1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the primary stateless implementation of the 10 // Alias Analysis interface that implements identities (two different 11 // globals cannot alias, etc), but does no stateful analysis. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/BasicAliasAnalysis.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/CFG.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/PhiValues.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/Argument.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/ConstantRange.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GetElementPtrTypeIterator.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/Metadata.h" 49 #include "llvm/IR/Operator.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/User.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/KnownBits.h" 59 #include <cassert> 60 #include <cstdint> 61 #include <cstdlib> 62 #include <utility> 63 64 #define DEBUG_TYPE "basicaa" 65 66 using namespace llvm; 67 68 /// Enable analysis of recursive PHI nodes. 69 static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden, 70 cl::init(true)); 71 72 /// SearchLimitReached / SearchTimes shows how often the limit of 73 /// to decompose GEPs is reached. It will affect the precision 74 /// of basic alias analysis. 75 STATISTIC(SearchLimitReached, "Number of times the limit to " 76 "decompose GEPs is reached"); 77 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 78 79 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 80 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be 81 /// careful with value equivalence. We use reachability to make sure a value 82 /// cannot be involved in a cycle. 83 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 84 85 // The max limit of the search depth in DecomposeGEPExpression() and 86 // getUnderlyingObject(), both functions need to use the same search 87 // depth otherwise the algorithm in aliasGEP will assert. 88 static const unsigned MaxLookupSearchDepth = 6; 89 90 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA, 91 FunctionAnalysisManager::Invalidator &Inv) { 92 // We don't care if this analysis itself is preserved, it has no state. But 93 // we need to check that the analyses it depends on have been. Note that we 94 // may be created without handles to some analyses and in that case don't 95 // depend on them. 96 if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) || 97 (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) || 98 (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA))) 99 return true; 100 101 // Otherwise this analysis result remains valid. 102 return false; 103 } 104 105 //===----------------------------------------------------------------------===// 106 // Useful predicates 107 //===----------------------------------------------------------------------===// 108 109 /// Returns true if the pointer is one which would have been considered an 110 /// escape by isNonEscapingLocalObject. 111 static bool isEscapeSource(const Value *V) { 112 if (isa<CallBase>(V)) 113 return true; 114 115 // The load case works because isNonEscapingLocalObject considers all 116 // stores to be escapes (it passes true for the StoreCaptures argument 117 // to PointerMayBeCaptured). 118 if (isa<LoadInst>(V)) 119 return true; 120 121 // The inttoptr case works because isNonEscapingLocalObject considers all 122 // means of converting or equating a pointer to an int (ptrtoint, ptr store 123 // which could be followed by an integer load, ptr<->int compare) as 124 // escaping, and objects located at well-known addresses via platform-specific 125 // means cannot be considered non-escaping local objects. 126 if (isa<IntToPtrInst>(V)) 127 return true; 128 129 return false; 130 } 131 132 /// Returns the size of the object specified by V or UnknownSize if unknown. 133 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 134 const TargetLibraryInfo &TLI, 135 bool NullIsValidLoc, 136 bool RoundToAlign = false) { 137 uint64_t Size; 138 ObjectSizeOpts Opts; 139 Opts.RoundToAlign = RoundToAlign; 140 Opts.NullIsUnknownSize = NullIsValidLoc; 141 if (getObjectSize(V, Size, DL, &TLI, Opts)) 142 return Size; 143 return MemoryLocation::UnknownSize; 144 } 145 146 /// Returns true if we can prove that the object specified by V is smaller than 147 /// Size. 148 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 149 const DataLayout &DL, 150 const TargetLibraryInfo &TLI, 151 bool NullIsValidLoc) { 152 // Note that the meanings of the "object" are slightly different in the 153 // following contexts: 154 // c1: llvm::getObjectSize() 155 // c2: llvm.objectsize() intrinsic 156 // c3: isObjectSmallerThan() 157 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 158 // refers to the "entire object". 159 // 160 // Consider this example: 161 // char *p = (char*)malloc(100) 162 // char *q = p+80; 163 // 164 // In the context of c1 and c2, the "object" pointed by q refers to the 165 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 166 // 167 // However, in the context of c3, the "object" refers to the chunk of memory 168 // being allocated. So, the "object" has 100 bytes, and q points to the middle 169 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 170 // parameter, before the llvm::getObjectSize() is called to get the size of 171 // entire object, we should: 172 // - either rewind the pointer q to the base-address of the object in 173 // question (in this case rewind to p), or 174 // - just give up. It is up to caller to make sure the pointer is pointing 175 // to the base address the object. 176 // 177 // We go for 2nd option for simplicity. 178 if (!isIdentifiedObject(V)) 179 return false; 180 181 // This function needs to use the aligned object size because we allow 182 // reads a bit past the end given sufficient alignment. 183 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc, 184 /*RoundToAlign*/ true); 185 186 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; 187 } 188 189 /// Return the minimal extent from \p V to the end of the underlying object, 190 /// assuming the result is used in an aliasing query. E.g., we do use the query 191 /// location size and the fact that null pointers cannot alias here. 192 static uint64_t getMinimalExtentFrom(const Value &V, 193 const LocationSize &LocSize, 194 const DataLayout &DL, 195 bool NullIsValidLoc) { 196 // If we have dereferenceability information we know a lower bound for the 197 // extent as accesses for a lower offset would be valid. We need to exclude 198 // the "or null" part if null is a valid pointer. We can ignore frees, as an 199 // access after free would be undefined behavior. 200 bool CanBeNull, CanBeFreed; 201 uint64_t DerefBytes = 202 V.getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed); 203 DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes; 204 // If queried with a precise location size, we assume that location size to be 205 // accessed, thus valid. 206 if (LocSize.isPrecise()) 207 DerefBytes = std::max(DerefBytes, LocSize.getValue()); 208 return DerefBytes; 209 } 210 211 /// Returns true if we can prove that the object specified by V has size Size. 212 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, 213 const TargetLibraryInfo &TLI, bool NullIsValidLoc) { 214 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc); 215 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; 216 } 217 218 //===----------------------------------------------------------------------===// 219 // CaptureInfo implementations 220 //===----------------------------------------------------------------------===// 221 222 CaptureInfo::~CaptureInfo() = default; 223 224 bool SimpleCaptureInfo::isNotCapturedBeforeOrAt(const Value *Object, 225 const Instruction *I) { 226 return isNonEscapingLocalObject(Object, &IsCapturedCache); 227 } 228 229 bool EarliestEscapeInfo::isNotCapturedBeforeOrAt(const Value *Object, 230 const Instruction *I) { 231 if (!isIdentifiedFunctionLocal(Object)) 232 return false; 233 234 auto Iter = EarliestEscapes.insert({Object, nullptr}); 235 if (Iter.second) { 236 Instruction *EarliestCapture = FindEarliestCapture( 237 Object, *const_cast<Function *>(I->getFunction()), 238 /*ReturnCaptures=*/false, /*StoreCaptures=*/true, DT); 239 if (EarliestCapture) { 240 auto Ins = Inst2Obj.insert({EarliestCapture, {}}); 241 Ins.first->second.push_back(Object); 242 } 243 Iter.first->second = EarliestCapture; 244 } 245 246 // No capturing instruction. 247 if (!Iter.first->second) 248 return true; 249 250 return I != Iter.first->second && 251 !isPotentiallyReachable(Iter.first->second, I, nullptr, &DT, &LI); 252 } 253 254 void EarliestEscapeInfo::removeInstruction(Instruction *I) { 255 auto Iter = Inst2Obj.find(I); 256 if (Iter != Inst2Obj.end()) { 257 for (const Value *Obj : Iter->second) 258 EarliestEscapes.erase(Obj); 259 Inst2Obj.erase(I); 260 } 261 } 262 263 //===----------------------------------------------------------------------===// 264 // GetElementPtr Instruction Decomposition and Analysis 265 //===----------------------------------------------------------------------===// 266 267 namespace { 268 /// Represents zext(sext(V)). 