1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the primary stateless implementation of the
11 // Alias Analysis interface that implements identities (two different
12 // globals cannot alias, etc), but does no stateful analysis.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Analysis/BasicAliasAnalysis.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/Analysis/PhiValues.h"
32 #include "llvm/IR/Argument.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/CallSite.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GetElementPtrTypeIterator.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/Metadata.h"
50 #include "llvm/IR/Operator.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/User.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/KnownBits.h"
59 #include <cassert>
60 #include <cstdint>
61 #include <cstdlib>
62 #include <utility>
63 
64 #define DEBUG_TYPE "basicaa"
65 
66 using namespace llvm;
67 
68 /// Enable analysis of recursive PHI nodes.
69 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden,
70                                           cl::init(false));
71 /// SearchLimitReached / SearchTimes shows how often the limit of
72 /// to decompose GEPs is reached. It will affect the precision
73 /// of basic alias analysis.
74 STATISTIC(SearchLimitReached, "Number of times the limit to "
75                               "decompose GEPs is reached");
76 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
77 
78 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
79 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
80 /// careful with value equivalence. We use reachability to make sure a value
81 /// cannot be involved in a cycle.
82 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
83 
84 // The max limit of the search depth in DecomposeGEPExpression() and
85 // GetUnderlyingObject(), both functions need to use the same search
86 // depth otherwise the algorithm in aliasGEP will assert.
87 static const unsigned MaxLookupSearchDepth = 6;
88 
89 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
90                                FunctionAnalysisManager::Invalidator &Inv) {
91   // We don't care if this analysis itself is preserved, it has no state. But
92   // we need to check that the analyses it depends on have been. Note that we
93   // may be created without handles to some analyses and in that case don't
94   // depend on them.
95   if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
96       (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) ||
97       (LI && Inv.invalidate<LoopAnalysis>(Fn, PA)) ||
98       (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA)))
99     return true;
100 
101   // Otherwise this analysis result remains valid.
102   return false;
103 }
104 
105 //===----------------------------------------------------------------------===//
106 // Useful predicates
107 //===----------------------------------------------------------------------===//
108 
109 /// Returns true if the pointer is to a function-local object that never
110 /// escapes from the function.
111 static bool isNonEscapingLocalObject(const Value *V) {
112   // If this is a local allocation, check to see if it escapes.
113   if (isa<AllocaInst>(V) || isNoAliasCall(V))
114     // Set StoreCaptures to True so that we can assume in our callers that the
115     // pointer is not the result of a load instruction. Currently
116     // PointerMayBeCaptured doesn't have any special analysis for the
117     // StoreCaptures=false case; if it did, our callers could be refined to be
118     // more precise.
119     return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
120 
121   // If this is an argument that corresponds to a byval or noalias argument,
122   // then it has not escaped before entering the function.  Check if it escapes
123   // inside the function.
124   if (const Argument *A = dyn_cast<Argument>(V))
125     if (A->hasByValAttr() || A->hasNoAliasAttr())
126       // Note even if the argument is marked nocapture, we still need to check
127       // for copies made inside the function. The nocapture attribute only
128       // specifies that there are no copies made that outlive the function.
129       return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
130 
131   return false;
132 }
133 
134 /// Returns true if the pointer is one which would have been considered an
135 /// escape by isNonEscapingLocalObject.
136 static bool isEscapeSource(const Value *V) {
137   if (ImmutableCallSite(V))
138     return true;
139 
140   if (isa<Argument>(V))
141     return true;
142 
143   // The load case works because isNonEscapingLocalObject considers all
144   // stores to be escapes (it passes true for the StoreCaptures argument
145   // to PointerMayBeCaptured).
146   if (isa<LoadInst>(V))
147     return true;
148 
149   return false;
150 }
151 
152 /// Returns the size of the object specified by V or UnknownSize if unknown.
153 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
154                               const TargetLibraryInfo &TLI,
155                               bool NullIsValidLoc,
156                               bool RoundToAlign = false) {
157   uint64_t Size;
158   ObjectSizeOpts Opts;
159   Opts.RoundToAlign = RoundToAlign;
160   Opts.NullIsUnknownSize = NullIsValidLoc;
161   if (getObjectSize(V, Size, DL, &TLI, Opts))
162     return Size;
163   return MemoryLocation::UnknownSize;
164 }
165 
166 /// Returns true if we can prove that the object specified by V is smaller than
167 /// Size.
168 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
169                                 const DataLayout &DL,
170                                 const TargetLibraryInfo &TLI,
171                                 bool NullIsValidLoc) {
172   // Note that the meanings of the "object" are slightly different in the
173   // following contexts:
174   //    c1: llvm::getObjectSize()
175   //    c2: llvm.objectsize() intrinsic
176   //    c3: isObjectSmallerThan()
177   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
178   // refers to the "entire object".
179   //
180   //  Consider this example:
181   //     char *p = (char*)malloc(100)
182   //     char *q = p+80;
183   //
184   //  In the context of c1 and c2, the "object" pointed by q refers to the
185   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
186   //
187   //  However, in the context of c3, the "object" refers to the chunk of memory
188   // being allocated. So, the "object" has 100 bytes, and q points to the middle
189   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
190   // parameter, before the llvm::getObjectSize() is called to get the size of
191   // entire object, we should:
192   //    - either rewind the pointer q to the base-address of the object in
193   //      question (in this case rewind to p), or
194   //    - just give up. It is up to caller to make sure the pointer is pointing
195   //      to the base address the object.
196   //
197   // We go for 2nd option for simplicity.
198   if (!isIdentifiedObject(V))
199     return false;
200 
201   // This function needs to use the aligned object size because we allow
202   // reads a bit past the end given sufficient alignment.
203   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
204                                       /*RoundToAlign*/ true);
205 
206   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
207 }
208 
209 /// Returns true if we can prove that the object specified by V has size Size.
210 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
211                          const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
212   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc);
213   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
214 }
215 
216 //===----------------------------------------------------------------------===//
217 // GetElementPtr Instruction Decomposition and Analysis
218 //===----------------------------------------------------------------------===//
219 
220 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
221 /// B are constant integers.
222 ///
223 /// Returns the scale and offset values as APInts and return V as a Value*, and
224 /// return whether we looked through any sign or zero extends.  The incoming
225 /// Value is known to have IntegerType, and it may already be sign or zero
226 /// extended.
227 ///
228 /// Note that this looks through extends, so the high bits may not be
229 /// represented in the result.
230 /*static*/ const Value *BasicAAResult::GetLinearExpression(
231     const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
232     unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
233     AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
234   assert(V->getType()->isIntegerTy() && "Not an integer value");
235 
236   // Limit our recursion depth.
237   if (Depth == 6) {
238     Scale = 1;
239     Offset = 0;
240     return V;
241   }
242 
243   if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
244     // If it's a constant, just convert it to an offset and remove the variable.
245     // If we've been called recursively, the Offset bit width will be greater
246     // than the constant's (the Offset's always as wide as the outermost call),
247     // so we'll zext here and process any extension in the isa<SExtInst> &
248     // isa<ZExtInst> cases below.
249     Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
250     assert(Scale == 0 && "Constant values don't have a scale");
251     return V;
252   }
253 
254   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
255     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
256       // If we've been called recursively, then Offset and Scale will be wider
257       // than the BOp operands. We'll always zext it here as we'll process sign
258       // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
259       APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
260 
261       switch (BOp->getOpcode()) {
262       default:
263         // We don't understand this instruction, so we can't decompose it any
264         // further.
265         Scale = 1;
266         Offset = 0;
267         return V;
268       case Instruction::Or:
269         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
270         // analyze it.
271         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
272                                BOp, DT)) {
273           Scale = 1;
274           Offset = 0;
275           return V;
276         }
277         LLVM_FALLTHROUGH;
278       case Instruction::Add:
279         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
280                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
281         Offset += RHS;
282         break;
283       case Instruction::Sub:
284         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
285                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
286         Offset -= RHS;
287         break;
288       case Instruction::Mul:
289         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
290                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
291         Offset *= RHS;
292         Scale *= RHS;
293         break;
294       case Instruction::Shl:
295         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
296                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
297 
298         // We're trying to linearize an expression of the kind:
299         //   shl i8 -128, 36
300         // where the shift count exceeds the bitwidth of the type.
301         // We can't decompose this further (the expression would return
302         // a poison value).
303         if (Offset.getBitWidth() < RHS.getLimitedValue() ||
304             Scale.getBitWidth() < RHS.getLimitedValue()) {
305           Scale = 1;
306           Offset = 0;
307           return V;
308         }
309 
310         Offset <<= RHS.getLimitedValue();
311         Scale <<= RHS.getLimitedValue();
312         // the semantics of nsw and nuw for left shifts don't match those of
313         // multiplications, so we won't propagate them.
