1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the primary stateless implementation of the 11 // Alias Analysis interface that implements identities (two different 12 // globals cannot alias, etc), but does no stateful analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/BasicAliasAnalysis.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/CFG.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/MemoryBuiltins.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Analysis/PhiValues.h" 32 #include "llvm/IR/Argument.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/CallSite.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GetElementPtrTypeIterator.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalVariable.h" 44 #include "llvm/IR/InstrTypes.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/Metadata.h" 50 #include "llvm/IR/Operator.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/User.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/KnownBits.h" 59 #include <cassert> 60 #include <cstdint> 61 #include <cstdlib> 62 #include <utility> 63 64 #define DEBUG_TYPE "basicaa" 65 66 using namespace llvm; 67 68 /// Enable analysis of recursive PHI nodes. 69 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden, 70 cl::init(false)); 71 /// SearchLimitReached / SearchTimes shows how often the limit of 72 /// to decompose GEPs is reached. It will affect the precision 73 /// of basic alias analysis. 74 STATISTIC(SearchLimitReached, "Number of times the limit to " 75 "decompose GEPs is reached"); 76 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 77 78 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 79 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be 80 /// careful with value equivalence. We use reachability to make sure a value 81 /// cannot be involved in a cycle. 82 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 83 84 // The max limit of the search depth in DecomposeGEPExpression() and 85 // GetUnderlyingObject(), both functions need to use the same search 86 // depth otherwise the algorithm in aliasGEP will assert. 87 static const unsigned MaxLookupSearchDepth = 6; 88 89 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA, 90 FunctionAnalysisManager::Invalidator &Inv) { 91 // We don't care if this analysis itself is preserved, it has no state. But 92 // we need to check that the analyses it depends on have been. Note that we 93 // may be created without handles to some analyses and in that case don't 94 // depend on them. 95 if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) || 96 (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) || 97 (LI && Inv.invalidate<LoopAnalysis>(Fn, PA)) || 98 (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA))) 99 return true; 100 101 // Otherwise this analysis result remains valid. 102 return false; 103 } 104 105 //===----------------------------------------------------------------------===// 106 // Useful predicates 107 //===----------------------------------------------------------------------===// 108 109 /// Returns true if the pointer is to a function-local object that never 110 /// escapes from the function. 111 static bool isNonEscapingLocalObject(const Value *V) { 112 // If this is a local allocation, check to see if it escapes. 113 if (isa<AllocaInst>(V) || isNoAliasCall(V)) 114 // Set StoreCaptures to True so that we can assume in our callers that the 115 // pointer is not the result of a load instruction. Currently 116 // PointerMayBeCaptured doesn't have any special analysis for the 117 // StoreCaptures=false case; if it did, our callers could be refined to be 118 // more precise. 119 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 120 121 // If this is an argument that corresponds to a byval or noalias argument, 122 // then it has not escaped before entering the function. Check if it escapes 123 // inside the function. 124 if (const Argument *A = dyn_cast<Argument>(V)) 125 if (A->hasByValAttr() || A->hasNoAliasAttr()) 126 // Note even if the argument is marked nocapture, we still need to check 127 // for copies made inside the function. The nocapture attribute only 128 // specifies that there are no copies made that outlive the function. 129 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 130 131 return false; 132 } 133 134 /// Returns true if the pointer is one which would have been considered an 135 /// escape by isNonEscapingLocalObject. 136 static bool isEscapeSource(const Value *V) { 137 if (ImmutableCallSite(V)) 138 return true; 139 140 if (isa<Argument>(V)) 141 return true; 142 143 // The load case works because isNonEscapingLocalObject considers all 144 // stores to be escapes (it passes true for the StoreCaptures argument 145 // to PointerMayBeCaptured). 146 if (isa<LoadInst>(V)) 147 return true; 148 149 return false; 150 } 151 152 /// Returns the size of the object specified by V or UnknownSize if unknown. 153 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 154 const TargetLibraryInfo &TLI, 155 bool NullIsValidLoc, 156 bool RoundToAlign = false) { 157 uint64_t Size; 158 ObjectSizeOpts Opts; 159 Opts.RoundToAlign = RoundToAlign; 160 Opts.NullIsUnknownSize = NullIsValidLoc; 161 if (getObjectSize(V, Size, DL, &TLI, Opts)) 162 return Size; 163 return MemoryLocation::UnknownSize; 164 } 165 166 /// Returns true if we can prove that the object specified by V is smaller than 167 /// Size. 168 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 169 const DataLayout &DL, 170 const TargetLibraryInfo &TLI, 171 bool NullIsValidLoc) { 172 // Note that the meanings of the "object" are slightly different in the 173 // following contexts: 174 // c1: llvm::getObjectSize() 175 // c2: llvm.objectsize() intrinsic 176 // c3: isObjectSmallerThan() 177 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 178 // refers to the "entire object". 179 // 180 // Consider this example: 181 // char *p = (char*)malloc(100) 182 // char *q = p+80; 183 // 184 // In the context of c1 and c2, the "object" pointed by q refers to the 185 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 186 // 187 // However, in the context of c3, the "object" refers to the chunk of memory 188 // being allocated. So, the "object" has 100 bytes, and q points to the middle 189 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 190 // parameter, before the llvm::getObjectSize() is called to get the size of 191 // entire object, we should: 192 // - either rewind the pointer q to the base-address of the object in 193 // question (in this case rewind to p), or 194 // - just give up. It is up to caller to make sure the pointer is pointing 195 // to the base address the object. 196 // 197 // We go for 2nd option for simplicity. 198 if (!isIdentifiedObject(V)) 199 return false; 200 201 // This function needs to use the aligned object size because we allow 202 // reads a bit past the end given sufficient alignment. 203 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc, 204 /*RoundToAlign*/ true); 205 206 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; 207 } 208 209 /// Returns true if we can prove that the object specified by V has size Size. 210 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, 211 const TargetLibraryInfo &TLI, bool NullIsValidLoc) { 212 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc); 213 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; 214 } 215 216 //===----------------------------------------------------------------------===// 217 // GetElementPtr Instruction Decomposition and Analysis 218 //===----------------------------------------------------------------------===// 219 220 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 221 /// B are constant integers. 222 /// 223 /// Returns the scale and offset values as APInts and return V as a Value*, and 224 /// return whether we looked through any sign or zero extends. The incoming 225 /// Value is known to have IntegerType, and it may already be sign or zero 226 /// extended. 227 /// 228 /// Note that this looks through extends, so the high bits may not be 229 /// represented in the result. 230 /*static*/ const Value *BasicAAResult::GetLinearExpression( 231 const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits, 232 unsigned &SExtBits, const DataLayout &DL, unsigned Depth, 233 AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) { 234 assert(V->getType()->isIntegerTy() && "Not an integer value"); 235 236 // Limit our recursion depth. 237 if (Depth == 6) { 238 Scale = 1; 239 Offset = 0; 240 return V; 241 } 242 243 if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) { 244 // If it's a constant, just convert it to an offset and remove the variable. 245 // If we've been called recursively, the Offset bit width will be greater 246 // than the constant's (the Offset's always as wide as the outermost call), 247 // so we'll zext here and process any extension in the isa<SExtInst> & 248 // isa<ZExtInst> cases below. 249 Offset += Const->getValue().zextOrSelf(Offset.getBitWidth()); 250 assert(Scale == 0 && "Constant values don't have a scale"); 251 return V; 252 } 253 254 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 255 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 256 // If we've been called recursively, then Offset and Scale will be wider 257 // than the BOp operands. We'll always zext it here as we'll process sign 258 // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases). 259 APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth()); 260 261 switch (BOp->getOpcode()) { 262 default: 263 // We don't understand this instruction, so we can't decompose it any 264 // further. 