269 struct ExtendedValue { 270 const Value *V; 271 unsigned ZExtBits; 272 unsigned SExtBits; 273 274 explicit ExtendedValue(const Value *V, unsigned ZExtBits = 0, 275 unsigned SExtBits = 0) 276 : V(V), ZExtBits(ZExtBits), SExtBits(SExtBits) {} 277 278 unsigned getBitWidth() const { 279 return V->getType()->getPrimitiveSizeInBits() + ZExtBits + SExtBits; 280 } 281 282 ExtendedValue withValue(const Value *NewV) const { 283 return ExtendedValue(NewV, ZExtBits, SExtBits); 284 } 285 286 ExtendedValue withZExtOfValue(const Value *NewV) const { 287 unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() - 288 NewV->getType()->getPrimitiveSizeInBits(); 289 // zext(sext(zext(NewV))) == zext(zext(zext(NewV))) 290 return ExtendedValue(NewV, ZExtBits + SExtBits + ExtendBy, 0); 291 } 292 293 ExtendedValue withSExtOfValue(const Value *NewV) const { 294 unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() - 295 NewV->getType()->getPrimitiveSizeInBits(); 296 // zext(sext(sext(NewV))) 297 return ExtendedValue(NewV, ZExtBits, SExtBits + ExtendBy); 298 } 299 300 APInt evaluateWith(APInt N) const { 301 assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() && 302 "Incompatible bit width"); 303 if (SExtBits) N = N.sext(N.getBitWidth() + SExtBits); 304 if (ZExtBits) N = N.zext(N.getBitWidth() + ZExtBits); 305 return N; 306 } 307 308 KnownBits evaluateWith(KnownBits N) const { 309 assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() && 310 "Incompatible bit width"); 311 if (SExtBits) N = N.sext(N.getBitWidth() + SExtBits); 312 if (ZExtBits) N = N.zext(N.getBitWidth() + ZExtBits); 313 return N; 314 } 315 316 ConstantRange evaluateWith(ConstantRange N) const { 317 assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() && 318 "Incompatible bit width"); 319 if (SExtBits) N = N.signExtend(N.getBitWidth() + SExtBits); 320 if (ZExtBits) N = N.zeroExtend(N.getBitWidth() + ZExtBits); 321 return N; 322 } 323 324 bool canDistributeOver(bool NUW, bool NSW) const { 325 // zext(x op<nuw> y) == zext(x) op<nuw> zext(y) 326 // sext(x op<nsw> y) == sext(x) op<nsw> sext(y) 327 return (!ZExtBits || NUW) && (!SExtBits || NSW); 328 } 329 330 bool hasSameExtensionsAs(const ExtendedValue &Other) const { 331 return ZExtBits == Other.ZExtBits && SExtBits == Other.SExtBits; 332 } 333 }; 334 335 /// Represents zext(sext(V)) * Scale + Offset. 336 struct LinearExpression { 337 ExtendedValue Val; 338 APInt Scale; 339 APInt Offset; 340 341 /// True if all operations in this expression are NSW. 342 bool IsNSW; 343 344 LinearExpression(const ExtendedValue &Val, const APInt &Scale, 345 const APInt &Offset, bool IsNSW) 346 : Val(Val), Scale(Scale), Offset(Offset), IsNSW(IsNSW) {} 347 348 LinearExpression(const ExtendedValue &Val) : Val(Val), IsNSW(true) { 349 unsigned BitWidth = Val.getBitWidth(); 350 Scale = APInt(BitWidth, 1); 351 Offset = APInt(BitWidth, 0); 352 } 353 }; 354 } 355 356 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 357 /// B are constant integers. 358 static LinearExpression GetLinearExpression( 359 const ExtendedValue &Val, const DataLayout &DL, unsigned Depth, 360 AssumptionCache *AC, DominatorTree *DT) { 361 // Limit our recursion depth. 362 if (Depth == 6) 363 return Val; 364 365 if (const ConstantInt *Const = dyn_cast<ConstantInt>(Val.V)) 366 return LinearExpression(Val, APInt(Val.getBitWidth(), 0), 367 Val.evaluateWith(Const->getValue()), true); 368 369 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val.V)) { 370 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 371 APInt RHS = Val.evaluateWith(RHSC->getValue()); 372 // The only non-OBO case we deal with is or, and only limited to the 373 // case where it is both nuw and nsw. 374 bool NUW = true, NSW = true; 375 if (isa<OverflowingBinaryOperator>(BOp)) { 376 NUW &= BOp->hasNoUnsignedWrap(); 377 NSW &= BOp->hasNoSignedWrap(); 378 } 379 if (!Val.canDistributeOver(NUW, NSW)) 380 return Val; 381 382 LinearExpression E(Val); 383 switch (BOp->getOpcode()) { 384 default: 385 // We don't understand this instruction, so we can't decompose it any 386 // further. 387 return Val; 388 case Instruction::Or: 389 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 390 // analyze it. 391 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, 392 BOp, DT)) 393 return Val; 394 395 LLVM_FALLTHROUGH; 396 case Instruction::Add: { 397 E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, 398 Depth + 1, AC, DT); 399 E.Offset += RHS; 400 E.IsNSW &= NSW; 401 break; 402 } 403 case Instruction::Sub: { 404 E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, 405 Depth + 1, AC, DT); 406 E.Offset -= RHS; 407 E.IsNSW &= NSW; 408 break; 409 } 410 case Instruction::Mul: { 411 E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, 412 Depth + 1, AC, DT); 413 E.Offset *= RHS; 414 E.Scale *= RHS; 415 E.IsNSW &= NSW; 416 break; 417 } 418 case Instruction::Shl: 419 // We're trying to linearize an expression of the kind: 420 // shl i8 -128, 36 421 // where the shift count exceeds the bitwidth of the type. 422 // We can't decompose this further (the expression would return 423 // a poison value). 424 if (RHS.getLimitedValue() > Val.getBitWidth()) 425 return Val; 426 427 E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, 428 Depth + 1, AC, DT); 429 E.Offset <<= RHS.getLimitedValue(); 430 E.Scale <<= RHS.getLimitedValue(); 431 E.IsNSW &= NSW; 432 break; 433 } 434 return E; 435 } 436 } 437 438 if (isa<ZExtInst>(Val.V)) 439 return GetLinearExpression( 440 Val.withZExtOfValue(cast<CastInst>(Val.V)->getOperand(0)), 441 DL, Depth + 1, AC, DT); 442 443 if (isa<SExtInst>(Val.V)) 444 return GetLinearExpression( 445 Val.withSExtOfValue(cast<CastInst>(Val.V)->getOperand(0)), 446 DL, Depth + 1, AC, DT); 447 448 return Val; 449 } 450 451 /// To ensure a pointer offset fits in an integer of size PointerSize 452 /// (in bits) when that size is smaller than the maximum pointer size. This is 453 /// an issue, for example, in particular for 32b pointers with negative indices 454 /// that rely on two's complement wrap-arounds for precise alias information 455 /// where the maximum pointer size is 64b. 456 static APInt adjustToPointerSize(const APInt &Offset, unsigned PointerSize) { 457 assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!"); 458 unsigned ShiftBits = Offset.getBitWidth() - PointerSize; 459 return (Offset << ShiftBits).ashr(ShiftBits); 460 } 461 462 namespace { 463 // A linear transformation of a Value; this class represents 464 // ZExt(SExt(V, SExtBits), ZExtBits) * Scale. 465 struct VariableGEPIndex { 466 ExtendedValue Val; 467 APInt Scale; 468 469 // Context instruction to use when querying information about this index. 470 const Instruction *CxtI; 471 472 /// True if all operations in this expression are NSW. 473 bool IsNSW; 474 475 void dump() const { 476 print(dbgs()); 477 dbgs() << "\n"; 478 } 479 void print(raw_ostream &OS) const { 480 OS << "(V=" << Val.V->getName() 481 << ", zextbits=" << Val.ZExtBits 482 << ", sextbits=" << Val.SExtBits 483 << ", scale=" << Scale << ")"; 484 } 485 }; 486 } 487 488 // Represents the internal structure of a GEP, decomposed into a base pointer, 489 // constant offsets, and variable scaled indices. 490 struct BasicAAResult::DecomposedGEP { 491 // Base pointer of the GEP 492 const Value *Base; 493 // Total constant offset from base. 494 APInt Offset; 495 // Scaled variable (non-constant) indices. 496 SmallVector<VariableGEPIndex, 4> VarIndices; 497 // Is GEP index scale compile-time constant. 498 bool HasCompileTimeConstantScale; 499 // Are all operations inbounds GEPs or non-indexing operations? 500 // (None iff expression doesn't involve any geps) 501 Optional<bool> InBounds; 502 503 void dump() const { 504 print(dbgs()); 505 dbgs() << "\n"; 506 } 507 void print(raw_ostream &OS) const { 508 OS << "(DecomposedGEP Base=" << Base->getName() 509 << ", Offset=" << Offset 510 << ", VarIndices=["; 511 for (size_t i = 0; i < VarIndices.size(); i++) { 512 if (i != 0) 513 OS << ", "; 514 VarIndices[i].print(OS); 515 } 516 OS << "], HasCompileTimeConstantScale=" << HasCompileTimeConstantScale 517 << ")"; 518 } 519 }; 520 521 522 /// If V is a symbolic pointer expression, decompose it into a base pointer 523 /// with a constant offset and a number of scaled symbolic offsets. 524 /// 525 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 526 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 527 /// specified amount, but which may have other unrepresented high bits. As 528 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 529 /// 530 /// This function is capable of analyzing everything that getUnderlyingObject 531 /// can look through. To be able to do that getUnderlyingObject and 532 /// DecomposeGEPExpression must use the same search depth 533 /// (MaxLookupSearchDepth). 534 BasicAAResult::DecomposedGEP 535 BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL, 536 AssumptionCache *AC, DominatorTree *DT) { 537 // Limit recursion depth to limit compile time in crazy cases. 538 unsigned MaxLookup = MaxLookupSearchDepth; 539 SearchTimes++; 540 const Instruction *CxtI = dyn_cast<Instruction>(V); 541 542 unsigned MaxPointerSize = DL.getMaxPointerSizeInBits(); 543 DecomposedGEP Decomposed; 544 Decomposed.Offset = APInt(MaxPointerSize, 0); 545 Decomposed.HasCompileTimeConstantScale = true; 546 do { 547 // See if this is a bitcast or GEP. 548 const Operator *Op = dyn_cast<Operator>(V); 549 if (!Op) { 550 // The only non-operator case we can handle are GlobalAliases. 