1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the primary stateless implementation of the
11 // Alias Analysis interface that implements identities (two different
12 // globals cannot alias, etc), but does no stateful analysis.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Analysis/BasicAliasAnalysis.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GetElementPtrTypeIterator.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/Metadata.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/User.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/KnownBits.h"
58 #include <cassert>
59 #include <cstdint>
60 #include <cstdlib>
61 #include <utility>
62 
63 #define DEBUG_TYPE "basicaa"
64 
65 using namespace llvm;
66 
67 /// Enable analysis of recursive PHI nodes.
68 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden,
69                                           cl::init(false));
70 /// SearchLimitReached / SearchTimes shows how often the limit of
71 /// to decompose GEPs is reached. It will affect the precision
72 /// of basic alias analysis.
73 STATISTIC(SearchLimitReached, "Number of times the limit to "
74                               "decompose GEPs is reached");
75 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
76 
77 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
78 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
79 /// careful with value equivalence. We use reachability to make sure a value
80 /// cannot be involved in a cycle.
81 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
82 
83 // The max limit of the search depth in DecomposeGEPExpression() and
84 // GetUnderlyingObject(), both functions need to use the same search
85 // depth otherwise the algorithm in aliasGEP will assert.
86 static const unsigned MaxLookupSearchDepth = 6;
87 
88 bool BasicAAResult::invalidate(Function &F, const PreservedAnalyses &PA,
89                                FunctionAnalysisManager::Invalidator &Inv) {
90   // We don't care if this analysis itself is preserved, it has no state. But
91   // we need to check that the analyses it depends on have been. Note that we
92   // may be created without handles to some analyses and in that case don't
93   // depend on them.
94   if (Inv.invalidate<AssumptionAnalysis>(F, PA) ||
95       (DT && Inv.invalidate<DominatorTreeAnalysis>(F, PA)) ||
96       (LI && Inv.invalidate<LoopAnalysis>(F, PA)))
97     return true;
98 
99   // Otherwise this analysis result remains valid.
100   return false;
101 }
102 
103 //===----------------------------------------------------------------------===//
104 // Useful predicates
105 //===----------------------------------------------------------------------===//
106 
107 /// Returns true if the pointer is to a function-local object that never
108 /// escapes from the function.
109 static bool isNonEscapingLocalObject(const Value *V) {
110   // If this is a local allocation, check to see if it escapes.
111   if (isa<AllocaInst>(V) || isNoAliasCall(V))
112     // Set StoreCaptures to True so that we can assume in our callers that the
113     // pointer is not the result of a load instruction. Currently
114     // PointerMayBeCaptured doesn't have any special analysis for the
115     // StoreCaptures=false case; if it did, our callers could be refined to be
116     // more precise.
117     return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
118 
119   // If this is an argument that corresponds to a byval or noalias argument,
120   // then it has not escaped before entering the function.  Check if it escapes
121   // inside the function.
122   if (const Argument *A = dyn_cast<Argument>(V))
123     if (A->hasByValAttr() || A->hasNoAliasAttr())
124       // Note even if the argument is marked nocapture, we still need to check
125       // for copies made inside the function. The nocapture attribute only
126       // specifies that there are no copies made that outlive the function.
127       return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
128 
129   return false;
130 }
131 
132 /// Returns true if the pointer is one which would have been considered an
133 /// escape by isNonEscapingLocalObject.
134 static bool isEscapeSource(const Value *V) {
135   if (ImmutableCallSite(V))
136     return true;
137 
138   if (isa<Argument>(V))
139     return true;
140 
141   // The load case works because isNonEscapingLocalObject considers all
142   // stores to be escapes (it passes true for the StoreCaptures argument
143   // to PointerMayBeCaptured).
144   if (isa<LoadInst>(V))
145     return true;
146 
147   return false;
148 }
149 
150 /// Returns the size of the object specified by V or UnknownSize if unknown.
151 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
152                               const TargetLibraryInfo &TLI,
153                               bool RoundToAlign = false) {
154   uint64_t Size;
155   ObjectSizeOpts Opts;
156   Opts.RoundToAlign = RoundToAlign;
157   if (getObjectSize(V, Size, DL, &TLI, Opts))
158     return Size;
159   return MemoryLocation::UnknownSize;
160 }
161 
162 /// Returns true if we can prove that the object specified by V is smaller than
163 /// Size.