265 Scale = 1; 266 Offset = 0; 267 return V; 268 case Instruction::Or: 269 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 270 // analyze it. 271 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, 272 BOp, DT)) { 273 Scale = 1; 274 Offset = 0; 275 return V; 276 } 277 LLVM_FALLTHROUGH; 278 case Instruction::Add: 279 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 280 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 281 Offset += RHS; 282 break; 283 case Instruction::Sub: 284 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 285 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 286 Offset -= RHS; 287 break; 288 case Instruction::Mul: 289 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 290 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 291 Offset *= RHS; 292 Scale *= RHS; 293 break; 294 case Instruction::Shl: 295 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 296 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 297 298 // We're trying to linearize an expression of the kind: 299 // shl i8 -128, 36 300 // where the shift count exceeds the bitwidth of the type. 301 // We can't decompose this further (the expression would return 302 // a poison value). 303 if (Offset.getBitWidth() < RHS.getLimitedValue() || 304 Scale.getBitWidth() < RHS.getLimitedValue()) { 305 Scale = 1; 306 Offset = 0; 307 return V; 308 } 309 310 Offset <<= RHS.getLimitedValue(); 311 Scale <<= RHS.getLimitedValue(); 312 // the semantics of nsw and nuw for left shifts don't match those of 313 // multiplications, so we won't propagate them. 314 NSW = NUW = false; 315 return V; 316 } 317 318 if (isa<OverflowingBinaryOperator>(BOp)) { 319 NUW &= BOp->hasNoUnsignedWrap(); 320 NSW &= BOp->hasNoSignedWrap(); 321 } 322 return V; 323 } 324 } 325 326 // Since GEP indices are sign extended anyway, we don't care about the high 327 // bits of a sign or zero extended value - just scales and offsets. The 328 // extensions have to be consistent though. 329 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) { 330 Value *CastOp = cast<CastInst>(V)->getOperand(0); 331 unsigned NewWidth = V->getType()->getPrimitiveSizeInBits(); 332 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 333 unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits; 334 const Value *Result = 335 GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL, 336 Depth + 1, AC, DT, NSW, NUW); 337 338 // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this 339 // by just incrementing the number of bits we've extended by. 340 unsigned ExtendedBy = NewWidth - SmallWidth; 341 342 if (isa<SExtInst>(V) && ZExtBits == 0) { 343 // sext(sext(%x, a), b) == sext(%x, a + b) 344 345 if (NSW) { 346 // We haven't sign-wrapped, so it's valid to decompose sext(%x + c) 347 // into sext(%x) + sext(c). We'll sext the Offset ourselves: 348 unsigned OldWidth = Offset.getBitWidth(); 349 Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth); 350 } else { 351 // We may have signed-wrapped, so don't decompose sext(%x + c) into 352 // sext(%x) + sext(c) 353 Scale = 1; 354 Offset = 0; 355 Result = CastOp; 356 ZExtBits = OldZExtBits; 357 SExtBits = OldSExtBits; 358 } 359 SExtBits += ExtendedBy; 360 } else { 361 // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b) 362 363 if (!NUW) { 364 // We may have unsigned-wrapped, so don't decompose zext(%x + c) into 365 // zext(%x) + zext(c) 366 Scale = 1; 367 Offset = 0; 368 Result = CastOp; 369 ZExtBits = OldZExtBits; 370 SExtBits = OldSExtBits; 371 } 372 ZExtBits += ExtendedBy; 373 } 374 375 return Result; 376 } 377 378 Scale = 1; 379 Offset = 0; 380 return V; 381 } 382 383 /// To ensure a pointer offset fits in an integer of size PointerSize 384 /// (in bits) when that size is smaller than 64. This is an issue in 385 /// particular for 32b programs with negative indices that rely on two's 386 /// complement wrap-arounds for precise alias information. 387 static int64_t adjustToPointerSize(int64_t Offset, unsigned PointerSize) { 388 assert(PointerSize <= 64 && "Invalid PointerSize!"); 389 unsigned ShiftBits = 64 - PointerSize; 390 return (int64_t)((uint64_t)Offset << ShiftBits) >> ShiftBits; 391 } 392 393 /// If V is a symbolic pointer expression, decompose it into a base pointer 394 /// with a constant offset and a number of scaled symbolic offsets. 395 /// 396 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 397 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 398 /// specified amount, but which may have other unrepresented high bits. As 399 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 400 /// 401 /// When DataLayout is around, this function is capable of analyzing everything 402 /// that GetUnderlyingObject can look through. To be able to do that 403 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search 404 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks 405 /// through pointer casts. 406 bool BasicAAResult::DecomposeGEPExpression(const Value *V, 407 DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC, 408 DominatorTree *DT) { 409 // Limit recursion depth to limit compile time in crazy cases. 410 unsigned MaxLookup = MaxLookupSearchDepth; 411 SearchTimes++; 412 413 Decomposed.StructOffset = 0; 414 Decomposed.OtherOffset = 0; 415 Decomposed.VarIndices.clear(); 416 do { 417 // See if this is a bitcast or GEP. 418 const Operator *Op = dyn_cast<Operator>(V); 419 if (!Op) { 420 // The only non-operator case we can handle are GlobalAliases. 421 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 422 if (!GA->isInterposable()) { 423 V = GA->getAliasee(); 424 continue; 425 } 426 } 427 Decomposed.Base = V; 428 return false; 429 } 430 431 if (Op->getOpcode() == Instruction::BitCast || 432 Op->getOpcode() == Instruction::AddrSpaceCast) { 433 V = Op->getOperand(0); 434 continue; 435 } 436 437 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 438 if (!GEPOp) { 439 if (auto CS = ImmutableCallSite(V)) { 440 // CaptureTracking can know about special capturing properties of some 441 // intrinsics like launder.invariant.group, that can't be expressed with 442 // the attributes, but have properties like returning aliasing pointer. 443 // Because some analysis may assume that nocaptured pointer is not 444 // returned from some special intrinsic (because function would have to 445 // be marked with returns attribute), it is crucial to use this function 446 // because it should be in sync with CaptureTracking. Not using it may 447 // cause weird miscompilations where 2 aliasing pointers are assumed to 448 // noalias. 449 if (auto *RP = getArgumentAliasingToReturnedPointer(CS)) { 450 V = RP; 451 continue; 452 } 453 } 454 455 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 456 // can come up with something. This matches what GetUnderlyingObject does. 457 if (const Instruction *I = dyn_cast<Instruction>(V)) 458 // TODO: Get a DominatorTree and AssumptionCache and use them here 459 // (these are both now available in this function, but this should be 460 // updated when GetUnderlyingObject is updated). TLI should be 461 // provided also. 462 if (const Value *Simplified = 463 SimplifyInstruction(const_cast<Instruction *>(I), DL)) { 464 V = Simplified; 465 continue; 466 } 467 468 Decomposed.Base = V; 469 return false; 470 } 471 472 // Don't attempt to analyze GEPs over unsized objects. 473 if (!GEPOp->getSourceElementType()->isSized()) { 474 Decomposed.Base = V; 475 return false; 476 } 477 478 unsigned AS = GEPOp->getPointerAddressSpace(); 479 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 480 gep_type_iterator GTI = gep_type_begin(GEPOp); 481 unsigned PointerSize = DL.getPointerSizeInBits(AS); 482 // Assume all GEP operands are constants until proven otherwise. 483 bool GepHasConstantOffset = true; 484 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 485 I != E; ++I, ++GTI) { 486 const Value *Index = *I; 487 // Compute the (potentially symbolic) offset in bytes for this index. 488 if (StructType *STy = GTI.getStructTypeOrNull()) { 489 // For a struct, add the member offset. 490 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 491 if (FieldNo == 0) 492 continue; 493 494 Decomposed.StructOffset += 495 DL.getStructLayout(STy)->getElementOffset(FieldNo); 496 continue; 497 } 498 499 // For an array/pointer, add the element offset, explicitly scaled. 500 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 501 if (CIdx->isZero()) 502 continue; 503 Decomposed.OtherOffset += 504 DL.getTypeAllocSize(GTI.getIndexedType()) * CIdx->getSExtValue(); 505 continue; 506 } 507 508 GepHasConstantOffset = false; 509 510 uint64_t Scale = DL.getTypeAllocSize(GTI.getIndexedType()); 511 unsigned ZExtBits = 0, SExtBits = 0; 512 513 // If the integer type is smaller than the pointer size, it is implicitly 514 // sign extended to pointer size. 515 unsigned Width = Index->getType()->getIntegerBitWidth(); 516 if (PointerSize > Width) 517 SExtBits += PointerSize - Width; 518 519 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 520 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 521 bool NSW = true, NUW = true; 522 Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits, 523 SExtBits, DL, 0, AC, DT, NSW, NUW); 524 525 // All GEP math happens in the width of the pointer type, 526 // so we can truncate the value to 64-bits as we don't handle 527 // currently pointers larger than 64 bits and we would crash 528 // later. TODO: Make `Scale` an APInt to avoid this problem. 