551 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 552 if (!GA->isInterposable()) { 553 V = GA->getAliasee(); 554 continue; 555 } 556 } 557 Decomposed.Base = V; 558 return Decomposed; 559 } 560 561 if (Op->getOpcode() == Instruction::BitCast || 562 Op->getOpcode() == Instruction::AddrSpaceCast) { 563 V = Op->getOperand(0); 564 continue; 565 } 566 567 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 568 if (!GEPOp) { 569 if (const auto *PHI = dyn_cast<PHINode>(V)) { 570 // Look through single-arg phi nodes created by LCSSA. 571 if (PHI->getNumIncomingValues() == 1) { 572 V = PHI->getIncomingValue(0); 573 continue; 574 } 575 } else if (const auto *Call = dyn_cast<CallBase>(V)) { 576 // CaptureTracking can know about special capturing properties of some 577 // intrinsics like launder.invariant.group, that can't be expressed with 578 // the attributes, but have properties like returning aliasing pointer. 579 // Because some analysis may assume that nocaptured pointer is not 580 // returned from some special intrinsic (because function would have to 581 // be marked with returns attribute), it is crucial to use this function 582 // because it should be in sync with CaptureTracking. Not using it may 583 // cause weird miscompilations where 2 aliasing pointers are assumed to 584 // noalias. 585 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 586 V = RP; 587 continue; 588 } 589 } 590 591 Decomposed.Base = V; 592 return Decomposed; 593 } 594 595 // Track whether we've seen at least one in bounds gep, and if so, whether 596 // all geps parsed were in bounds. 597 if (Decomposed.InBounds == None) 598 Decomposed.InBounds = GEPOp->isInBounds(); 599 else if (!GEPOp->isInBounds()) 600 Decomposed.InBounds = false; 601 602 assert(GEPOp->getSourceElementType()->isSized() && "GEP must be sized"); 603 604 // Don't attempt to analyze GEPs if index scale is not a compile-time 605 // constant. 606 if (isa<ScalableVectorType>(GEPOp->getSourceElementType())) { 607 Decomposed.Base = V; 608 Decomposed.HasCompileTimeConstantScale = false; 609 return Decomposed; 610 } 611 612 unsigned AS = GEPOp->getPointerAddressSpace(); 613 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 614 gep_type_iterator GTI = gep_type_begin(GEPOp); 615 unsigned PointerSize = DL.getPointerSizeInBits(AS); 616 // Assume all GEP operands are constants until proven otherwise. 617 bool GepHasConstantOffset = true; 618 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 619 I != E; ++I, ++GTI) { 620 const Value *Index = *I; 621 // Compute the (potentially symbolic) offset in bytes for this index. 622 if (StructType *STy = GTI.getStructTypeOrNull()) { 623 // For a struct, add the member offset. 624 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 625 if (FieldNo == 0) 626 continue; 627 628 Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo); 629 continue; 630 } 631 632 // For an array/pointer, add the element offset, explicitly scaled. 633 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 634 if (CIdx->isZero()) 635 continue; 636 Decomposed.Offset += 637 DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize() * 638 CIdx->getValue().sextOrTrunc(MaxPointerSize); 639 continue; 640 } 641 642 GepHasConstantOffset = false; 643 644 APInt Scale(MaxPointerSize, 645 DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize()); 646 // If the integer type is smaller than the pointer size, it is implicitly 647 // sign extended to pointer size. 648 unsigned Width = Index->getType()->getIntegerBitWidth(); 649 unsigned SExtBits = PointerSize > Width ? PointerSize - Width : 0; 650 LinearExpression LE = GetLinearExpression( 651 ExtendedValue(Index, 0, SExtBits), DL, 0, AC, DT); 652 653 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 654 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 655 656 // It can be the case that, even through C1*V+C2 does not overflow for 657 // relevant values of V, (C2*Scale) can overflow. In that case, we cannot 658 // decompose the expression in this way. 659 // 660 // FIXME: C1*Scale and the other operations in the decomposed 661 // (C1*Scale)*V+C2*Scale can also overflow. We should check for this 662 // possibility. 663 bool Overflow; 664 APInt ScaledOffset = LE.Offset.sextOrTrunc(MaxPointerSize) 665 .smul_ov(Scale, Overflow); 666 if (Overflow) { 667 LE = LinearExpression(ExtendedValue(Index, 0, SExtBits)); 668 } else { 669 Decomposed.Offset += ScaledOffset; 670 Scale *= LE.Scale.sextOrTrunc(MaxPointerSize); 671 } 672 673 // If we already had an occurrence of this index variable, merge this 674 // scale into it. For example, we want to handle: 675 // A[x][x] -> x*16 + x*4 -> x*20 676 // This also ensures that 'x' only appears in the index list once. 677 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { 678 if (Decomposed.VarIndices[i].Val.V == LE.Val.V && 679 Decomposed.VarIndices[i].Val.hasSameExtensionsAs(LE.Val)) { 680 Scale += Decomposed.VarIndices[i].Scale; 681 Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i); 682 break; 683 } 684 } 685 686 // Make sure that we have a scale that makes sense for this target's 687 // pointer size. 688 Scale = adjustToPointerSize(Scale, PointerSize); 689 690 if (!!Scale) { 691 VariableGEPIndex Entry = {LE.Val, Scale, CxtI, LE.IsNSW}; 692 Decomposed.VarIndices.push_back(Entry); 693 } 694 } 695 696 // Take care of wrap-arounds 697 if (GepHasConstantOffset) 698 Decomposed.Offset = adjustToPointerSize(Decomposed.Offset, PointerSize); 699 700 // Analyze the base pointer next. 701 V = GEPOp->getOperand(0); 702 } while (--MaxLookup); 703 704 // If the chain of expressions is too deep, just return early. 705 Decomposed.Base = V; 706 SearchLimitReached++; 707 return Decomposed; 708 } 709 710 /// Returns whether the given pointer value points to memory that is local to 711 /// the function, with global constants being considered local to all 712 /// functions. 713 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc, 714 AAQueryInfo &AAQI, bool OrLocal) { 715 assert(Visited.empty() && "Visited must be cleared after use!"); 716 717 unsigned MaxLookup = 8; 718 SmallVector<const Value *, 16> Worklist; 719 Worklist.push_back(Loc.Ptr); 720 do { 721 const Value *V = getUnderlyingObject(Worklist.pop_back_val()); 722 if (!Visited.insert(V).second) { 723 Visited.clear(); 724 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 725 } 726 727 // An alloca instruction defines local memory. 728 if (OrLocal && isa<AllocaInst>(V)) 729 continue; 730 731 // A global constant counts as local memory for our purposes. 732 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 733 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 734 // global to be marked constant in some modules and non-constant in 735 // others. GV may even be a declaration, not a definition. 736 if (!GV->isConstant()) { 737 Visited.clear(); 738 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 739 } 740 continue; 741 } 742 743 // If both select values point to local memory, then so does the select. 744 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 745 Worklist.push_back(SI->getTrueValue()); 746 Worklist.push_back(SI->getFalseValue()); 747 continue; 748 } 749 750 // If all values incoming to a phi node point to local memory, then so does 751 // the phi. 752 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 753 // Don't bother inspecting phi nodes with many operands. 754 if (PN->getNumIncomingValues() > MaxLookup) { 755 Visited.clear(); 756 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 757 } 758 append_range(Worklist, PN->incoming_values()); 759 continue; 760 } 761 762 // Otherwise be conservative. 763 Visited.clear(); 764 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 765 } while (!Worklist.empty() && --MaxLookup); 766 767 Visited.clear(); 768 return Worklist.empty(); 769 } 770 771 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) { 772 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call); 773 return II && II->getIntrinsicID() == IID; 774 } 775 776 /// Returns the behavior when calling the given call site. 777 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) { 778 if (Call->doesNotAccessMemory()) 779 // Can't do better than this. 780 return FMRB_DoesNotAccessMemory; 781 782 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 783 784 // If the callsite knows it only reads memory, don't return worse 785 // than that. 786 if (Call->onlyReadsMemory()) 787 Min = FMRB_OnlyReadsMemory; 788 else if (Call->doesNotReadMemory()) 789 Min = FMRB_OnlyWritesMemory; 790 791 if (Call->onlyAccessesArgMemory()) 792 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 793 else if (Call->onlyAccessesInaccessibleMemory()) 794 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 795 else if (Call->onlyAccessesInaccessibleMemOrArgMem()) 796 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 797 798 // If the call has operand bundles then aliasing attributes from the function 799 // it calls do not directly apply to the call. This can be made more precise 800 // in the future. 801 if (!Call->hasOperandBundles()) 802 if (const Function *F = Call->getCalledFunction()) 803 Min = 804 FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F)); 805 806 return Min; 807 } 808 809 /// Returns the behavior when calling the given function. For use when the call 810 /// site is not known. 