84 85 // The load case works because isNonEscapingLocalObject considers all 86 // stores to be escapes (it passes true for the StoreCaptures argument 87 // to PointerMayBeCaptured). 88 if (isa<LoadInst>(V)) 89 return true; 90 91 return false; 92 } 93 94 /// getObjectSize - Return the size of the object specified by V, or 95 /// UnknownSize if unknown. 96 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 97 const TargetLibraryInfo &TLI, 98 bool RoundToAlign = false) { 99 uint64_t Size; 100 if (getObjectSize(V, Size, &DL, &TLI, RoundToAlign)) 101 return Size; 102 return AliasAnalysis::UnknownSize; 103 } 104 105 /// isObjectSmallerThan - Return true if we can prove that the object specified 106 /// by V is smaller than Size. 107 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 108 const DataLayout &DL, 109 const TargetLibraryInfo &TLI) { 110 // Note that the meanings of the "object" are slightly different in the 111 // following contexts: 112 // c1: llvm::getObjectSize() 113 // c2: llvm.objectsize() intrinsic 114 // c3: isObjectSmallerThan() 115 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 116 // refers to the "entire object". 117 // 118 // Consider this example: 119 // char *p = (char*)malloc(100) 120 // char *q = p+80; 121 // 122 // In the context of c1 and c2, the "object" pointed by q refers to the 123 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 124 // 125 // However, in the context of c3, the "object" refers to the chunk of memory 126 // being allocated. So, the "object" has 100 bytes, and q points to the middle 127 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 128 // parameter, before the llvm::getObjectSize() is called to get the size of 129 // entire object, we should: 130 // - either rewind the pointer q to the base-address of the object in 131 // question (in this case rewind to p), or 132 // - just give up. It is up to caller to make sure the pointer is pointing 133 // to the base address the object. 134 // 135 // We go for 2nd option for simplicity. 136 if (!isIdentifiedObject(V)) 137 return false; 138 139 // This function needs to use the aligned object size because we allow 140 // reads a bit past the end given sufficient alignment. 141 uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/true); 142 143 return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size; 144 } 145 146 /// isObjectSize - Return true if we can prove that the object specified 147 /// by V has size Size. 148 static bool isObjectSize(const Value *V, uint64_t Size, 149 const DataLayout &DL, const TargetLibraryInfo &TLI) { 150 uint64_t ObjectSize = getObjectSize(V, DL, TLI); 151 return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size; 152 } 153 154 /// isIdentifiedFunctionLocal - Return true if V is umabigously identified 155 /// at the function-level. Different IdentifiedFunctionLocals can't alias. 156 /// Further, an IdentifiedFunctionLocal can not alias with any function 157 /// arguments other than itself, which is not necessarily true for 158 /// IdentifiedObjects. 159 static bool isIdentifiedFunctionLocal(const Value *V) 160 { 161 return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V); 162 } 163 164 165 //===----------------------------------------------------------------------===// 166 // GetElementPtr Instruction Decomposition and Analysis 167 //===----------------------------------------------------------------------===// 168 169 namespace { 170 enum ExtensionKind { 171 EK_NotExtended, 172 EK_SignExt, 173 EK_ZeroExt 174 }; 175 176 struct VariableGEPIndex { 177 const Value *V; 178 ExtensionKind Extension; 179 int64_t Scale; 180 181 bool operator==(const VariableGEPIndex &Other) const { 182 return V == Other.V && Extension == Other.Extension && 183 Scale == Other.Scale; 184 } 185 186 bool operator!=(const VariableGEPIndex &Other) const { 187 return !operator==(Other); 188 } 189 }; 190 } 191 192 193 /// GetLinearExpression - Analyze the specified value as a linear expression: 194 /// "A*V + B", where A and B are constant integers. Return the scale and offset 195 /// values as APInts and return V as a Value*, and return whether we looked 196 /// through any sign or zero extends. The incoming Value is known to have 197 /// IntegerType and it may already be sign or zero extended. 198 /// 199 /// Note that this looks through extends, so the high bits may not be 200 /// represented in the result. 201 static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset, 202 ExtensionKind &Extension, 203 const DataLayout &DL, unsigned Depth) { 204 assert(V->getType()->isIntegerTy() && "Not an integer value"); 205 206 // Limit our recursion depth. 207 if (Depth == 6) { 208 Scale = 1; 209 Offset = 0; 210 return V; 211 } 212 213 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 214 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 215 switch (BOp->getOpcode()) { 216 default: break; 217 case Instruction::Or: 218 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 219 // analyze it. 220 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &DL)) 221 break; 222 // FALL THROUGH. 223 case Instruction::Add: 224 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 225 DL, Depth+1); 226 Offset += RHSC->getValue(); 227 return V; 228 case Instruction::Mul: 229 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 230 DL, Depth+1); 231 Offset *= RHSC->getValue(); 232 Scale *= RHSC->getValue(); 233 return V; 234 case Instruction::Shl: 235 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 236 DL, Depth+1); 237 Offset <<= RHSC->getValue().getLimitedValue(); 238 Scale <<= RHSC->getValue().getLimitedValue(); 239 return V; 240 } 241 } 242 } 243 244 // Since GEP indices are sign extended anyway, we don't care about the high 245 // bits of a sign or zero extended value - just scales and offsets. The 246 // extensions have to be consistent though. 