1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the primary stateless implementation of the 11 // Alias Analysis interface that implements identities (two different 12 // globals cannot alias, etc), but does no stateful analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/BasicAliasAnalysis.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/CFG.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/MemoryBuiltins.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/Argument.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GetElementPtrTypeIterator.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/Metadata.h" 49 #include "llvm/IR/Operator.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/User.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/Pass.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Compiler.h" 57 #include "llvm/Support/KnownBits.h" 58 #include <cassert> 59 #include <cstdint> 60 #include <cstdlib> 61 #include <utility> 62 63 #define DEBUG_TYPE "basicaa" 64 65 using namespace llvm; 66 67 /// Enable analysis of recursive PHI nodes. 68 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden, 69 cl::init(false)); 70 /// SearchLimitReached / SearchTimes shows how often the limit of 71 /// to decompose GEPs is reached. It will affect the precision 72 /// of basic alias analysis. 73 STATISTIC(SearchLimitReached, "Number of times the limit to " 74 "decompose GEPs is reached"); 75 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 76 77 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 78 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be 79 /// careful with value equivalence. We use reachability to make sure a value 80 /// cannot be involved in a cycle. 81 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 82 83 // The max limit of the search depth in DecomposeGEPExpression() and 84 // GetUnderlyingObject(), both functions need to use the same search 85 // depth otherwise the algorithm in aliasGEP will assert. 86 static const unsigned MaxLookupSearchDepth = 6; 87 88 bool BasicAAResult::invalidate(Function &F, const PreservedAnalyses &PA, 89 FunctionAnalysisManager::Invalidator &Inv) { 90 // We don't care if this analysis itself is preserved, it has no state. But 91 // we need to check that the analyses it depends on have been. Note that we 92 // may be created without handles to some analyses and in that case don't 93 // depend on them. 94 if (Inv.invalidate<AssumptionAnalysis>(F, PA) || 95 (DT && Inv.invalidate<DominatorTreeAnalysis>(F, PA)) || 96 (LI && Inv.invalidate<LoopAnalysis>(F, PA))) 97 return true; 98 99 // Otherwise this analysis result remains valid. 100 return false; 101 } 102 103 //===----------------------------------------------------------------------===// 104 // Useful predicates 105 //===----------------------------------------------------------------------===// 106 107 /// Returns true if the pointer is to a function-local object that never 108 /// escapes from the function. 109 static bool isNonEscapingLocalObject(const Value *V) { 110 // If this is a local allocation, check to see if it escapes. 111 if (isa<AllocaInst>(V) || isNoAliasCall(V)) 112 // Set StoreCaptures to True so that we can assume in our callers that the 113 // pointer is not the result of a load instruction. Currently 114 // PointerMayBeCaptured doesn't have any special analysis for the 115 // StoreCaptures=false case; if it did, our callers could be refined to be 116 // more precise. 117 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 118 119 // If this is an argument that corresponds to a byval or noalias argument, 120 // then it has not escaped before entering the function. Check if it escapes 121 // inside the function. 122 if (const Argument *A = dyn_cast<Argument>(V)) 123 if (A->hasByValAttr() || A->hasNoAliasAttr()) 124 // Note even if the argument is marked nocapture, we still need to check 125 // for copies made inside the function. The nocapture attribute only 126 // specifies that there are no copies made that outlive the function. 127 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 128 129 return false; 130 } 131 132 /// Returns true if the pointer is one which would have been considered an 133 /// escape by isNonEscapingLocalObject. 134 static bool isEscapeSource(const Value *V) { 135 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V)) 136 return true; 137 138 // The load case works because isNonEscapingLocalObject considers all 139 // stores to be escapes (it passes true for the StoreCaptures argument 140 // to PointerMayBeCaptured). 141 if (isa<LoadInst>(V)) 142 return true; 143 144 return false; 145 } 146 147 /// Returns the size of the object specified by V or UnknownSize if unknown. 148 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 149 const TargetLibraryInfo &TLI, 150 bool RoundToAlign = false) { 151 uint64_t Size; 152 ObjectSizeOpts Opts; 153 Opts.RoundToAlign = RoundToAlign; 154 if (getObjectSize(V, Size, DL, &TLI, Opts)) 155 return Size; 156 return MemoryLocation::UnknownSize; 157 } 158 159 /// Returns true if we can prove that the object specified by V is smaller than 160 /// Size. 161 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 162 const DataLayout &DL, 163 const TargetLibraryInfo &TLI) { 164 // Note that the meanings of the "object" are slightly different in the 165 // following contexts: 166 // c1: llvm::getObjectSize() 167 // c2: llvm.objectsize() intrinsic 168 // c3: isObjectSmallerThan() 169 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 170 // refers to the "entire object". 171 // 172 // Consider this example: 173 // char *p = (char*)malloc(100) 174 // char *q = p+80; 175 // 176 // In the context of c1 and c2, the "object" pointed by q refers to the 177 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 178 // 179 // However, in the context of c3, the "object" refers to the chunk of memory 180 // being allocated. So, the "object" has 100 bytes, and q points to the middle 181 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 182 // parameter, before the llvm::getObjectSize() is called to get the size of 183 // entire object, we should: 184 // - either rewind the pointer q to the base-address of the object in 185 // question (in this case rewind to p), or 186 // - just give up. It is up to caller to make sure the pointer is pointing 187 // to the base address the object. 188 // 189 // We go for 2nd option for simplicity. 190 if (!isIdentifiedObject(V)) 191 return false; 192 193 // This function needs to use the aligned object size because we allow 194 // reads a bit past the end given sufficient alignment. 195 uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/ true); 196 197 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; 198 } 199 200 /// Returns true if we can prove that the object specified by V has size Size. 201 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, 202 const TargetLibraryInfo &TLI) { 203 uint64_t ObjectSize = getObjectSize(V, DL, TLI); 204 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; 205 } 206 207 //===----------------------------------------------------------------------===// 208 // GetElementPtr Instruction Decomposition and Analysis 209 //===----------------------------------------------------------------------===// 210 211 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 212 /// B are constant integers. 213 /// 214 /// Returns the scale and offset values as APInts and return V as a Value*, and 215 /// return whether we looked through any sign or zero extends. The incoming 216 /// Value is known to have IntegerType, and it may already be sign or zero 217 /// extended. 218 /// 219 /// Note that this looks through extends, so the high bits may not be 220 /// represented in the result. 221 /*static*/ const Value *BasicAAResult::GetLinearExpression( 222 const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits, 223 unsigned &SExtBits, const DataLayout &DL, unsigned Depth, 224 AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) { 225 assert(V->getType()->isIntegerTy() && "Not an integer value"); 226 227 // Limit our recursion depth. 228 if (Depth == 6) { 229 Scale = 1; 230 Offset = 0; 231 return V; 232 } 233 234 if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) { 235 // If it's a constant, just convert it to an offset and remove the variable. 236 // If we've been called recursively, the Offset bit width will be greater 237 // than the constant's (the Offset's always as wide as the outermost call), 238 // so we'll zext here and process any extension in the isa<SExtInst> & 239 // isa<ZExtInst> cases below. 240 Offset += Const->getValue().zextOrSelf(Offset.getBitWidth()); 241 assert(Scale == 0 && "Constant values don't have a scale"); 242 return V; 243 } 244 245 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 246 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 247 // If we've been called recursively, then Offset and Scale will be wider 248 // than the BOp operands. We'll always zext it here as we'll process sign 249 // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases). 