314         NSW = NUW = false;
315         return V;
316       }
317 
318       if (isa<OverflowingBinaryOperator>(BOp)) {
319         NUW &= BOp->hasNoUnsignedWrap();
320         NSW &= BOp->hasNoSignedWrap();
321       }
322       return V;
323     }
324   }
325 
326   // Since GEP indices are sign extended anyway, we don't care about the high
327   // bits of a sign or zero extended value - just scales and offsets.  The
328   // extensions have to be consistent though.
329   if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
330     Value *CastOp = cast<CastInst>(V)->getOperand(0);
331     unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
332     unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
333     unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
334     const Value *Result =
335         GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
336                             Depth + 1, AC, DT, NSW, NUW);
337 
338     // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this
339     // by just incrementing the number of bits we've extended by.
340     unsigned ExtendedBy = NewWidth - SmallWidth;
341 
342     if (isa<SExtInst>(V) && ZExtBits == 0) {
343       // sext(sext(%x, a), b) == sext(%x, a + b)
344 
345       if (NSW) {
346         // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
347         // into sext(%x) + sext(c). We'll sext the Offset ourselves:
348         unsigned OldWidth = Offset.getBitWidth();
349         Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
350       } else {
351         // We may have signed-wrapped, so don't decompose sext(%x + c) into
352         // sext(%x) + sext(c)
353         Scale = 1;
354         Offset = 0;
355         Result = CastOp;
356         ZExtBits = OldZExtBits;
357         SExtBits = OldSExtBits;
358       }
359       SExtBits += ExtendedBy;
360     } else {
361       // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
362 
363       if (!NUW) {
364         // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
365         // zext(%x) + zext(c)
366         Scale = 1;
367         Offset = 0;
368         Result = CastOp;
369         ZExtBits = OldZExtBits;
370         SExtBits = OldSExtBits;
371       }
372       ZExtBits += ExtendedBy;
373     }
374 
375     return Result;
376   }
377 
378   Scale = 1;
379   Offset = 0;
380   return V;
381 }
382 
383 /// To ensure a pointer offset fits in an integer of size PointerSize
384 /// (in bits) when that size is smaller than 64. This is an issue in
385 /// particular for 32b programs with negative indices that rely on two's
386 /// complement wrap-arounds for precise alias information.
387 static int64_t adjustToPointerSize(int64_t Offset, unsigned PointerSize) {
388   assert(PointerSize <= 64 && "Invalid PointerSize!");
389   unsigned ShiftBits = 64 - PointerSize;
390   return (int64_t)((uint64_t)Offset << ShiftBits) >> ShiftBits;
391 }
392 
393 /// If V is a symbolic pointer expression, decompose it into a base pointer
394 /// with a constant offset and a number of scaled symbolic offsets.
395 ///
396 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
397 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
398 /// specified amount, but which may have other unrepresented high bits. As
399 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
400 ///
401 /// When DataLayout is around, this function is capable of analyzing everything
402 /// that GetUnderlyingObject can look through. To be able to do that
403 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search
404 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks
405 /// through pointer casts.
406 bool BasicAAResult::DecomposeGEPExpression(const Value *V,
407        DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC,
408        DominatorTree *DT) {
409   // Limit recursion depth to limit compile time in crazy cases.
410   unsigned MaxLookup = MaxLookupSearchDepth;
411   SearchTimes++;
412 
413   Decomposed.StructOffset = 0;
414   Decomposed.OtherOffset = 0;
415   Decomposed.VarIndices.clear();
416   do {
417     // See if this is a bitcast or GEP.
418     const Operator *Op = dyn_cast<Operator>(V);
419     if (!Op) {
420       // The only non-operator case we can handle are GlobalAliases.
421       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
422         if (!GA->isInterposable()) {
423           V = GA->getAliasee();
424           continue;
425         }
426       }
427       Decomposed.Base = V;
428       return false;
429     }
430 
431     if (Op->getOpcode() == Instruction::BitCast ||
432         Op->getOpcode() == Instruction::AddrSpaceCast) {
433       V = Op->getOperand(0);
434       continue;
435     }
436 
437     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
438     if (!GEPOp) {
439       if (auto CS = ImmutableCallSite(V)) {
440         // CaptureTracking can know about special capturing properties of some
441         // intrinsics like launder.invariant.group, that can't be expressed with
442         // the attributes, but have properties like returning aliasing pointer.
443         // Because some analysis may assume that nocaptured pointer is not
444         // returned from some special intrinsic (because function would have to
445         // be marked with returns attribute), it is crucial to use this function
446         // because it should be in sync with CaptureTracking. Not using it may
447         // cause weird miscompilations where 2 aliasing pointers are assumed to
448         // noalias.
449         if (auto *RP = getArgumentAliasingToReturnedPointer(CS)) {
450           V = RP;
451           continue;
452         }
453       }
454 
455       // If it's not a GEP, hand it off to SimplifyInstruction to see if it
456       // can come up with something. This matches what GetUnderlyingObject does.
457       if (const Instruction *I = dyn_cast<Instruction>(V))
458         // TODO: Get a DominatorTree and AssumptionCache and use them here
459         // (these are both now available in this function, but this should be
460         // updated when GetUnderlyingObject is updated). TLI should be
461         // provided also.
462         if (const Value *Simplified =
463                 SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
464           V = Simplified;
465           continue;
466         }
467 
468       Decomposed.Base = V;
469       return false;
470     }
471 
472     // Don't attempt to analyze GEPs over unsized objects.
473     if (!GEPOp->getSourceElementType()->isSized()) {
474       Decomposed.Base = V;
475       return false;
476     }
477 
478     unsigned AS = GEPOp->getPointerAddressSpace();
479     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
480     gep_type_iterator GTI = gep_type_begin(GEPOp);
481     unsigned PointerSize = DL.getPointerSizeInBits(AS);
482     // Assume all GEP operands are constants until proven otherwise.
483     bool GepHasConstantOffset = true;
484     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
485          I != E; ++I, ++GTI) {
486       const Value *Index = *I;
487       // Compute the (potentially symbolic) offset in bytes for this index.
488       if (StructType *STy = GTI.getStructTypeOrNull()) {
489         // For a struct, add the member offset.
490         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
491         if (FieldNo == 0)
492           continue;
493 
494         Decomposed.StructOffset +=
495           DL.getStructLayout(STy)->getElementOffset(FieldNo);
496         continue;
497       }
498 
499       // For an array/pointer, add the element offset, explicitly scaled.
500       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
501         if (CIdx->isZero())
502           continue;
503         Decomposed.OtherOffset +=
504           DL.getTypeAllocSize(GTI.getIndexedType()) * CIdx->getSExtValue();
505         continue;
506       }
507 
508       GepHasConstantOffset = false;
509 
510       uint64_t Scale = DL.getTypeAllocSize(GTI.getIndexedType());
511       unsigned ZExtBits = 0, SExtBits = 0;
512 
513       // If the integer type is smaller than the pointer size, it is implicitly
514       // sign extended to pointer size.
515       unsigned Width = Index->getType()->getIntegerBitWidth();
516       if (PointerSize > Width)
517         SExtBits += PointerSize - Width;
518 
519       // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
520       APInt IndexScale(Width, 0), IndexOffset(Width, 0);
521       bool NSW = true, NUW = true;
522       Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
523                                   SExtBits, DL, 0, AC, DT, NSW, NUW);
524 
525       // All GEP math happens in the width of the pointer type,
526       // so we can truncate the value to 64-bits as we don't handle
527       // currently pointers larger than 64 bits and we would crash
528       // later. TODO: Make `Scale` an APInt to avoid this problem.
529       if (IndexScale.getBitWidth() > 64)
530         IndexScale = IndexScale.sextOrTrunc(64);
531 
532       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
533       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
534       Decomposed.OtherOffset += IndexOffset.getSExtValue() * Scale;
535       Scale *= IndexScale.getSExtValue();
536 
537       // If we already had an occurrence of this index variable, merge this
538       // scale into it.  For example, we want to handle:
539       //   A[x][x] -> x*16 + x*4 -> x*20
540       // This also ensures that 'x' only appears in the index list once.
541       for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
542         if (Decomposed.VarIndices[i].V == Index &&
543             Decomposed.VarIndices[i].ZExtBits == ZExtBits &&
544             Decomposed.VarIndices[i].SExtBits == SExtBits) {
545           Scale += Decomposed.VarIndices[i].Scale;
546           Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
547           break;
548         }
549       }
550 
551       // Make sure that we have a scale that makes sense for this target's
552       // pointer size.
553       Scale = adjustToPointerSize(Scale, PointerSize);
554 
555       if (Scale) {
556         VariableGEPIndex Entry = {Index, ZExtBits, SExtBits,
557                                   static_cast<int64_t>(Scale)};
558         Decomposed.VarIndices.push_back(Entry);
559       }
560     }
561 
562     // Take care of wrap-arounds
563     if (GepHasConstantOffset) {
564       Decomposed.StructOffset =
565           adjustToPointerSize(Decomposed.StructOffset, PointerSize);
566       Decomposed.OtherOffset =
567           adjustToPointerSize(Decomposed.OtherOffset, PointerSize);
568     }
569 
570     // Analyze the base pointer next.