247 if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) || 248 (isa<ZExtInst>(V) && Extension != EK_SignExt)) { 249 Value *CastOp = cast<CastInst>(V)->getOperand(0); 250 unsigned OldWidth = Scale.getBitWidth(); 251 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 252 Scale = Scale.trunc(SmallWidth); 253 Offset = Offset.trunc(SmallWidth); 254 Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt; 255 256 Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension, 257 DL, Depth+1); 258 Scale = Scale.zext(OldWidth); 259 Offset = Offset.zext(OldWidth); 260 261 return Result; 262 } 263 264 Scale = 1; 265 Offset = 0; 266 return V; 267 } 268 269 /// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it 270 /// into a base pointer with a constant offset and a number of scaled symbolic 271 /// offsets. 272 /// 273 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale in 274 /// the VarIndices vector) are Value*'s that are known to be scaled by the 275 /// specified amount, but which may have other unrepresented high bits. As such, 276 /// the gep cannot necessarily be reconstructed from its decomposed form. 277 /// 278 /// When DataLayout is around, this function is capable of analyzing everything 279 /// that GetUnderlyingObject can look through. When not, it just looks 280 /// through pointer casts. 281 /// 282 static const Value * 283 DecomposeGEPExpression(const Value *V, int64_t &BaseOffs, 284 SmallVectorImpl<VariableGEPIndex> &VarIndices, 285 const DataLayout *DL) { 286 // Limit recursion depth to limit compile time in crazy cases. 287 unsigned MaxLookup = 6; 288 289 BaseOffs = 0; 290 do { 291 // See if this is a bitcast or GEP. 292 const Operator *Op = dyn_cast<Operator>(V); 293 if (Op == 0) { 294 // The only non-operator case we can handle are GlobalAliases. 295 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 296 if (!GA->mayBeOverridden()) { 297 V = GA->getAliasee(); 298 continue; 299 } 300 } 301 return V; 302 } 303 304 if (Op->getOpcode() == Instruction::BitCast) { 305 V = Op->getOperand(0); 306 continue; 307 } 308 309 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 310 if (GEPOp == 0) { 311 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 312 // can come up with something. This matches what GetUnderlyingObject does. 313 if (const Instruction *I = dyn_cast<Instruction>(V)) 314 // TODO: Get a DominatorTree and use it here. 315 if (const Value *Simplified = 316 SimplifyInstruction(const_cast<Instruction *>(I), DL)) { 317 V = Simplified; 318 continue; 319 } 320 321 return V; 322 } 323 324 // Don't attempt to analyze GEPs over unsized objects. 325 if (!GEPOp->getOperand(0)->getType()->getPointerElementType()->isSized()) 326 return V; 327 328 // If we are lacking DataLayout information, we can't compute the offets of 329 // elements computed by GEPs. However, we can handle bitcast equivalent 330 // GEPs. 331 if (DL == 0) { 332 if (!GEPOp->hasAllZeroIndices()) 333 return V; 334 V = GEPOp->getOperand(0); 335 continue; 336 } 337 338 unsigned AS = GEPOp->getPointerAddressSpace(); 339 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 340 gep_type_iterator GTI = gep_type_begin(GEPOp); 341 for (User::const_op_iterator I = GEPOp->op_begin()+1, 342 E = GEPOp->op_end(); I != E; ++I) { 343 Value *Index = *I; 344 // Compute the (potentially symbolic) offset in bytes for this index. 345 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 346 // For a struct, add the member offset. 347 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 348 if (FieldNo == 0) continue; 349 350 BaseOffs += DL->getStructLayout(STy)->getElementOffset(FieldNo); 351 continue; 352 } 353 354 // For an array/pointer, add the element offset, explicitly scaled. 355 if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 356 if (CIdx->isZero()) continue; 357 BaseOffs += DL->getTypeAllocSize(*GTI)*CIdx->getSExtValue(); 358 continue; 359 } 360 361 uint64_t Scale = DL->getTypeAllocSize(*GTI); 362 ExtensionKind Extension = EK_NotExtended; 363 364 // If the integer type is smaller than the pointer size, it is implicitly 365 // sign extended to pointer size. 366 unsigned Width = Index->getType()->getIntegerBitWidth(); 367 if (DL->getPointerSizeInBits(AS) > Width) 368 Extension = EK_SignExt; 369 370 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 371 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 372 Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension, 373 *DL, 0); 374 375 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 376 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 377 BaseOffs += IndexOffset.getSExtValue()*Scale; 378 Scale *= IndexScale.getSExtValue(); 379 380 // If we already had an occurrence of this index variable, merge this 381 // scale into it. For example, we want to handle: 382 // A[x][x] -> x*16 + x*4 -> x*20 383 // This also ensures that 'x' only appears in the index list once. 384 for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) { 385 if (VarIndices[i].V == Index && 386 VarIndices[i].Extension == Extension) { 387 Scale += VarIndices[i].Scale; 388 VarIndices.erase(VarIndices.begin()+i); 389 break; 390 } 391 } 392 393 // Make sure that we have a scale that makes sense for this target's 394 // pointer size. 395 if (unsigned ShiftBits = 64 - DL->getPointerSizeInBits(AS)) { 396 Scale <<= ShiftBits; 397 Scale = (int64_t)Scale >> ShiftBits; 398 } 399 400 if (Scale) { 401 VariableGEPIndex Entry = {Index, Extension, 402 static_cast<int64_t>(Scale)}; 403 VarIndices.push_back(Entry); 404 } 405 } 406 407 // Analyze the base pointer next. 408 V = GEPOp->getOperand(0); 409 } while (--MaxLookup); 410 411 // If the chain of expressions is too deep, just return early. 412 return V; 413 } 414 415 //===----------------------------------------------------------------------===// 416 // BasicAliasAnalysis Pass 417 //===----------------------------------------------------------------------===// 418 419 #ifndef NDEBUG 420 static const Function *getParent(const Value *V) { 421 if (const Instruction *inst = dyn_cast<Instruction>(V)) 422 return inst->getParent()->getParent(); 423 424 if (const Argument *arg = dyn_cast<Argument>(V)) 425 return arg->getParent(); 426 427 return NULL; 428 } 429 430 static bool notDifferentParent(const Value *O1, const Value *O2) { 431 432 const Function *F1 = getParent(O1); 433 const Function *F2 = getParent(O2); 434 435 return !F1 || !F2 || F1 == F2; 436 } 437 #endif 438 439 namespace { 440 /// BasicAliasAnalysis - This is the primary alias analysis implementation. 