250 APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth()); 251 252 switch (BOp->getOpcode()) { 253 default: 254 // We don't understand this instruction, so we can't decompose it any 255 // further. 256 Scale = 1; 257 Offset = 0; 258 return V; 259 case Instruction::Or: 260 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 261 // analyze it. 262 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, 263 BOp, DT)) { 264 Scale = 1; 265 Offset = 0; 266 return V; 267 } 268 LLVM_FALLTHROUGH; 269 case Instruction::Add: 270 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 271 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 272 Offset += RHS; 273 break; 274 case Instruction::Sub: 275 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 276 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 277 Offset -= RHS; 278 break; 279 case Instruction::Mul: 280 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 281 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 282 Offset *= RHS; 283 Scale *= RHS; 284 break; 285 case Instruction::Shl: 286 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 287 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 288 Offset <<= RHS.getLimitedValue(); 289 Scale <<= RHS.getLimitedValue(); 290 // the semantics of nsw and nuw for left shifts don't match those of 291 // multiplications, so we won't propagate them. 292 NSW = NUW = false; 293 return V; 294 } 295 296 if (isa<OverflowingBinaryOperator>(BOp)) { 297 NUW &= BOp->hasNoUnsignedWrap(); 298 NSW &= BOp->hasNoSignedWrap(); 299 } 300 return V; 301 } 302 } 303 304 // Since GEP indices are sign extended anyway, we don't care about the high 305 // bits of a sign or zero extended value - just scales and offsets. The 306 // extensions have to be consistent though. 307 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) { 308 Value *CastOp = cast<CastInst>(V)->getOperand(0); 309 unsigned NewWidth = V->getType()->getPrimitiveSizeInBits(); 310 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 311 unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits; 312 const Value *Result = 313 GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL, 314 Depth + 1, AC, DT, NSW, NUW); 315 316 // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this 317 // by just incrementing the number of bits we've extended by. 318 unsigned ExtendedBy = NewWidth - SmallWidth; 319 320 if (isa<SExtInst>(V) && ZExtBits == 0) { 321 // sext(sext(%x, a), b) == sext(%x, a + b) 322 323 if (NSW) { 324 // We haven't sign-wrapped, so it's valid to decompose sext(%x + c) 325 // into sext(%x) + sext(c). We'll sext the Offset ourselves: 326 unsigned OldWidth = Offset.getBitWidth(); 327 Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth); 328 } else { 329 // We may have signed-wrapped, so don't decompose sext(%x + c) into 330 // sext(%x) + sext(c) 331 Scale = 1; 332 Offset = 0; 333 Result = CastOp; 334 ZExtBits = OldZExtBits; 335 SExtBits = OldSExtBits; 336 } 337 SExtBits += ExtendedBy; 338 } else { 339 // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b) 340 341 if (!NUW) { 342 // We may have unsigned-wrapped, so don't decompose zext(%x + c) into 343 // zext(%x) + zext(c) 344 Scale = 1; 345 Offset = 0; 346 Result = CastOp; 347 ZExtBits = OldZExtBits; 348 SExtBits = OldSExtBits; 349 } 350 ZExtBits += ExtendedBy; 351 } 352 353 return Result; 354 } 355 356 Scale = 1; 357 Offset = 0; 358 return V; 359 } 360 361 /// To ensure a pointer offset fits in an integer of size PointerSize 362 /// (in bits) when that size is smaller than 64. This is an issue in 363 /// particular for 32b programs with negative indices that rely on two's 364 /// complement wrap-arounds for precise alias information. 365 static int64_t adjustToPointerSize(int64_t Offset, unsigned PointerSize) { 366 assert(PointerSize <= 64 && "Invalid PointerSize!"); 367 unsigned ShiftBits = 64 - PointerSize; 368 return (int64_t)((uint64_t)Offset << ShiftBits) >> ShiftBits; 369 } 370 371 /// If V is a symbolic pointer expression, decompose it into a base pointer 372 /// with a constant offset and a number of scaled symbolic offsets. 373 /// 374 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 375 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 376 /// specified amount, but which may have other unrepresented high bits. As 377 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 378 /// 379 /// When DataLayout is around, this function is capable of analyzing everything 380 /// that GetUnderlyingObject can look through. To be able to do that 381 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search 382 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks 383 /// through pointer casts. 384 bool BasicAAResult::DecomposeGEPExpression(const Value *V, 385 DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC, 386 DominatorTree *DT) { 387 // Limit recursion depth to limit compile time in crazy cases. 388 unsigned MaxLookup = MaxLookupSearchDepth; 389 SearchTimes++; 390 391 Decomposed.StructOffset = 0; 392 Decomposed.OtherOffset = 0; 393 Decomposed.VarIndices.clear(); 394 do { 395 // See if this is a bitcast or GEP. 396 const Operator *Op = dyn_cast<Operator>(V); 397 if (!Op) { 398 // The only non-operator case we can handle are GlobalAliases. 399 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 400 if (!GA->isInterposable()) { 401 V = GA->getAliasee(); 402 continue; 403 } 404 } 405 Decomposed.Base = V; 406 return false; 407 } 408 409 if (Op->getOpcode() == Instruction::BitCast || 410 Op->getOpcode() == Instruction::AddrSpaceCast) { 411 V = Op->getOperand(0); 412 continue; 413 } 414 415 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 416 if (!GEPOp) { 417 if (auto CS = ImmutableCallSite(V)) 418 if (const Value *RV = CS.getReturnedArgOperand()) { 419 V = RV; 420 continue; 421 } 422 423 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 424 // can come up with something. This matches what GetUnderlyingObject does. 425 if (const Instruction *I = dyn_cast<Instruction>(V)) 426 // TODO: Get a DominatorTree and AssumptionCache and use them here 427 // (these are both now available in this function, but this should be 428 // updated when GetUnderlyingObject is updated). TLI should be 429 // provided also. 430 if (const Value *Simplified = 431 SimplifyInstruction(const_cast<Instruction *>(I), DL)) { 432 V = Simplified; 433 continue; 434 } 435 436 Decomposed.Base = V; 437 return false; 438 } 439 440 // Don't attempt to analyze GEPs over unsized objects. 441 if (!GEPOp->getSourceElementType()->isSized()) { 442 Decomposed.Base = V; 443 return false; 444 } 445 446 unsigned AS = GEPOp->getPointerAddressSpace(); 447 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 448 gep_type_iterator GTI = gep_type_begin(GEPOp); 449 unsigned PointerSize = DL.getPointerSizeInBits(AS); 450 // Assume all GEP operands are constants until proven otherwise. 451 bool GepHasConstantOffset = true; 452 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 453 I != E; ++I, ++GTI) { 454 const Value *Index = *I; 455 // Compute the (potentially symbolic) offset in bytes for this index. 456 if (StructType *STy = GTI.getStructTypeOrNull()) { 457 // For a struct, add the member offset. 458 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 459 if (FieldNo == 0) 460 continue; 461 462 Decomposed.StructOffset += 463 DL.getStructLayout(STy)->getElementOffset(FieldNo); 464 continue; 465 } 466 467 // For an array/pointer, add the element offset, explicitly scaled. 468 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 469 if (CIdx->isZero()) 470 continue; 471 Decomposed.OtherOffset += 472 DL.getTypeAllocSize(GTI.getIndexedType()) * CIdx->getSExtValue(); 473 continue; 474 } 475 476 GepHasConstantOffset = false; 477 478 uint64_t Scale = DL.getTypeAllocSize(GTI.getIndexedType()); 479 unsigned ZExtBits = 0, SExtBits = 0; 480 481 // If the integer type is smaller than the pointer size, it is implicitly 482 // sign extended to pointer size. 483 unsigned Width = Index->getType()->getIntegerBitWidth(); 484 if (PointerSize > Width) 485 SExtBits += PointerSize - Width; 486 487 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 488 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 489 bool NSW = true, NUW = true; 490 Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits, 491 SExtBits, DL, 0, AC, DT, NSW, NUW); 492 493 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 494 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 495 Decomposed.OtherOffset += IndexOffset.getSExtValue() * Scale; 496 Scale *= IndexScale.getSExtValue(); 497 498 // If we already had an occurrence of this index variable, merge this 499 // scale into it. For example, we want to handle: 500 // A[x][x] -> x*16 + x*4 -> x*20 501 // This also ensures that 'x' only appears in the index list once. 502 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { 503 if (Decomposed.VarIndices[i].V == Index && 504 Decomposed.VarIndices[i].ZExtBits == ZExtBits && 505 Decomposed.VarIndices[i].SExtBits == SExtBits) { 506 Scale += Decomposed.VarIndices[i].Scale; 507 Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i); 508 break; 509 } 510 } 511 512 // Make sure that we have a scale that makes sense for this target's 513 // pointer size. 514 Scale = adjustToPointerSize(Scale, PointerSize); 515 516 if (Scale) { 517 VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, 518 static_cast<int64_t>(Scale)}; 519 Decomposed.VarIndices.push_back(Entry); 520 } 521 } 522 523 // Take care of wrap-arounds 524 if (GepHasConstantOffset) { 525 Decomposed.StructOffset = 526 adjustToPointerSize(Decomposed.StructOffset, PointerSize); 527 Decomposed.OtherOffset = 528 adjustToPointerSize(Decomposed.OtherOffset, PointerSize); 529 } 530 531 // Analyze the base pointer next. 532 V = GEPOp->getOperand(0); 533 } while (--MaxLookup); 534 535 // If the chain of expressions is too deep, just return early. 