529 if (IndexScale.getBitWidth() > 64) 530 IndexScale = IndexScale.sextOrTrunc(64); 531 532 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 533 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 534 Decomposed.OtherOffset += IndexOffset.getSExtValue() * Scale; 535 Scale *= IndexScale.getSExtValue(); 536 537 // If we already had an occurrence of this index variable, merge this 538 // scale into it. For example, we want to handle: 539 // A[x][x] -> x*16 + x*4 -> x*20 540 // This also ensures that 'x' only appears in the index list once. 541 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { 542 if (Decomposed.VarIndices[i].V == Index && 543 Decomposed.VarIndices[i].ZExtBits == ZExtBits && 544 Decomposed.VarIndices[i].SExtBits == SExtBits) { 545 Scale += Decomposed.VarIndices[i].Scale; 546 Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i); 547 break; 548 } 549 } 550 551 // Make sure that we have a scale that makes sense for this target's 552 // pointer size. 553 Scale = adjustToPointerSize(Scale, PointerSize); 554 555 if (Scale) { 556 VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, 557 static_cast<int64_t>(Scale)}; 558 Decomposed.VarIndices.push_back(Entry); 559 } 560 } 561 562 // Take care of wrap-arounds 563 if (GepHasConstantOffset) { 564 Decomposed.StructOffset = 565 adjustToPointerSize(Decomposed.StructOffset, PointerSize); 566 Decomposed.OtherOffset = 567 adjustToPointerSize(Decomposed.OtherOffset, PointerSize); 568 } 569 570 // Analyze the base pointer next. 571 V = GEPOp->getOperand(0); 572 } while (--MaxLookup); 573 574 // If the chain of expressions is too deep, just return early. 575 Decomposed.Base = V; 576 SearchLimitReached++; 577 return true; 578 } 579 580 /// Returns whether the given pointer value points to memory that is local to 581 /// the function, with global constants being considered local to all 582 /// functions. 583 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc, 584 bool OrLocal) { 585 assert(Visited.empty() && "Visited must be cleared after use!"); 586 587 unsigned MaxLookup = 8; 588 SmallVector<const Value *, 16> Worklist; 589 Worklist.push_back(Loc.Ptr); 590 do { 591 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL); 592 if (!Visited.insert(V).second) { 593 Visited.clear(); 594 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 595 } 596 597 // An alloca instruction defines local memory. 598 if (OrLocal && isa<AllocaInst>(V)) 599 continue; 600 601 // A global constant counts as local memory for our purposes. 602 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 603 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 604 // global to be marked constant in some modules and non-constant in 605 // others. GV may even be a declaration, not a definition. 606 if (!GV->isConstant()) { 607 Visited.clear(); 608 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 609 } 610 continue; 611 } 612 613 // If both select values point to local memory, then so does the select. 614 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 615 Worklist.push_back(SI->getTrueValue()); 616 Worklist.push_back(SI->getFalseValue()); 617 continue; 618 } 619 620 // If all values incoming to a phi node point to local memory, then so does 621 // the phi. 622 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 623 // Don't bother inspecting phi nodes with many operands. 624 if (PN->getNumIncomingValues() > MaxLookup) { 625 Visited.clear(); 626 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 627 } 628 for (Value *IncValue : PN->incoming_values()) 629 Worklist.push_back(IncValue); 630 continue; 631 } 632 633 // Otherwise be conservative. 634 Visited.clear(); 635 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 636 } while (!Worklist.empty() && --MaxLookup); 637 638 Visited.clear(); 639 return Worklist.empty(); 640 } 641 642 /// Returns the behavior when calling the given call site. 643 FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) { 644 if (CS.doesNotAccessMemory()) 645 // Can't do better than this. 646 return FMRB_DoesNotAccessMemory; 647 648 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 649 650 // If the callsite knows it only reads memory, don't return worse 651 // than that. 652 if (CS.onlyReadsMemory()) 653 Min = FMRB_OnlyReadsMemory; 654 else if (CS.doesNotReadMemory()) 655 Min = FMRB_DoesNotReadMemory; 656 657 if (CS.onlyAccessesArgMemory()) 658 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 659 else if (CS.onlyAccessesInaccessibleMemory()) 660 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 661 else if (CS.onlyAccessesInaccessibleMemOrArgMem()) 662 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 663 664 // If CS has operand bundles then aliasing attributes from the function it 665 // calls do not directly apply to the CallSite. This can be made more 666 // precise in the future. 667 if (!CS.hasOperandBundles()) 668 if (const Function *F = CS.getCalledFunction()) 669 Min = 670 FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F)); 671 672 return Min; 673 } 674 675 /// Returns the behavior when calling the given function. For use when the call 676 /// site is not known. 677 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) { 678 // If the function declares it doesn't access memory, we can't do better. 679 if (F->doesNotAccessMemory()) 680 return FMRB_DoesNotAccessMemory; 681 682 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 683 684 // If the function declares it only reads memory, go with that. 685 if (F->onlyReadsMemory()) 686 Min = FMRB_OnlyReadsMemory; 687 else if (F->doesNotReadMemory()) 688 Min = FMRB_DoesNotReadMemory; 689 690 if (F->onlyAccessesArgMemory()) 691 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 692 else if (F->onlyAccessesInaccessibleMemory()) 693 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 694 else if (F->onlyAccessesInaccessibleMemOrArgMem()) 695 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 696 697 return Min; 698 } 699 700 /// Returns true if this is a writeonly (i.e Mod only) parameter. 701 static bool isWriteOnlyParam(ImmutableCallSite CS, unsigned ArgIdx, 702 const TargetLibraryInfo &TLI) { 703 if (CS.paramHasAttr(ArgIdx, Attribute::WriteOnly)) 704 return true; 705 706 // We can bound the aliasing properties of memset_pattern16 just as we can 707 // for memcpy/memset. This is particularly important because the 708 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 709 // whenever possible. 710 // FIXME Consider handling this in InferFunctionAttr.cpp together with other 711 // attributes. 712 LibFunc F; 713 if (CS.getCalledFunction() && TLI.getLibFunc(*CS.getCalledFunction(), F) && 714 F == LibFunc_memset_pattern16 && TLI.has(F)) 715 if (ArgIdx == 0) 716 return true; 717 718 // TODO: memset_pattern4, memset_pattern8 719 // TODO: _chk variants 720 // TODO: strcmp, strcpy 721 722 return false; 723 } 724 725 ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS, 726 unsigned ArgIdx) { 727 // Checking for known builtin intrinsics and target library functions. 728 if (isWriteOnlyParam(CS, ArgIdx, TLI)) 729 return ModRefInfo::Mod; 730 731 if (CS.paramHasAttr(ArgIdx, Attribute::ReadOnly)) 732 return ModRefInfo::Ref; 733 734 if (CS.paramHasAttr(ArgIdx, Attribute::ReadNone)) 735 return ModRefInfo::NoModRef; 736 737 return AAResultBase::getArgModRefInfo(CS, ArgIdx); 738 } 739 740 static bool isIntrinsicCall(ImmutableCallSite CS, Intrinsic::ID IID) { 741 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 742 return II && II->getIntrinsicID() == IID; 743 } 744 745 #ifndef NDEBUG 746 static const Function *getParent(const Value *V) { 747 if (const Instruction *inst = dyn_cast<Instruction>(V)) { 748 if (!inst->getParent()) 749 return nullptr; 750 return inst->getParent()->getParent(); 751 } 752 753 if (const Argument *arg = dyn_cast<Argument>(V)) 754 return arg->getParent(); 755 756 return nullptr; 757 } 758 759 static bool notDifferentParent(const Value *O1, const Value *O2) { 760 761 const Function *F1 = getParent(O1); 762 const Function *F2 = getParent(O2); 763 764 return !F1 || !F2 || F1 == F2; 765 } 766 #endif 767 768 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 769 const MemoryLocation &LocB) { 770 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 771 "BasicAliasAnalysis doesn't support interprocedural queries."); 772 773 // If we have a directly cached entry for these locations, we have recursed 774 // through this once, so just return the cached results. Notably, when this 775 // happens, we don't clear the cache. 776 auto CacheIt = AliasCache.find(LocPair(LocA, LocB)); 777 if (CacheIt != AliasCache.end()) 778 return CacheIt->second; 779 780 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr, 781 LocB.Size, LocB.AATags); 782 // AliasCache rarely has more than 1 or 2 elements, always use 783 // shrink_and_clear so it quickly returns to the inline capacity of the 784 // SmallDenseMap if it ever grows larger. 785 // FIXME: This should really be shrink_to_inline_capacity_and_clear(). 786 AliasCache.shrink_and_clear(); 787 VisitedPhiBBs.clear(); 788 return Alias; 789 } 790 791 /// Checks to see if the specified callsite can clobber the specified memory 792 /// object. 793 /// 794 /// Since we only look at local properties of this function, we really can't 795 /// say much about this query. We do, however, use simple "address taken" 796 /// analysis on local objects. 797 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS, 798 const MemoryLocation &Loc) { 799 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && 800 "AliasAnalysis query involving multiple functions!"); 801 802 const Value *Object = GetUnderlyingObject(Loc.Ptr, DL); 803 804 // If this is a tail call and Loc.Ptr points to a stack location, we know that 805 // the tail call cannot access or modify the local stack. 