164 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
165                                 const DataLayout &DL,
166                                 const TargetLibraryInfo &TLI) {
167   // Note that the meanings of the "object" are slightly different in the
168   // following contexts:
169   //    c1: llvm::getObjectSize()
170   //    c2: llvm.objectsize() intrinsic
171   //    c3: isObjectSmallerThan()
172   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
173   // refers to the "entire object".
174   //
175   //  Consider this example:
176   //     char *p = (char*)malloc(100)
177   //     char *q = p+80;
178   //
179   //  In the context of c1 and c2, the "object" pointed by q refers to the
180   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
181   //
182   //  However, in the context of c3, the "object" refers to the chunk of memory
183   // being allocated. So, the "object" has 100 bytes, and q points to the middle
184   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
185   // parameter, before the llvm::getObjectSize() is called to get the size of
186   // entire object, we should:
187   //    - either rewind the pointer q to the base-address of the object in
188   //      question (in this case rewind to p), or
189   //    - just give up. It is up to caller to make sure the pointer is pointing
190   //      to the base address the object.
191   //
192   // We go for 2nd option for simplicity.
193   if (!isIdentifiedObject(V))
194     return false;
195 
196   // This function needs to use the aligned object size because we allow
197   // reads a bit past the end given sufficient alignment.
198   uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/ true);
199 
200   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
201 }
202 
203 /// Returns true if we can prove that the object specified by V has size Size.
204 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
205                          const TargetLibraryInfo &TLI) {
206   uint64_t ObjectSize = getObjectSize(V, DL, TLI);
207   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
208 }
209 
210 //===----------------------------------------------------------------------===//
211 // GetElementPtr Instruction Decomposition and Analysis
212 //===----------------------------------------------------------------------===//
213 
214 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
215 /// B are constant integers.
216 ///
217 /// Returns the scale and offset values as APInts and return V as a Value*, and
218 /// return whether we looked through any sign or zero extends.  The incoming
219 /// Value is known to have IntegerType, and it may already be sign or zero
220 /// extended.
221 ///
222 /// Note that this looks through extends, so the high bits may not be
223 /// represented in the result.
224 /*static*/ const Value *BasicAAResult::GetLinearExpression(
225     const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
226     unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
227     AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
228   assert(V->getType()->isIntegerTy() && "Not an integer value");
229 
230   // Limit our recursion depth.
231   if (Depth == 6) {
232     Scale = 1;
233     Offset = 0;
234     return V;
235   }
236 
237   if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
238     // If it's a constant, just convert it to an offset and remove the variable.
239     // If we've been called recursively, the Offset bit width will be greater
240     // than the constant's (the Offset's always as wide as the outermost call),
241     // so we'll zext here and process any extension in the isa<SExtInst> &
242     // isa<ZExtInst> cases below.
243     Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
244     assert(Scale == 0 && "Constant values don't have a scale");
245     return V;
246   }
247 
248   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
249     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
250       // If we've been called recursively, then Offset and Scale will be wider
251       // than the BOp operands. We'll always zext it here as we'll process sign
252       // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
253       APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
254 
255       switch (BOp->getOpcode()) {
256       default:
257         // We don't understand this instruction, so we can't decompose it any
258         // further.
259         Scale = 1;
260         Offset = 0;
261         return V;
262       case Instruction::Or:
263         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
264         // analyze it.
265         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
266                                BOp, DT)) {
267           Scale = 1;
268           Offset = 0;
269           return V;
270         }
271         LLVM_FALLTHROUGH;
272       case Instruction::Add:
273         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
274                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
275         Offset += RHS;
276         break;
277       case Instruction::Sub:
278         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
279                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
280         Offset -= RHS;
281         break;
282       case Instruction::Mul:
283         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
284                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
285         Offset *= RHS;
286         Scale *= RHS;
287         break;
288       case Instruction::Shl:
289         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
290                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
291 
292         // We're trying to linearize an expression of the kind:
293         //   shl i8 -128, 36
294         // where the shift count exceeds the bitwidth of the type.
295         // We can't decompose this further (the expression would return
296         // a poison value).
297         if (Offset.getBitWidth() < RHS.getLimitedValue() ||
298             Scale.getBitWidth() < RHS.getLimitedValue()) {
299           Scale = 1;
300           Offset = 0;
301           return V;
302         }
303 
304         Offset <<= RHS.getLimitedValue();
305         Scale <<= RHS.getLimitedValue();
306         // the semantics of nsw and nuw for left shifts don't match those of
307         // multiplications, so we won't propagate them.