536 Decomposed.Base = V; 537 SearchLimitReached++; 538 return true; 539 } 540 541 /// Returns whether the given pointer value points to memory that is local to 542 /// the function, with global constants being considered local to all 543 /// functions. 544 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc, 545 bool OrLocal) { 546 assert(Visited.empty() && "Visited must be cleared after use!"); 547 548 unsigned MaxLookup = 8; 549 SmallVector<const Value *, 16> Worklist; 550 Worklist.push_back(Loc.Ptr); 551 do { 552 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL); 553 if (!Visited.insert(V).second) { 554 Visited.clear(); 555 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 556 } 557 558 // An alloca instruction defines local memory. 559 if (OrLocal && isa<AllocaInst>(V)) 560 continue; 561 562 // A global constant counts as local memory for our purposes. 563 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 564 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 565 // global to be marked constant in some modules and non-constant in 566 // others. GV may even be a declaration, not a definition. 567 if (!GV->isConstant()) { 568 Visited.clear(); 569 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 570 } 571 continue; 572 } 573 574 // If both select values point to local memory, then so does the select. 575 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 576 Worklist.push_back(SI->getTrueValue()); 577 Worklist.push_back(SI->getFalseValue()); 578 continue; 579 } 580 581 // If all values incoming to a phi node point to local memory, then so does 582 // the phi. 583 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 584 // Don't bother inspecting phi nodes with many operands. 585 if (PN->getNumIncomingValues() > MaxLookup) { 586 Visited.clear(); 587 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 588 } 589 for (Value *IncValue : PN->incoming_values()) 590 Worklist.push_back(IncValue); 591 continue; 592 } 593 594 // Otherwise be conservative. 595 Visited.clear(); 596 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 597 } while (!Worklist.empty() && --MaxLookup); 598 599 Visited.clear(); 600 return Worklist.empty(); 601 } 602 603 /// Returns the behavior when calling the given call site. 604 FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) { 605 if (CS.doesNotAccessMemory()) 606 // Can't do better than this. 607 return FMRB_DoesNotAccessMemory; 608 609 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 610 611 // If the callsite knows it only reads memory, don't return worse 612 // than that. 613 if (CS.onlyReadsMemory()) 614 Min = FMRB_OnlyReadsMemory; 615 else if (CS.doesNotReadMemory()) 616 Min = FMRB_DoesNotReadMemory; 617 618 if (CS.onlyAccessesArgMemory()) 619 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 620 else if (CS.onlyAccessesInaccessibleMemory()) 621 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 622 else if (CS.onlyAccessesInaccessibleMemOrArgMem()) 623 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 624 625 // If CS has operand bundles then aliasing attributes from the function it 626 // calls do not directly apply to the CallSite. This can be made more 627 // precise in the future. 628 if (!CS.hasOperandBundles()) 629 if (const Function *F = CS.getCalledFunction()) 630 Min = 631 FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F)); 632 633 return Min; 634 } 635 636 /// Returns the behavior when calling the given function. For use when the call 637 /// site is not known. 638 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) { 639 // If the function declares it doesn't access memory, we can't do better. 640 if (F->doesNotAccessMemory()) 641 return FMRB_DoesNotAccessMemory; 642 643 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 644 645 // If the function declares it only reads memory, go with that. 646 if (F->onlyReadsMemory()) 647 Min = FMRB_OnlyReadsMemory; 648 else if (F->doesNotReadMemory()) 649 Min = FMRB_DoesNotReadMemory; 650 651 if (F->onlyAccessesArgMemory()) 652 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 653 else if (F->onlyAccessesInaccessibleMemory()) 654 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 655 else if (F->onlyAccessesInaccessibleMemOrArgMem()) 656 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 657 658 return Min; 659 } 660 661 /// Returns true if this is a writeonly (i.e Mod only) parameter. 662 static bool isWriteOnlyParam(ImmutableCallSite CS, unsigned ArgIdx, 663 const TargetLibraryInfo &TLI) { 664 if (CS.paramHasAttr(ArgIdx, Attribute::WriteOnly)) 665 return true; 666 667 // We can bound the aliasing properties of memset_pattern16 just as we can 668 // for memcpy/memset. This is particularly important because the 669 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 670 // whenever possible. 671 // FIXME Consider handling this in InferFunctionAttr.cpp together with other 672 // attributes. 673 LibFunc F; 674 if (CS.getCalledFunction() && TLI.getLibFunc(*CS.getCalledFunction(), F) && 675 F == LibFunc_memset_pattern16 && TLI.has(F)) 676 if (ArgIdx == 0) 677 return true; 678 679 // TODO: memset_pattern4, memset_pattern8 680 // TODO: _chk variants 681 // TODO: strcmp, strcpy 682 683 return false; 684 } 685 686 ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS, 687 unsigned ArgIdx) { 688 // Checking for known builtin intrinsics and target library functions. 689 if (isWriteOnlyParam(CS, ArgIdx, TLI)) 690 return MRI_Mod; 691 692 if (CS.paramHasAttr(ArgIdx, Attribute::ReadOnly)) 693 return MRI_Ref; 694 695 if (CS.paramHasAttr(ArgIdx, Attribute::ReadNone)) 696 return MRI_NoModRef; 697 698 return AAResultBase::getArgModRefInfo(CS, ArgIdx); 699 } 700 701 static bool isIntrinsicCall(ImmutableCallSite CS, Intrinsic::ID IID) { 702 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 703 return II && II->getIntrinsicID() == IID; 704 } 705 706 #ifndef NDEBUG 707 static const Function *getParent(const Value *V) { 708 if (const Instruction *inst = dyn_cast<Instruction>(V)) { 709 if (!inst->getParent()) 710 return nullptr; 711 return inst->getParent()->getParent(); 712 } 713 714 if (const Argument *arg = dyn_cast<Argument>(V)) 715 return arg->getParent(); 716 717 return nullptr; 718 } 719 720 static bool notDifferentParent(const Value *O1, const Value *O2) { 721 722 const Function *F1 = getParent(O1); 723 const Function *F2 = getParent(O2); 724 725 return !F1 || !F2 || F1 == F2; 726 } 727 #endif 728 729 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 730 const MemoryLocation &LocB) { 731 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 732 "BasicAliasAnalysis doesn't support interprocedural queries."); 733 734 // If we have a directly cached entry for these locations, we have recursed 735 // through this once, so just return the cached results. Notably, when this 736 // happens, we don't clear the cache. 737 auto CacheIt = AliasCache.find(LocPair(LocA, LocB)); 738 if (CacheIt != AliasCache.end()) 739 return CacheIt->second; 740 741 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr, 742 LocB.Size, LocB.AATags); 743 // AliasCache rarely has more than 1 or 2 elements, always use 744 // shrink_and_clear so it quickly returns to the inline capacity of the 745 // SmallDenseMap if it ever grows larger. 746 // FIXME: This should really be shrink_to_inline_capacity_and_clear(). 747 AliasCache.shrink_and_clear(); 748 VisitedPhiBBs.clear(); 749 return Alias; 750 } 751 752 /// Checks to see if the specified callsite can clobber the specified memory 753 /// object. 754 /// 755 /// Since we only look at local properties of this function, we really can't 756 /// say much about this query. We do, however, use simple "address taken" 757 /// analysis on local objects. 758 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS, 759 const MemoryLocation &Loc) { 760 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && 761 "AliasAnalysis query involving multiple functions!"); 762 763 const Value *Object = GetUnderlyingObject(Loc.Ptr, DL); 764 765 // If this is a tail call and Loc.Ptr points to a stack location, we know that 766 // the tail call cannot access or modify the local stack. 