571     V = GEPOp->getOperand(0);
572   } while (--MaxLookup);
573 
574   // If the chain of expressions is too deep, just return early.
575   Decomposed.Base = V;
576   SearchLimitReached++;
577   return true;
578 }
579 
580 /// Returns whether the given pointer value points to memory that is local to
581 /// the function, with global constants being considered local to all
582 /// functions.
583 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
584                                            bool OrLocal) {
585   assert(Visited.empty() && "Visited must be cleared after use!");
586 
587   unsigned MaxLookup = 8;
588   SmallVector<const Value *, 16> Worklist;
589   Worklist.push_back(Loc.Ptr);
590   do {
591     const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
592     if (!Visited.insert(V).second) {
593       Visited.clear();
594       return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
595     }
596 
597     // An alloca instruction defines local memory.
598     if (OrLocal && isa<AllocaInst>(V))
599       continue;
600 
601     // A global constant counts as local memory for our purposes.
602     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
603       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
604       // global to be marked constant in some modules and non-constant in
605       // others.  GV may even be a declaration, not a definition.
606       if (!GV->isConstant()) {
607         Visited.clear();
608         return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
609       }
610       continue;
611     }
612 
613     // If both select values point to local memory, then so does the select.
614     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
615       Worklist.push_back(SI->getTrueValue());
616       Worklist.push_back(SI->getFalseValue());
617       continue;
618     }
619 
620     // If all values incoming to a phi node point to local memory, then so does
621     // the phi.
622     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
623       // Don't bother inspecting phi nodes with many operands.
624       if (PN->getNumIncomingValues() > MaxLookup) {
625         Visited.clear();
626         return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
627       }
628       for (Value *IncValue : PN->incoming_values())
629         Worklist.push_back(IncValue);
630       continue;
631     }
632 
633     // Otherwise be conservative.
634     Visited.clear();
635     return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
636   } while (!Worklist.empty() && --MaxLookup);
637 
638   Visited.clear();
639   return Worklist.empty();
640 }
641 
642 /// Returns the behavior when calling the given call site.
643 FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) {
644   if (CS.doesNotAccessMemory())
645     // Can't do better than this.
646     return FMRB_DoesNotAccessMemory;
647 
648   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
649 
650   // If the callsite knows it only reads memory, don't return worse
651   // than that.
652   if (CS.onlyReadsMemory())
653     Min = FMRB_OnlyReadsMemory;
654   else if (CS.doesNotReadMemory())
655     Min = FMRB_DoesNotReadMemory;
656 
657   if (CS.onlyAccessesArgMemory())
658     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
659   else if (CS.onlyAccessesInaccessibleMemory())
660     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
661   else if (CS.onlyAccessesInaccessibleMemOrArgMem())
662     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
663 
664   // If CS has operand bundles then aliasing attributes from the function it
665   // calls do not directly apply to the CallSite.  This can be made more
666   // precise in the future.
667   if (!CS.hasOperandBundles())
668     if (const Function *F = CS.getCalledFunction())
669       Min =
670           FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
671 
672   return Min;
673 }
674 
675 /// Returns the behavior when calling the given function. For use when the call
676 /// site is not known.
677 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
678   // If the function declares it doesn't access memory, we can't do better.
679   if (F->doesNotAccessMemory())
680     return FMRB_DoesNotAccessMemory;
681 
682   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
683 
684   // If the function declares it only reads memory, go with that.
685   if (F->onlyReadsMemory())
686     Min = FMRB_OnlyReadsMemory;
687   else if (F->doesNotReadMemory())
688     Min = FMRB_DoesNotReadMemory;
689 
690   if (F->onlyAccessesArgMemory())
691     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
692   else if (F->onlyAccessesInaccessibleMemory())
693     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
694   else if (F->onlyAccessesInaccessibleMemOrArgMem())
695     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
696 
697   return Min;
698 }
699 
700 /// Returns true if this is a writeonly (i.e Mod only) parameter.
701 static bool isWriteOnlyParam(ImmutableCallSite CS, unsigned ArgIdx,
702                              const TargetLibraryInfo &TLI) {
703   if (CS.paramHasAttr(ArgIdx, Attribute::WriteOnly))
704     return true;
705 
706   // We can bound the aliasing properties of memset_pattern16 just as we can
707   // for memcpy/memset.  This is particularly important because the
708   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
709   // whenever possible.
710   // FIXME Consider handling this in InferFunctionAttr.cpp together with other
711   // attributes.
712   LibFunc F;
713   if (CS.getCalledFunction() && TLI.getLibFunc(*CS.getCalledFunction(), F) &&
714       F == LibFunc_memset_pattern16 && TLI.has(F))
715     if (ArgIdx == 0)
716       return true;
717 
718   // TODO: memset_pattern4, memset_pattern8
719   // TODO: _chk variants
720   // TODO: strcmp, strcpy
721 
722   return false;
723 }
724 
725 ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS,
726                                            unsigned ArgIdx) {
727   // Checking for known builtin intrinsics and target library functions.
728   if (isWriteOnlyParam(CS, ArgIdx, TLI))
729     return ModRefInfo::Mod;
730 
731   if (CS.paramHasAttr(ArgIdx, Attribute::ReadOnly))
732     return ModRefInfo::Ref;
733 
734   if (CS.paramHasAttr(ArgIdx, Attribute::ReadNone))
735     return ModRefInfo::NoModRef;
736 
737   return AAResultBase::getArgModRefInfo(CS, ArgIdx);
738 }
739 
740 static bool isIntrinsicCall(ImmutableCallSite CS, Intrinsic::ID IID) {
741   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
742   return II && II->getIntrinsicID() == IID;
743 }
744 
745 #ifndef NDEBUG
746 static const Function *getParent(const Value *V) {
747   if (const Instruction *inst = dyn_cast<Instruction>(V)) {
748     if (!inst->getParent())
749       return nullptr;
750     return inst->getParent()->getParent();
751   }
752 
753   if (const Argument *arg = dyn_cast<Argument>(V))
754     return arg->getParent();
755 
756   return nullptr;
757 }
758 
759 static bool notDifferentParent(const Value *O1, const Value *O2) {
760 
761   const Function *F1 = getParent(O1);
762   const Function *F2 = getParent(O2);
763 
764   return !F1 || !F2 || F1 == F2;
765 }
766 #endif
767 
768 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
769                                  const MemoryLocation &LocB) {
770   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
771          "BasicAliasAnalysis doesn't support interprocedural queries.");
772 
773   // If we have a directly cached entry for these locations, we have recursed
774   // through this once, so just return the cached results. Notably, when this
775   // happens, we don't clear the cache.
776   auto CacheIt = AliasCache.find(LocPair(LocA, LocB));
777   if (CacheIt != AliasCache.end())
778     return CacheIt->second;
779 
780   AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
781                                  LocB.Size, LocB.AATags);
782   // AliasCache rarely has more than 1 or 2 elements, always use
783   // shrink_and_clear so it quickly returns to the inline capacity of the
784   // SmallDenseMap if it ever grows larger.
785   // FIXME: This should really be shrink_to_inline_capacity_and_clear().
786   AliasCache.shrink_and_clear();
787   VisitedPhiBBs.clear();
788   return Alias;
789 }
790 
791 /// Checks to see if the specified callsite can clobber the specified memory
792 /// object.
793 ///
794 /// Since we only look at local properties of this function, we really can't
795 /// say much about this query.  We do, however, use simple "address taken"
796 /// analysis on local objects.
797 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS,
798                                         const MemoryLocation &Loc) {
799   assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
800          "AliasAnalysis query involving multiple functions!");
801 
802   const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);
803 
804   // If this is a tail call and Loc.Ptr points to a stack location, we know that
805   // the tail call cannot access or modify the local stack.
806   // We cannot exclude byval arguments here; these belong to the caller of
807   // the current function not to the current function, and a tail callee
808   // may reference them.
809   if (isa<AllocaInst>(Object))
810     if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
811       if (CI->isTailCall())
812         return ModRefInfo::NoModRef;
813 
814   // If the pointer is to a locally allocated object that does not escape,
815   // then the call can not mod/ref the pointer unless the call takes the pointer
816   // as an argument, and itself doesn't capture it.
817   if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
818       isNonEscapingLocalObject(Object)) {
819 
820     // Optimistically assume that call doesn't touch Object and check this
821     // assumption in the following loop.