308         NSW = NUW = false;
309         return V;
310       }
311 
312       if (isa<OverflowingBinaryOperator>(BOp)) {
313         NUW &= BOp->hasNoUnsignedWrap();
314         NSW &= BOp->hasNoSignedWrap();
315       }
316       return V;
317     }
318   }
319 
320   // Since GEP indices are sign extended anyway, we don't care about the high
321   // bits of a sign or zero extended value - just scales and offsets.  The
322   // extensions have to be consistent though.
323   if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
324     Value *CastOp = cast<CastInst>(V)->getOperand(0);
325     unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
326     unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
327     unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
328     const Value *Result =
329         GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
330                             Depth + 1, AC, DT, NSW, NUW);
331 
332     // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this
333     // by just incrementing the number of bits we've extended by.
334     unsigned ExtendedBy = NewWidth - SmallWidth;
335 
336     if (isa<SExtInst>(V) && ZExtBits == 0) {
337       // sext(sext(%x, a), b) == sext(%x, a + b)
338 
339       if (NSW) {
340         // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
341         // into sext(%x) + sext(c). We'll sext the Offset ourselves:
342         unsigned OldWidth = Offset.getBitWidth();
343         Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
344       } else {
345         // We may have signed-wrapped, so don't decompose sext(%x + c) into
346         // sext(%x) + sext(c)
347         Scale = 1;
348         Offset = 0;
349         Result = CastOp;
350         ZExtBits = OldZExtBits;
351         SExtBits = OldSExtBits;
352       }
353       SExtBits += ExtendedBy;
354     } else {
355       // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
356 
357       if (!NUW) {
358         // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
359         // zext(%x) + zext(c)
360         Scale = 1;
361         Offset = 0;
362         Result = CastOp;
363         ZExtBits = OldZExtBits;
364         SExtBits = OldSExtBits;
365       }
366       ZExtBits += ExtendedBy;
367     }
368 
369     return Result;
370   }
371 
372   Scale = 1;
373   Offset = 0;
374   return V;
375 }
376 
377 /// To ensure a pointer offset fits in an integer of size PointerSize
378 /// (in bits) when that size is smaller than 64. This is an issue in
379 /// particular for 32b programs with negative indices that rely on two's
380 /// complement wrap-arounds for precise alias information.
381 static int64_t adjustToPointerSize(int64_t Offset, unsigned PointerSize) {
382   assert(PointerSize <= 64 && "Invalid PointerSize!");
383   unsigned ShiftBits = 64 - PointerSize;
384   return (int64_t)((uint64_t)Offset << ShiftBits) >> ShiftBits;
385 }
386 
387 /// If V is a symbolic pointer expression, decompose it into a base pointer
388 /// with a constant offset and a number of scaled symbolic offsets.
389 ///
390 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
391 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
392 /// specified amount, but which may have other unrepresented high bits. As
393 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
394 ///
395 /// When DataLayout is around, this function is capable of analyzing everything
396 /// that GetUnderlyingObject can look through. To be able to do that
397 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search
398 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks
399 /// through pointer casts.
400 bool BasicAAResult::DecomposeGEPExpression(const Value *V,
401        DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC,
402        DominatorTree *DT) {
403   // Limit recursion depth to limit compile time in crazy cases.
404   unsigned MaxLookup = MaxLookupSearchDepth;
405   SearchTimes++;
406 
407   Decomposed.StructOffset = 0;
408   Decomposed.OtherOffset = 0;
409   Decomposed.VarIndices.clear();
410   do {
411     // See if this is a bitcast or GEP.
412     const Operator *Op = dyn_cast<Operator>(V);
413     if (!Op) {
414       // The only non-operator case we can handle are GlobalAliases.
415       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
416         if (!GA->isInterposable()) {
417           V = GA->getAliasee();
418           continue;
419         }
420       }
421       Decomposed.Base = V;
422       return false;
423     }
424 
425     if (Op->getOpcode() == Instruction::BitCast ||
426         Op->getOpcode() == Instruction::AddrSpaceCast) {
427       V = Op->getOperand(0);
428       continue;
429     }
430 
431     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
432     if (!GEPOp) {
433       if (auto CS = ImmutableCallSite(V)) {
434         // CaptureTracking can know about special capturing properties of some
435         // intrinsics like launder.invariant.group, that can't be expressed with
436         // the attributes, but have properties like returning aliasing pointer.