767 // We cannot exclude byval arguments here; these belong to the caller of 768 // the current function not to the current function, and a tail callee 769 // may reference them. 770 if (isa<AllocaInst>(Object)) 771 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) 772 if (CI->isTailCall()) 773 return MRI_NoModRef; 774 775 // If the pointer is to a locally allocated object that does not escape, 776 // then the call can not mod/ref the pointer unless the call takes the pointer 777 // as an argument, and itself doesn't capture it. 778 if (!isa<Constant>(Object) && CS.getInstruction() != Object && 779 isNonEscapingLocalObject(Object)) { 780 781 // Optimistically assume that call doesn't touch Object and check this 782 // assumption in the following loop. 783 ModRefInfo Result = MRI_NoModRef; 784 785 unsigned OperandNo = 0; 786 for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end(); 787 CI != CE; ++CI, ++OperandNo) { 788 // Only look at the no-capture or byval pointer arguments. If this 789 // pointer were passed to arguments that were neither of these, then it 790 // couldn't be no-capture. 791 if (!(*CI)->getType()->isPointerTy() || 792 (!CS.doesNotCapture(OperandNo) && 793 OperandNo < CS.getNumArgOperands() && !CS.isByValArgument(OperandNo))) 794 continue; 795 796 // Call doesn't access memory through this operand, so we don't care 797 // if it aliases with Object. 798 if (CS.doesNotAccessMemory(OperandNo)) 799 continue; 800 801 // If this is a no-capture pointer argument, see if we can tell that it 802 // is impossible to alias the pointer we're checking. 803 AliasResult AR = 804 getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object)); 805 806 // Operand doesnt alias 'Object', continue looking for other aliases 807 if (AR == NoAlias) 808 continue; 809 // Operand aliases 'Object', but call doesn't modify it. Strengthen 810 // initial assumption and keep looking in case if there are more aliases. 811 if (CS.onlyReadsMemory(OperandNo)) { 812 Result = static_cast<ModRefInfo>(Result | MRI_Ref); 813 continue; 814 } 815 // Operand aliases 'Object' but call only writes into it. 816 if (CS.doesNotReadMemory(OperandNo)) { 817 Result = static_cast<ModRefInfo>(Result | MRI_Mod); 818 continue; 819 } 820 // This operand aliases 'Object' and call reads and writes into it. 821 Result = MRI_ModRef; 822 break; 823 } 824 825 // Early return if we improved mod ref information 826 if (Result != MRI_ModRef) 827 return Result; 828 } 829 830 // If the CallSite is to malloc or calloc, we can assume that it doesn't 831 // modify any IR visible value. This is only valid because we assume these 832 // routines do not read values visible in the IR. TODO: Consider special 833 // casing realloc and strdup routines which access only their arguments as 834 // well. Or alternatively, replace all of this with inaccessiblememonly once 835 // that's implemented fully. 836 auto *Inst = CS.getInstruction(); 837 if (isMallocOrCallocLikeFn(Inst, &TLI)) { 838 // Be conservative if the accessed pointer may alias the allocation - 839 // fallback to the generic handling below. 840 if (getBestAAResults().alias(MemoryLocation(Inst), Loc) == NoAlias) 841 return MRI_NoModRef; 842 } 843 844 // The semantics of memcpy intrinsics forbid overlap between their respective 845 // operands, i.e., source and destination of any given memcpy must no-alias. 846 // If Loc must-aliases either one of these two locations, then it necessarily 847 // no-aliases the other. 848 if (auto *Inst = dyn_cast<MemCpyInst>(CS.getInstruction())) { 849 AliasResult SrcAA, DestAA; 850 851 if ((SrcAA = getBestAAResults().alias(MemoryLocation::getForSource(Inst), 852 Loc)) == MustAlias) 853 // Loc is exactly the memcpy source thus disjoint from memcpy dest. 854 return MRI_Ref; 855 if ((DestAA = getBestAAResults().alias(MemoryLocation::getForDest(Inst), 856 Loc)) == MustAlias) 857 // The converse case. 858 return MRI_Mod; 859 860 // It's also possible for Loc to alias both src and dest, or neither. 861 ModRefInfo rv = MRI_NoModRef; 862 if (SrcAA != NoAlias) 863 rv = static_cast<ModRefInfo>(rv | MRI_Ref); 864 if (DestAA != NoAlias) 865 rv = static_cast<ModRefInfo>(rv | MRI_Mod); 866 return rv; 867 } 868 869 // While the assume intrinsic is marked as arbitrarily writing so that 870 // proper control dependencies will be maintained, it never aliases any 871 // particular memory location. 872 if (isIntrinsicCall(CS, Intrinsic::assume)) 873 return MRI_NoModRef; 874 875 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 876 // that proper control dependencies are maintained but they never mods any 877 // particular memory location. 878 // 879 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 880 // heap state at the point the guard is issued needs to be consistent in case 881 // the guard invokes the "deopt" continuation. 882 if (isIntrinsicCall(CS, Intrinsic::experimental_guard)) 883 return MRI_Ref; 884 885 // Like assumes, invariant.start intrinsics were also marked as arbitrarily 886 // writing so that proper control dependencies are maintained but they never 887 // mod any particular memory location visible to the IR. 888 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start 889 // intrinsic is now modeled as reading memory. This prevents hoisting the 890 // invariant.start intrinsic over stores. Consider: 891 // *ptr = 40; 892 // *ptr = 50; 893 // invariant_start(ptr) 894 // int val = *ptr; 895 // print(val); 896 // 897 // This cannot be transformed to: 898 // 899 // *ptr = 40; 900 // invariant_start(ptr) 901 // *ptr = 50; 902 // int val = *ptr; 903 // print(val); 904 // 905 // The transformation will cause the second store to be ignored (based on 906 // rules of invariant.start) and print 40, while the first program always 907 // prints 50. 908 if (isIntrinsicCall(CS, Intrinsic::invariant_start)) 909 return MRI_Ref; 910 911 // The AAResultBase base class has some smarts, lets use them. 912 return AAResultBase::getModRefInfo(CS, Loc); 913 } 914 915 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1, 916 ImmutableCallSite CS2) { 917 // While the assume intrinsic is marked as arbitrarily writing so that 918 // proper control dependencies will be maintained, it never aliases any 919 // particular memory location. 920 if (isIntrinsicCall(CS1, Intrinsic::assume) || 921 isIntrinsicCall(CS2, Intrinsic::assume)) 922 return MRI_NoModRef; 923 924 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 925 // that proper control dependencies are maintained but they never mod any 926 // particular memory location. 927 // 928 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 929 // heap state at the point the guard is issued needs to be consistent in case 930 // the guard invokes the "deopt" continuation. 931 932 // NB! This function is *not* commutative, so we specical case two 933 // possibilities for guard intrinsics. 934 935 if (isIntrinsicCall(CS1, Intrinsic::experimental_guard)) 936 return getModRefBehavior(CS2) & MRI_Mod ? MRI_Ref : MRI_NoModRef; 937 938 if (isIntrinsicCall(CS2, Intrinsic::experimental_guard)) 939 return getModRefBehavior(CS1) & MRI_Mod ? MRI_Mod : MRI_NoModRef; 940 941 // The AAResultBase base class has some smarts, lets use them. 942 return AAResultBase::getModRefInfo(CS1, CS2); 943 } 944 945 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators, 946 /// both having the exact same pointer operand. 947 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1, 948 uint64_t V1Size, 949 const GEPOperator *GEP2, 950 uint64_t V2Size, 951 const DataLayout &DL) { 952 assert(GEP1->getPointerOperand()->stripPointerCastsAndBarriers() == 953 GEP2->getPointerOperand()->stripPointerCastsAndBarriers() && 954 GEP1->getPointerOperandType() == GEP2->getPointerOperandType() && 955 "Expected GEPs with the same pointer operand"); 956 957 // Try to determine whether GEP1 and GEP2 index through arrays, into structs, 958 // such that the struct field accesses provably cannot alias. 959 // We also need at least two indices (the pointer, and the struct field). 960 if (GEP1->getNumIndices() != GEP2->getNumIndices() || 961 GEP1->getNumIndices() < 2) 962 return MayAlias; 963 964 // If we don't know the size of the accesses through both GEPs, we can't 965 // determine whether the struct fields accessed can't alias. 966 if (V1Size == MemoryLocation::UnknownSize || 967 V2Size == MemoryLocation::UnknownSize) 968 return MayAlias; 969 970 ConstantInt *C1 = 971 dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1)); 972 ConstantInt *C2 = 973 dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1)); 974 975 // If the last (struct) indices are constants and are equal, the other indices 976 // might be also be dynamically equal, so the GEPs can alias. 977 if (C1 && C2 && C1->getSExtValue() == C2->getSExtValue()) 978 return MayAlias; 979 980 // Find the last-indexed type of the GEP, i.e., the type you'd get if 981 // you stripped the last index. 982 // On the way, look at each indexed type. If there's something other 983 // than an array, different indices can lead to different final types. 984 SmallVector<Value *, 8> IntermediateIndices; 985 986 // Insert the first index; we don't need to check the type indexed 987 // through it as it only drops the pointer indirection. 