806 // We cannot exclude byval arguments here; these belong to the caller of 807 // the current function not to the current function, and a tail callee 808 // may reference them. 809 if (isa<AllocaInst>(Object)) 810 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) 811 if (CI->isTailCall()) 812 return ModRefInfo::NoModRef; 813 814 // If the pointer is to a locally allocated object that does not escape, 815 // then the call can not mod/ref the pointer unless the call takes the pointer 816 // as an argument, and itself doesn't capture it. 817 if (!isa<Constant>(Object) && CS.getInstruction() != Object && 818 isNonEscapingLocalObject(Object)) { 819 820 // Optimistically assume that call doesn't touch Object and check this 821 // assumption in the following loop. 822 ModRefInfo Result = ModRefInfo::NoModRef; 823 bool IsMustAlias = true; 824 825 unsigned OperandNo = 0; 826 for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end(); 827 CI != CE; ++CI, ++OperandNo) { 828 // Only look at the no-capture or byval pointer arguments. If this 829 // pointer were passed to arguments that were neither of these, then it 830 // couldn't be no-capture. 831 if (!(*CI)->getType()->isPointerTy() || 832 (!CS.doesNotCapture(OperandNo) && 833 OperandNo < CS.getNumArgOperands() && !CS.isByValArgument(OperandNo))) 834 continue; 835 836 // Call doesn't access memory through this operand, so we don't care 837 // if it aliases with Object. 838 if (CS.doesNotAccessMemory(OperandNo)) 839 continue; 840 841 // If this is a no-capture pointer argument, see if we can tell that it 842 // is impossible to alias the pointer we're checking. 843 AliasResult AR = 844 getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object)); 845 if (AR != MustAlias) 846 IsMustAlias = false; 847 // Operand doesnt alias 'Object', continue looking for other aliases 848 if (AR == NoAlias) 849 continue; 850 // Operand aliases 'Object', but call doesn't modify it. Strengthen 851 // initial assumption and keep looking in case if there are more aliases. 852 if (CS.onlyReadsMemory(OperandNo)) { 853 Result = setRef(Result); 854 continue; 855 } 856 // Operand aliases 'Object' but call only writes into it. 857 if (CS.doesNotReadMemory(OperandNo)) { 858 Result = setMod(Result); 859 continue; 860 } 861 // This operand aliases 'Object' and call reads and writes into it. 862 // Setting ModRef will not yield an early return below, MustAlias is not 863 // used further. 864 Result = ModRefInfo::ModRef; 865 break; 866 } 867 868 // No operand aliases, reset Must bit. Add below if at least one aliases 869 // and all aliases found are MustAlias. 870 if (isNoModRef(Result)) 871 IsMustAlias = false; 872 873 // Early return if we improved mod ref information 874 if (!isModAndRefSet(Result)) { 875 if (isNoModRef(Result)) 876 return ModRefInfo::NoModRef; 877 return IsMustAlias ? setMust(Result) : clearMust(Result); 878 } 879 } 880 881 // If the CallSite is to malloc or calloc, we can assume that it doesn't 882 // modify any IR visible value. This is only valid because we assume these 883 // routines do not read values visible in the IR. TODO: Consider special 884 // casing realloc and strdup routines which access only their arguments as 885 // well. Or alternatively, replace all of this with inaccessiblememonly once 886 // that's implemented fully. 887 auto *Inst = CS.getInstruction(); 888 if (isMallocOrCallocLikeFn(Inst, &TLI)) { 889 // Be conservative if the accessed pointer may alias the allocation - 890 // fallback to the generic handling below. 891 if (getBestAAResults().alias(MemoryLocation(Inst), Loc) == NoAlias) 892 return ModRefInfo::NoModRef; 893 } 894 895 // The semantics of memcpy intrinsics forbid overlap between their respective 896 // operands, i.e., source and destination of any given memcpy must no-alias. 897 // If Loc must-aliases either one of these two locations, then it necessarily 898 // no-aliases the other. 899 if (auto *Inst = dyn_cast<AnyMemCpyInst>(CS.getInstruction())) { 900 AliasResult SrcAA, DestAA; 901 902 if ((SrcAA = getBestAAResults().alias(MemoryLocation::getForSource(Inst), 903 Loc)) == MustAlias) 904 // Loc is exactly the memcpy source thus disjoint from memcpy dest. 905 return ModRefInfo::Ref; 906 if ((DestAA = getBestAAResults().alias(MemoryLocation::getForDest(Inst), 907 Loc)) == MustAlias) 908 // The converse case. 909 return ModRefInfo::Mod; 910 911 // It's also possible for Loc to alias both src and dest, or neither. 912 ModRefInfo rv = ModRefInfo::NoModRef; 913 if (SrcAA != NoAlias) 914 rv = setRef(rv); 915 if (DestAA != NoAlias) 916 rv = setMod(rv); 917 return rv; 918 } 919 920 // While the assume intrinsic is marked as arbitrarily writing so that 921 // proper control dependencies will be maintained, it never aliases any 922 // particular memory location. 923 if (isIntrinsicCall(CS, Intrinsic::assume)) 924 return ModRefInfo::NoModRef; 925 926 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 927 // that proper control dependencies are maintained but they never mods any 928 // particular memory location. 929 // 930 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 931 // heap state at the point the guard is issued needs to be consistent in case 932 // the guard invokes the "deopt" continuation. 933 if (isIntrinsicCall(CS, Intrinsic::experimental_guard)) 934 return ModRefInfo::Ref; 935 936 // Like assumes, invariant.start intrinsics were also marked as arbitrarily 937 // writing so that proper control dependencies are maintained but they never 938 // mod any particular memory location visible to the IR. 939 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start 940 // intrinsic is now modeled as reading memory. This prevents hoisting the 941 // invariant.start intrinsic over stores. Consider: 942 // *ptr = 40; 943 // *ptr = 50; 944 // invariant_start(ptr) 945 // int val = *ptr; 946 // print(val); 947 // 948 // This cannot be transformed to: 949 // 950 // *ptr = 40; 951 // invariant_start(ptr) 952 // *ptr = 50; 953 // int val = *ptr; 954 // print(val); 955 // 956 // The transformation will cause the second store to be ignored (based on 957 // rules of invariant.start) and print 40, while the first program always 958 // prints 50. 959 if (isIntrinsicCall(CS, Intrinsic::invariant_start)) 960 return ModRefInfo::Ref; 961 962 // The AAResultBase base class has some smarts, lets use them. 963 return AAResultBase::getModRefInfo(CS, Loc); 964 } 965 966 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1, 967 ImmutableCallSite CS2) { 968 // While the assume intrinsic is marked as arbitrarily writing so that 969 // proper control dependencies will be maintained, it never aliases any 970 // particular memory location. 971 if (isIntrinsicCall(CS1, Intrinsic::assume) || 972 isIntrinsicCall(CS2, Intrinsic::assume)) 973 return ModRefInfo::NoModRef; 974 975 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 976 // that proper control dependencies are maintained but they never mod any 977 // particular memory location. 978 // 979 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 980 // heap state at the point the guard is issued needs to be consistent in case 981 // the guard invokes the "deopt" continuation. 982 983 // NB! This function is *not* commutative, so we specical case two 984 // possibilities for guard intrinsics. 985 986 if (isIntrinsicCall(CS1, Intrinsic::experimental_guard)) 987 return isModSet(createModRefInfo(getModRefBehavior(CS2))) 988 ? ModRefInfo::Ref 989 : ModRefInfo::NoModRef; 990 991 if (isIntrinsicCall(CS2, Intrinsic::experimental_guard)) 992 return isModSet(createModRefInfo(getModRefBehavior(CS1))) 993 ? ModRefInfo::Mod 994 : ModRefInfo::NoModRef; 995 996 // The AAResultBase base class has some smarts, lets use them. 997 return AAResultBase::getModRefInfo(CS1, CS2); 998 } 999 1000 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators, 1001 /// both having the exact same pointer operand. 1002 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1, 1003 LocationSize V1Size, 1004 const GEPOperator *GEP2, 1005 LocationSize V2Size, 1006 const DataLayout &DL) { 1007 assert(GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() == 1008 GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() && 1009 GEP1->getPointerOperandType() == GEP2->getPointerOperandType() && 1010 "Expected GEPs with the same pointer operand"); 1011 1012 // Try to determine whether GEP1 and GEP2 index through arrays, into structs, 1013 // such that the struct field accesses provably cannot alias. 1014 // We also need at least two indices (the pointer, and the struct field). 1015 if (GEP1->getNumIndices() != GEP2->getNumIndices() || 1016 GEP1->getNumIndices() < 2) 1017 return MayAlias; 1018 1019 // If we don't know the size of the accesses through both GEPs, we can't 1020 // determine whether the struct fields accessed can't alias. 1021 if (V1Size == MemoryLocation::UnknownSize || 1022 V2Size == MemoryLocation::UnknownSize) 1023 return MayAlias; 1024 1025 ConstantInt *C1 = 1026 dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1)); 1027 ConstantInt *C2 = 1028 dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1)); 1029 1030 // If the last (struct) indices are constants and are equal, the other indices 1031 // might be also be dynamically equal, so the GEPs can alias. 1032 if (C1 && C2 && C1->getSExtValue() == C2->getSExtValue()) 1033 return MayAlias; 1034 1035 // Find the last-indexed type of the GEP, i.e., the type you'd get if 1036 // you stripped the last index. 1037 // On the way, look at each indexed type. If there's something other 1038 // than an array, different indices can lead to different final types. 