811 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) { 812 // If the function declares it doesn't access memory, we can't do better. 813 if (F->doesNotAccessMemory()) 814 return FMRB_DoesNotAccessMemory; 815 816 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 817 818 // If the function declares it only reads memory, go with that. 819 if (F->onlyReadsMemory()) 820 Min = FMRB_OnlyReadsMemory; 821 else if (F->doesNotReadMemory()) 822 Min = FMRB_OnlyWritesMemory; 823 824 if (F->onlyAccessesArgMemory()) 825 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 826 else if (F->onlyAccessesInaccessibleMemory()) 827 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 828 else if (F->onlyAccessesInaccessibleMemOrArgMem()) 829 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 830 831 return Min; 832 } 833 834 /// Returns true if this is a writeonly (i.e Mod only) parameter. 835 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx, 836 const TargetLibraryInfo &TLI) { 837 if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly)) 838 return true; 839 840 // We can bound the aliasing properties of memset_pattern16 just as we can 841 // for memcpy/memset. This is particularly important because the 842 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 843 // whenever possible. 844 // FIXME Consider handling this in InferFunctionAttr.cpp together with other 845 // attributes. 846 LibFunc F; 847 if (Call->getCalledFunction() && 848 TLI.getLibFunc(*Call->getCalledFunction(), F) && 849 F == LibFunc_memset_pattern16 && TLI.has(F)) 850 if (ArgIdx == 0) 851 return true; 852 853 // TODO: memset_pattern4, memset_pattern8 854 // TODO: _chk variants 855 // TODO: strcmp, strcpy 856 857 return false; 858 } 859 860 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call, 861 unsigned ArgIdx) { 862 // Checking for known builtin intrinsics and target library functions. 863 if (isWriteOnlyParam(Call, ArgIdx, TLI)) 864 return ModRefInfo::Mod; 865 866 if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly)) 867 return ModRefInfo::Ref; 868 869 if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone)) 870 return ModRefInfo::NoModRef; 871 872 return AAResultBase::getArgModRefInfo(Call, ArgIdx); 873 } 874 875 #ifndef NDEBUG 876 static const Function *getParent(const Value *V) { 877 if (const Instruction *inst = dyn_cast<Instruction>(V)) { 878 if (!inst->getParent()) 879 return nullptr; 880 return inst->getParent()->getParent(); 881 } 882 883 if (const Argument *arg = dyn_cast<Argument>(V)) 884 return arg->getParent(); 885 886 return nullptr; 887 } 888 889 static bool notDifferentParent(const Value *O1, const Value *O2) { 890 891 const Function *F1 = getParent(O1); 892 const Function *F2 = getParent(O2); 893 894 return !F1 || !F2 || F1 == F2; 895 } 896 #endif 897 898 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 899 const MemoryLocation &LocB, 900 AAQueryInfo &AAQI) { 901 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 902 "BasicAliasAnalysis doesn't support interprocedural queries."); 903 return aliasCheck(LocA.Ptr, LocA.Size, LocB.Ptr, LocB.Size, AAQI); 904 } 905 906 /// Checks to see if the specified callsite can clobber the specified memory 907 /// object. 908 /// 909 /// Since we only look at local properties of this function, we really can't 910 /// say much about this query. We do, however, use simple "address taken" 911 /// analysis on local objects. 912 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call, 913 const MemoryLocation &Loc, 914 AAQueryInfo &AAQI) { 915 assert(notDifferentParent(Call, Loc.Ptr) && 916 "AliasAnalysis query involving multiple functions!"); 917 918 const Value *Object = getUnderlyingObject(Loc.Ptr); 919 920 // Calls marked 'tail' cannot read or write allocas from the current frame 921 // because the current frame might be destroyed by the time they run. However, 922 // a tail call may use an alloca with byval. Calling with byval copies the 923 // contents of the alloca into argument registers or stack slots, so there is 924 // no lifetime issue. 925 if (isa<AllocaInst>(Object)) 926 if (const CallInst *CI = dyn_cast<CallInst>(Call)) 927 if (CI->isTailCall() && 928 !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal)) 929 return ModRefInfo::NoModRef; 930 931 // Stack restore is able to modify unescaped dynamic allocas. Assume it may 932 // modify them even though the alloca is not escaped. 933 if (auto *AI = dyn_cast<AllocaInst>(Object)) 934 if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore)) 935 return ModRefInfo::Mod; 936 937 // If the pointer is to a locally allocated object that does not escape, 938 // then the call can not mod/ref the pointer unless the call takes the pointer 939 // as an argument, and itself doesn't capture it. 940 if (!isa<Constant>(Object) && Call != Object && 941 AAQI.CI->isNotCapturedBeforeOrAt(Object, Call)) { 942 943 // Optimistically assume that call doesn't touch Object and check this 944 // assumption in the following loop. 945 ModRefInfo Result = ModRefInfo::NoModRef; 946 bool IsMustAlias = true; 947 948 unsigned OperandNo = 0; 949 for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end(); 950 CI != CE; ++CI, ++OperandNo) { 951 // Only look at the no-capture or byval pointer arguments. If this 952 // pointer were passed to arguments that were neither of these, then it 953 // couldn't be no-capture. 954 if (!(*CI)->getType()->isPointerTy() || 955 (!Call->doesNotCapture(OperandNo) && OperandNo < Call->arg_size() && 956 !Call->isByValArgument(OperandNo))) 957 continue; 958 959 // Call doesn't access memory through this operand, so we don't care 960 // if it aliases with Object. 961 if (Call->doesNotAccessMemory(OperandNo)) 962 continue; 963 964 // If this is a no-capture pointer argument, see if we can tell that it 965 // is impossible to alias the pointer we're checking. 966 AliasResult AR = getBestAAResults().alias( 967 MemoryLocation::getBeforeOrAfter(*CI), 968 MemoryLocation::getBeforeOrAfter(Object), AAQI); 969 if (AR != AliasResult::MustAlias) 970 IsMustAlias = false; 971 // Operand doesn't alias 'Object', continue looking for other aliases 972 if (AR == AliasResult::NoAlias) 973 continue; 974 // Operand aliases 'Object', but call doesn't modify it. Strengthen 975 // initial assumption and keep looking in case if there are more aliases. 976 if (Call->onlyReadsMemory(OperandNo)) { 977 Result = setRef(Result); 978 continue; 979 } 980 // Operand aliases 'Object' but call only writes into it. 981 if (Call->doesNotReadMemory(OperandNo)) { 982 Result = setMod(Result); 983 continue; 984 } 985 // This operand aliases 'Object' and call reads and writes into it. 986 // Setting ModRef will not yield an early return below, MustAlias is not 987 // used further. 988 Result = ModRefInfo::ModRef; 989 break; 990 } 991 992 // No operand aliases, reset Must bit. Add below if at least one aliases 993 // and all aliases found are MustAlias. 994 if (isNoModRef(Result)) 995 IsMustAlias = false; 996 997 // Early return if we improved mod ref information 998 if (!isModAndRefSet(Result)) { 999 if (isNoModRef(Result)) 1000 return ModRefInfo::NoModRef; 1001 return IsMustAlias ? setMust(Result) : clearMust(Result); 1002 } 1003 } 1004 1005 // If the call is malloc/calloc like, we can assume that it doesn't 1006 // modify any IR visible value. This is only valid because we assume these 1007 // routines do not read values visible in the IR. TODO: Consider special 1008 // casing realloc and strdup routines which access only their arguments as 1009 // well. Or alternatively, replace all of this with inaccessiblememonly once 1010 // that's implemented fully. 1011 if (isMallocOrCallocLikeFn(Call, &TLI)) { 1012 // Be conservative if the accessed pointer may alias the allocation - 1013 // fallback to the generic handling below. 1014 if (getBestAAResults().alias(MemoryLocation::getBeforeOrAfter(Call), Loc, 1015 AAQI) == AliasResult::NoAlias) 1016 return ModRefInfo::NoModRef; 1017 } 1018 1019 // The semantics of memcpy intrinsics either exactly overlap or do not 1020 // overlap, i.e., source and destination of any given memcpy are either 1021 // no-alias or must-alias. 1022 if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) { 1023 AliasResult SrcAA = 1024 getBestAAResults().alias(MemoryLocation::getForSource(Inst), Loc, AAQI); 1025 AliasResult DestAA = 1026 getBestAAResults().alias(MemoryLocation::getForDest(Inst), Loc, AAQI); 1027 // It's also possible for Loc to alias both src and dest, or neither. 1028 ModRefInfo rv = ModRefInfo::NoModRef; 1029 if (SrcAA != AliasResult::NoAlias) 1030 rv = setRef(rv); 1031 if (DestAA != AliasResult::NoAlias) 1032 rv = setMod(rv); 1033 return rv; 1034 } 1035 1036 // Guard intrinsics are marked as arbitrarily writing so that proper control 1037 // dependencies are maintained but they never mods any particular memory 1038 // location. 1039 // 1040 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 1041 // heap state at the point the guard is issued needs to be consistent in case 1042 // the guard invokes the "deopt" continuation. 1043 if (isIntrinsicCall(Call, Intrinsic::experimental_guard)) 1044 return ModRefInfo::Ref; 1045 // The same applies to deoptimize which is essentially a guard(false). 