822     ModRefInfo Result = ModRefInfo::NoModRef;
823     bool IsMustAlias = true;
824 
825     unsigned OperandNo = 0;
826     for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end();
827          CI != CE; ++CI, ++OperandNo) {
828       // Only look at the no-capture or byval pointer arguments.  If this
829       // pointer were passed to arguments that were neither of these, then it
830       // couldn't be no-capture.
831       if (!(*CI)->getType()->isPointerTy() ||
832           (!CS.doesNotCapture(OperandNo) &&
833            OperandNo < CS.getNumArgOperands() && !CS.isByValArgument(OperandNo)))
834         continue;
835 
836       // Call doesn't access memory through this operand, so we don't care
837       // if it aliases with Object.
838       if (CS.doesNotAccessMemory(OperandNo))
839         continue;
840 
841       // If this is a no-capture pointer argument, see if we can tell that it
842       // is impossible to alias the pointer we're checking.
843       AliasResult AR =
844           getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object));
845       if (AR != MustAlias)
846         IsMustAlias = false;
847       // Operand doesnt alias 'Object', continue looking for other aliases
848       if (AR == NoAlias)
849         continue;
850       // Operand aliases 'Object', but call doesn't modify it. Strengthen
851       // initial assumption and keep looking in case if there are more aliases.
852       if (CS.onlyReadsMemory(OperandNo)) {
853         Result = setRef(Result);
854         continue;
855       }
856       // Operand aliases 'Object' but call only writes into it.
857       if (CS.doesNotReadMemory(OperandNo)) {
858         Result = setMod(Result);
859         continue;
860       }
861       // This operand aliases 'Object' and call reads and writes into it.
862       // Setting ModRef will not yield an early return below, MustAlias is not
863       // used further.
864       Result = ModRefInfo::ModRef;
865       break;
866     }
867 
868     // No operand aliases, reset Must bit. Add below if at least one aliases
869     // and all aliases found are MustAlias.
870     if (isNoModRef(Result))
871       IsMustAlias = false;
872 
873     // Early return if we improved mod ref information
874     if (!isModAndRefSet(Result)) {
875       if (isNoModRef(Result))
876         return ModRefInfo::NoModRef;
877       return IsMustAlias ? setMust(Result) : clearMust(Result);
878     }
879   }
880 
881   // If the CallSite is to malloc or calloc, we can assume that it doesn't
882   // modify any IR visible value.  This is only valid because we assume these
883   // routines do not read values visible in the IR.  TODO: Consider special
884   // casing realloc and strdup routines which access only their arguments as
885   // well.  Or alternatively, replace all of this with inaccessiblememonly once
886   // that's implemented fully.
887   auto *Inst = CS.getInstruction();
888   if (isMallocOrCallocLikeFn(Inst, &TLI)) {
889     // Be conservative if the accessed pointer may alias the allocation -
890     // fallback to the generic handling below.
891     if (getBestAAResults().alias(MemoryLocation(Inst), Loc) == NoAlias)
892       return ModRefInfo::NoModRef;
893   }
894 
895   // The semantics of memcpy intrinsics forbid overlap between their respective
896   // operands, i.e., source and destination of any given memcpy must no-alias.
897   // If Loc must-aliases either one of these two locations, then it necessarily
898   // no-aliases the other.
899   if (auto *Inst = dyn_cast<AnyMemCpyInst>(CS.getInstruction())) {
900     AliasResult SrcAA, DestAA;
901 
902     if ((SrcAA = getBestAAResults().alias(MemoryLocation::getForSource(Inst),
903                                           Loc)) == MustAlias)
904       // Loc is exactly the memcpy source thus disjoint from memcpy dest.
905       return ModRefInfo::Ref;
906     if ((DestAA = getBestAAResults().alias(MemoryLocation::getForDest(Inst),
907                                            Loc)) == MustAlias)
908       // The converse case.
909       return ModRefInfo::Mod;
910 
911     // It's also possible for Loc to alias both src and dest, or neither.
912     ModRefInfo rv = ModRefInfo::NoModRef;
913     if (SrcAA != NoAlias)
914       rv = setRef(rv);
915     if (DestAA != NoAlias)
916       rv = setMod(rv);
917     return rv;
918   }
919 
920   // While the assume intrinsic is marked as arbitrarily writing so that
921   // proper control dependencies will be maintained, it never aliases any
922   // particular memory location.
923   if (isIntrinsicCall(CS, Intrinsic::assume))
924     return ModRefInfo::NoModRef;
925 
926   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
927   // that proper control dependencies are maintained but they never mods any
928   // particular memory location.
929   //
930   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
931   // heap state at the point the guard is issued needs to be consistent in case
932   // the guard invokes the "deopt" continuation.
933   if (isIntrinsicCall(CS, Intrinsic::experimental_guard))
934     return ModRefInfo::Ref;
935 
936   // Like assumes, invariant.start intrinsics were also marked as arbitrarily
937   // writing so that proper control dependencies are maintained but they never
938   // mod any particular memory location visible to the IR.
939   // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
940   // intrinsic is now modeled as reading memory. This prevents hoisting the
941   // invariant.start intrinsic over stores. Consider:
942   // *ptr = 40;
943   // *ptr = 50;
944   // invariant_start(ptr)
945   // int val = *ptr;
946   // print(val);
947   //
948   // This cannot be transformed to:
949   //
950   // *ptr = 40;
951   // invariant_start(ptr)
952   // *ptr = 50;
953   // int val = *ptr;
954   // print(val);
955   //
956   // The transformation will cause the second store to be ignored (based on
957   // rules of invariant.start)  and print 40, while the first program always
958   // prints 50.
959   if (isIntrinsicCall(CS, Intrinsic::invariant_start))
960     return ModRefInfo::Ref;
961 
962   // The AAResultBase base class has some smarts, lets use them.
963   return AAResultBase::getModRefInfo(CS, Loc);
964 }
965 
966 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1,
967                                         ImmutableCallSite CS2) {
968   // While the assume intrinsic is marked as arbitrarily writing so that
969   // proper control dependencies will be maintained, it never aliases any
970   // particular memory location.
971   if (isIntrinsicCall(CS1, Intrinsic::assume) ||
972       isIntrinsicCall(CS2, Intrinsic::assume))
973     return ModRefInfo::NoModRef;
974 
975   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
976   // that proper control dependencies are maintained but they never mod any
977   // particular memory location.
978   //
979   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
980   // heap state at the point the guard is issued needs to be consistent in case
981   // the guard invokes the "deopt" continuation.
982 
983   // NB! This function is *not* commutative, so we specical case two
984   // possibilities for guard intrinsics.
985 
986   if (isIntrinsicCall(CS1, Intrinsic::experimental_guard))
987     return isModSet(createModRefInfo(getModRefBehavior(CS2)))
988                ? ModRefInfo::Ref
989                : ModRefInfo::NoModRef;
990 
991   if (isIntrinsicCall(CS2, Intrinsic::experimental_guard))
992     return isModSet(createModRefInfo(getModRefBehavior(CS1)))
993                ? ModRefInfo::Mod
994                : ModRefInfo::NoModRef;
995 
996   // The AAResultBase base class has some smarts, lets use them.
997   return AAResultBase::getModRefInfo(CS1, CS2);
998 }
999 
1000 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
1001 /// both having the exact same pointer operand.
1002 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
1003                                             LocationSize V1Size,
1004                                             const GEPOperator *GEP2,
1005                                             LocationSize V2Size,
1006                                             const DataLayout &DL) {
1007   assert(GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
1008              GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
1009          GEP1->getPointerOperandType() == GEP2->getPointerOperandType() &&
1010          "Expected GEPs with the same pointer operand");
1011 
1012   // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
1013   // such that the struct field accesses provably cannot alias.
1014   // We also need at least two indices (the pointer, and the struct field).
1015   if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
1016       GEP1->getNumIndices() < 2)
1017     return MayAlias;
1018 
1019   // If we don't know the size of the accesses through both GEPs, we can't
1020   // determine whether the struct fields accessed can't alias.
1021   if (V1Size == MemoryLocation::UnknownSize ||
1022       V2Size == MemoryLocation::UnknownSize)
1023     return MayAlias;
1024 
1025   ConstantInt *C1 =
1026       dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
1027   ConstantInt *C2 =
1028       dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
1029 
1030   // If the last (struct) indices are constants and are equal, the other indices
1031   // might be also be dynamically equal, so the GEPs can alias.
1032   if (C1 && C2 && C1->getSExtValue() == C2->getSExtValue())
1033     return MayAlias;
1034 
1035   // Find the last-indexed type of the GEP, i.e., the type you'd get if
1036   // you stripped the last index.
1037   // On the way, look at each indexed type.  If there's something other
1038   // than an array, different indices can lead to different final types.
1039   SmallVector<Value *, 8> IntermediateIndices;
1040 
1041   // Insert the first index; we don't need to check the type indexed
1042   // through it as it only drops the pointer indirection.