988 assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine"); 989 IntermediateIndices.push_back(GEP1->getOperand(1)); 990 991 // Insert all the remaining indices but the last one. 992 // Also, check that they all index through arrays. 993 for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) { 994 if (!isa<ArrayType>(GetElementPtrInst::getIndexedType( 995 GEP1->getSourceElementType(), IntermediateIndices))) 996 return MayAlias; 997 IntermediateIndices.push_back(GEP1->getOperand(i + 1)); 998 } 999 1000 auto *Ty = GetElementPtrInst::getIndexedType( 1001 GEP1->getSourceElementType(), IntermediateIndices); 1002 StructType *LastIndexedStruct = dyn_cast<StructType>(Ty); 1003 1004 if (isa<SequentialType>(Ty)) { 1005 // We know that: 1006 // - both GEPs begin indexing from the exact same pointer; 1007 // - the last indices in both GEPs are constants, indexing into a sequential 1008 // type (array or pointer); 1009 // - both GEPs only index through arrays prior to that. 1010 // 1011 // Because array indices greater than the number of elements are valid in 1012 // GEPs, unless we know the intermediate indices are identical between 1013 // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't 1014 // partially overlap. We also need to check that the loaded size matches 1015 // the element size, otherwise we could still have overlap. 1016 const uint64_t ElementSize = 1017 DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType()); 1018 if (V1Size != ElementSize || V2Size != ElementSize) 1019 return MayAlias; 1020 1021 for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i) 1022 if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1)) 1023 return MayAlias; 1024 1025 // Now we know that the array/pointer that GEP1 indexes into and that 1026 // that GEP2 indexes into must either precisely overlap or be disjoint. 1027 // Because they cannot partially overlap and because fields in an array 1028 // cannot overlap, if we can prove the final indices are different between 1029 // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias. 1030 1031 // If the last indices are constants, we've already checked they don't 1032 // equal each other so we can exit early. 1033 if (C1 && C2) 1034 return NoAlias; 1035 { 1036 Value *GEP1LastIdx = GEP1->getOperand(GEP1->getNumOperands() - 1); 1037 Value *GEP2LastIdx = GEP2->getOperand(GEP2->getNumOperands() - 1); 1038 if (isa<PHINode>(GEP1LastIdx) || isa<PHINode>(GEP2LastIdx)) { 1039 // If one of the indices is a PHI node, be safe and only use 1040 // computeKnownBits so we don't make any assumptions about the 1041 // relationships between the two indices. This is important if we're 1042 // asking about values from different loop iterations. See PR32314. 1043 // TODO: We may be able to change the check so we only do this when 1044 // we definitely looked through a PHINode. 1045 if (GEP1LastIdx != GEP2LastIdx && 1046 GEP1LastIdx->getType() == GEP2LastIdx->getType()) { 1047 KnownBits Known1 = computeKnownBits(GEP1LastIdx, DL); 1048 KnownBits Known2 = computeKnownBits(GEP2LastIdx, DL); 1049 if (Known1.Zero.intersects(Known2.One) || 1050 Known1.One.intersects(Known2.Zero)) 1051 return NoAlias; 1052 } 1053 } else if (isKnownNonEqual(GEP1LastIdx, GEP2LastIdx, DL)) 1054 return NoAlias; 1055 } 1056 return MayAlias; 1057 } else if (!LastIndexedStruct || !C1 || !C2) { 1058 return MayAlias; 1059 } 1060 1061 // We know that: 1062 // - both GEPs begin indexing from the exact same pointer; 1063 // - the last indices in both GEPs are constants, indexing into a struct; 1064 // - said indices are different, hence, the pointed-to fields are different; 1065 // - both GEPs only index through arrays prior to that. 1066 // 1067 // This lets us determine that the struct that GEP1 indexes into and the 1068 // struct that GEP2 indexes into must either precisely overlap or be 1069 // completely disjoint. Because they cannot partially overlap, indexing into 1070 // different non-overlapping fields of the struct will never alias. 1071 1072 // Therefore, the only remaining thing needed to show that both GEPs can't 1073 // alias is that the fields are not overlapping. 1074 const StructLayout *SL = DL.getStructLayout(LastIndexedStruct); 1075 const uint64_t StructSize = SL->getSizeInBytes(); 1076 const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue()); 1077 const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue()); 1078 1079 auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size, 1080 uint64_t V2Off, uint64_t V2Size) { 1081 return V1Off < V2Off && V1Off + V1Size <= V2Off && 1082 ((V2Off + V2Size <= StructSize) || 1083 (V2Off + V2Size - StructSize <= V1Off)); 1084 }; 1085 1086 if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) || 1087 EltsDontOverlap(V2Off, V2Size, V1Off, V1Size)) 1088 return NoAlias; 1089 1090 return MayAlias; 1091 } 1092 1093 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the 1094 // beginning of the object the GEP points would have a negative offset with 1095 // repsect to the alloca, that means the GEP can not alias pointer (b). 1096 // Note that the pointer based on the alloca may not be a GEP. For 1097 // example, it may be the alloca itself. 1098 // The same applies if (b) is based on a GlobalVariable. Note that just being 1099 // based on isIdentifiedObject() is not enough - we need an identified object 1100 // that does not permit access to negative offsets. For example, a negative 1101 // offset from a noalias argument or call can be inbounds w.r.t the actual 1102 // underlying object. 1103 // 1104 // For example, consider: 1105 // 1106 // struct { int f0, int f1, ...} foo; 1107 // foo alloca; 1108 // foo* random = bar(alloca); 1109 // int *f0 = &alloca.f0 1110 // int *f1 = &random->f1; 1111 // 1112 // Which is lowered, approximately, to: 1113 // 1114 // %alloca = alloca %struct.foo 1115 // %random = call %struct.foo* @random(%struct.foo* %alloca) 1116 // %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0 1117 // %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1 1118 // 1119 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated 1120 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also 1121 // point into the same object. But since %f0 points to the beginning of %alloca, 1122 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher 1123 // than (%alloca - 1), and so is not inbounds, a contradiction. 1124 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp, 1125 const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject, 1126 uint64_t ObjectAccessSize) { 1127 // If the object access size is unknown, or the GEP isn't inbounds, bail. 1128 if (ObjectAccessSize == MemoryLocation::UnknownSize || !GEPOp->isInBounds()) 1129 return false; 1130 1131 // We need the object to be an alloca or a globalvariable, and want to know 1132 // the offset of the pointer from the object precisely, so no variable 1133 // indices are allowed. 1134 if (!(isa<AllocaInst>(DecompObject.Base) || 1135 isa<GlobalVariable>(DecompObject.Base)) || 1136 !DecompObject.VarIndices.empty()) 1137 return false; 1138 1139 int64_t ObjectBaseOffset = DecompObject.StructOffset + 1140 DecompObject.OtherOffset; 1141 1142 // If the GEP has no variable indices, we know the precise offset 1143 // from the base, then use it. If the GEP has variable indices, we're in 1144 // a bit more trouble: we can't count on the constant offsets that come 1145 // from non-struct sources, since these can be "rewound" by a negative 1146 // variable offset. So use only offsets that came from structs. 1147 int64_t GEPBaseOffset = DecompGEP.StructOffset; 1148 if (DecompGEP.VarIndices.empty()) 1149 GEPBaseOffset += DecompGEP.OtherOffset; 1150 1151 return (GEPBaseOffset >= ObjectBaseOffset + (int64_t)ObjectAccessSize); 1152 } 1153 1154 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 1155 /// another pointer. 1156 /// 1157 /// We know that V1 is a GEP, but we don't know anything about V2. 1158 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for 1159 /// V2. 1160 AliasResult BasicAAResult::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, 1161 const AAMDNodes &V1AAInfo, const Value *V2, 1162 uint64_t V2Size, const AAMDNodes &V2AAInfo, 1163 const Value *UnderlyingV1, 1164 const Value *UnderlyingV2) { 1165 DecomposedGEP DecompGEP1, DecompGEP2; 1166 bool GEP1MaxLookupReached = 1167 DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT); 1168 bool GEP2MaxLookupReached = 1169 DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT); 1170 1171 int64_t GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset; 1172 int64_t GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset; 1173 1174 assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 && 1175 "DecomposeGEPExpression returned a result different from " 1176 "GetUnderlyingObject"); 1177 1178 // If the GEP's offset relative to its base is such that the base would 1179 // fall below the start of the object underlying V2, then the GEP and V2 1180 // cannot alias. 1181 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1182 isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size)) 1183 return NoAlias; 1184 // If we have two gep instructions with must-alias or not-alias'ing base 1185 // pointers, figure out if the indexes to the GEP tell us anything about the 1186 // derived pointer. 