441 struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis { 442 static char ID; // Class identification, replacement for typeinfo 443 BasicAliasAnalysis() : ImmutablePass(ID) { 444 initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry()); 445 } 446 447 void initializePass() override { 448 InitializeAliasAnalysis(this); 449 } 450 451 void getAnalysisUsage(AnalysisUsage &AU) const override { 452 AU.addRequired<AliasAnalysis>(); 453 AU.addRequired<TargetLibraryInfo>(); 454 } 455 456 AliasResult alias(const Location &LocA, const Location &LocB) override { 457 assert(AliasCache.empty() && "AliasCache must be cleared after use!"); 458 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 459 "BasicAliasAnalysis doesn't support interprocedural queries."); 460 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.TBAATag, 461 LocB.Ptr, LocB.Size, LocB.TBAATag); 462 // AliasCache rarely has more than 1 or 2 elements, always use 463 // shrink_and_clear so it quickly returns to the inline capacity of the 464 // SmallDenseMap if it ever grows larger. 465 // FIXME: This should really be shrink_to_inline_capacity_and_clear(). 466 AliasCache.shrink_and_clear(); 467 VisitedPhiBBs.clear(); 468 return Alias; 469 } 470 471 ModRefResult getModRefInfo(ImmutableCallSite CS, 472 const Location &Loc) override; 473 474 ModRefResult getModRefInfo(ImmutableCallSite CS1, 475 ImmutableCallSite CS2) override { 476 // The AliasAnalysis base class has some smarts, lets use them. 477 return AliasAnalysis::getModRefInfo(CS1, CS2); 478 } 479 480 /// pointsToConstantMemory - Chase pointers until we find a (constant 481 /// global) or not. 482 bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override; 483 484 /// getModRefBehavior - Return the behavior when calling the given 485 /// call site. 486 ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override; 487 488 /// getModRefBehavior - Return the behavior when calling the given function. 489 /// For use when the call site is not known. 490 ModRefBehavior getModRefBehavior(const Function *F) override; 491 492 /// getAdjustedAnalysisPointer - This method is used when a pass implements 493 /// an analysis interface through multiple inheritance. If needed, it 494 /// should override this to adjust the this pointer as needed for the 495 /// specified pass info. 496 void *getAdjustedAnalysisPointer(const void *ID) override { 497 if (ID == &AliasAnalysis::ID) 498 return (AliasAnalysis*)this; 499 return this; 500 } 501 502 private: 503 // AliasCache - Track alias queries to guard against recursion. 504 typedef std::pair<Location, Location> LocPair; 505 typedef SmallDenseMap<LocPair, AliasResult, 8> AliasCacheTy; 506 AliasCacheTy AliasCache; 507 508 /// \brief Track phi nodes we have visited. When interpret "Value" pointer 509 /// equality as value equality we need to make sure that the "Value" is not 510 /// part of a cycle. Otherwise, two uses could come from different 511 /// "iterations" of a cycle and see different values for the same "Value" 512 /// pointer. 513 /// The following example shows the problem: 514 /// %p = phi(%alloca1, %addr2) 515 /// %l = load %ptr 516 /// %addr1 = gep, %alloca2, 0, %l 517 /// %addr2 = gep %alloca2, 0, (%l + 1) 518 /// alias(%p, %addr1) -> MayAlias ! 519 /// store %l, ... 520 SmallPtrSet<const BasicBlock*, 8> VisitedPhiBBs; 521 522 // Visited - Track instructions visited by pointsToConstantMemory. 523 SmallPtrSet<const Value*, 16> Visited; 524 525 /// \brief Check whether two Values can be considered equivalent. 526 /// 527 /// In addition to pointer equivalence of \p V1 and \p V2 this checks 528 /// whether they can not be part of a cycle in the value graph by looking at 529 /// all visited phi nodes an making sure that the phis cannot reach the 530 /// value. We have to do this because we are looking through phi nodes (That 531 /// is we say noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 532 bool isValueEqualInPotentialCycles(const Value *V1, const Value *V2); 533 534 /// \brief Dest and Src are the variable indices from two decomposed 535 /// GetElementPtr instructions GEP1 and GEP2 which have common base 536 /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic 537 /// difference between the two pointers. 538 void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest, 539 const SmallVectorImpl<VariableGEPIndex> &Src); 540 541 // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP 542 // instruction against another. 543 AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size, 544 const MDNode *V1TBAAInfo, 545 const Value *V2, uint64_t V2Size, 546 const MDNode *V2TBAAInfo, 547 const Value *UnderlyingV1, const Value *UnderlyingV2); 548 549 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI 550 // instruction against another. 551 AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize, 552 const MDNode *PNTBAAInfo, 553 const Value *V2, uint64_t V2Size, 554 const MDNode *V2TBAAInfo); 555 556 /// aliasSelect - Disambiguate a Select instruction against another value. 557 AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize, 558 const MDNode *SITBAAInfo, 559 const Value *V2, uint64_t V2Size, 560 const MDNode *V2TBAAInfo); 561 562 AliasResult aliasCheck(const Value *V1, uint64_t V1Size, 563 const MDNode *V1TBAATag, 564 const Value *V2, uint64_t V2Size, 565 const MDNode *V2TBAATag); 566 }; 567 } // End of anonymous namespace 568 569 // Register this pass... 570 char BasicAliasAnalysis::ID = 0; 571 INITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa", 572 "Basic Alias Analysis (stateless AA impl)", 573 false, true, false) 574 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 575 INITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa", 576 "Basic Alias Analysis (stateless AA impl)", 577 false, true, false) 578 579 580 ImmutablePass *llvm::createBasicAliasAnalysisPass() { 581 return new BasicAliasAnalysis(); 582 } 583 584 /// pointsToConstantMemory - Returns whether the given pointer value 585 /// points to memory that is local to the function, with global constants being 586 /// considered local to all functions. 