1043   assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
1044   IntermediateIndices.push_back(GEP1->getOperand(1));
1045 
1046   // Insert all the remaining indices but the last one.
1047   // Also, check that they all index through arrays.
1048   for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
1049     if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
1050             GEP1->getSourceElementType(), IntermediateIndices)))
1051       return MayAlias;
1052     IntermediateIndices.push_back(GEP1->getOperand(i + 1));
1053   }
1054 
1055   auto *Ty = GetElementPtrInst::getIndexedType(
1056     GEP1->getSourceElementType(), IntermediateIndices);
1057   StructType *LastIndexedStruct = dyn_cast<StructType>(Ty);
1058 
1059   if (isa<SequentialType>(Ty)) {
1060     // We know that:
1061     // - both GEPs begin indexing from the exact same pointer;
1062     // - the last indices in both GEPs are constants, indexing into a sequential
1063     //   type (array or pointer);
1064     // - both GEPs only index through arrays prior to that.
1065     //
1066     // Because array indices greater than the number of elements are valid in
1067     // GEPs, unless we know the intermediate indices are identical between
1068     // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
1069     // partially overlap. We also need to check that the loaded size matches
1070     // the element size, otherwise we could still have overlap.
1071     const uint64_t ElementSize =
1072         DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType());
1073     if (V1Size != ElementSize || V2Size != ElementSize)
1074       return MayAlias;
1075 
1076     for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i)
1077       if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1))
1078         return MayAlias;
1079 
1080     // Now we know that the array/pointer that GEP1 indexes into and that
1081     // that GEP2 indexes into must either precisely overlap or be disjoint.
1082     // Because they cannot partially overlap and because fields in an array
1083     // cannot overlap, if we can prove the final indices are different between
1084     // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
1085 
1086     // If the last indices are constants, we've already checked they don't
1087     // equal each other so we can exit early.
1088     if (C1 && C2)
1089       return NoAlias;
1090     {
1091       Value *GEP1LastIdx = GEP1->getOperand(GEP1->getNumOperands() - 1);
1092       Value *GEP2LastIdx = GEP2->getOperand(GEP2->getNumOperands() - 1);
1093       if (isa<PHINode>(GEP1LastIdx) || isa<PHINode>(GEP2LastIdx)) {
1094         // If one of the indices is a PHI node, be safe and only use
1095         // computeKnownBits so we don't make any assumptions about the
1096         // relationships between the two indices. This is important if we're
1097         // asking about values from different loop iterations. See PR32314.
1098         // TODO: We may be able to change the check so we only do this when
1099         // we definitely looked through a PHINode.
1100         if (GEP1LastIdx != GEP2LastIdx &&
1101             GEP1LastIdx->getType() == GEP2LastIdx->getType()) {
1102           KnownBits Known1 = computeKnownBits(GEP1LastIdx, DL);
1103           KnownBits Known2 = computeKnownBits(GEP2LastIdx, DL);
1104           if (Known1.Zero.intersects(Known2.One) ||
1105               Known1.One.intersects(Known2.Zero))
1106             return NoAlias;
1107         }
1108       } else if (isKnownNonEqual(GEP1LastIdx, GEP2LastIdx, DL))
1109         return NoAlias;
1110     }
1111     return MayAlias;
1112   } else if (!LastIndexedStruct || !C1 || !C2) {
1113     return MayAlias;
1114   }
1115 
1116   // We know that:
1117   // - both GEPs begin indexing from the exact same pointer;
1118   // - the last indices in both GEPs are constants, indexing into a struct;
1119   // - said indices are different, hence, the pointed-to fields are different;
1120   // - both GEPs only index through arrays prior to that.
1121   //
1122   // This lets us determine that the struct that GEP1 indexes into and the
1123   // struct that GEP2 indexes into must either precisely overlap or be
1124   // completely disjoint.  Because they cannot partially overlap, indexing into
1125   // different non-overlapping fields of the struct will never alias.
1126 
1127   // Therefore, the only remaining thing needed to show that both GEPs can't
1128   // alias is that the fields are not overlapping.
1129   const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
1130   const uint64_t StructSize = SL->getSizeInBytes();
1131   const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
1132   const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
1133 
1134   auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
1135                                       uint64_t V2Off, uint64_t V2Size) {
1136     return V1Off < V2Off && V1Off + V1Size <= V2Off &&
1137            ((V2Off + V2Size <= StructSize) ||
1138             (V2Off + V2Size - StructSize <= V1Off));
1139   };
1140 
1141   if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
1142       EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
1143     return NoAlias;
1144 
1145   return MayAlias;
1146 }
1147 
1148 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the
1149 // beginning of the object the GEP points would have a negative offset with
1150 // repsect to the alloca, that means the GEP can not alias pointer (b).
1151 // Note that the pointer based on the alloca may not be a GEP. For
1152 // example, it may be the alloca itself.
1153 // The same applies if (b) is based on a GlobalVariable. Note that just being
1154 // based on isIdentifiedObject() is not enough - we need an identified object
1155 // that does not permit access to negative offsets. For example, a negative
1156 // offset from a noalias argument or call can be inbounds w.r.t the actual
1157 // underlying object.
1158 //
1159 // For example, consider:
1160 //
1161 //   struct { int f0, int f1, ...} foo;
1162 //   foo alloca;
1163 //   foo* random = bar(alloca);
1164 //   int *f0 = &alloca.f0
1165 //   int *f1 = &random->f1;
1166 //
1167 // Which is lowered, approximately, to:
1168 //
1169 //  %alloca = alloca %struct.foo
1170 //  %random = call %struct.foo* @random(%struct.foo* %alloca)
1171 //  %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0
1172 //  %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1
1173 //
1174 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated
1175 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also
1176 // point into the same object. But since %f0 points to the beginning of %alloca,
1177 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher
1178 // than (%alloca - 1), and so is not inbounds, a contradiction.
1179 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp,
1180       const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject,
1181       LocationSize ObjectAccessSize) {
1182   // If the object access size is unknown, or the GEP isn't inbounds, bail.
1183   if (ObjectAccessSize == MemoryLocation::UnknownSize || !GEPOp->isInBounds())
1184     return false;
1185 
1186   // We need the object to be an alloca or a globalvariable, and want to know
1187   // the offset of the pointer from the object precisely, so no variable
1188   // indices are allowed.
1189   if (!(isa<AllocaInst>(DecompObject.Base) ||
1190         isa<GlobalVariable>(DecompObject.Base)) ||
1191       !DecompObject.VarIndices.empty())
1192     return false;
1193 
1194   int64_t ObjectBaseOffset = DecompObject.StructOffset +
1195                              DecompObject.OtherOffset;
1196 
1197   // If the GEP has no variable indices, we know the precise offset
1198   // from the base, then use it. If the GEP has variable indices,
1199   // we can't get exact GEP offset to identify pointer alias. So return
1200   // false in that case.
1201   if (!DecompGEP.VarIndices.empty())
1202     return false;
1203   int64_t GEPBaseOffset = DecompGEP.StructOffset;
1204   GEPBaseOffset += DecompGEP.OtherOffset;
1205 
1206   return (GEPBaseOffset >= ObjectBaseOffset + (int64_t)ObjectAccessSize);
1207 }
1208 
1209 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1210 /// another pointer.
1211 ///
1212 /// We know that V1 is a GEP, but we don't know anything about V2.
1213 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for
1214 /// V2.
1215 AliasResult
1216 BasicAAResult::aliasGEP(const GEPOperator *GEP1, LocationSize V1Size,
1217                         const AAMDNodes &V1AAInfo, const Value *V2,
1218                         LocationSize V2Size, const AAMDNodes &V2AAInfo,
1219                         const Value *UnderlyingV1, const Value *UnderlyingV2) {
1220   DecomposedGEP DecompGEP1, DecompGEP2;
1221   bool GEP1MaxLookupReached =
1222     DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT);
1223   bool GEP2MaxLookupReached =
1224     DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT);
1225 
1226   int64_t GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset;
1227   int64_t GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset;
1228 
1229   assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
1230          "DecomposeGEPExpression returned a result different from "
1231          "GetUnderlyingObject");
1232 
1233   // If the GEP's offset relative to its base is such that the base would
1234   // fall below the start of the object underlying V2, then the GEP and V2
1235   // cannot alias.
1236   if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1237       isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size))
1238     return NoAlias;
1239   // If we have two gep instructions with must-alias or not-alias'ing base
1240   // pointers, figure out if the indexes to the GEP tell us anything about the
1241   // derived pointer.
1242   if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
1243     // Check for the GEP base being at a negative offset, this time in the other
1244     // direction.
1245     if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1246         isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size))
1247       return NoAlias;
1248     // Do the base pointers alias?
1249     AliasResult BaseAlias =
1250         aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(),
1251                    UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes());
1252 
1253     // Check for geps of non-aliasing underlying pointers where the offsets are
1254     // identical.