1039 SmallVector<Value *, 8> IntermediateIndices; 1040 1041 // Insert the first index; we don't need to check the type indexed 1042 // through it as it only drops the pointer indirection. 1043 assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine"); 1044 IntermediateIndices.push_back(GEP1->getOperand(1)); 1045 1046 // Insert all the remaining indices but the last one. 1047 // Also, check that they all index through arrays. 1048 for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) { 1049 if (!isa<ArrayType>(GetElementPtrInst::getIndexedType( 1050 GEP1->getSourceElementType(), IntermediateIndices))) 1051 return MayAlias; 1052 IntermediateIndices.push_back(GEP1->getOperand(i + 1)); 1053 } 1054 1055 auto *Ty = GetElementPtrInst::getIndexedType( 1056 GEP1->getSourceElementType(), IntermediateIndices); 1057 StructType *LastIndexedStruct = dyn_cast<StructType>(Ty); 1058 1059 if (isa<SequentialType>(Ty)) { 1060 // We know that: 1061 // - both GEPs begin indexing from the exact same pointer; 1062 // - the last indices in both GEPs are constants, indexing into a sequential 1063 // type (array or pointer); 1064 // - both GEPs only index through arrays prior to that. 1065 // 1066 // Because array indices greater than the number of elements are valid in 1067 // GEPs, unless we know the intermediate indices are identical between 1068 // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't 1069 // partially overlap. We also need to check that the loaded size matches 1070 // the element size, otherwise we could still have overlap. 1071 const uint64_t ElementSize = 1072 DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType()); 1073 if (V1Size != ElementSize || V2Size != ElementSize) 1074 return MayAlias; 1075 1076 for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i) 1077 if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1)) 1078 return MayAlias; 1079 1080 // Now we know that the array/pointer that GEP1 indexes into and that 1081 // that GEP2 indexes into must either precisely overlap or be disjoint. 1082 // Because they cannot partially overlap and because fields in an array 1083 // cannot overlap, if we can prove the final indices are different between 1084 // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias. 1085 1086 // If the last indices are constants, we've already checked they don't 1087 // equal each other so we can exit early. 1088 if (C1 && C2) 1089 return NoAlias; 1090 { 1091 Value *GEP1LastIdx = GEP1->getOperand(GEP1->getNumOperands() - 1); 1092 Value *GEP2LastIdx = GEP2->getOperand(GEP2->getNumOperands() - 1); 1093 if (isa<PHINode>(GEP1LastIdx) || isa<PHINode>(GEP2LastIdx)) { 1094 // If one of the indices is a PHI node, be safe and only use 1095 // computeKnownBits so we don't make any assumptions about the 1096 // relationships between the two indices. This is important if we're 1097 // asking about values from different loop iterations. See PR32314. 1098 // TODO: We may be able to change the check so we only do this when 1099 // we definitely looked through a PHINode. 1100 if (GEP1LastIdx != GEP2LastIdx && 1101 GEP1LastIdx->getType() == GEP2LastIdx->getType()) { 1102 KnownBits Known1 = computeKnownBits(GEP1LastIdx, DL); 1103 KnownBits Known2 = computeKnownBits(GEP2LastIdx, DL); 1104 if (Known1.Zero.intersects(Known2.One) || 1105 Known1.One.intersects(Known2.Zero)) 1106 return NoAlias; 1107 } 1108 } else if (isKnownNonEqual(GEP1LastIdx, GEP2LastIdx, DL)) 1109 return NoAlias; 1110 } 1111 return MayAlias; 1112 } else if (!LastIndexedStruct || !C1 || !C2) { 1113 return MayAlias; 1114 } 1115 1116 // We know that: 1117 // - both GEPs begin indexing from the exact same pointer; 1118 // - the last indices in both GEPs are constants, indexing into a struct; 1119 // - said indices are different, hence, the pointed-to fields are different; 1120 // - both GEPs only index through arrays prior to that. 1121 // 1122 // This lets us determine that the struct that GEP1 indexes into and the 1123 // struct that GEP2 indexes into must either precisely overlap or be 1124 // completely disjoint. Because they cannot partially overlap, indexing into 1125 // different non-overlapping fields of the struct will never alias. 1126 1127 // Therefore, the only remaining thing needed to show that both GEPs can't 1128 // alias is that the fields are not overlapping. 1129 const StructLayout *SL = DL.getStructLayout(LastIndexedStruct); 1130 const uint64_t StructSize = SL->getSizeInBytes(); 1131 const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue()); 1132 const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue()); 1133 1134 auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size, 1135 uint64_t V2Off, uint64_t V2Size) { 1136 return V1Off < V2Off && V1Off + V1Size <= V2Off && 1137 ((V2Off + V2Size <= StructSize) || 1138 (V2Off + V2Size - StructSize <= V1Off)); 1139 }; 1140 1141 if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) || 1142 EltsDontOverlap(V2Off, V2Size, V1Off, V1Size)) 1143 return NoAlias; 1144 1145 return MayAlias; 1146 } 1147 1148 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the 1149 // beginning of the object the GEP points would have a negative offset with 1150 // repsect to the alloca, that means the GEP can not alias pointer (b). 1151 // Note that the pointer based on the alloca may not be a GEP. For 1152 // example, it may be the alloca itself. 1153 // The same applies if (b) is based on a GlobalVariable. Note that just being 1154 // based on isIdentifiedObject() is not enough - we need an identified object 1155 // that does not permit access to negative offsets. For example, a negative 1156 // offset from a noalias argument or call can be inbounds w.r.t the actual 1157 // underlying object. 1158 // 1159 // For example, consider: 1160 // 1161 // struct { int f0, int f1, ...} foo; 1162 // foo alloca; 1163 // foo* random = bar(alloca); 1164 // int *f0 = &alloca.f0 1165 // int *f1 = &random->f1; 1166 // 1167 // Which is lowered, approximately, to: 1168 // 1169 // %alloca = alloca %struct.foo 1170 // %random = call %struct.foo* @random(%struct.foo* %alloca) 1171 // %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0 1172 // %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1 1173 // 1174 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated 1175 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also 1176 // point into the same object. But since %f0 points to the beginning of %alloca, 1177 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher 1178 // than (%alloca - 1), and so is not inbounds, a contradiction. 1179 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp, 1180 const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject, 1181 LocationSize ObjectAccessSize) { 1182 // If the object access size is unknown, or the GEP isn't inbounds, bail. 1183 if (ObjectAccessSize == MemoryLocation::UnknownSize || !GEPOp->isInBounds()) 1184 return false; 1185 1186 // We need the object to be an alloca or a globalvariable, and want to know 1187 // the offset of the pointer from the object precisely, so no variable 1188 // indices are allowed. 1189 if (!(isa<AllocaInst>(DecompObject.Base) || 1190 isa<GlobalVariable>(DecompObject.Base)) || 1191 !DecompObject.VarIndices.empty()) 1192 return false; 1193 1194 int64_t ObjectBaseOffset = DecompObject.StructOffset + 1195 DecompObject.OtherOffset; 1196 1197 // If the GEP has no variable indices, we know the precise offset 1198 // from the base, then use it. If the GEP has variable indices, 1199 // we can't get exact GEP offset to identify pointer alias. So return 1200 // false in that case. 1201 if (!DecompGEP.VarIndices.empty()) 1202 return false; 1203 int64_t GEPBaseOffset = DecompGEP.StructOffset; 1204 GEPBaseOffset += DecompGEP.OtherOffset; 1205 1206 return (GEPBaseOffset >= ObjectBaseOffset + (int64_t)ObjectAccessSize); 1207 } 1208 1209 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 1210 /// another pointer. 1211 /// 1212 /// We know that V1 is a GEP, but we don't know anything about V2. 1213 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for 1214 /// V2. 1215 AliasResult 1216 BasicAAResult::aliasGEP(const GEPOperator *GEP1, LocationSize V1Size, 1217 const AAMDNodes &V1AAInfo, const Value *V2, 1218 LocationSize V2Size, const AAMDNodes &V2AAInfo, 1219 const Value *UnderlyingV1, const Value *UnderlyingV2) { 1220 DecomposedGEP DecompGEP1, DecompGEP2; 1221 bool GEP1MaxLookupReached = 1222 DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT); 1223 bool GEP2MaxLookupReached = 1224 DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT); 1225 1226 int64_t GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset; 1227 int64_t GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset; 1228 1229 assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 && 1230 "DecomposeGEPExpression returned a result different from " 1231 "GetUnderlyingObject"); 1232 1233 // If the GEP's offset relative to its base is such that the base would 1234 // fall below the start of the object underlying V2, then the GEP and V2 1235 // cannot alias. 1236 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1237 isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size)) 1238 return NoAlias; 1239 // If we have two gep instructions with must-alias or not-alias'ing base 1240 // pointers, figure out if the indexes to the GEP tell us anything about the 1241 // derived pointer. 1242 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 1243 // Check for the GEP base being at a negative offset, this time in the other 1244 // direction. 1245 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1246 isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size)) 1247 return NoAlias; 1248 // Do the base pointers alias? 