587 bool 588 BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) { 589 assert(Visited.empty() && "Visited must be cleared after use!"); 590 591 unsigned MaxLookup = 8; 592 SmallVector<const Value *, 16> Worklist; 593 Worklist.push_back(Loc.Ptr); 594 do { 595 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL); 596 if (!Visited.insert(V)) { 597 Visited.clear(); 598 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 599 } 600 601 // An alloca instruction defines local memory. 602 if (OrLocal && isa<AllocaInst>(V)) 603 continue; 604 605 // A global constant counts as local memory for our purposes. 606 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 607 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 608 // global to be marked constant in some modules and non-constant in 609 // others. GV may even be a declaration, not a definition. 610 if (!GV->isConstant()) { 611 Visited.clear(); 612 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 613 } 614 continue; 615 } 616 617 // If both select values point to local memory, then so does the select. 618 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 619 Worklist.push_back(SI->getTrueValue()); 620 Worklist.push_back(SI->getFalseValue()); 621 continue; 622 } 623 624 // If all values incoming to a phi node point to local memory, then so does 625 // the phi. 626 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 627 // Don't bother inspecting phi nodes with many operands. 628 if (PN->getNumIncomingValues() > MaxLookup) { 629 Visited.clear(); 630 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 631 } 632 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 633 Worklist.push_back(PN->getIncomingValue(i)); 634 continue; 635 } 636 637 // Otherwise be conservative. 638 Visited.clear(); 639 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 640 641 } while (!Worklist.empty() && --MaxLookup); 642 643 Visited.clear(); 644 return Worklist.empty(); 645 } 646 647 /// getModRefBehavior - Return the behavior when calling the given call site. 648 AliasAnalysis::ModRefBehavior 649 BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) { 650 if (CS.doesNotAccessMemory()) 651 // Can't do better than this. 652 return DoesNotAccessMemory; 653 654 ModRefBehavior Min = UnknownModRefBehavior; 655 656 // If the callsite knows it only reads memory, don't return worse 657 // than that. 658 if (CS.onlyReadsMemory()) 659 Min = OnlyReadsMemory; 660 661 // The AliasAnalysis base class has some smarts, lets use them. 662 return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min); 663 } 664 665 /// getModRefBehavior - Return the behavior when calling the given function. 666 /// For use when the call site is not known. 667 AliasAnalysis::ModRefBehavior 668 BasicAliasAnalysis::getModRefBehavior(const Function *F) { 669 // If the function declares it doesn't access memory, we can't do better. 670 if (F->doesNotAccessMemory()) 671 return DoesNotAccessMemory; 672 673 // For intrinsics, we can check the table. 674 if (unsigned iid = F->getIntrinsicID()) { 675 #define GET_INTRINSIC_MODREF_BEHAVIOR 676 #include "llvm/IR/Intrinsics.gen" 677 #undef GET_INTRINSIC_MODREF_BEHAVIOR 678 } 679 680 ModRefBehavior Min = UnknownModRefBehavior; 681 682 // If the function declares it only reads memory, go with that. 683 if (F->onlyReadsMemory()) 684 Min = OnlyReadsMemory; 685 686 // Otherwise be conservative. 687 return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min); 688 } 689 690 /// getModRefInfo - Check to see if the specified callsite can clobber the 691 /// specified memory object. Since we only look at local properties of this 692 /// function, we really can't say much about this query. We do, however, use 693 /// simple "address taken" analysis on local objects. 694 AliasAnalysis::ModRefResult 695 BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS, 696 const Location &Loc) { 697 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && 698 "AliasAnalysis query involving multiple functions!"); 699 700 const Value *Object = GetUnderlyingObject(Loc.Ptr, DL); 701 702 // If this is a tail call and Loc.Ptr points to a stack location, we know that 703 // the tail call cannot access or modify the local stack. 704 // We cannot exclude byval arguments here; these belong to the caller of 705 // the current function not to the current function, and a tail callee 706 // may reference them. 707 if (isa<AllocaInst>(Object)) 708 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) 709 if (CI->isTailCall()) 710 return NoModRef; 711 712 // If the pointer is to a locally allocated object that does not escape, 713 // then the call can not mod/ref the pointer unless the call takes the pointer 714 // as an argument, and itself doesn't capture it. 715 if (!isa<Constant>(Object) && CS.getInstruction() != Object && 716 isNonEscapingLocalObject(Object)) { 717 bool PassedAsArg = false; 718 unsigned ArgNo = 0; 719 for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end(); 720 CI != CE; ++CI, ++ArgNo) { 721 // Only look at the no-capture or byval pointer arguments. If this 722 // pointer were passed to arguments that were neither of these, then it 723 // couldn't be no-capture. 724 if (!(*CI)->getType()->isPointerTy() || 725 (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo))) 726 continue; 727 728 // If this is a no-capture pointer argument, see if we can tell that it 729 // is impossible to alias the pointer we're checking. If not, we have to 730 // assume that the call could touch the pointer, even though it doesn't 731 // escape. 732 if (!isNoAlias(Location(*CI), Location(Object))) { 733 PassedAsArg = true; 734 break; 735 } 736 } 737 738 if (!PassedAsArg) 739 return NoModRef; 740 } 741 742 const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>(); 743 ModRefResult Min = ModRef; 744 745 // Finally, handle specific knowledge of intrinsics. 