1255     if ((BaseAlias == MayAlias) && V1Size == V2Size) {
1256       // Do the base pointers alias assuming type and size.
1257       AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo,
1258                                                 UnderlyingV2, V2Size, V2AAInfo);
1259       if (PreciseBaseAlias == NoAlias) {
1260         // See if the computed offset from the common pointer tells us about the
1261         // relation of the resulting pointer.
1262         // If the max search depth is reached the result is undefined
1263         if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1264           return MayAlias;
1265 
1266         // Same offsets.
1267         if (GEP1BaseOffset == GEP2BaseOffset &&
1268             DecompGEP1.VarIndices == DecompGEP2.VarIndices)
1269           return NoAlias;
1270       }
1271     }
1272 
1273     // If we get a No or May, then return it immediately, no amount of analysis
1274     // will improve this situation.
1275     if (BaseAlias != MustAlias) {
1276       assert(BaseAlias == NoAlias || BaseAlias == MayAlias);
1277       return BaseAlias;
1278     }
1279 
1280     // Otherwise, we have a MustAlias.  Since the base pointers alias each other
1281     // exactly, see if the computed offset from the common pointer tells us
1282     // about the relation of the resulting pointer.
1283     // If we know the two GEPs are based off of the exact same pointer (and not
1284     // just the same underlying object), see if that tells us anything about
1285     // the resulting pointers.
1286     if (GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
1287             GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
1288         GEP1->getPointerOperandType() == GEP2->getPointerOperandType()) {
1289       AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL);
1290       // If we couldn't find anything interesting, don't abandon just yet.
1291       if (R != MayAlias)
1292         return R;
1293     }
1294 
1295     // If the max search depth is reached, the result is undefined
1296     if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1297       return MayAlias;
1298 
1299     // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1300     // symbolic difference.
1301     GEP1BaseOffset -= GEP2BaseOffset;
1302     GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);
1303 
1304   } else {
1305     // Check to see if these two pointers are related by the getelementptr
1306     // instruction.  If one pointer is a GEP with a non-zero index of the other
1307     // pointer, we know they cannot alias.
1308 
1309     // If both accesses are unknown size, we can't do anything useful here.
1310     if (V1Size == MemoryLocation::UnknownSize &&
1311         V2Size == MemoryLocation::UnknownSize)
1312       return MayAlias;
1313 
1314     AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize,
1315                                AAMDNodes(), V2, MemoryLocation::UnknownSize,
1316                                V2AAInfo, nullptr, UnderlyingV2);
1317     if (R != MustAlias) {
1318       // If V2 may alias GEP base pointer, conservatively returns MayAlias.
1319       // If V2 is known not to alias GEP base pointer, then the two values
1320       // cannot alias per GEP semantics: "Any memory access must be done through
1321       // a pointer value associated with an address range of the memory access,
1322       // otherwise the behavior is undefined.".
1323       assert(R == NoAlias || R == MayAlias);
1324       return R;
1325     }
1326 
1327     // If the max search depth is reached the result is undefined
1328     if (GEP1MaxLookupReached)
1329       return MayAlias;
1330   }
1331 
1332   // In the two GEP Case, if there is no difference in the offsets of the
1333   // computed pointers, the resultant pointers are a must alias.  This
1334   // happens when we have two lexically identical GEP's (for example).
1335   //
1336   // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
1337   // must aliases the GEP, the end result is a must alias also.
1338   if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty())
1339     return MustAlias;
1340 
1341   // If there is a constant difference between the pointers, but the difference
1342   // is less than the size of the associated memory object, then we know
1343   // that the objects are partially overlapping.  If the difference is
1344   // greater, we know they do not overlap.
1345   if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) {
1346     if (GEP1BaseOffset >= 0) {
1347       if (V2Size != MemoryLocation::UnknownSize) {
1348         if ((uint64_t)GEP1BaseOffset < V2Size)
1349           return PartialAlias;
1350         return NoAlias;
1351       }
1352     } else {
1353       // We have the situation where:
1354       // +                +
1355       // | BaseOffset     |
1356       // ---------------->|
1357       // |-->V1Size       |-------> V2Size
1358       // GEP1             V2
1359       // We need to know that V2Size is not unknown, otherwise we might have
1360       // stripped a gep with negative index ('gep <ptr>, -1, ...).
1361       if (V1Size != MemoryLocation::UnknownSize &&
1362           V2Size != MemoryLocation::UnknownSize) {
1363         if (-(uint64_t)GEP1BaseOffset < V1Size)
1364           return PartialAlias;
1365         return NoAlias;
1366       }
1367     }
1368   }
1369 
1370   if (!DecompGEP1.VarIndices.empty()) {
1371     uint64_t Modulo = 0;
1372     bool AllPositive = true;
1373     for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1374 
1375       // Try to distinguish something like &A[i][1] against &A[42][0].
1376       // Grab the least significant bit set in any of the scales. We
1377       // don't need std::abs here (even if the scale's negative) as we'll
1378       // be ^'ing Modulo with itself later.
1379       Modulo |= (uint64_t)DecompGEP1.VarIndices[i].Scale;
1380 
1381       if (AllPositive) {
1382         // If the Value could change between cycles, then any reasoning about
1383         // the Value this cycle may not hold in the next cycle. We'll just
1384         // give up if we can't determine conditions that hold for every cycle:
1385         const Value *V = DecompGEP1.VarIndices[i].V;
1386 
1387         KnownBits Known = computeKnownBits(V, DL, 0, &AC, nullptr, DT);
1388         bool SignKnownZero = Known.isNonNegative();
1389         bool SignKnownOne = Known.isNegative();
1390 
1391         // Zero-extension widens the variable, and so forces the sign
1392         // bit to zero.
1393         bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
1394         SignKnownZero |= IsZExt;
1395         SignKnownOne &= !IsZExt;
1396 
1397         // If the variable begins with a zero then we know it's
1398         // positive, regardless of whether the value is signed or
1399         // unsigned.
1400         int64_t Scale = DecompGEP1.VarIndices[i].Scale;
1401         AllPositive =
1402             (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0);
1403       }
1404     }
1405 
1406     Modulo = Modulo ^ (Modulo & (Modulo - 1));
1407 
1408     // We can compute the difference between the two addresses
1409     // mod Modulo. Check whether that difference guarantees that the
1410     // two locations do not alias.
1411     uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
1412     if (V1Size != MemoryLocation::UnknownSize &&
1413         V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size &&
1414         V1Size <= Modulo - ModOffset)
1415       return NoAlias;
1416 
1417     // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
1418     // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
1419     // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
1420     if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset)
1421       return NoAlias;
1422 
1423     if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
1424                                 GEP1BaseOffset, &AC, DT))
1425       return NoAlias;
1426   }
1427 
1428   // Statically, we can see that the base objects are the same, but the
1429   // pointers have dynamic offsets which we can't resolve. And none of our
1430   // little tricks above worked.
1431   return MayAlias;
1432 }
1433 
1434 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1435   // If the results agree, take it.
1436   if (A == B)
1437     return A;
1438   // A mix of PartialAlias and MustAlias is PartialAlias.
1439   if ((A == PartialAlias && B == MustAlias) ||
1440       (B == PartialAlias && A == MustAlias))
1441     return PartialAlias;
1442   // Otherwise, we don't know anything.
1443   return MayAlias;
1444 }
1445 
1446 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1447 /// against another.
1448 AliasResult BasicAAResult::aliasSelect(const SelectInst *SI,
1449                                        LocationSize SISize,
1450                                        const AAMDNodes &SIAAInfo,
1451                                        const Value *V2, LocationSize V2Size,
1452                                        const AAMDNodes &V2AAInfo,
1453                                        const Value *UnderV2) {
1454   // If the values are Selects with the same condition, we can do a more precise
1455   // check: just check for aliases between the values on corresponding arms.
1456   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1457     if (SI->getCondition() == SI2->getCondition()) {
1458       AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo,
1459                                      SI2->getTrueValue(), V2Size, V2AAInfo);
1460       if (Alias == MayAlias)
1461         return MayAlias;
1462       AliasResult ThisAlias =
1463           aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
1464                      SI2->getFalseValue(), V2Size, V2AAInfo);
1465       return MergeAliasResults(ThisAlias, Alias);
1466     }
1467 
1468   // If both arms of the Select node NoAlias or MustAlias V2, then returns
1469   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1470   AliasResult Alias =
1471       aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(),
1472                  SISize, SIAAInfo, UnderV2);
1473   if (Alias == MayAlias)
1474     return MayAlias;
1475 
1476   AliasResult ThisAlias =
1477       aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo,
1478                  UnderV2);
1479   return MergeAliasResults(ThisAlias, Alias);
1480 }
1481 
1482 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1483 /// another.