1187 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 1188 // Check for the GEP base being at a negative offset, this time in the other 1189 // direction. 1190 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1191 isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size)) 1192 return NoAlias; 1193 // Do the base pointers alias? 1194 AliasResult BaseAlias = 1195 aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(), 1196 UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes()); 1197 1198 // Check for geps of non-aliasing underlying pointers where the offsets are 1199 // identical. 1200 if ((BaseAlias == MayAlias) && V1Size == V2Size) { 1201 // Do the base pointers alias assuming type and size. 1202 AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo, 1203 UnderlyingV2, V2Size, V2AAInfo); 1204 if (PreciseBaseAlias == NoAlias) { 1205 // See if the computed offset from the common pointer tells us about the 1206 // relation of the resulting pointer. 1207 // If the max search depth is reached the result is undefined 1208 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1209 return MayAlias; 1210 1211 // Same offsets. 1212 if (GEP1BaseOffset == GEP2BaseOffset && 1213 DecompGEP1.VarIndices == DecompGEP2.VarIndices) 1214 return NoAlias; 1215 } 1216 } 1217 1218 // If we get a No or May, then return it immediately, no amount of analysis 1219 // will improve this situation. 1220 if (BaseAlias != MustAlias) { 1221 assert(BaseAlias == NoAlias || BaseAlias == MayAlias); 1222 return BaseAlias; 1223 } 1224 1225 // Otherwise, we have a MustAlias. Since the base pointers alias each other 1226 // exactly, see if the computed offset from the common pointer tells us 1227 // about the relation of the resulting pointer. 1228 // If we know the two GEPs are based off of the exact same pointer (and not 1229 // just the same underlying object), see if that tells us anything about 1230 // the resulting pointers. 1231 if (GEP1->getPointerOperand()->stripPointerCastsAndBarriers() == 1232 GEP2->getPointerOperand()->stripPointerCastsAndBarriers() && 1233 GEP1->getPointerOperandType() == GEP2->getPointerOperandType()) { 1234 AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL); 1235 // If we couldn't find anything interesting, don't abandon just yet. 1236 if (R != MayAlias) 1237 return R; 1238 } 1239 1240 // If the max search depth is reached, the result is undefined 1241 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1242 return MayAlias; 1243 1244 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1245 // symbolic difference. 1246 GEP1BaseOffset -= GEP2BaseOffset; 1247 GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices); 1248 1249 } else { 1250 // Check to see if these two pointers are related by the getelementptr 1251 // instruction. If one pointer is a GEP with a non-zero index of the other 1252 // pointer, we know they cannot alias. 1253 1254 // If both accesses are unknown size, we can't do anything useful here. 1255 if (V1Size == MemoryLocation::UnknownSize && 1256 V2Size == MemoryLocation::UnknownSize) 1257 return MayAlias; 1258 1259 AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, 1260 AAMDNodes(), V2, MemoryLocation::UnknownSize, 1261 V2AAInfo, nullptr, UnderlyingV2); 1262 if (R != MustAlias) { 1263 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 1264 // If V2 is known not to alias GEP base pointer, then the two values 1265 // cannot alias per GEP semantics: "Any memory access must be done through 1266 // a pointer value associated with an address range of the memory access, 1267 // otherwise the behavior is undefined.". 1268 assert(R == NoAlias || R == MayAlias); 1269 return R; 1270 } 1271 1272 // If the max search depth is reached the result is undefined 1273 if (GEP1MaxLookupReached) 1274 return MayAlias; 1275 } 1276 1277 // In the two GEP Case, if there is no difference in the offsets of the 1278 // computed pointers, the resultant pointers are a must alias. This 1279 // happens when we have two lexically identical GEP's (for example). 1280 // 1281 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 1282 // must aliases the GEP, the end result is a must alias also. 1283 if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty()) 1284 return MustAlias; 1285 1286 // If there is a constant difference between the pointers, but the difference 1287 // is less than the size of the associated memory object, then we know 1288 // that the objects are partially overlapping. If the difference is 1289 // greater, we know they do not overlap. 1290 if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) { 1291 if (GEP1BaseOffset >= 0) { 1292 if (V2Size != MemoryLocation::UnknownSize) { 1293 if ((uint64_t)GEP1BaseOffset < V2Size) 1294 return PartialAlias; 1295 return NoAlias; 1296 } 1297 } else { 1298 // We have the situation where: 1299 // + + 1300 // | BaseOffset | 1301 // ---------------->| 1302 // |-->V1Size |-------> V2Size 1303 // GEP1 V2 1304 // We need to know that V2Size is not unknown, otherwise we might have 1305 // stripped a gep with negative index ('gep <ptr>, -1, ...). 1306 if (V1Size != MemoryLocation::UnknownSize && 1307 V2Size != MemoryLocation::UnknownSize) { 1308 if (-(uint64_t)GEP1BaseOffset < V1Size) 1309 return PartialAlias; 1310 return NoAlias; 1311 } 1312 } 1313 } 1314 1315 if (!DecompGEP1.VarIndices.empty()) { 1316 uint64_t Modulo = 0; 1317 bool AllPositive = true; 1318 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { 1319 1320 // Try to distinguish something like &A[i][1] against &A[42][0]. 1321 // Grab the least significant bit set in any of the scales. We 1322 // don't need std::abs here (even if the scale's negative) as we'll 1323 // be ^'ing Modulo with itself later. 1324 Modulo |= (uint64_t)DecompGEP1.VarIndices[i].Scale; 1325 1326 if (AllPositive) { 1327 // If the Value could change between cycles, then any reasoning about 1328 // the Value this cycle may not hold in the next cycle. We'll just 1329 // give up if we can't determine conditions that hold for every cycle: 1330 const Value *V = DecompGEP1.VarIndices[i].V; 1331 1332 KnownBits Known = computeKnownBits(V, DL, 0, &AC, nullptr, DT); 1333 bool SignKnownZero = Known.isNonNegative(); 1334 bool SignKnownOne = Known.isNegative(); 1335 1336 // Zero-extension widens the variable, and so forces the sign 1337 // bit to zero. 1338 bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V); 1339 SignKnownZero |= IsZExt; 1340 SignKnownOne &= !IsZExt; 1341 1342 // If the variable begins with a zero then we know it's 1343 // positive, regardless of whether the value is signed or 1344 // unsigned. 1345 int64_t Scale = DecompGEP1.VarIndices[i].Scale; 1346 AllPositive = 1347 (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0); 1348 } 1349 } 1350 1351 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1352 1353 // We can compute the difference between the two addresses 1354 // mod Modulo. Check whether that difference guarantees that the 1355 // two locations do not alias. 1356 uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1); 1357 if (V1Size != MemoryLocation::UnknownSize && 1358 V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size && 1359 V1Size <= Modulo - ModOffset) 1360 return NoAlias; 1361 1362 // If we know all the variables are positive, then GEP1 >= GEP1BasePtr. 1363 // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers 1364 // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr. 1365 if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset) 1366 return NoAlias; 1367 1368 if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size, 1369 GEP1BaseOffset, &AC, DT)) 1370 return NoAlias; 1371 } 1372 1373 // Statically, we can see that the base objects are the same, but the 1374 // pointers have dynamic offsets which we can't resolve. And none of our 1375 // little tricks above worked. 1376 return MayAlias; 1377 } 1378 1379 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1380 // If the results agree, take it. 1381 if (A == B) 1382 return A; 1383 // A mix of PartialAlias and MustAlias is PartialAlias. 1384 if ((A == PartialAlias && B == MustAlias) || 1385 (B == PartialAlias && A == MustAlias)) 1386 return PartialAlias; 1387 // Otherwise, we don't know anything. 1388 return MayAlias; 1389 } 1390 1391 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1392 /// against another. 