746 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 747 if (II != 0) 748 switch (II->getIntrinsicID()) { 749 default: break; 750 case Intrinsic::memcpy: 751 case Intrinsic::memmove: { 752 uint64_t Len = UnknownSize; 753 if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) 754 Len = LenCI->getZExtValue(); 755 Value *Dest = II->getArgOperand(0); 756 Value *Src = II->getArgOperand(1); 757 // If it can't overlap the source dest, then it doesn't modref the loc. 758 if (isNoAlias(Location(Dest, Len), Loc)) { 759 if (isNoAlias(Location(Src, Len), Loc)) 760 return NoModRef; 761 // If it can't overlap the dest, then worst case it reads the loc. 762 Min = Ref; 763 } else if (isNoAlias(Location(Src, Len), Loc)) { 764 // If it can't overlap the source, then worst case it mutates the loc. 765 Min = Mod; 766 } 767 break; 768 } 769 case Intrinsic::memset: 770 // Since memset is 'accesses arguments' only, the AliasAnalysis base class 771 // will handle it for the variable length case. 772 if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) { 773 uint64_t Len = LenCI->getZExtValue(); 774 Value *Dest = II->getArgOperand(0); 775 if (isNoAlias(Location(Dest, Len), Loc)) 776 return NoModRef; 777 } 778 // We know that memset doesn't load anything. 779 Min = Mod; 780 break; 781 case Intrinsic::lifetime_start: 782 case Intrinsic::lifetime_end: 783 case Intrinsic::invariant_start: { 784 uint64_t PtrSize = 785 cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(); 786 if (isNoAlias(Location(II->getArgOperand(1), 787 PtrSize, 788 II->getMetadata(LLVMContext::MD_tbaa)), 789 Loc)) 790 return NoModRef; 791 break; 792 } 793 case Intrinsic::invariant_end: { 794 uint64_t PtrSize = 795 cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(); 796 if (isNoAlias(Location(II->getArgOperand(2), 797 PtrSize, 798 II->getMetadata(LLVMContext::MD_tbaa)), 799 Loc)) 800 return NoModRef; 801 break; 802 } 803 case Intrinsic::arm_neon_vld1: { 804 // LLVM's vld1 and vst1 intrinsics currently only support a single 805 // vector register. 806 uint64_t Size = 807 DL ? DL->getTypeStoreSize(II->getType()) : UnknownSize; 808 if (isNoAlias(Location(II->getArgOperand(0), Size, 809 II->getMetadata(LLVMContext::MD_tbaa)), 810 Loc)) 811 return NoModRef; 812 break; 813 } 814 case Intrinsic::arm_neon_vst1: { 815 uint64_t Size = 816 DL ? DL->getTypeStoreSize(II->getArgOperand(1)->getType()) : UnknownSize; 817 if (isNoAlias(Location(II->getArgOperand(0), Size, 818 II->getMetadata(LLVMContext::MD_tbaa)), 819 Loc)) 820 return NoModRef; 821 break; 822 } 823 } 824 825 // We can bound the aliasing properties of memset_pattern16 just as we can 826 // for memcpy/memset. This is particularly important because the 827 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 828 // whenever possible. 829 else if (TLI.has(LibFunc::memset_pattern16) && 830 CS.getCalledFunction() && 831 CS.getCalledFunction()->getName() == "memset_pattern16") { 832 const Function *MS = CS.getCalledFunction(); 833 FunctionType *MemsetType = MS->getFunctionType(); 834 if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 && 835 isa<PointerType>(MemsetType->getParamType(0)) && 836 isa<PointerType>(MemsetType->getParamType(1)) && 837 isa<IntegerType>(MemsetType->getParamType(2))) { 838 uint64_t Len = UnknownSize; 839 if (const ConstantInt *LenCI = dyn_cast<ConstantInt>(CS.getArgument(2))) 840 Len = LenCI->getZExtValue(); 841 const Value *Dest = CS.getArgument(0); 842 const Value *Src = CS.getArgument(1); 843 // If it can't overlap the source dest, then it doesn't modref the loc. 844 if (isNoAlias(Location(Dest, Len), Loc)) { 845 // Always reads 16 bytes of the source. 846 if (isNoAlias(Location(Src, 16), Loc)) 847 return NoModRef; 848 // If it can't overlap the dest, then worst case it reads the loc. 849 Min = Ref; 850 // Always reads 16 bytes of the source. 851 } else if (isNoAlias(Location(Src, 16), Loc)) { 852 // If it can't overlap the source, then worst case it mutates the loc. 853 Min = Mod; 854 } 855 } 856 } 857 858 // The AliasAnalysis base class has some smarts, lets use them. 859 return ModRefResult(AliasAnalysis::getModRefInfo(CS, Loc) & Min); 860 } 861 862 static bool areVarIndicesEqual(SmallVectorImpl<VariableGEPIndex> &Indices1, 863 SmallVectorImpl<VariableGEPIndex> &Indices2) { 864 unsigned Size1 = Indices1.size(); 865 unsigned Size2 = Indices2.size(); 866 867 if (Size1 != Size2) 868 return false; 869 870 for (unsigned I = 0; I != Size1; ++I) 871 if (Indices1[I] != Indices2[I]) 872 return false; 873 874 return true; 875 } 876 877 /// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction 878 /// against another pointer. We know that V1 is a GEP, but we don't know 879 /// anything about V2. UnderlyingV1 is GetUnderlyingObject(GEP1, DL), 880 /// UnderlyingV2 is the same for V2. 881 /// 882 AliasAnalysis::AliasResult 883 BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, 884 const MDNode *V1TBAAInfo, 885 const Value *V2, uint64_t V2Size, 886 const MDNode *V2TBAAInfo, 887 const Value *UnderlyingV1, 888 const Value *UnderlyingV2) { 889 int64_t GEP1BaseOffset; 890 SmallVector<VariableGEPIndex, 4> GEP1VariableIndices; 891 892 // If we have two gep instructions with must-alias or not-alias'ing base 893 // pointers, figure out if the indexes to the GEP tell us anything about the 894 // derived pointer. 895 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 896 // Do the base pointers alias? 897 AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, 0, 898 UnderlyingV2, UnknownSize, 0); 899 900 // Check for geps of non-aliasing underlying pointers where the offsets are 901 // identical. 902 if ((BaseAlias == MayAlias) && V1Size == V2Size) { 903 // Do the base pointers alias assuming type and size. 904 AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, 905 V1TBAAInfo, UnderlyingV2, 906 V2Size, V2TBAAInfo); 907 if (PreciseBaseAlias == NoAlias) { 908 // See if the computed offset from the common pointer tells us about the 909 // relation of the resulting pointer. 910 int64_t GEP2BaseOffset; 911 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 912 const Value *GEP2BasePtr = 913 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, DL); 914 const Value *GEP1BasePtr = 915 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, DL); 916 // DecomposeGEPExpression and GetUnderlyingObject should return the 917 // same result except when DecomposeGEPExpression has no DataLayout. 918 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 919 assert(DL == 0 && 920 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 921 return MayAlias; 922 } 923 // Same offsets. 