1484 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
1485                                     const AAMDNodes &PNAAInfo, const Value *V2,
1486                                     LocationSize V2Size,
1487                                     const AAMDNodes &V2AAInfo,
1488                                     const Value *UnderV2) {
1489   // Track phi nodes we have visited. We use this information when we determine
1490   // value equivalence.
1491   VisitedPhiBBs.insert(PN->getParent());
1492 
1493   // If the values are PHIs in the same block, we can do a more precise
1494   // as well as efficient check: just check for aliases between the values
1495   // on corresponding edges.
1496   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1497     if (PN2->getParent() == PN->getParent()) {
1498       LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
1499                    MemoryLocation(V2, V2Size, V2AAInfo));
1500       if (PN > V2)
1501         std::swap(Locs.first, Locs.second);
1502       // Analyse the PHIs' inputs under the assumption that the PHIs are
1503       // NoAlias.
1504       // If the PHIs are May/MustAlias there must be (recursively) an input
1505       // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1506       // there must be an operation on the PHIs within the PHIs' value cycle
1507       // that causes a MayAlias.
1508       // Pretend the phis do not alias.
1509       AliasResult Alias = NoAlias;
1510       assert(AliasCache.count(Locs) &&
1511              "There must exist an entry for the phi node");
1512       AliasResult OrigAliasResult = AliasCache[Locs];
1513       AliasCache[Locs] = NoAlias;
1514 
1515       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1516         AliasResult ThisAlias =
1517             aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
1518                        PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1519                        V2Size, V2AAInfo);
1520         Alias = MergeAliasResults(ThisAlias, Alias);
1521         if (Alias == MayAlias)
1522           break;
1523       }
1524 
1525       // Reset if speculation failed.
1526       if (Alias != NoAlias)
1527         AliasCache[Locs] = OrigAliasResult;
1528 
1529       return Alias;
1530     }
1531 
1532   SmallVector<Value *, 4> V1Srcs;
1533   bool isRecursive = false;
1534   if (PV)  {
1535     // If we have PhiValues then use it to get the underlying phi values.
1536     const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN);
1537     // If we have more phi values than the search depth then return MayAlias
1538     // conservatively to avoid compile time explosion. The worst possible case
1539     // is if both sides are PHI nodes. In which case, this is O(m x n) time
1540     // where 'm' and 'n' are the number of PHI sources.
1541     if (PhiValueSet.size() > MaxLookupSearchDepth)
1542       return MayAlias;
1543     // Add the values to V1Srcs
1544     for (Value *PV1 : PhiValueSet) {
1545       if (EnableRecPhiAnalysis) {
1546         if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
1547           // Check whether the incoming value is a GEP that advances the pointer
1548           // result of this PHI node (e.g. in a loop). If this is the case, we
1549           // would recurse and always get a MayAlias. Handle this case specially
1550           // below.
1551           if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
1552               isa<ConstantInt>(PV1GEP->idx_begin())) {
1553             isRecursive = true;
1554             continue;
1555           }
1556         }
1557       }
1558       V1Srcs.push_back(PV1);
1559     }
1560   } else {
1561     // If we don't have PhiInfo then just look at the operands of the phi itself
1562     // FIXME: Remove this once we can guarantee that we have PhiInfo always
1563     SmallPtrSet<Value *, 4> UniqueSrc;
1564     for (Value *PV1 : PN->incoming_values()) {
1565       if (isa<PHINode>(PV1))
1566         // If any of the source itself is a PHI, return MayAlias conservatively
1567         // to avoid compile time explosion. The worst possible case is if both
1568         // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1569         // and 'n' are the number of PHI sources.
1570         return MayAlias;
1571 
1572       if (EnableRecPhiAnalysis)
1573         if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
1574           // Check whether the incoming value is a GEP that advances the pointer
1575           // result of this PHI node (e.g. in a loop). If this is the case, we
1576           // would recurse and always get a MayAlias. Handle this case specially
1577           // below.
1578           if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
1579               isa<ConstantInt>(PV1GEP->idx_begin())) {
1580             isRecursive = true;
1581             continue;
1582           }
1583         }
1584 
1585       if (UniqueSrc.insert(PV1).second)
1586         V1Srcs.push_back(PV1);
1587     }
1588   }
1589 
1590   // If V1Srcs is empty then that means that the phi has no underlying non-phi
1591   // value. This should only be possible in blocks unreachable from the entry
1592   // block, but return MayAlias just in case.
1593   if (V1Srcs.empty())
1594     return MayAlias;
1595 
1596   // If this PHI node is recursive, set the size of the accessed memory to
1597   // unknown to represent all the possible values the GEP could advance the
1598   // pointer to.
1599   if (isRecursive)
1600     PNSize = MemoryLocation::UnknownSize;
1601 
1602   AliasResult Alias =
1603       aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0],
1604                  PNSize, PNAAInfo, UnderV2);
1605 
1606   // Early exit if the check of the first PHI source against V2 is MayAlias.
1607   // Other results are not possible.
1608   if (Alias == MayAlias)
1609     return MayAlias;
1610 
1611   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1612   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1613   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1614     Value *V = V1Srcs[i];
1615 
1616     AliasResult ThisAlias =
1617         aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, UnderV2);
1618     Alias = MergeAliasResults(ThisAlias, Alias);
1619     if (Alias == MayAlias)
1620       break;
1621   }
1622 
1623   return Alias;
1624 }
1625 
1626 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1627 /// array references.
1628 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
1629                                       AAMDNodes V1AAInfo, const Value *V2,
1630                                       LocationSize V2Size, AAMDNodes V2AAInfo,
1631                                       const Value *O1, const Value *O2) {
1632   // If either of the memory references is empty, it doesn't matter what the
1633   // pointer values are.
1634   if (V1Size == 0 || V2Size == 0)
1635     return NoAlias;
1636 
1637   // Strip off any casts if they exist.
1638   V1 = V1->stripPointerCastsAndInvariantGroups();
1639   V2 = V2->stripPointerCastsAndInvariantGroups();
1640 
1641   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1642   // value for undef that aliases nothing in the program.
1643   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1644     return NoAlias;
1645 
1646   // Are we checking for alias of the same value?
1647   // Because we look 'through' phi nodes, we could look at "Value" pointers from
1648   // different iterations. We must therefore make sure that this is not the
1649   // case. The function isValueEqualInPotentialCycles ensures that this cannot
1650   // happen by looking at the visited phi nodes and making sure they cannot
1651   // reach the value.
1652   if (isValueEqualInPotentialCycles(V1, V2))
1653     return MustAlias;
1654 
1655   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1656     return NoAlias; // Scalars cannot alias each other
1657 
1658   // Figure out what objects these things are pointing to if we can.
1659   if (O1 == nullptr)
1660     O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
1661 
1662   if (O2 == nullptr)
1663     O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);
1664 
1665   // Null values in the default address space don't point to any object, so they
1666   // don't alias any other pointer.
1667   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1668     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1669       return NoAlias;
1670   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1671     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1672       return NoAlias;
1673 
1674   if (O1 != O2) {
1675     // If V1/V2 point to two different objects, we know that we have no alias.
1676     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1677       return NoAlias;
1678 
1679     // Constant pointers can't alias with non-const isIdentifiedObject objects.
1680     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1681         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1682       return NoAlias;
1683 
1684     // Function arguments can't alias with things that are known to be
1685     // unambigously identified at the function level.
1686     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1687         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1688       return NoAlias;
1689 
1690     // If one pointer is the result of a call/invoke or load and the other is a
1691     // non-escaping local object within the same function, then we know the
1692     // object couldn't escape to a point where the call could return it.
1693     //
1694     // Note that if the pointers are in different functions, there are a
1695     // variety of complications. A call with a nocapture argument may still
1696     // temporary store the nocapture argument's value in a temporary memory
1697     // location if that memory location doesn't escape. Or it may pass a
1698     // nocapture value to other functions as long as they don't capture it.
1699     if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
1700       return NoAlias;
1701     if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
1702       return NoAlias;
1703   }
1704 
1705   // If the size of one access is larger than the entire object on the other
1706   // side, then we know such behavior is undefined and can assume no alias.
1707   bool NullIsValidLocation = NullPointerIsDefined(&F);
1708   if ((V1Size != MemoryLocation::UnknownSize &&
1709        isObjectSmallerThan(O2, V1Size, DL, TLI, NullIsValidLocation)) ||
1710       (V2Size != MemoryLocation::UnknownSize &&
1711        isObjectSmallerThan(O1, V2Size, DL, TLI, NullIsValidLocation)))
1712     return NoAlias;
1713 
1714   // Check the cache before climbing up use-def chains. This also terminates
1715   // otherwise infinitely recursive queries.
1716   LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
1717                MemoryLocation(V2, V2Size, V2AAInfo));
1718   if (V1 > V2)
1719     std::swap(Locs.first, Locs.second);
1720   std::pair<AliasCacheTy::iterator, bool> Pair =
1721       AliasCache.insert(std::make_pair(Locs, MayAlias));
1722   if (!Pair.second)
1723     return Pair.first->second;
1724 
1725   // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1726   // GEP can't simplify, we don't even look at the PHI cases.