1046 if (isIntrinsicCall(Call, Intrinsic::experimental_deoptimize)) 1047 return ModRefInfo::Ref; 1048 1049 // Like assumes, invariant.start intrinsics were also marked as arbitrarily 1050 // writing so that proper control dependencies are maintained but they never 1051 // mod any particular memory location visible to the IR. 1052 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start 1053 // intrinsic is now modeled as reading memory. This prevents hoisting the 1054 // invariant.start intrinsic over stores. Consider: 1055 // *ptr = 40; 1056 // *ptr = 50; 1057 // invariant_start(ptr) 1058 // int val = *ptr; 1059 // print(val); 1060 // 1061 // This cannot be transformed to: 1062 // 1063 // *ptr = 40; 1064 // invariant_start(ptr) 1065 // *ptr = 50; 1066 // int val = *ptr; 1067 // print(val); 1068 // 1069 // The transformation will cause the second store to be ignored (based on 1070 // rules of invariant.start) and print 40, while the first program always 1071 // prints 50. 1072 if (isIntrinsicCall(Call, Intrinsic::invariant_start)) 1073 return ModRefInfo::Ref; 1074 1075 // The AAResultBase base class has some smarts, lets use them. 1076 return AAResultBase::getModRefInfo(Call, Loc, AAQI); 1077 } 1078 1079 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1, 1080 const CallBase *Call2, 1081 AAQueryInfo &AAQI) { 1082 // Guard intrinsics are marked as arbitrarily writing so that proper control 1083 // dependencies are maintained but they never mods any particular memory 1084 // location. 1085 // 1086 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 1087 // heap state at the point the guard is issued needs to be consistent in case 1088 // the guard invokes the "deopt" continuation. 1089 1090 // NB! This function is *not* commutative, so we special case two 1091 // possibilities for guard intrinsics. 1092 1093 if (isIntrinsicCall(Call1, Intrinsic::experimental_guard)) 1094 return isModSet(createModRefInfo(getModRefBehavior(Call2))) 1095 ? ModRefInfo::Ref 1096 : ModRefInfo::NoModRef; 1097 1098 if (isIntrinsicCall(Call2, Intrinsic::experimental_guard)) 1099 return isModSet(createModRefInfo(getModRefBehavior(Call1))) 1100 ? ModRefInfo::Mod 1101 : ModRefInfo::NoModRef; 1102 1103 // The AAResultBase base class has some smarts, lets use them. 1104 return AAResultBase::getModRefInfo(Call1, Call2, AAQI); 1105 } 1106 1107 /// Return true if we know V to the base address of the corresponding memory 1108 /// object. This implies that any address less than V must be out of bounds 1109 /// for the underlying object. Note that just being isIdentifiedObject() is 1110 /// not enough - For example, a negative offset from a noalias argument or call 1111 /// can be inbounds w.r.t the actual underlying object. 1112 static bool isBaseOfObject(const Value *V) { 1113 // TODO: We can handle other cases here 1114 // 1) For GC languages, arguments to functions are often required to be 1115 // base pointers. 1116 // 2) Result of allocation routines are often base pointers. Leverage TLI. 1117 return (isa<AllocaInst>(V) || isa<GlobalVariable>(V)); 1118 } 1119 1120 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 1121 /// another pointer. 1122 /// 1123 /// We know that V1 is a GEP, but we don't know anything about V2. 1124 /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for 1125 /// V2. 1126 AliasResult BasicAAResult::aliasGEP( 1127 const GEPOperator *GEP1, LocationSize V1Size, 1128 const Value *V2, LocationSize V2Size, 1129 const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) { 1130 if (!V1Size.hasValue() && !V2Size.hasValue()) { 1131 // TODO: This limitation exists for compile-time reasons. Relax it if we 1132 // can avoid exponential pathological cases. 1133 if (!isa<GEPOperator>(V2)) 1134 return AliasResult::MayAlias; 1135 1136 // If both accesses have unknown size, we can only check whether the base 1137 // objects don't alias. 1138 AliasResult BaseAlias = getBestAAResults().alias( 1139 MemoryLocation::getBeforeOrAfter(UnderlyingV1), 1140 MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI); 1141 return BaseAlias == AliasResult::NoAlias ? AliasResult::NoAlias 1142 : AliasResult::MayAlias; 1143 } 1144 1145 DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT); 1146 DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT); 1147 1148 // Don't attempt to analyze the decomposed GEP if index scale is not a 1149 // compile-time constant. 1150 if (!DecompGEP1.HasCompileTimeConstantScale || 1151 !DecompGEP2.HasCompileTimeConstantScale) 1152 return AliasResult::MayAlias; 1153 1154 assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 && 1155 "DecomposeGEPExpression returned a result different from " 1156 "getUnderlyingObject"); 1157 1158 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1159 // symbolic difference. 1160 subtractDecomposedGEPs(DecompGEP1, DecompGEP2); 1161 1162 // If an inbounds GEP would have to start from an out of bounds address 1163 // for the two to alias, then we can assume noalias. 1164 if (*DecompGEP1.InBounds && DecompGEP1.VarIndices.empty() && 1165 V2Size.hasValue() && DecompGEP1.Offset.sge(V2Size.getValue()) && 1166 isBaseOfObject(DecompGEP2.Base)) 1167 return AliasResult::NoAlias; 1168 1169 if (isa<GEPOperator>(V2)) { 1170 // Symmetric case to above. 1171 if (*DecompGEP2.InBounds && DecompGEP1.VarIndices.empty() && 1172 V1Size.hasValue() && DecompGEP1.Offset.sle(-V1Size.getValue()) && 1173 isBaseOfObject(DecompGEP1.Base)) 1174 return AliasResult::NoAlias; 1175 } 1176 1177 // For GEPs with identical offsets, we can preserve the size and AAInfo 1178 // when performing the alias check on the underlying objects. 1179 if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty()) 1180 return getBestAAResults().alias(MemoryLocation(DecompGEP1.Base, V1Size), 1181 MemoryLocation(DecompGEP2.Base, V2Size), 1182 AAQI); 1183 1184 // Do the base pointers alias? 1185 AliasResult BaseAlias = getBestAAResults().alias( 1186 MemoryLocation::getBeforeOrAfter(DecompGEP1.Base), 1187 MemoryLocation::getBeforeOrAfter(DecompGEP2.Base), AAQI); 1188 1189 // If we get a No or May, then return it immediately, no amount of analysis 1190 // will improve this situation. 1191 if (BaseAlias != AliasResult::MustAlias) { 1192 assert(BaseAlias == AliasResult::NoAlias || 1193 BaseAlias == AliasResult::MayAlias); 1194 return BaseAlias; 1195 } 1196 1197 // If there is a constant difference between the pointers, but the difference 1198 // is less than the size of the associated memory object, then we know 1199 // that the objects are partially overlapping. If the difference is 1200 // greater, we know they do not overlap. 1201 if (DecompGEP1.Offset != 0 && DecompGEP1.VarIndices.empty()) { 1202 APInt &Off = DecompGEP1.Offset; 1203 1204 // Initialize for Off >= 0 (V2 <= GEP1) case. 1205 const Value *LeftPtr = V2; 1206 const Value *RightPtr = GEP1; 1207 LocationSize VLeftSize = V2Size; 1208 LocationSize VRightSize = V1Size; 1209 const bool Swapped = Off.isNegative(); 1210 1211 if (Swapped) { 1212 // Swap if we have the situation where: 1213 // + + 1214 // | BaseOffset | 1215 // ---------------->| 1216 // |-->V1Size |-------> V2Size 1217 // GEP1 V2 1218 std::swap(LeftPtr, RightPtr); 1219 std::swap(VLeftSize, VRightSize); 1220 Off = -Off; 1221 } 1222 1223 if (VLeftSize.hasValue()) { 1224 const uint64_t LSize = VLeftSize.getValue(); 1225 if (Off.ult(LSize)) { 1226 // Conservatively drop processing if a phi was visited and/or offset is 1227 // too big. 1228 AliasResult AR = AliasResult::PartialAlias; 1229 if (VRightSize.hasValue() && Off.ule(INT32_MAX) && 1230 (Off + VRightSize.getValue()).ule(LSize)) { 1231 // Memory referenced by right pointer is nested. Save the offset in 1232 // cache. Note that originally offset estimated as GEP1-V2, but 1233 // AliasResult contains the shift that represents GEP1+Offset=V2. 1234 AR.setOffset(-Off.getSExtValue()); 1235 AR.swap(Swapped); 1236 } 1237 return AR; 1238 } 1239 return AliasResult::NoAlias; 1240 } 1241 } 1242 1243 if (!DecompGEP1.VarIndices.empty()) { 1244 APInt GCD; 1245 bool AllNonNegative = DecompGEP1.Offset.isNonNegative(); 1246 bool AllNonPositive = DecompGEP1.Offset.isNonPositive(); 1247 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { 1248 const VariableGEPIndex &Index = DecompGEP1.VarIndices[i]; 1249 const APInt &Scale = Index.Scale; 1250 APInt ScaleForGCD = Scale; 1251 if (!Index.IsNSW) 1252 ScaleForGCD = APInt::getOneBitSet(Scale.getBitWidth(), 1253 Scale.countTrailingZeros()); 1254 1255 if (i == 0) 1256 GCD = ScaleForGCD.abs(); 1257 else 1258 GCD = APIntOps::GreatestCommonDivisor(GCD, ScaleForGCD.abs()); 1259 1260 if (AllNonNegative || AllNonPositive) { 1261 KnownBits Known = Index.Val.evaluateWith( 1262 computeKnownBits(Index.Val.V, DL, 0, &AC, Index.CxtI, DT)); 1263 // TODO: Account for implicit trunc. 1264 bool SignKnownZero = Known.isNonNegative(); 1265 bool SignKnownOne = Known.isNegative(); 1266 AllNonNegative &= (SignKnownZero && Scale.isNonNegative()) || 1267 (SignKnownOne && Scale.isNonPositive()); 1268 AllNonPositive &= (SignKnownZero && Scale.isNonPositive()) || 1269 (SignKnownOne && Scale.isNonNegative()); 1270 } 1271 } 1272 1273 // We now have accesses at two offsets from the same base: 1274 // 1. (...)*GCD + DecompGEP1.Offset with size V1Size 1275 // 2. 0 with size V2Size 1276 // Using arithmetic modulo GCD, the accesses are at 1277 // [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits 1278 // into the range [V2Size..GCD), then we know they cannot overlap. 