924 if (GEP1BaseOffset == GEP2BaseOffset && 925 areVarIndicesEqual(GEP1VariableIndices, GEP2VariableIndices)) 926 return NoAlias; 927 GEP1VariableIndices.clear(); 928 } 929 } 930 931 // If we get a No or May, then return it immediately, no amount of analysis 932 // will improve this situation. 933 if (BaseAlias != MustAlias) return BaseAlias; 934 935 // Otherwise, we have a MustAlias. Since the base pointers alias each other 936 // exactly, see if the computed offset from the common pointer tells us 937 // about the relation of the resulting pointer. 938 const Value *GEP1BasePtr = 939 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, DL); 940 941 int64_t GEP2BaseOffset; 942 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 943 const Value *GEP2BasePtr = 944 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, DL); 945 946 // DecomposeGEPExpression and GetUnderlyingObject should return the 947 // same result except when DecomposeGEPExpression has no DataLayout. 948 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 949 assert(DL == 0 && 950 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 951 return MayAlias; 952 } 953 954 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 955 // symbolic difference. 956 GEP1BaseOffset -= GEP2BaseOffset; 957 GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices); 958 959 } else { 960 // Check to see if these two pointers are related by the getelementptr 961 // instruction. If one pointer is a GEP with a non-zero index of the other 962 // pointer, we know they cannot alias. 963 964 // If both accesses are unknown size, we can't do anything useful here. 965 if (V1Size == UnknownSize && V2Size == UnknownSize) 966 return MayAlias; 967 968 AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, 0, 969 V2, V2Size, V2TBAAInfo); 970 if (R != MustAlias) 971 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 972 // If V2 is known not to alias GEP base pointer, then the two values 973 // cannot alias per GEP semantics: "A pointer value formed from a 974 // getelementptr instruction is associated with the addresses associated 975 // with the first operand of the getelementptr". 976 return R; 977 978 const Value *GEP1BasePtr = 979 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, DL); 980 981 // DecomposeGEPExpression and GetUnderlyingObject should return the 982 // same result except when DecomposeGEPExpression has no DataLayout. 983 if (GEP1BasePtr != UnderlyingV1) { 984 assert(DL == 0 && 985 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 986 return MayAlias; 987 } 988 } 989 990 // In the two GEP Case, if there is no difference in the offsets of the 991 // computed pointers, the resultant pointers are a must alias. This 992 // hapens when we have two lexically identical GEP's (for example). 993 // 994 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 995 // must aliases the GEP, the end result is a must alias also. 996 if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty()) 997 return MustAlias; 998 999 // If there is a constant difference between the pointers, but the difference 1000 // is less than the size of the associated memory object, then we know 1001 // that the objects are partially overlapping. If the difference is 1002 // greater, we know they do not overlap. 1003 if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) { 1004 if (GEP1BaseOffset >= 0) { 1005 if (V2Size != UnknownSize) { 1006 if ((uint64_t)GEP1BaseOffset < V2Size) 1007 return PartialAlias; 1008 return NoAlias; 1009 } 1010 } else { 1011 // We have the situation where: 1012 // + + 1013 // | BaseOffset | 1014 // ---------------->| 1015 // |-->V1Size |-------> V2Size 1016 // GEP1 V2 1017 // We need to know that V2Size is not unknown, otherwise we might have 1018 // stripped a gep with negative index ('gep <ptr>, -1, ...). 1019 if (V1Size != UnknownSize && V2Size != UnknownSize) { 1020 if (-(uint64_t)GEP1BaseOffset < V1Size) 1021 return PartialAlias; 1022 return NoAlias; 1023 } 1024 } 1025 } 1026 1027 // Try to distinguish something like &A[i][1] against &A[42][0]. 1028 // Grab the least significant bit set in any of the scales. 1029 if (!GEP1VariableIndices.empty()) { 1030 uint64_t Modulo = 0; 1031 for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) 1032 Modulo |= (uint64_t)GEP1VariableIndices[i].Scale; 1033 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1034 1035 // We can compute the difference between the two addresses 1036 // mod Modulo. Check whether that difference guarantees that the 1037 // two locations do not alias. 1038 uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1); 1039 if (V1Size != UnknownSize && V2Size != UnknownSize && 1040 ModOffset >= V2Size && V1Size <= Modulo - ModOffset) 1041 return NoAlias; 1042 } 1043 1044 // Statically, we can see that the base objects are the same, but the 1045 // pointers have dynamic offsets which we can't resolve. And none of our 1046 // little tricks above worked. 1047 // 1048 // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the 1049 // practical effect of this is protecting TBAA in the case of dynamic 1050 // indices into arrays of unions or malloc'd memory. 1051 return PartialAlias; 1052 } 1053 1054 static AliasAnalysis::AliasResult 1055 MergeAliasResults(AliasAnalysis::AliasResult A, AliasAnalysis::AliasResult B) { 1056 // If the results agree, take it. 1057 if (A == B) 1058 return A; 1059 // A mix of PartialAlias and MustAlias is PartialAlias. 1060 if ((A == AliasAnalysis::PartialAlias && B == AliasAnalysis::MustAlias) || 1061 (B == AliasAnalysis::PartialAlias && A == AliasAnalysis::MustAlias)) 1062 return AliasAnalysis::PartialAlias; 1063 // Otherwise, we don't know anything. 1064 return AliasAnalysis::MayAlias; 1065 } 1066 1067 /// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select 1068 /// instruction against another. 