1249 AliasResult BaseAlias = 1250 aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(), 1251 UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes()); 1252 1253 // Check for geps of non-aliasing underlying pointers where the offsets are 1254 // identical. 1255 if ((BaseAlias == MayAlias) && V1Size == V2Size) { 1256 // Do the base pointers alias assuming type and size. 1257 AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo, 1258 UnderlyingV2, V2Size, V2AAInfo); 1259 if (PreciseBaseAlias == NoAlias) { 1260 // See if the computed offset from the common pointer tells us about the 1261 // relation of the resulting pointer. 1262 // If the max search depth is reached the result is undefined 1263 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1264 return MayAlias; 1265 1266 // Same offsets. 1267 if (GEP1BaseOffset == GEP2BaseOffset && 1268 DecompGEP1.VarIndices == DecompGEP2.VarIndices) 1269 return NoAlias; 1270 } 1271 } 1272 1273 // If we get a No or May, then return it immediately, no amount of analysis 1274 // will improve this situation. 1275 if (BaseAlias != MustAlias) { 1276 assert(BaseAlias == NoAlias || BaseAlias == MayAlias); 1277 return BaseAlias; 1278 } 1279 1280 // Otherwise, we have a MustAlias. Since the base pointers alias each other 1281 // exactly, see if the computed offset from the common pointer tells us 1282 // about the relation of the resulting pointer. 1283 // If we know the two GEPs are based off of the exact same pointer (and not 1284 // just the same underlying object), see if that tells us anything about 1285 // the resulting pointers. 1286 if (GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() == 1287 GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() && 1288 GEP1->getPointerOperandType() == GEP2->getPointerOperandType()) { 1289 AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL); 1290 // If we couldn't find anything interesting, don't abandon just yet. 1291 if (R != MayAlias) 1292 return R; 1293 } 1294 1295 // If the max search depth is reached, the result is undefined 1296 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1297 return MayAlias; 1298 1299 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1300 // symbolic difference. 1301 GEP1BaseOffset -= GEP2BaseOffset; 1302 GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices); 1303 1304 } else { 1305 // Check to see if these two pointers are related by the getelementptr 1306 // instruction. If one pointer is a GEP with a non-zero index of the other 1307 // pointer, we know they cannot alias. 1308 1309 // If both accesses are unknown size, we can't do anything useful here. 1310 if (V1Size == MemoryLocation::UnknownSize && 1311 V2Size == MemoryLocation::UnknownSize) 1312 return MayAlias; 1313 1314 AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, 1315 AAMDNodes(), V2, MemoryLocation::UnknownSize, 1316 V2AAInfo, nullptr, UnderlyingV2); 1317 if (R != MustAlias) { 1318 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 1319 // If V2 is known not to alias GEP base pointer, then the two values 1320 // cannot alias per GEP semantics: "Any memory access must be done through 1321 // a pointer value associated with an address range of the memory access, 1322 // otherwise the behavior is undefined.". 1323 assert(R == NoAlias || R == MayAlias); 1324 return R; 1325 } 1326 1327 // If the max search depth is reached the result is undefined 1328 if (GEP1MaxLookupReached) 1329 return MayAlias; 1330 } 1331 1332 // In the two GEP Case, if there is no difference in the offsets of the 1333 // computed pointers, the resultant pointers are a must alias. This 1334 // happens when we have two lexically identical GEP's (for example). 1335 // 1336 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 1337 // must aliases the GEP, the end result is a must alias also. 1338 if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty()) 1339 return MustAlias; 1340 1341 // If there is a constant difference between the pointers, but the difference 1342 // is less than the size of the associated memory object, then we know 1343 // that the objects are partially overlapping. If the difference is 1344 // greater, we know they do not overlap. 1345 if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) { 1346 if (GEP1BaseOffset >= 0) { 1347 if (V2Size != MemoryLocation::UnknownSize) { 1348 if ((uint64_t)GEP1BaseOffset < V2Size) 1349 return PartialAlias; 1350 return NoAlias; 1351 } 1352 } else { 1353 // We have the situation where: 1354 // + + 1355 // | BaseOffset | 1356 // ---------------->| 1357 // |-->V1Size |-------> V2Size 1358 // GEP1 V2 1359 // We need to know that V2Size is not unknown, otherwise we might have 1360 // stripped a gep with negative index ('gep <ptr>, -1, ...). 1361 if (V1Size != MemoryLocation::UnknownSize && 1362 V2Size != MemoryLocation::UnknownSize) { 1363 if (-(uint64_t)GEP1BaseOffset < V1Size) 1364 return PartialAlias; 1365 return NoAlias; 1366 } 1367 } 1368 } 1369 1370 if (!DecompGEP1.VarIndices.empty()) { 1371 uint64_t Modulo = 0; 1372 bool AllPositive = true; 1373 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { 1374 1375 // Try to distinguish something like &A[i][1] against &A[42][0]. 1376 // Grab the least significant bit set in any of the scales. We 1377 // don't need std::abs here (even if the scale's negative) as we'll 1378 // be ^'ing Modulo with itself later. 1379 Modulo |= (uint64_t)DecompGEP1.VarIndices[i].Scale; 1380 1381 if (AllPositive) { 1382 // If the Value could change between cycles, then any reasoning about 1383 // the Value this cycle may not hold in the next cycle. We'll just 1384 // give up if we can't determine conditions that hold for every cycle: 1385 const Value *V = DecompGEP1.VarIndices[i].V; 1386 1387 KnownBits Known = computeKnownBits(V, DL, 0, &AC, nullptr, DT); 1388 bool SignKnownZero = Known.isNonNegative(); 1389 bool SignKnownOne = Known.isNegative(); 1390 1391 // Zero-extension widens the variable, and so forces the sign 1392 // bit to zero. 1393 bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V); 1394 SignKnownZero |= IsZExt; 1395 SignKnownOne &= !IsZExt; 1396 1397 // If the variable begins with a zero then we know it's 1398 // positive, regardless of whether the value is signed or 1399 // unsigned. 1400 int64_t Scale = DecompGEP1.VarIndices[i].Scale; 1401 AllPositive = 1402 (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0); 1403 } 1404 } 1405 1406 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1407 1408 // We can compute the difference between the two addresses 1409 // mod Modulo. Check whether that difference guarantees that the 1410 // two locations do not alias. 1411 uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1); 1412 if (V1Size != MemoryLocation::UnknownSize && 1413 V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size && 1414 V1Size <= Modulo - ModOffset) 1415 return NoAlias; 1416 1417 // If we know all the variables are positive, then GEP1 >= GEP1BasePtr. 1418 // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers 1419 // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr. 1420 if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset) 1421 return NoAlias; 1422 1423 if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size, 1424 GEP1BaseOffset, &AC, DT)) 1425 return NoAlias; 1426 } 1427 1428 // Statically, we can see that the base objects are the same, but the 1429 // pointers have dynamic offsets which we can't resolve. And none of our 1430 // little tricks above worked. 1431 return MayAlias; 1432 } 1433 1434 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1435 // If the results agree, take it. 1436 if (A == B) 1437 return A; 1438 // A mix of PartialAlias and MustAlias is PartialAlias. 1439 if ((A == PartialAlias && B == MustAlias) || 1440 (B == PartialAlias && A == MustAlias)) 1441 return PartialAlias; 1442 // Otherwise, we don't know anything. 1443 return MayAlias; 1444 } 1445 1446 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1447 /// against another. 1448 AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, 1449 LocationSize SISize, 1450 const AAMDNodes &SIAAInfo, 1451 const Value *V2, LocationSize V2Size, 1452 const AAMDNodes &V2AAInfo, 1453 const Value *UnderV2) { 1454 // If the values are Selects with the same condition, we can do a more precise 1455 // check: just check for aliases between the values on corresponding arms. 1456 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1457 if (SI->getCondition() == SI2->getCondition()) { 1458 AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, 1459 SI2->getTrueValue(), V2Size, V2AAInfo); 1460 if (Alias == MayAlias) 1461 return MayAlias; 1462 AliasResult ThisAlias = 1463 aliasCheck(SI->getFalseValue(), SISize, SIAAInfo, 1464 SI2->getFalseValue(), V2Size, V2AAInfo); 1465 return MergeAliasResults(ThisAlias, Alias); 1466 } 1467 1468 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1469 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1470 AliasResult Alias = 1471 aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), 1472 SISize, SIAAInfo, UnderV2); 1473 if (Alias == MayAlias) 1474 return MayAlias; 1475 1476 AliasResult ThisAlias = 1477 aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo, 1478 UnderV2); 1479 return MergeAliasResults(ThisAlias, Alias); 1480 } 1481 1482 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1483 /// another. 1484 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize, 1485 const AAMDNodes &PNAAInfo, const Value *V2, 1486 LocationSize V2Size, 1487 const AAMDNodes &V2AAInfo, 1488 const Value *UnderV2) { 1489 // Track phi nodes we have visited. We use this information when we determine 1490 // value equivalence. 