1727   if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1728     std::swap(V1, V2);
1729     std::swap(V1Size, V2Size);
1730     std::swap(O1, O2);
1731     std::swap(V1AAInfo, V2AAInfo);
1732   }
1733   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1734     AliasResult Result =
1735         aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2);
1736     if (Result != MayAlias)
1737       return AliasCache[Locs] = Result;
1738   }
1739 
1740   if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1741     std::swap(V1, V2);
1742     std::swap(O1, O2);
1743     std::swap(V1Size, V2Size);
1744     std::swap(V1AAInfo, V2AAInfo);
1745   }
1746   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1747     AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo,
1748                                   V2, V2Size, V2AAInfo, O2);
1749     if (Result != MayAlias)
1750       return AliasCache[Locs] = Result;
1751   }
1752 
1753   if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1754     std::swap(V1, V2);
1755     std::swap(O1, O2);
1756     std::swap(V1Size, V2Size);
1757     std::swap(V1AAInfo, V2AAInfo);
1758   }
1759   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1760     AliasResult Result =
1761         aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2);
1762     if (Result != MayAlias)
1763       return AliasCache[Locs] = Result;
1764   }
1765 
1766   // If both pointers are pointing into the same object and one of them
1767   // accesses the entire object, then the accesses must overlap in some way.
1768   if (O1 == O2)
1769     if (V1Size != MemoryLocation::UnknownSize &&
1770         V2Size != MemoryLocation::UnknownSize &&
1771         (isObjectSize(O1, V1Size, DL, TLI, NullIsValidLocation) ||
1772          isObjectSize(O2, V2Size, DL, TLI, NullIsValidLocation)))
1773       return AliasCache[Locs] = PartialAlias;
1774 
1775   // Recurse back into the best AA results we have, potentially with refined
1776   // memory locations. We have already ensured that BasicAA has a MayAlias
1777   // cache result for these, so any recursion back into BasicAA won't loop.
1778   AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second);
1779   return AliasCache[Locs] = Result;
1780 }
1781 
1782 /// Check whether two Values can be considered equivalent.
1783 ///
1784 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1785 /// they can not be part of a cycle in the value graph by looking at all
1786 /// visited phi nodes an making sure that the phis cannot reach the value. We
1787 /// have to do this because we are looking through phi nodes (That is we say
1788 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1789 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1790                                                   const Value *V2) {
1791   if (V != V2)
1792     return false;
1793 
1794   const Instruction *Inst = dyn_cast<Instruction>(V);
1795   if (!Inst)
1796     return true;
1797 
1798   if (VisitedPhiBBs.empty())
1799     return true;
1800 
1801   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1802     return false;
1803 
1804   // Make sure that the visited phis cannot reach the Value. This ensures that
1805   // the Values cannot come from different iterations of a potential cycle the
1806   // phi nodes could be involved in.
1807   for (auto *P : VisitedPhiBBs)
1808     if (isPotentiallyReachable(&P->front(), Inst, DT, LI))
1809       return false;
1810 
1811   return true;
1812 }
1813 
1814 /// Computes the symbolic difference between two de-composed GEPs.
1815 ///
1816 /// Dest and Src are the variable indices from two decomposed GetElementPtr
1817 /// instructions GEP1 and GEP2 which have common base pointers.
1818 void BasicAAResult::GetIndexDifference(
1819     SmallVectorImpl<VariableGEPIndex> &Dest,
1820     const SmallVectorImpl<VariableGEPIndex> &Src) {
1821   if (Src.empty())
1822     return;
1823 
1824   for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1825     const Value *V = Src[i].V;
1826     unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
1827     int64_t Scale = Src[i].Scale;
1828 
1829     // Find V in Dest.  This is N^2, but pointer indices almost never have more
1830     // than a few variable indexes.
1831     for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1832       if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1833           Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
1834         continue;
1835 
1836       // If we found it, subtract off Scale V's from the entry in Dest.  If it
1837       // goes to zero, remove the entry.
1838       if (Dest[j].Scale != Scale)
1839         Dest[j].Scale -= Scale;
1840       else
1841         Dest.erase(Dest.begin() + j);
1842       Scale = 0;
1843       break;
1844     }
1845 
1846     // If we didn't consume this entry, add it to the end of the Dest list.
1847     if (Scale) {
1848       VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale};
1849       Dest.push_back(Entry);
1850     }
1851   }
1852 }
1853 
1854 bool BasicAAResult::constantOffsetHeuristic(
1855     const SmallVectorImpl<VariableGEPIndex> &VarIndices, LocationSize V1Size,
1856     LocationSize V2Size, int64_t BaseOffset, AssumptionCache *AC,
1857     DominatorTree *DT) {
1858   if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize ||
1859       V2Size == MemoryLocation::UnknownSize)
1860     return false;
1861 
1862   const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
1863 
1864   if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
1865       Var0.Scale != -Var1.Scale)
1866     return false;
1867 
1868   unsigned Width = Var1.V->getType()->getIntegerBitWidth();
1869 
1870   // We'll strip off the Extensions of Var0 and Var1 and do another round
1871   // of GetLinearExpression decomposition. In the example above, if Var0
1872   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1873 
1874   APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
1875       V1Offset(Width, 0);
1876   bool NSW = true, NUW = true;
1877   unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
1878   const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
1879                                         V0SExtBits, DL, 0, AC, DT, NSW, NUW);
1880   NSW = true;
1881   NUW = true;
1882   const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
1883                                         V1SExtBits, DL, 0, AC, DT, NSW, NUW);
1884 
1885   if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
1886       V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
1887     return false;
1888 
1889   // We have a hit - Var0 and Var1 only differ by a constant offset!
1890 
1891   // If we've been sext'ed then zext'd the maximum difference between Var0 and
1892   // Var1 is possible to calculate, but we're just interested in the absolute
1893   // minimum difference between the two. The minimum distance may occur due to
1894   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1895   // the minimum distance between %i and %i + 5 is 3.
1896   APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
1897   MinDiff = APIntOps::umin(MinDiff, Wrapped);
1898   uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale);
1899 
1900   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
1901   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
1902   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
1903   // V2Size can fit in the MinDiffBytes gap.
1904   return V1Size + std::abs(BaseOffset) <= MinDiffBytes &&
1905          V2Size + std::abs(BaseOffset) <= MinDiffBytes;
1906 }
1907 
1908 //===----------------------------------------------------------------------===//
1909 // BasicAliasAnalysis Pass
1910 //===----------------------------------------------------------------------===//
1911 
1912 AnalysisKey BasicAA::Key;
1913 
1914 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
1915   return BasicAAResult(F.getParent()->getDataLayout(),
1916                        F,
1917                        AM.getResult<TargetLibraryAnalysis>(F),
1918                        AM.getResult<AssumptionAnalysis>(F),
1919                        &AM.getResult<DominatorTreeAnalysis>(F),
1920                        AM.getCachedResult<LoopAnalysis>(F),
1921                        AM.getCachedResult<PhiValuesAnalysis>(F));
1922 }
1923 
1924 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
1925     initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
1926 }
1927 
1928 char BasicAAWrapperPass::ID = 0;
1929 
1930 void BasicAAWrapperPass::anchor() {}
1931 
1932 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa",
1933                       "Basic Alias Analysis (stateless AA impl)", false, true)
1934 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1935 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1936 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1937 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa",
1938                     "Basic Alias Analysis (stateless AA impl)", false, true)
1939 
1940 FunctionPass *llvm::createBasicAAWrapperPass() {
1941   return new BasicAAWrapperPass();
1942 }
1943 
1944 bool BasicAAWrapperPass::runOnFunction(Function &F) {
1945   auto &ACT = getAnalysis<AssumptionCacheTracker>();
1946   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
1947   auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
1948   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
1949   auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>();
1950 
1951   Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F, TLIWP.getTLI(),
1952                                  ACT.getAssumptionCache(F), &DTWP.getDomTree(),
1953                                  LIWP ? &LIWP->getLoopInfo() : nullptr,
1954                                  PVWP ? &PVWP->getResult() : nullptr));
1955 
1956   return false;
1957 }
1958 
1959 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1960   AU.setPreservesAll();
1961   AU.addRequired<AssumptionCacheTracker>();
1962   AU.addRequired<DominatorTreeWrapperPass>();
1963   AU.addRequired<TargetLibraryInfoWrapperPass>();
1964   AU.addUsedIfAvailable<PhiValuesWrapperPass>();
1965 }
1966 
1967 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
1968   return BasicAAResult(
1969       F.getParent()->getDataLayout(),
1970       F,
1971       P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
1972       P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
1973 }
1974