1069 AliasAnalysis::AliasResult 1070 BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize, 1071 const MDNode *SITBAAInfo, 1072 const Value *V2, uint64_t V2Size, 1073 const MDNode *V2TBAAInfo) { 1074 // If the values are Selects with the same condition, we can do a more precise 1075 // check: just check for aliases between the values on corresponding arms. 1076 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1077 if (SI->getCondition() == SI2->getCondition()) { 1078 AliasResult Alias = 1079 aliasCheck(SI->getTrueValue(), SISize, SITBAAInfo, 1080 SI2->getTrueValue(), V2Size, V2TBAAInfo); 1081 if (Alias == MayAlias) 1082 return MayAlias; 1083 AliasResult ThisAlias = 1084 aliasCheck(SI->getFalseValue(), SISize, SITBAAInfo, 1085 SI2->getFalseValue(), V2Size, V2TBAAInfo); 1086 return MergeAliasResults(ThisAlias, Alias); 1087 } 1088 1089 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1090 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1091 AliasResult Alias = 1092 aliasCheck(V2, V2Size, V2TBAAInfo, SI->getTrueValue(), SISize, SITBAAInfo); 1093 if (Alias == MayAlias) 1094 return MayAlias; 1095 1096 AliasResult ThisAlias = 1097 aliasCheck(V2, V2Size, V2TBAAInfo, SI->getFalseValue(), SISize, SITBAAInfo); 1098 return MergeAliasResults(ThisAlias, Alias); 1099 } 1100 1101 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction 1102 // against another. 1103 AliasAnalysis::AliasResult 1104 BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize, 1105 const MDNode *PNTBAAInfo, 1106 const Value *V2, uint64_t V2Size, 1107 const MDNode *V2TBAAInfo) { 1108 // Track phi nodes we have visited. We use this information when we determine 1109 // value equivalence. 1110 VisitedPhiBBs.insert(PN->getParent()); 1111 1112 // If the values are PHIs in the same block, we can do a more precise 1113 // as well as efficient check: just check for aliases between the values 1114 // on corresponding edges. 1115 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1116 if (PN2->getParent() == PN->getParent()) { 1117 LocPair Locs(Location(PN, PNSize, PNTBAAInfo), 1118 Location(V2, V2Size, V2TBAAInfo)); 1119 if (PN > V2) 1120 std::swap(Locs.first, Locs.second); 1121 // Analyse the PHIs' inputs under the assumption that the PHIs are 1122 // NoAlias. 1123 // If the PHIs are May/MustAlias there must be (recursively) an input 1124 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1125 // there must be an operation on the PHIs within the PHIs' value cycle 1126 // that causes a MayAlias. 1127 // Pretend the phis do not alias. 1128 AliasResult Alias = NoAlias; 1129 assert(AliasCache.count(Locs) && 1130 "There must exist an entry for the phi node"); 1131 AliasResult OrigAliasResult = AliasCache[Locs]; 1132 AliasCache[Locs] = NoAlias; 1133 1134 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1135 AliasResult ThisAlias = 1136 aliasCheck(PN->getIncomingValue(i), PNSize, PNTBAAInfo, 1137 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1138 V2Size, V2TBAAInfo); 1139 Alias = MergeAliasResults(ThisAlias, Alias); 1140 if (Alias == MayAlias) 1141 break; 1142 } 1143 1144 // Reset if speculation failed. 1145 if (Alias != NoAlias) 1146 AliasCache[Locs] = OrigAliasResult; 1147 1148 return Alias; 1149 } 1150 1151 SmallPtrSet<Value*, 4> UniqueSrc; 1152 SmallVector<Value*, 4> V1Srcs; 1153 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1154 Value *PV1 = PN->getIncomingValue(i); 1155 if (isa<PHINode>(PV1)) 1156 // If any of the source itself is a PHI, return MayAlias conservatively 1157 // to avoid compile time explosion. The worst possible case is if both 1158 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1159 // and 'n' are the number of PHI sources. 1160 return MayAlias; 1161 if (UniqueSrc.insert(PV1)) 1162 V1Srcs.push_back(PV1); 1163 } 1164 1165 AliasResult Alias = aliasCheck(V2, V2Size, V2TBAAInfo, 1166 V1Srcs[0], PNSize, PNTBAAInfo); 1167 // Early exit if the check of the first PHI source against V2 is MayAlias. 1168 // Other results are not possible. 1169 if (Alias == MayAlias) 1170 return MayAlias; 1171 1172 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1173 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1174 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1175 Value *V = V1Srcs[i]; 1176 1177 AliasResult ThisAlias = aliasCheck(V2, V2Size, V2TBAAInfo, 1178 V, PNSize, PNTBAAInfo); 1179 Alias = MergeAliasResults(ThisAlias, Alias); 1180 if (Alias == MayAlias) 1181 break; 1182 } 1183 1184 return Alias; 1185 } 1186 1187 // aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases, 1188 // such as array references. 1189 // 1190 AliasAnalysis::AliasResult 1191 BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size, 1192 const MDNode *V1TBAAInfo, 1193 const Value *V2, uint64_t V2Size, 1194 const MDNode *V2TBAAInfo) { 1195 // If either of the memory references is empty, it doesn't matter what the 1196 // pointer values are. 1197 if (V1Size == 0 || V2Size == 0) 1198 return NoAlias; 1199 1200 // Strip off any casts if they exist. 1201 V1 = V1->stripPointerCasts(); 1202 V2 = V2->stripPointerCasts(); 1203 1204 // Are we checking for alias of the same value? 1205 // Because we look 'through' phi nodes we could look at "Value" pointers from 1206 // different iterations. We must therefore make sure that this is not the 1207 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1208 // happen by looking at the visited phi nodes and making sure they cannot 1209 // reach the value. 1210 if (isValueEqualInPotentialCycles(V1, V2)) 1211 return MustAlias; 1212 1213 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1214 return NoAlias; // Scalars cannot alias each other 1215 1216 // Figure out what objects these things are pointing to if we can. 1217 const Value *O1 = GetUnderlyingObject(V1, DL); 1218 const Value *O2 = GetUnderlyingObject(V2, DL); 1219 1220 // Null values in the default address space don't point to any object, so they 1221 // don't alias any other pointer. 1222 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1223 if (CPN->getType()->getAddressSpace() == 0) 1224 return NoAlias; 1225 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1226 if (CPN->getType()->getAddressSpace() == 0) 1227 return NoAlias; 1228 1229 if (O1 != O2) { 1230 // If V1/V2 point to two different objects we know that we have no alias. 1231 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1232 return NoAlias; 1233 1234 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1235 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1236 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1237 return NoAlias; 1238 1239 // Function arguments can't alias with things that are known to be 1240 // unambigously identified at the function level. 