1279 APInt ModOffset = DecompGEP1.Offset.srem(GCD); 1280 if (ModOffset.isNegative()) 1281 ModOffset += GCD; // We want mod, not rem. 1282 if (V1Size.hasValue() && V2Size.hasValue() && 1283 ModOffset.uge(V2Size.getValue()) && 1284 (GCD - ModOffset).uge(V1Size.getValue())) 1285 return AliasResult::NoAlias; 1286 1287 // If we know all the variables are non-negative, then the total offset is 1288 // also non-negative and >= DecompGEP1.Offset. We have the following layout: 1289 // [0, V2Size) ... [TotalOffset, TotalOffer+V1Size] 1290 // If DecompGEP1.Offset >= V2Size, the accesses don't alias. 1291 if (AllNonNegative && V2Size.hasValue() && 1292 DecompGEP1.Offset.uge(V2Size.getValue())) 1293 return AliasResult::NoAlias; 1294 // Similarly, if the variables are non-positive, then the total offset is 1295 // also non-positive and <= DecompGEP1.Offset. We have the following layout: 1296 // [TotalOffset, TotalOffset+V1Size) ... [0, V2Size) 1297 // If -DecompGEP1.Offset >= V1Size, the accesses don't alias. 1298 if (AllNonPositive && V1Size.hasValue() && 1299 (-DecompGEP1.Offset).uge(V1Size.getValue())) 1300 return AliasResult::NoAlias; 1301 1302 if (V1Size.hasValue() && V2Size.hasValue()) { 1303 // Try to determine the range of values for VarIndex. 1304 // VarIndexRange is such that: 1305 // (VarIndex <= -MinAbsVarIndex || MinAbsVarIndex <= VarIndex) && 1306 // VarIndexRange.contains(VarIndex) 1307 Optional<APInt> MinAbsVarIndex; 1308 Optional<ConstantRange> VarIndexRange; 1309 if (DecompGEP1.VarIndices.size() == 1) { 1310 // VarIndex = Scale*V. 1311 const VariableGEPIndex &Var = DecompGEP1.VarIndices[0]; 1312 if (isKnownNonZero(Var.Val.V, DL, 0, &AC, Var.CxtI, DT)) { 1313 // If V != 0 then abs(VarIndex) >= abs(Scale). 1314 MinAbsVarIndex = Var.Scale.abs(); 1315 } 1316 ConstantRange R = Var.Val.evaluateWith( 1317 computeConstantRange(Var.Val.V, true, &AC, Var.CxtI)); 1318 if (!R.isFullSet() && !R.isEmptySet()) 1319 VarIndexRange = R.sextOrTrunc(Var.Scale.getBitWidth()) 1320 .multiply(ConstantRange(Var.Scale)); 1321 } else if (DecompGEP1.VarIndices.size() == 2) { 1322 // VarIndex = Scale*V0 + (-Scale)*V1. 1323 // If V0 != V1 then abs(VarIndex) >= abs(Scale). 1324 // Check that VisitedPhiBBs is empty, to avoid reasoning about 1325 // inequality of values across loop iterations. 1326 const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0]; 1327 const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1]; 1328 if (Var0.Scale == -Var1.Scale && 1329 Var0.Val.hasSameExtensionsAs(Var1.Val) && VisitedPhiBBs.empty() && 1330 isKnownNonEqual(Var0.Val.V, Var1.Val.V, DL, &AC, /* CxtI */ nullptr, 1331 DT)) 1332 MinAbsVarIndex = Var0.Scale.abs(); 1333 } 1334 1335 if (MinAbsVarIndex) { 1336 // The constant offset will have added at least +/-MinAbsVarIndex to it. 1337 APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex; 1338 APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex; 1339 // We know that Offset <= OffsetLo || Offset >= OffsetHi 1340 if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) && 1341 OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue())) 1342 return AliasResult::NoAlias; 1343 } 1344 1345 if (VarIndexRange) { 1346 ConstantRange OffsetRange = 1347 VarIndexRange->add(ConstantRange(DecompGEP1.Offset)); 1348 1349 // We know that Offset >= MinOffset. 1350 // (MinOffset >= V2Size) => (Offset >= V2Size) => NoAlias. 1351 if (OffsetRange.getSignedMin().sge(V2Size.getValue())) 1352 return AliasResult::NoAlias; 1353 1354 // We know that Offset <= MaxOffset. 1355 // (MaxOffset <= -V1Size) => (Offset <= -V1Size) => NoAlias. 1356 if (OffsetRange.getSignedMax().sle(-V1Size.getValue())) 1357 return AliasResult::NoAlias; 1358 } 1359 } 1360 1361 if (constantOffsetHeuristic(DecompGEP1, V1Size, V2Size, &AC, DT)) 1362 return AliasResult::NoAlias; 1363 } 1364 1365 // Statically, we can see that the base objects are the same, but the 1366 // pointers have dynamic offsets which we can't resolve. And none of our 1367 // little tricks above worked. 1368 return AliasResult::MayAlias; 1369 } 1370 1371 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1372 // If the results agree, take it. 1373 if (A == B) 1374 return A; 1375 // A mix of PartialAlias and MustAlias is PartialAlias. 1376 if ((A == AliasResult::PartialAlias && B == AliasResult::MustAlias) || 1377 (B == AliasResult::PartialAlias && A == AliasResult::MustAlias)) 1378 return AliasResult::PartialAlias; 1379 // Otherwise, we don't know anything. 1380 return AliasResult::MayAlias; 1381 } 1382 1383 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1384 /// against another. 1385 AliasResult 1386 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize, 1387 const Value *V2, LocationSize V2Size, 1388 AAQueryInfo &AAQI) { 1389 // If the values are Selects with the same condition, we can do a more precise 1390 // check: just check for aliases between the values on corresponding arms. 1391 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1392 if (SI->getCondition() == SI2->getCondition()) { 1393 AliasResult Alias = getBestAAResults().alias( 1394 MemoryLocation(SI->getTrueValue(), SISize), 1395 MemoryLocation(SI2->getTrueValue(), V2Size), AAQI); 1396 if (Alias == AliasResult::MayAlias) 1397 return AliasResult::MayAlias; 1398 AliasResult ThisAlias = getBestAAResults().alias( 1399 MemoryLocation(SI->getFalseValue(), SISize), 1400 MemoryLocation(SI2->getFalseValue(), V2Size), AAQI); 1401 return MergeAliasResults(ThisAlias, Alias); 1402 } 1403 1404 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1405 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1406 AliasResult Alias = getBestAAResults().alias( 1407 MemoryLocation(V2, V2Size), 1408 MemoryLocation(SI->getTrueValue(), SISize), AAQI); 1409 if (Alias == AliasResult::MayAlias) 1410 return AliasResult::MayAlias; 1411 1412 AliasResult ThisAlias = getBestAAResults().alias( 1413 MemoryLocation(V2, V2Size), 1414 MemoryLocation(SI->getFalseValue(), SISize), AAQI); 1415 return MergeAliasResults(ThisAlias, Alias); 1416 } 1417 1418 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1419 /// another. 1420 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize, 1421 const Value *V2, LocationSize V2Size, 1422 AAQueryInfo &AAQI) { 1423 if (!PN->getNumIncomingValues()) 1424 return AliasResult::NoAlias; 1425 // If the values are PHIs in the same block, we can do a more precise 1426 // as well as efficient check: just check for aliases between the values 1427 // on corresponding edges. 1428 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1429 if (PN2->getParent() == PN->getParent()) { 1430 Optional<AliasResult> Alias; 1431 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1432 AliasResult ThisAlias = getBestAAResults().alias( 1433 MemoryLocation(PN->getIncomingValue(i), PNSize), 1434 MemoryLocation( 1435 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size), 1436 AAQI); 1437 if (Alias) 1438 *Alias = MergeAliasResults(*Alias, ThisAlias); 1439 else 1440 Alias = ThisAlias; 1441 if (*Alias == AliasResult::MayAlias) 1442 break; 1443 } 1444 return *Alias; 1445 } 1446 1447 SmallVector<Value *, 4> V1Srcs; 1448 // If a phi operand recurses back to the phi, we can still determine NoAlias 1449 // if we don't alias the underlying objects of the other phi operands, as we 1450 // know that the recursive phi needs to be based on them in some way. 1451 bool isRecursive = false; 1452 auto CheckForRecPhi = [&](Value *PV) { 1453 if (!EnableRecPhiAnalysis) 1454 return false; 1455 if (getUnderlyingObject(PV) == PN) { 1456 isRecursive = true; 1457 return true; 1458 } 1459 return false; 1460 }; 1461 1462 if (PV) { 1463 // If we have PhiValues then use it to get the underlying phi values. 1464 const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN); 1465 // If we have more phi values than the search depth then return MayAlias 1466 // conservatively to avoid compile time explosion. The worst possible case 1467 // is if both sides are PHI nodes. In which case, this is O(m x n) time 1468 // where 'm' and 'n' are the number of PHI sources. 1469 if (PhiValueSet.size() > MaxLookupSearchDepth) 1470 return AliasResult::MayAlias; 1471 // Add the values to V1Srcs 1472 for (Value *PV1 : PhiValueSet) { 1473 if (CheckForRecPhi(PV1)) 1474 continue; 1475 V1Srcs.push_back(PV1); 1476 } 1477 } else { 1478 // If we don't have PhiInfo then just look at the operands of the phi itself 1479 // FIXME: Remove this once we can guarantee that we have PhiInfo always 1480 SmallPtrSet<Value *, 4> UniqueSrc; 1481 Value *OnePhi = nullptr; 1482 for (Value *PV1 : PN->incoming_values()) { 1483 if (isa<PHINode>(PV1)) { 1484 if (OnePhi && OnePhi != PV1) { 1485 // To control potential compile time explosion, we choose to be 1486 // conserviate when we have more than one Phi input. It is important 1487 // that we handle the single phi case as that lets us handle LCSSA 1488 // phi nodes and (combined with the recursive phi handling) simple 1489 // pointer induction variable patterns. 1490 return AliasResult::MayAlias; 1491 } 1492 OnePhi = PV1; 1493 } 1494 1495 if (CheckForRecPhi(PV1)) 1496 continue; 1497 1498 if (UniqueSrc.insert(PV1).second) 1499 V1Srcs.push_back(PV1); 1500 } 1501 1502 if (OnePhi && UniqueSrc.size() > 1) 1503 // Out of an abundance of caution, allow only the trivial lcssa and 1504 // recursive phi cases. 