1491 VisitedPhiBBs.insert(PN->getParent()); 1492 1493 // If the values are PHIs in the same block, we can do a more precise 1494 // as well as efficient check: just check for aliases between the values 1495 // on corresponding edges. 1496 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1497 if (PN2->getParent() == PN->getParent()) { 1498 LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo), 1499 MemoryLocation(V2, V2Size, V2AAInfo)); 1500 if (PN > V2) 1501 std::swap(Locs.first, Locs.second); 1502 // Analyse the PHIs' inputs under the assumption that the PHIs are 1503 // NoAlias. 1504 // If the PHIs are May/MustAlias there must be (recursively) an input 1505 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1506 // there must be an operation on the PHIs within the PHIs' value cycle 1507 // that causes a MayAlias. 1508 // Pretend the phis do not alias. 1509 AliasResult Alias = NoAlias; 1510 assert(AliasCache.count(Locs) && 1511 "There must exist an entry for the phi node"); 1512 AliasResult OrigAliasResult = AliasCache[Locs]; 1513 AliasCache[Locs] = NoAlias; 1514 1515 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1516 AliasResult ThisAlias = 1517 aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo, 1518 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1519 V2Size, V2AAInfo); 1520 Alias = MergeAliasResults(ThisAlias, Alias); 1521 if (Alias == MayAlias) 1522 break; 1523 } 1524 1525 // Reset if speculation failed. 1526 if (Alias != NoAlias) 1527 AliasCache[Locs] = OrigAliasResult; 1528 1529 return Alias; 1530 } 1531 1532 SmallVector<Value *, 4> V1Srcs; 1533 bool isRecursive = false; 1534 if (PV) { 1535 // If we have PhiValues then use it to get the underlying phi values. 1536 const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN); 1537 // If we have more phi values than the search depth then return MayAlias 1538 // conservatively to avoid compile time explosion. The worst possible case 1539 // is if both sides are PHI nodes. In which case, this is O(m x n) time 1540 // where 'm' and 'n' are the number of PHI sources. 1541 if (PhiValueSet.size() > MaxLookupSearchDepth) 1542 return MayAlias; 1543 // Add the values to V1Srcs 1544 for (Value *PV1 : PhiValueSet) { 1545 if (EnableRecPhiAnalysis) { 1546 if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) { 1547 // Check whether the incoming value is a GEP that advances the pointer 1548 // result of this PHI node (e.g. in a loop). If this is the case, we 1549 // would recurse and always get a MayAlias. Handle this case specially 1550 // below. 1551 if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 && 1552 isa<ConstantInt>(PV1GEP->idx_begin())) { 1553 isRecursive = true; 1554 continue; 1555 } 1556 } 1557 } 1558 V1Srcs.push_back(PV1); 1559 } 1560 } else { 1561 // If we don't have PhiInfo then just look at the operands of the phi itself 1562 // FIXME: Remove this once we can guarantee that we have PhiInfo always 1563 SmallPtrSet<Value *, 4> UniqueSrc; 1564 for (Value *PV1 : PN->incoming_values()) { 1565 if (isa<PHINode>(PV1)) 1566 // If any of the source itself is a PHI, return MayAlias conservatively 1567 // to avoid compile time explosion. The worst possible case is if both 1568 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1569 // and 'n' are the number of PHI sources. 1570 return MayAlias; 1571 1572 if (EnableRecPhiAnalysis) 1573 if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) { 1574 // Check whether the incoming value is a GEP that advances the pointer 1575 // result of this PHI node (e.g. in a loop). If this is the case, we 1576 // would recurse and always get a MayAlias. Handle this case specially 1577 // below. 1578 if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 && 1579 isa<ConstantInt>(PV1GEP->idx_begin())) { 1580 isRecursive = true; 1581 continue; 1582 } 1583 } 1584 1585 if (UniqueSrc.insert(PV1).second) 1586 V1Srcs.push_back(PV1); 1587 } 1588 } 1589 1590 // If V1Srcs is empty then that means that the phi has no underlying non-phi 1591 // value. This should only be possible in blocks unreachable from the entry 1592 // block, but return MayAlias just in case. 1593 if (V1Srcs.empty()) 1594 return MayAlias; 1595 1596 // If this PHI node is recursive, set the size of the accessed memory to 1597 // unknown to represent all the possible values the GEP could advance the 1598 // pointer to. 1599 if (isRecursive) 1600 PNSize = MemoryLocation::UnknownSize; 1601 1602 AliasResult Alias = 1603 aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], 1604 PNSize, PNAAInfo, UnderV2); 1605 1606 // Early exit if the check of the first PHI source against V2 is MayAlias. 1607 // Other results are not possible. 1608 if (Alias == MayAlias) 1609 return MayAlias; 1610 1611 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1612 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1613 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1614 Value *V = V1Srcs[i]; 1615 1616 AliasResult ThisAlias = 1617 aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, UnderV2); 1618 Alias = MergeAliasResults(ThisAlias, Alias); 1619 if (Alias == MayAlias) 1620 break; 1621 } 1622 1623 return Alias; 1624 } 1625 1626 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1627 /// array references. 1628 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size, 1629 AAMDNodes V1AAInfo, const Value *V2, 1630 LocationSize V2Size, AAMDNodes V2AAInfo, 1631 const Value *O1, const Value *O2) { 1632 // If either of the memory references is empty, it doesn't matter what the 1633 // pointer values are. 1634 if (V1Size == 0 || V2Size == 0) 1635 return NoAlias; 1636 1637 // Strip off any casts if they exist. 1638 V1 = V1->stripPointerCastsAndInvariantGroups(); 1639 V2 = V2->stripPointerCastsAndInvariantGroups(); 1640 1641 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1642 // value for undef that aliases nothing in the program. 1643 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1644 return NoAlias; 1645 1646 // Are we checking for alias of the same value? 1647 // Because we look 'through' phi nodes, we could look at "Value" pointers from 1648 // different iterations. We must therefore make sure that this is not the 1649 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1650 // happen by looking at the visited phi nodes and making sure they cannot 1651 // reach the value. 1652 if (isValueEqualInPotentialCycles(V1, V2)) 1653 return MustAlias; 1654 1655 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1656 return NoAlias; // Scalars cannot alias each other 1657 1658 // Figure out what objects these things are pointing to if we can. 1659 if (O1 == nullptr) 1660 O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth); 1661 1662 if (O2 == nullptr) 1663 O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth); 1664 1665 // Null values in the default address space don't point to any object, so they 1666 // don't alias any other pointer. 1667 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1668 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1669 return NoAlias; 1670 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1671 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1672 return NoAlias; 1673 1674 if (O1 != O2) { 1675 // If V1/V2 point to two different objects, we know that we have no alias. 1676 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1677 return NoAlias; 1678 1679 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1680 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1681 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1682 return NoAlias; 1683 1684 // Function arguments can't alias with things that are known to be 1685 // unambigously identified at the function level. 1686 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1687 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1688 return NoAlias; 1689 1690 // If one pointer is the result of a call/invoke or load and the other is a 1691 // non-escaping local object within the same function, then we know the 1692 // object couldn't escape to a point where the call could return it. 1693 // 1694 // Note that if the pointers are in different functions, there are a 1695 // variety of complications. A call with a nocapture argument may still 1696 // temporary store the nocapture argument's value in a temporary memory 1697 // location if that memory location doesn't escape. Or it may pass a 1698 // nocapture value to other functions as long as they don't capture it. 1699 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) 1700 return NoAlias; 1701 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) 1702 return NoAlias; 1703 } 1704 1705 // If the size of one access is larger than the entire object on the other 1706 // side, then we know such behavior is undefined and can assume no alias. 1707 bool NullIsValidLocation = NullPointerIsDefined(&F); 1708 if ((V1Size != MemoryLocation::UnknownSize && 1709 isObjectSmallerThan(O2, V1Size, DL, TLI, NullIsValidLocation)) || 1710 (V2Size != MemoryLocation::UnknownSize && 1711 isObjectSmallerThan(O1, V2Size, DL, TLI, NullIsValidLocation))) 1712 return NoAlias; 1713 1714 // Check the cache before climbing up use-def chains. This also terminates 1715 // otherwise infinitely recursive queries. 1716 LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo), 1717 MemoryLocation(V2, V2Size, V2AAInfo)); 1718 if (V1 > V2) 1719 std::swap(Locs.first, Locs.second); 1720 std::pair<AliasCacheTy::iterator, bool> Pair = 1721 AliasCache.insert(std::make_pair(Locs, MayAlias)); 1722 if (!Pair.second) 1723 return Pair.first->second; 1724 1725 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1726 // GEP can't simplify, we don't even look at the PHI cases. 