1393 AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, uint64_t SISize, 1394 const AAMDNodes &SIAAInfo, 1395 const Value *V2, uint64_t V2Size, 1396 const AAMDNodes &V2AAInfo, 1397 const Value *UnderV2) { 1398 // If the values are Selects with the same condition, we can do a more precise 1399 // check: just check for aliases between the values on corresponding arms. 1400 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1401 if (SI->getCondition() == SI2->getCondition()) { 1402 AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, 1403 SI2->getTrueValue(), V2Size, V2AAInfo); 1404 if (Alias == MayAlias) 1405 return MayAlias; 1406 AliasResult ThisAlias = 1407 aliasCheck(SI->getFalseValue(), SISize, SIAAInfo, 1408 SI2->getFalseValue(), V2Size, V2AAInfo); 1409 return MergeAliasResults(ThisAlias, Alias); 1410 } 1411 1412 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1413 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1414 AliasResult Alias = 1415 aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), 1416 SISize, SIAAInfo, UnderV2); 1417 if (Alias == MayAlias) 1418 return MayAlias; 1419 1420 AliasResult ThisAlias = 1421 aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo, 1422 UnderV2); 1423 return MergeAliasResults(ThisAlias, Alias); 1424 } 1425 1426 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1427 /// another. 1428 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, uint64_t PNSize, 1429 const AAMDNodes &PNAAInfo, const Value *V2, 1430 uint64_t V2Size, const AAMDNodes &V2AAInfo, 1431 const Value *UnderV2) { 1432 // Track phi nodes we have visited. We use this information when we determine 1433 // value equivalence. 1434 VisitedPhiBBs.insert(PN->getParent()); 1435 1436 // If the values are PHIs in the same block, we can do a more precise 1437 // as well as efficient check: just check for aliases between the values 1438 // on corresponding edges. 1439 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1440 if (PN2->getParent() == PN->getParent()) { 1441 LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo), 1442 MemoryLocation(V2, V2Size, V2AAInfo)); 1443 if (PN > V2) 1444 std::swap(Locs.first, Locs.second); 1445 // Analyse the PHIs' inputs under the assumption that the PHIs are 1446 // NoAlias. 1447 // If the PHIs are May/MustAlias there must be (recursively) an input 1448 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1449 // there must be an operation on the PHIs within the PHIs' value cycle 1450 // that causes a MayAlias. 1451 // Pretend the phis do not alias. 1452 AliasResult Alias = NoAlias; 1453 assert(AliasCache.count(Locs) && 1454 "There must exist an entry for the phi node"); 1455 AliasResult OrigAliasResult = AliasCache[Locs]; 1456 AliasCache[Locs] = NoAlias; 1457 1458 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1459 AliasResult ThisAlias = 1460 aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo, 1461 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1462 V2Size, V2AAInfo); 1463 Alias = MergeAliasResults(ThisAlias, Alias); 1464 if (Alias == MayAlias) 1465 break; 1466 } 1467 1468 // Reset if speculation failed. 1469 if (Alias != NoAlias) 1470 AliasCache[Locs] = OrigAliasResult; 1471 1472 return Alias; 1473 } 1474 1475 SmallPtrSet<Value *, 4> UniqueSrc; 1476 SmallVector<Value *, 4> V1Srcs; 1477 bool isRecursive = false; 1478 for (Value *PV1 : PN->incoming_values()) { 1479 if (isa<PHINode>(PV1)) 1480 // If any of the source itself is a PHI, return MayAlias conservatively 1481 // to avoid compile time explosion. The worst possible case is if both 1482 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1483 // and 'n' are the number of PHI sources. 1484 return MayAlias; 1485 1486 if (EnableRecPhiAnalysis) 1487 if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) { 1488 // Check whether the incoming value is a GEP that advances the pointer 1489 // result of this PHI node (e.g. in a loop). If this is the case, we 1490 // would recurse and always get a MayAlias. Handle this case specially 1491 // below. 1492 if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 && 1493 isa<ConstantInt>(PV1GEP->idx_begin())) { 1494 isRecursive = true; 1495 continue; 1496 } 1497 } 1498 1499 if (UniqueSrc.insert(PV1).second) 1500 V1Srcs.push_back(PV1); 1501 } 1502 1503 // If this PHI node is recursive, set the size of the accessed memory to 1504 // unknown to represent all the possible values the GEP could advance the 1505 // pointer to. 1506 if (isRecursive) 1507 PNSize = MemoryLocation::UnknownSize; 1508 1509 AliasResult Alias = 1510 aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], 1511 PNSize, PNAAInfo, UnderV2); 1512 1513 // Early exit if the check of the first PHI source against V2 is MayAlias. 1514 // Other results are not possible. 1515 if (Alias == MayAlias) 1516 return MayAlias; 1517 1518 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1519 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1520 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1521 Value *V = V1Srcs[i]; 1522 1523 AliasResult ThisAlias = 1524 aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, UnderV2); 1525 Alias = MergeAliasResults(ThisAlias, Alias); 1526 if (Alias == MayAlias) 1527 break; 1528 } 1529 1530 return Alias; 1531 } 1532 1533 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1534 /// array references. 1535 AliasResult BasicAAResult::aliasCheck(const Value *V1, uint64_t V1Size, 1536 AAMDNodes V1AAInfo, const Value *V2, 1537 uint64_t V2Size, AAMDNodes V2AAInfo, 1538 const Value *O1, const Value *O2) { 1539 // If either of the memory references is empty, it doesn't matter what the 1540 // pointer values are. 1541 if (V1Size == 0 || V2Size == 0) 1542 return NoAlias; 1543 1544 // Strip off any casts if they exist. 1545 V1 = V1->stripPointerCastsAndBarriers(); 1546 V2 = V2->stripPointerCastsAndBarriers(); 1547 1548 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1549 // value for undef that aliases nothing in the program. 1550 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1551 return NoAlias; 1552 1553 // Are we checking for alias of the same value? 1554 // Because we look 'through' phi nodes, we could look at "Value" pointers from 1555 // different iterations. We must therefore make sure that this is not the 1556 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1557 // happen by looking at the visited phi nodes and making sure they cannot 1558 // reach the value. 1559 if (isValueEqualInPotentialCycles(V1, V2)) 1560 return MustAlias; 1561 1562 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1563 return NoAlias; // Scalars cannot alias each other 1564 1565 // Figure out what objects these things are pointing to if we can. 1566 if (O1 == nullptr) 1567 O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth); 1568 1569 if (O2 == nullptr) 1570 O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth); 1571 1572 // Null values in the default address space don't point to any object, so they 1573 // don't alias any other pointer. 1574 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1575 if (CPN->getType()->getAddressSpace() == 0) 1576 return NoAlias; 1577 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1578 if (CPN->getType()->getAddressSpace() == 0) 1579 return NoAlias; 1580 1581 if (O1 != O2) { 1582 // If V1/V2 point to two different objects, we know that we have no alias. 1583 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1584 return NoAlias; 1585 1586 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1587 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1588 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1589 return NoAlias; 1590 1591 // Function arguments can't alias with things that are known to be 1592 // unambigously identified at the function level. 1593 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1594 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1595 return NoAlias; 1596 1597 // If one pointer is the result of a call/invoke or load and the other is a 1598 // non-escaping local object within the same function, then we know the 1599 // object couldn't escape to a point where the call could return it. 1600 // 1601 // Note that if the pointers are in different functions, there are a 1602 // variety of complications. A call with a nocapture argument may still 1603 // temporary store the nocapture argument's value in a temporary memory 1604 // location if that memory location doesn't escape. Or it may pass a 1605 // nocapture value to other functions as long as they don't capture it. 1606 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) 1607 return NoAlias; 1608 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) 1609 return NoAlias; 1610 } 1611 1612 // If the size of one access is larger than the entire object on the other 1613 // side, then we know such behavior is undefined and can assume no alias. 1614 if ((V1Size != MemoryLocation::UnknownSize && 1615 isObjectSmallerThan(O2, V1Size, DL, TLI)) || 1616 (V2Size != MemoryLocation::UnknownSize && 1617 isObjectSmallerThan(O1, V2Size, DL, TLI))) 1618 return NoAlias; 1619 1620 // Check the cache before climbing up use-def chains. This also terminates 1621 // otherwise infinitely recursive queries. 1622 LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo), 1623 MemoryLocation(V2, V2Size, V2AAInfo)); 1624 if (V1 > V2) 1625 std::swap(Locs.first, Locs.second); 1626 std::pair<AliasCacheTy::iterator, bool> Pair = 1627 AliasCache.insert(std::make_pair(Locs, MayAlias)); 1628 if (!Pair.second) 1629 return Pair.first->second; 1630 1631 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1632 // GEP can't simplify, we don't even look at the PHI cases. 