1505 return AliasResult::MayAlias; 1506 } 1507 1508 // If V1Srcs is empty then that means that the phi has no underlying non-phi 1509 // value. This should only be possible in blocks unreachable from the entry 1510 // block, but return MayAlias just in case. 1511 if (V1Srcs.empty()) 1512 return AliasResult::MayAlias; 1513 1514 // If this PHI node is recursive, indicate that the pointer may be moved 1515 // across iterations. We can only prove NoAlias if different underlying 1516 // objects are involved. 1517 if (isRecursive) 1518 PNSize = LocationSize::beforeOrAfterPointer(); 1519 1520 // In the recursive alias queries below, we may compare values from two 1521 // different loop iterations. Keep track of visited phi blocks, which will 1522 // be used when determining value equivalence. 1523 bool BlockInserted = VisitedPhiBBs.insert(PN->getParent()).second; 1524 auto _ = make_scope_exit([&]() { 1525 if (BlockInserted) 1526 VisitedPhiBBs.erase(PN->getParent()); 1527 }); 1528 1529 // If we inserted a block into VisitedPhiBBs, alias analysis results that 1530 // have been cached earlier may no longer be valid. Perform recursive queries 1531 // with a new AAQueryInfo. 1532 AAQueryInfo NewAAQI = AAQI.withEmptyCache(); 1533 AAQueryInfo *UseAAQI = BlockInserted ? &NewAAQI : &AAQI; 1534 1535 AliasResult Alias = getBestAAResults().alias( 1536 MemoryLocation(V2, V2Size), 1537 MemoryLocation(V1Srcs[0], PNSize), *UseAAQI); 1538 1539 // Early exit if the check of the first PHI source against V2 is MayAlias. 1540 // Other results are not possible. 1541 if (Alias == AliasResult::MayAlias) 1542 return AliasResult::MayAlias; 1543 // With recursive phis we cannot guarantee that MustAlias/PartialAlias will 1544 // remain valid to all elements and needs to conservatively return MayAlias. 1545 if (isRecursive && Alias != AliasResult::NoAlias) 1546 return AliasResult::MayAlias; 1547 1548 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1549 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1550 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1551 Value *V = V1Srcs[i]; 1552 1553 AliasResult ThisAlias = getBestAAResults().alias( 1554 MemoryLocation(V2, V2Size), MemoryLocation(V, PNSize), *UseAAQI); 1555 Alias = MergeAliasResults(ThisAlias, Alias); 1556 if (Alias == AliasResult::MayAlias) 1557 break; 1558 } 1559 1560 return Alias; 1561 } 1562 1563 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1564 /// array references. 1565 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size, 1566 const Value *V2, LocationSize V2Size, 1567 AAQueryInfo &AAQI) { 1568 // If either of the memory references is empty, it doesn't matter what the 1569 // pointer values are. 1570 if (V1Size.isZero() || V2Size.isZero()) 1571 return AliasResult::NoAlias; 1572 1573 // Strip off any casts if they exist. 1574 V1 = V1->stripPointerCastsForAliasAnalysis(); 1575 V2 = V2->stripPointerCastsForAliasAnalysis(); 1576 1577 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1578 // value for undef that aliases nothing in the program. 1579 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1580 return AliasResult::NoAlias; 1581 1582 // Are we checking for alias of the same value? 1583 // Because we look 'through' phi nodes, we could look at "Value" pointers from 1584 // different iterations. We must therefore make sure that this is not the 1585 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1586 // happen by looking at the visited phi nodes and making sure they cannot 1587 // reach the value. 1588 if (isValueEqualInPotentialCycles(V1, V2)) 1589 return AliasResult::MustAlias; 1590 1591 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1592 return AliasResult::NoAlias; // Scalars cannot alias each other 1593 1594 // Figure out what objects these things are pointing to if we can. 1595 const Value *O1 = getUnderlyingObject(V1, MaxLookupSearchDepth); 1596 const Value *O2 = getUnderlyingObject(V2, MaxLookupSearchDepth); 1597 1598 // Null values in the default address space don't point to any object, so they 1599 // don't alias any other pointer. 1600 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1601 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1602 return AliasResult::NoAlias; 1603 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1604 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1605 return AliasResult::NoAlias; 1606 1607 if (O1 != O2) { 1608 // If V1/V2 point to two different objects, we know that we have no alias. 1609 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1610 return AliasResult::NoAlias; 1611 1612 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1613 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1614 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1615 return AliasResult::NoAlias; 1616 1617 // Function arguments can't alias with things that are known to be 1618 // unambigously identified at the function level. 1619 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1620 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1621 return AliasResult::NoAlias; 1622 1623 // If one pointer is the result of a call/invoke or load and the other is a 1624 // non-escaping local object within the same function, then we know the 1625 // object couldn't escape to a point where the call could return it. 1626 // 1627 // Note that if the pointers are in different functions, there are a 1628 // variety of complications. A call with a nocapture argument may still 1629 // temporary store the nocapture argument's value in a temporary memory 1630 // location if that memory location doesn't escape. Or it may pass a 1631 // nocapture value to other functions as long as they don't capture it. 1632 if (isEscapeSource(O1) && 1633 AAQI.CI->isNotCapturedBeforeOrAt(O2, cast<Instruction>(O1))) 1634 return AliasResult::NoAlias; 1635 if (isEscapeSource(O2) && 1636 AAQI.CI->isNotCapturedBeforeOrAt(O1, cast<Instruction>(O2))) 1637 return AliasResult::NoAlias; 1638 } 1639 1640 // If the size of one access is larger than the entire object on the other 1641 // side, then we know such behavior is undefined and can assume no alias. 1642 bool NullIsValidLocation = NullPointerIsDefined(&F); 1643 if ((isObjectSmallerThan( 1644 O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL, 1645 TLI, NullIsValidLocation)) || 1646 (isObjectSmallerThan( 1647 O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL, 1648 TLI, NullIsValidLocation))) 1649 return AliasResult::NoAlias; 1650 1651 // If one the accesses may be before the accessed pointer, canonicalize this 1652 // by using unknown after-pointer sizes for both accesses. This is 1653 // equivalent, because regardless of which pointer is lower, one of them 1654 // will always came after the other, as long as the underlying objects aren't 1655 // disjoint. We do this so that the rest of BasicAA does not have to deal 1656 // with accesses before the base pointer, and to improve cache utilization by 1657 // merging equivalent states. 1658 if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) { 1659 V1Size = LocationSize::afterPointer(); 1660 V2Size = LocationSize::afterPointer(); 1661 } 1662 1663 // FIXME: If this depth limit is hit, then we may cache sub-optimal results 1664 // for recursive queries. For this reason, this limit is chosen to be large 1665 // enough to be very rarely hit, while still being small enough to avoid 1666 // stack overflows. 1667 if (AAQI.Depth >= 512) 1668 return AliasResult::MayAlias; 1669 1670 // Check the cache before climbing up use-def chains. This also terminates 1671 // otherwise infinitely recursive queries. 1672 AAQueryInfo::LocPair Locs({V1, V1Size}, {V2, V2Size}); 1673 const bool Swapped = V1 > V2; 1674 if (Swapped) 1675 std::swap(Locs.first, Locs.second); 1676 const auto &Pair = AAQI.AliasCache.try_emplace( 1677 Locs, AAQueryInfo::CacheEntry{AliasResult::NoAlias, 0}); 1678 if (!Pair.second) { 1679 auto &Entry = Pair.first->second; 1680 if (!Entry.isDefinitive()) { 1681 // Remember that we used an assumption. 1682 ++Entry.NumAssumptionUses; 1683 ++AAQI.NumAssumptionUses; 1684 } 1685 // Cache contains sorted {V1,V2} pairs but we should return original order. 1686 auto Result = Entry.Result; 1687 Result.swap(Swapped); 1688 return Result; 1689 } 1690 1691 int OrigNumAssumptionUses = AAQI.NumAssumptionUses; 1692 unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size(); 1693 AliasResult Result = 1694 aliasCheckRecursive(V1, V1Size, V2, V2Size, AAQI, O1, O2); 1695 1696 auto It = AAQI.AliasCache.find(Locs); 1697 assert(It != AAQI.AliasCache.end() && "Must be in cache"); 1698 auto &Entry = It->second; 1699 1700 // Check whether a NoAlias assumption has been used, but disproven. 1701 bool AssumptionDisproven = 1702 Entry.NumAssumptionUses > 0 && Result != AliasResult::NoAlias; 1703 if (AssumptionDisproven) 1704 Result = AliasResult::MayAlias; 1705 1706 // This is a definitive result now, when considered as a root query. 1707 AAQI.NumAssumptionUses -= Entry.NumAssumptionUses; 1708 Entry.Result = Result; 1709 // Cache contains sorted {V1,V2} pairs. 1710 Entry.Result.swap(Swapped); 1711 Entry.NumAssumptionUses = -1; 1712 1713 // If the assumption has been disproven, remove any results that may have 1714 // been based on this assumption. Do this after the Entry updates above to 1715 // avoid iterator invalidation. 1716 if (AssumptionDisproven) 1717 while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults) 1718 AAQI.AliasCache.erase(AAQI.AssumptionBasedResults.pop_back_val()); 1719 1720 // The result may still be based on assumptions higher up in the chain. 