1727 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1728 std::swap(V1, V2); 1729 std::swap(V1Size, V2Size); 1730 std::swap(O1, O2); 1731 std::swap(V1AAInfo, V2AAInfo); 1732 } 1733 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1734 AliasResult Result = 1735 aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2); 1736 if (Result != MayAlias) 1737 return AliasCache[Locs] = Result; 1738 } 1739 1740 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1741 std::swap(V1, V2); 1742 std::swap(O1, O2); 1743 std::swap(V1Size, V2Size); 1744 std::swap(V1AAInfo, V2AAInfo); 1745 } 1746 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1747 AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, 1748 V2, V2Size, V2AAInfo, O2); 1749 if (Result != MayAlias) 1750 return AliasCache[Locs] = Result; 1751 } 1752 1753 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1754 std::swap(V1, V2); 1755 std::swap(O1, O2); 1756 std::swap(V1Size, V2Size); 1757 std::swap(V1AAInfo, V2AAInfo); 1758 } 1759 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1760 AliasResult Result = 1761 aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2); 1762 if (Result != MayAlias) 1763 return AliasCache[Locs] = Result; 1764 } 1765 1766 // If both pointers are pointing into the same object and one of them 1767 // accesses the entire object, then the accesses must overlap in some way. 1768 if (O1 == O2) 1769 if (V1Size != MemoryLocation::UnknownSize && 1770 V2Size != MemoryLocation::UnknownSize && 1771 (isObjectSize(O1, V1Size, DL, TLI, NullIsValidLocation) || 1772 isObjectSize(O2, V2Size, DL, TLI, NullIsValidLocation))) 1773 return AliasCache[Locs] = PartialAlias; 1774 1775 // Recurse back into the best AA results we have, potentially with refined 1776 // memory locations. We have already ensured that BasicAA has a MayAlias 1777 // cache result for these, so any recursion back into BasicAA won't loop. 1778 AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second); 1779 return AliasCache[Locs] = Result; 1780 } 1781 1782 /// Check whether two Values can be considered equivalent. 1783 /// 1784 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether 1785 /// they can not be part of a cycle in the value graph by looking at all 1786 /// visited phi nodes an making sure that the phis cannot reach the value. We 1787 /// have to do this because we are looking through phi nodes (That is we say 1788 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1789 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1790 const Value *V2) { 1791 if (V != V2) 1792 return false; 1793 1794 const Instruction *Inst = dyn_cast<Instruction>(V); 1795 if (!Inst) 1796 return true; 1797 1798 if (VisitedPhiBBs.empty()) 1799 return true; 1800 1801 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1802 return false; 1803 1804 // Make sure that the visited phis cannot reach the Value. This ensures that 1805 // the Values cannot come from different iterations of a potential cycle the 1806 // phi nodes could be involved in. 1807 for (auto *P : VisitedPhiBBs) 1808 if (isPotentiallyReachable(&P->front(), Inst, DT, LI)) 1809 return false; 1810 1811 return true; 1812 } 1813 1814 /// Computes the symbolic difference between two de-composed GEPs. 1815 /// 1816 /// Dest and Src are the variable indices from two decomposed GetElementPtr 1817 /// instructions GEP1 and GEP2 which have common base pointers. 1818 void BasicAAResult::GetIndexDifference( 1819 SmallVectorImpl<VariableGEPIndex> &Dest, 1820 const SmallVectorImpl<VariableGEPIndex> &Src) { 1821 if (Src.empty()) 1822 return; 1823 1824 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1825 const Value *V = Src[i].V; 1826 unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits; 1827 int64_t Scale = Src[i].Scale; 1828 1829 // Find V in Dest. This is N^2, but pointer indices almost never have more 1830 // than a few variable indexes. 1831 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1832 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1833 Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits) 1834 continue; 1835 1836 // If we found it, subtract off Scale V's from the entry in Dest. If it 1837 // goes to zero, remove the entry. 1838 if (Dest[j].Scale != Scale) 1839 Dest[j].Scale -= Scale; 1840 else 1841 Dest.erase(Dest.begin() + j); 1842 Scale = 0; 1843 break; 1844 } 1845 1846 // If we didn't consume this entry, add it to the end of the Dest list. 1847 if (Scale) { 1848 VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale}; 1849 Dest.push_back(Entry); 1850 } 1851 } 1852 } 1853 1854 bool BasicAAResult::constantOffsetHeuristic( 1855 const SmallVectorImpl<VariableGEPIndex> &VarIndices, LocationSize V1Size, 1856 LocationSize V2Size, int64_t BaseOffset, AssumptionCache *AC, 1857 DominatorTree *DT) { 1858 if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize || 1859 V2Size == MemoryLocation::UnknownSize) 1860 return false; 1861 1862 const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1]; 1863 1864 if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits || 1865 Var0.Scale != -Var1.Scale) 1866 return false; 1867 1868 unsigned Width = Var1.V->getType()->getIntegerBitWidth(); 1869 1870 // We'll strip off the Extensions of Var0 and Var1 and do another round 1871 // of GetLinearExpression decomposition. In the example above, if Var0 1872 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 1873 1874 APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0), 1875 V1Offset(Width, 0); 1876 bool NSW = true, NUW = true; 1877 unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0; 1878 const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits, 1879 V0SExtBits, DL, 0, AC, DT, NSW, NUW); 1880 NSW = true; 1881 NUW = true; 1882 const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits, 1883 V1SExtBits, DL, 0, AC, DT, NSW, NUW); 1884 1885 if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits || 1886 V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1)) 1887 return false; 1888 1889 // We have a hit - Var0 and Var1 only differ by a constant offset! 1890 1891 // If we've been sext'ed then zext'd the maximum difference between Var0 and 1892 // Var1 is possible to calculate, but we're just interested in the absolute 1893 // minimum difference between the two. The minimum distance may occur due to 1894 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 1895 // the minimum distance between %i and %i + 5 is 3. 1896 APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff; 1897 MinDiff = APIntOps::umin(MinDiff, Wrapped); 1898 uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale); 1899 1900 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 1901 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 1902 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 1903 // V2Size can fit in the MinDiffBytes gap. 1904 return V1Size + std::abs(BaseOffset) <= MinDiffBytes && 1905 V2Size + std::abs(BaseOffset) <= MinDiffBytes; 1906 } 1907 1908 //===----------------------------------------------------------------------===// 1909 // BasicAliasAnalysis Pass 1910 //===----------------------------------------------------------------------===// 1911 1912 AnalysisKey BasicAA::Key; 1913 1914 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) { 1915 return BasicAAResult(F.getParent()->getDataLayout(), 1916 F, 1917 AM.getResult<TargetLibraryAnalysis>(F), 1918 AM.getResult<AssumptionAnalysis>(F), 1919 &AM.getResult<DominatorTreeAnalysis>(F), 1920 AM.getCachedResult<LoopAnalysis>(F), 1921 AM.getCachedResult<PhiValuesAnalysis>(F)); 1922 } 1923 1924 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 1925 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1926 } 1927 1928 char BasicAAWrapperPass::ID = 0; 1929 1930 void BasicAAWrapperPass::anchor() {} 1931 1932 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa", 1933 "Basic Alias Analysis (stateless AA impl)", false, true) 1934 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1935 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1936 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1937 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa", 1938 "Basic Alias Analysis (stateless AA impl)", false, true) 1939 1940 FunctionPass *llvm::createBasicAAWrapperPass() { 1941 return new BasicAAWrapperPass(); 1942 } 1943 1944 bool BasicAAWrapperPass::runOnFunction(Function &F) { 1945 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 1946 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 1947 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); 1948 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 1949 auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>(); 1950 1951 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F, TLIWP.getTLI(), 1952 ACT.getAssumptionCache(F), &DTWP.getDomTree(), 1953 LIWP ? &LIWP->getLoopInfo() : nullptr, 1954 PVWP ? &PVWP->getResult() : nullptr)); 1955 1956 return false; 1957 } 1958 1959 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1960 AU.setPreservesAll(); 1961 AU.addRequired<AssumptionCacheTracker>(); 1962 AU.addRequired<DominatorTreeWrapperPass>(); 1963 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1964 AU.addUsedIfAvailable<PhiValuesWrapperPass>(); 1965 } 1966 1967 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { 1968 return BasicAAResult( 1969 F.getParent()->getDataLayout(), 1970 F, 1971 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 1972 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 1973 } 1974