1241 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1242 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1243 return NoAlias; 1244 1245 // Most objects can't alias null. 1246 if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) || 1247 (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2))) 1248 return NoAlias; 1249 1250 // If one pointer is the result of a call/invoke or load and the other is a 1251 // non-escaping local object within the same function, then we know the 1252 // object couldn't escape to a point where the call could return it. 1253 // 1254 // Note that if the pointers are in different functions, there are a 1255 // variety of complications. A call with a nocapture argument may still 1256 // temporary store the nocapture argument's value in a temporary memory 1257 // location if that memory location doesn't escape. Or it may pass a 1258 // nocapture value to other functions as long as they don't capture it. 1259 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) 1260 return NoAlias; 1261 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) 1262 return NoAlias; 1263 } 1264 1265 // If the size of one access is larger than the entire object on the other 1266 // side, then we know such behavior is undefined and can assume no alias. 1267 if (DL) 1268 if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *DL, *TLI)) || 1269 (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *DL, *TLI))) 1270 return NoAlias; 1271 1272 // Check the cache before climbing up use-def chains. This also terminates 1273 // otherwise infinitely recursive queries. 1274 LocPair Locs(Location(V1, V1Size, V1TBAAInfo), 1275 Location(V2, V2Size, V2TBAAInfo)); 1276 if (V1 > V2) 1277 std::swap(Locs.first, Locs.second); 1278 std::pair<AliasCacheTy::iterator, bool> Pair = 1279 AliasCache.insert(std::make_pair(Locs, MayAlias)); 1280 if (!Pair.second) 1281 return Pair.first->second; 1282 1283 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1284 // GEP can't simplify, we don't even look at the PHI cases. 1285 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1286 std::swap(V1, V2); 1287 std::swap(V1Size, V2Size); 1288 std::swap(O1, O2); 1289 std::swap(V1TBAAInfo, V2TBAAInfo); 1290 } 1291 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1292 AliasResult Result = aliasGEP(GV1, V1Size, V1TBAAInfo, V2, V2Size, V2TBAAInfo, O1, O2); 1293 if (Result != MayAlias) return AliasCache[Locs] = Result; 1294 } 1295 1296 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1297 std::swap(V1, V2); 1298 std::swap(V1Size, V2Size); 1299 std::swap(V1TBAAInfo, V2TBAAInfo); 1300 } 1301 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1302 AliasResult Result = aliasPHI(PN, V1Size, V1TBAAInfo, 1303 V2, V2Size, V2TBAAInfo); 1304 if (Result != MayAlias) return AliasCache[Locs] = Result; 1305 } 1306 1307 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1308 std::swap(V1, V2); 1309 std::swap(V1Size, V2Size); 1310 std::swap(V1TBAAInfo, V2TBAAInfo); 1311 } 1312 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1313 AliasResult Result = aliasSelect(S1, V1Size, V1TBAAInfo, 1314 V2, V2Size, V2TBAAInfo); 1315 if (Result != MayAlias) return AliasCache[Locs] = Result; 1316 } 1317 1318 // If both pointers are pointing into the same object and one of them 1319 // accesses is accessing the entire object, then the accesses must 1320 // overlap in some way. 1321 if (DL && O1 == O2) 1322 if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *DL, *TLI)) || 1323 (V2Size != UnknownSize && isObjectSize(O2, V2Size, *DL, *TLI))) 1324 return AliasCache[Locs] = PartialAlias; 1325 1326 AliasResult Result = 1327 AliasAnalysis::alias(Location(V1, V1Size, V1TBAAInfo), 1328 Location(V2, V2Size, V2TBAAInfo)); 1329 return AliasCache[Locs] = Result; 1330 } 1331 1332 bool BasicAliasAnalysis::isValueEqualInPotentialCycles(const Value *V, 1333 const Value *V2) { 1334 if (V != V2) 1335 return false; 1336 1337 const Instruction *Inst = dyn_cast<Instruction>(V); 1338 if (!Inst) 1339 return true; 1340 1341 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1342 return false; 1343 1344 // Use dominance or loop info if available. 1345 DominatorTreeWrapperPass *DTWP = 1346 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1347 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : 0; 1348 LoopInfo *LI = getAnalysisIfAvailable<LoopInfo>(); 1349 1350 // Make sure that the visited phis cannot reach the Value. This ensures that 1351 // the Values cannot come from different iterations of a potential cycle the 1352 // phi nodes could be involved in. 1353 for (SmallPtrSet<const BasicBlock *, 8>::iterator PI = VisitedPhiBBs.begin(), 1354 PE = VisitedPhiBBs.end(); 1355 PI != PE; ++PI) 1356 if (isPotentiallyReachable((*PI)->begin(), Inst, DT, LI)) 1357 return false; 1358 1359 return true; 1360 } 1361 1362 /// GetIndexDifference - Dest and Src are the variable indices from two 1363 /// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base 1364 /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic 1365 /// difference between the two pointers. 1366 void BasicAliasAnalysis::GetIndexDifference( 1367 SmallVectorImpl<VariableGEPIndex> &Dest, 1368 const SmallVectorImpl<VariableGEPIndex> &Src) { 1369 if (Src.empty()) 1370 return; 1371 1372 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1373 const Value *V = Src[i].V; 1374 ExtensionKind Extension = Src[i].Extension; 1375 int64_t Scale = Src[i].Scale; 1376 1377 // Find V in Dest. This is N^2, but pointer indices almost never have more 1378 // than a few variable indexes. 1379 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1380 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1381 Dest[j].Extension != Extension) 1382 continue; 1383 1384 // If we found it, subtract off Scale V's from the entry in Dest. If it 1385 // goes to zero, remove the entry. 1386 if (Dest[j].Scale != Scale) 1387 Dest[j].Scale -= Scale; 1388 else 1389 Dest.erase(Dest.begin() + j); 1390 Scale = 0; 1391 break; 1392 } 1393 1394 // If we didn't consume this entry, add it to the end of the Dest list. 1395 if (Scale) { 1396 VariableGEPIndex Entry = { V, Extension, -Scale }; 1397 Dest.push_back(Entry); 1398 } 1399 } 1400 } 1401