1721 // Remember it, so it can be purged from the cache later. 1722 if (OrigNumAssumptionUses != AAQI.NumAssumptionUses && 1723 Result != AliasResult::MayAlias) 1724 AAQI.AssumptionBasedResults.push_back(Locs); 1725 return Result; 1726 } 1727 1728 AliasResult BasicAAResult::aliasCheckRecursive( 1729 const Value *V1, LocationSize V1Size, 1730 const Value *V2, LocationSize V2Size, 1731 AAQueryInfo &AAQI, const Value *O1, const Value *O2) { 1732 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1733 AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, O1, O2, AAQI); 1734 if (Result != AliasResult::MayAlias) 1735 return Result; 1736 } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) { 1737 AliasResult Result = aliasGEP(GV2, V2Size, V1, V1Size, O2, O1, AAQI); 1738 if (Result != AliasResult::MayAlias) 1739 return Result; 1740 } 1741 1742 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1743 AliasResult Result = aliasPHI(PN, V1Size, V2, V2Size, AAQI); 1744 if (Result != AliasResult::MayAlias) 1745 return Result; 1746 } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) { 1747 AliasResult Result = aliasPHI(PN, V2Size, V1, V1Size, AAQI); 1748 if (Result != AliasResult::MayAlias) 1749 return Result; 1750 } 1751 1752 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1753 AliasResult Result = aliasSelect(S1, V1Size, V2, V2Size, AAQI); 1754 if (Result != AliasResult::MayAlias) 1755 return Result; 1756 } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) { 1757 AliasResult Result = aliasSelect(S2, V2Size, V1, V1Size, AAQI); 1758 if (Result != AliasResult::MayAlias) 1759 return Result; 1760 } 1761 1762 // If both pointers are pointing into the same object and one of them 1763 // accesses the entire object, then the accesses must overlap in some way. 1764 if (O1 == O2) { 1765 bool NullIsValidLocation = NullPointerIsDefined(&F); 1766 if (V1Size.isPrecise() && V2Size.isPrecise() && 1767 (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) || 1768 isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation))) 1769 return AliasResult::PartialAlias; 1770 } 1771 1772 return AliasResult::MayAlias; 1773 } 1774 1775 /// Check whether two Values can be considered equivalent. 1776 /// 1777 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether 1778 /// they can not be part of a cycle in the value graph by looking at all 1779 /// visited phi nodes an making sure that the phis cannot reach the value. We 1780 /// have to do this because we are looking through phi nodes (That is we say 1781 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1782 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1783 const Value *V2) { 1784 if (V != V2) 1785 return false; 1786 1787 const Instruction *Inst = dyn_cast<Instruction>(V); 1788 if (!Inst) 1789 return true; 1790 1791 if (VisitedPhiBBs.empty()) 1792 return true; 1793 1794 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1795 return false; 1796 1797 // Make sure that the visited phis cannot reach the Value. This ensures that 1798 // the Values cannot come from different iterations of a potential cycle the 1799 // phi nodes could be involved in. 1800 for (auto *P : VisitedPhiBBs) 1801 if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT)) 1802 return false; 1803 1804 return true; 1805 } 1806 1807 /// Computes the symbolic difference between two de-composed GEPs. 1808 void BasicAAResult::subtractDecomposedGEPs(DecomposedGEP &DestGEP, 1809 const DecomposedGEP &SrcGEP) { 1810 DestGEP.Offset -= SrcGEP.Offset; 1811 for (const VariableGEPIndex &Src : SrcGEP.VarIndices) { 1812 // Find V in Dest. This is N^2, but pointer indices almost never have more 1813 // than a few variable indexes. 1814 bool Found = false; 1815 for (auto I : enumerate(DestGEP.VarIndices)) { 1816 VariableGEPIndex &Dest = I.value(); 1817 if (!isValueEqualInPotentialCycles(Dest.Val.V, Src.Val.V) || 1818 !Dest.Val.hasSameExtensionsAs(Src.Val)) 1819 continue; 1820 1821 // If we found it, subtract off Scale V's from the entry in Dest. If it 1822 // goes to zero, remove the entry. 1823 if (Dest.Scale != Src.Scale) { 1824 Dest.Scale -= Src.Scale; 1825 Dest.IsNSW = false; 1826 } else { 1827 DestGEP.VarIndices.erase(DestGEP.VarIndices.begin() + I.index()); 1828 } 1829 Found = true; 1830 break; 1831 } 1832 1833 // If we didn't consume this entry, add it to the end of the Dest list. 1834 if (!Found) { 1835 VariableGEPIndex Entry = {Src.Val, -Src.Scale, Src.CxtI, Src.IsNSW}; 1836 DestGEP.VarIndices.push_back(Entry); 1837 } 1838 } 1839 } 1840 1841 bool BasicAAResult::constantOffsetHeuristic( 1842 const DecomposedGEP &GEP, LocationSize MaybeV1Size, 1843 LocationSize MaybeV2Size, AssumptionCache *AC, DominatorTree *DT) { 1844 if (GEP.VarIndices.size() != 2 || !MaybeV1Size.hasValue() || 1845 !MaybeV2Size.hasValue()) 1846 return false; 1847 1848 const uint64_t V1Size = MaybeV1Size.getValue(); 1849 const uint64_t V2Size = MaybeV2Size.getValue(); 1850 1851 const VariableGEPIndex &Var0 = GEP.VarIndices[0], &Var1 = GEP.VarIndices[1]; 1852 1853 if (!Var0.Val.hasSameExtensionsAs(Var1.Val) || Var0.Scale != -Var1.Scale || 1854 Var0.Val.V->getType() != Var1.Val.V->getType()) 1855 return false; 1856 1857 // We'll strip off the Extensions of Var0 and Var1 and do another round 1858 // of GetLinearExpression decomposition. In the example above, if Var0 1859 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 1860 1861 LinearExpression E0 = 1862 GetLinearExpression(ExtendedValue(Var0.Val.V), DL, 0, AC, DT); 1863 LinearExpression E1 = 1864 GetLinearExpression(ExtendedValue(Var1.Val.V), DL, 0, AC, DT); 1865 if (E0.Scale != E1.Scale || !E0.Val.hasSameExtensionsAs(E1.Val) || 1866 !isValueEqualInPotentialCycles(E0.Val.V, E1.Val.V)) 1867 return false; 1868 1869 // We have a hit - Var0 and Var1 only differ by a constant offset! 1870 1871 // If we've been sext'ed then zext'd the maximum difference between Var0 and 1872 // Var1 is possible to calculate, but we're just interested in the absolute 1873 // minimum difference between the two. The minimum distance may occur due to 1874 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 1875 // the minimum distance between %i and %i + 5 is 3. 1876 APInt MinDiff = E0.Offset - E1.Offset, Wrapped = -MinDiff; 1877 MinDiff = APIntOps::umin(MinDiff, Wrapped); 1878 APInt MinDiffBytes = 1879 MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs(); 1880 1881 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 1882 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 1883 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 1884 // V2Size can fit in the MinDiffBytes gap. 1885 return MinDiffBytes.uge(V1Size + GEP.Offset.abs()) && 1886 MinDiffBytes.uge(V2Size + GEP.Offset.abs()); 1887 } 1888 1889 //===----------------------------------------------------------------------===// 1890 // BasicAliasAnalysis Pass 1891 //===----------------------------------------------------------------------===// 1892 1893 AnalysisKey BasicAA::Key; 1894 1895 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) { 1896 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1897 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1898 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 1899 auto *PV = AM.getCachedResult<PhiValuesAnalysis>(F); 1900 return BasicAAResult(F.getParent()->getDataLayout(), F, TLI, AC, DT, PV); 1901 } 1902 1903 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 1904 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1905 } 1906 1907 char BasicAAWrapperPass::ID = 0; 1908 1909 void BasicAAWrapperPass::anchor() {} 1910 1911 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa", 1912 "Basic Alias Analysis (stateless AA impl)", true, true) 1913 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1914 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1915 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1916 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass) 1917 INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa", 1918 "Basic Alias Analysis (stateless AA impl)", true, true) 1919 1920 FunctionPass *llvm::createBasicAAWrapperPass() { 1921 return new BasicAAWrapperPass(); 1922 } 1923 1924 bool BasicAAWrapperPass::runOnFunction(Function &F) { 1925 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 1926 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 1927 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); 1928 auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>(); 1929 1930 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F, 1931 TLIWP.getTLI(F), ACT.getAssumptionCache(F), 1932 &DTWP.getDomTree(), 1933 PVWP ? &PVWP->getResult() : nullptr)); 1934 1935 return false; 1936 } 1937 1938 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1939 AU.setPreservesAll(); 1940 AU.addRequiredTransitive<AssumptionCacheTracker>(); 1941 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 1942 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 1943 AU.addUsedIfAvailable<PhiValuesWrapperPass>(); 1944 } 1945 1946 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { 1947 return BasicAAResult( 1948 F.getParent()->getDataLayout(), F, 1949 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 1950 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 1951 } 1952