1633 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1634 std::swap(V1, V2); 1635 std::swap(V1Size, V2Size); 1636 std::swap(O1, O2); 1637 std::swap(V1AAInfo, V2AAInfo); 1638 } 1639 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1640 AliasResult Result = 1641 aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2); 1642 if (Result != MayAlias) 1643 return AliasCache[Locs] = Result; 1644 } 1645 1646 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1647 std::swap(V1, V2); 1648 std::swap(O1, O2); 1649 std::swap(V1Size, V2Size); 1650 std::swap(V1AAInfo, V2AAInfo); 1651 } 1652 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1653 AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, 1654 V2, V2Size, V2AAInfo, O2); 1655 if (Result != MayAlias) 1656 return AliasCache[Locs] = Result; 1657 } 1658 1659 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1660 std::swap(V1, V2); 1661 std::swap(O1, O2); 1662 std::swap(V1Size, V2Size); 1663 std::swap(V1AAInfo, V2AAInfo); 1664 } 1665 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1666 AliasResult Result = 1667 aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2); 1668 if (Result != MayAlias) 1669 return AliasCache[Locs] = Result; 1670 } 1671 1672 // If both pointers are pointing into the same object and one of them 1673 // accesses the entire object, then the accesses must overlap in some way. 1674 if (O1 == O2) 1675 if (V1Size != MemoryLocation::UnknownSize && 1676 V2Size != MemoryLocation::UnknownSize && 1677 (isObjectSize(O1, V1Size, DL, TLI) || 1678 isObjectSize(O2, V2Size, DL, TLI))) 1679 return AliasCache[Locs] = PartialAlias; 1680 1681 // Recurse back into the best AA results we have, potentially with refined 1682 // memory locations. We have already ensured that BasicAA has a MayAlias 1683 // cache result for these, so any recursion back into BasicAA won't loop. 1684 AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second); 1685 return AliasCache[Locs] = Result; 1686 } 1687 1688 /// Check whether two Values can be considered equivalent. 1689 /// 1690 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether 1691 /// they can not be part of a cycle in the value graph by looking at all 1692 /// visited phi nodes an making sure that the phis cannot reach the value. We 1693 /// have to do this because we are looking through phi nodes (That is we say 1694 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1695 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1696 const Value *V2) { 1697 if (V != V2) 1698 return false; 1699 1700 const Instruction *Inst = dyn_cast<Instruction>(V); 1701 if (!Inst) 1702 return true; 1703 1704 if (VisitedPhiBBs.empty()) 1705 return true; 1706 1707 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1708 return false; 1709 1710 // Make sure that the visited phis cannot reach the Value. This ensures that 1711 // the Values cannot come from different iterations of a potential cycle the 1712 // phi nodes could be involved in. 1713 for (auto *P : VisitedPhiBBs) 1714 if (isPotentiallyReachable(&P->front(), Inst, DT, LI)) 1715 return false; 1716 1717 return true; 1718 } 1719 1720 /// Computes the symbolic difference between two de-composed GEPs. 1721 /// 1722 /// Dest and Src are the variable indices from two decomposed GetElementPtr 1723 /// instructions GEP1 and GEP2 which have common base pointers. 1724 void BasicAAResult::GetIndexDifference( 1725 SmallVectorImpl<VariableGEPIndex> &Dest, 1726 const SmallVectorImpl<VariableGEPIndex> &Src) { 1727 if (Src.empty()) 1728 return; 1729 1730 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1731 const Value *V = Src[i].V; 1732 unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits; 1733 int64_t Scale = Src[i].Scale; 1734 1735 // Find V in Dest. This is N^2, but pointer indices almost never have more 1736 // than a few variable indexes. 1737 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1738 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1739 Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits) 1740 continue; 1741 1742 // If we found it, subtract off Scale V's from the entry in Dest. If it 1743 // goes to zero, remove the entry. 1744 if (Dest[j].Scale != Scale) 1745 Dest[j].Scale -= Scale; 1746 else 1747 Dest.erase(Dest.begin() + j); 1748 Scale = 0; 1749 break; 1750 } 1751 1752 // If we didn't consume this entry, add it to the end of the Dest list. 1753 if (Scale) { 1754 VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale}; 1755 Dest.push_back(Entry); 1756 } 1757 } 1758 } 1759 1760 bool BasicAAResult::constantOffsetHeuristic( 1761 const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size, 1762 uint64_t V2Size, int64_t BaseOffset, AssumptionCache *AC, 1763 DominatorTree *DT) { 1764 if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize || 1765 V2Size == MemoryLocation::UnknownSize) 1766 return false; 1767 1768 const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1]; 1769 1770 if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits || 1771 Var0.Scale != -Var1.Scale) 1772 return false; 1773 1774 unsigned Width = Var1.V->getType()->getIntegerBitWidth(); 1775 1776 // We'll strip off the Extensions of Var0 and Var1 and do another round 1777 // of GetLinearExpression decomposition. In the example above, if Var0 1778 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 1779 1780 APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0), 1781 V1Offset(Width, 0); 1782 bool NSW = true, NUW = true; 1783 unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0; 1784 const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits, 1785 V0SExtBits, DL, 0, AC, DT, NSW, NUW); 1786 NSW = true; 1787 NUW = true; 1788 const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits, 1789 V1SExtBits, DL, 0, AC, DT, NSW, NUW); 1790 1791 if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits || 1792 V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1)) 1793 return false; 1794 1795 // We have a hit - Var0 and Var1 only differ by a constant offset! 1796 1797 // If we've been sext'ed then zext'd the maximum difference between Var0 and 1798 // Var1 is possible to calculate, but we're just interested in the absolute 1799 // minimum difference between the two. The minimum distance may occur due to 1800 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 1801 // the minimum distance between %i and %i + 5 is 3. 1802 APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff; 1803 MinDiff = APIntOps::umin(MinDiff, Wrapped); 1804 uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale); 1805 1806 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 1807 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 1808 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 1809 // V2Size can fit in the MinDiffBytes gap. 1810 return V1Size + std::abs(BaseOffset) <= MinDiffBytes && 1811 V2Size + std::abs(BaseOffset) <= MinDiffBytes; 1812 } 1813 1814 //===----------------------------------------------------------------------===// 1815 // BasicAliasAnalysis Pass 1816 //===----------------------------------------------------------------------===// 1817 1818 AnalysisKey BasicAA::Key; 1819 1820 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) { 1821 return BasicAAResult(F.getParent()->getDataLayout(), 1822 AM.getResult<TargetLibraryAnalysis>(F), 1823 AM.getResult<AssumptionAnalysis>(F), 1824 &AM.getResult<DominatorTreeAnalysis>(F), 1825 AM.getCachedResult<LoopAnalysis>(F)); 1826 } 1827 1828 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 1829 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1830 } 1831 1832 char BasicAAWrapperPass::ID = 0; 1833 1834 void BasicAAWrapperPass::anchor() {} 1835 1836 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa", 1837 "Basic Alias Analysis (stateless AA impl)", true, true) 1838 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1839 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1840 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1841 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa", 1842 "Basic Alias Analysis (stateless AA impl)", true, true) 1843 1844 FunctionPass *llvm::createBasicAAWrapperPass() { 1845 return new BasicAAWrapperPass(); 1846 } 1847 1848 bool BasicAAWrapperPass::runOnFunction(Function &F) { 1849 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 1850 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 1851 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); 1852 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 1853 1854 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), TLIWP.getTLI(), 1855 ACT.getAssumptionCache(F), &DTWP.getDomTree(), 1856 LIWP ? &LIWP->getLoopInfo() : nullptr)); 1857 1858 return false; 1859 } 1860 1861 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1862 AU.setPreservesAll(); 1863 AU.addRequired<AssumptionCacheTracker>(); 1864 AU.addRequired<DominatorTreeWrapperPass>(); 1865 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1866 } 1867 1868 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { 1869 return BasicAAResult( 1870 F.getParent()->getDataLayout(), 1871 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 1872 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 1873 } 1874