437         // Because some analysis may assume that nocaptured pointer is not
438         // returned from some special intrinsic (because function would have to
439         // be marked with returns attribute), it is crucial to use this function
440         // because it should be in sync with CaptureTracking. Not using it may
441         // cause weird miscompilations where 2 aliasing pointers are assumed to
442         // noalias.
443         if (auto *RP = getArgumentAliasingToReturnedPointer(CS)) {
444           V = RP;
445           continue;
446         }
447       }
448 
449       // If it's not a GEP, hand it off to SimplifyInstruction to see if it
450       // can come up with something. This matches what GetUnderlyingObject does.
451       if (const Instruction *I = dyn_cast<Instruction>(V))
452         // TODO: Get a DominatorTree and AssumptionCache and use them here
453         // (these are both now available in this function, but this should be
454         // updated when GetUnderlyingObject is updated). TLI should be
455         // provided also.
456         if (const Value *Simplified =
457                 SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
458           V = Simplified;
459           continue;
460         }
461 
462       Decomposed.Base = V;
463       return false;
464     }
465 
466     // Don't attempt to analyze GEPs over unsized objects.
467     if (!GEPOp->getSourceElementType()->isSized()) {
468       Decomposed.Base = V;
469       return false;
470     }
471 
472     unsigned AS = GEPOp->getPointerAddressSpace();
473     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
474     gep_type_iterator GTI = gep_type_begin(GEPOp);
475     unsigned PointerSize = DL.getPointerSizeInBits(AS);
476     // Assume all GEP operands are constants until proven otherwise.
477     bool GepHasConstantOffset = true;
478     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
479          I != E; ++I, ++GTI) {
480       const Value *Index = *I;
481       // Compute the (potentially symbolic) offset in bytes for this index.
482       if (StructType *STy = GTI.getStructTypeOrNull()) {
483         // For a struct, add the member offset.
484         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
485         if (FieldNo == 0)
486           continue;
487 
488         Decomposed.StructOffset +=
489           DL.getStructLayout(STy)->getElementOffset(FieldNo);
490         continue;
491       }
492 
493       // For an array/pointer, add the element offset, explicitly scaled.
494       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
495         if (CIdx->isZero())
496           continue;
497         Decomposed.OtherOffset +=
498           DL.getTypeAllocSize(GTI.getIndexedType()) * CIdx->getSExtValue();
499         continue;
500       }
501 
502       GepHasConstantOffset = false;
503 
504       uint64_t Scale = DL.getTypeAllocSize(GTI.getIndexedType());
505       unsigned ZExtBits = 0, SExtBits = 0;
506 
507       // If the integer type is smaller than the pointer size, it is implicitly
508       // sign extended to pointer size.
509       unsigned Width = Index->getType()->getIntegerBitWidth();
510       if (PointerSize > Width)
511         SExtBits += PointerSize - Width;
512 
513       // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
514       APInt IndexScale(Width, 0), IndexOffset(Width, 0);
515       bool NSW = true, NUW = true;
516       Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
517                                   SExtBits, DL, 0, AC, DT, NSW, NUW);
518 
519       // All GEP math happens in the width of the pointer type,
520       // so we can truncate the value to 64-bits as we don't handle
521       // currently pointers larger than 64 bits and we would crash
522       // later. TODO: Make `Scale` an APInt to avoid this problem.
523       if (IndexScale.getBitWidth() > 64)
524         IndexScale = IndexScale.sextOrTrunc(64);
525 
526       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
527       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
528       Decomposed.OtherOffset += IndexOffset.getSExtValue() * Scale;
529       Scale *= IndexScale.getSExtValue();
530 
531       // If we already had an occurrence of this index variable, merge this
532       // scale into it.  For example, we want to handle:
533       //   A[x][x] -> x*16 + x*4 -> x*20
534       // This also ensures that 'x' only appears in the index list once.
535       for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
536         if (Decomposed.VarIndices[i].V == Index &&
537             Decomposed.VarIndices[i].ZExtBits == ZExtBits &&
538             Decomposed.VarIndices[i].SExtBits == SExtBits) {
539           Scale += Decomposed.VarIndices[i].Scale;
540           Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
541           break;
542         }
543       }
544 
545       // Make sure that we have a scale that makes sense for this target's
546       // pointer size.
547       Scale = adjustToPointerSize(Scale, PointerSize);
548 
549       if (Scale) {
550         VariableGEPIndex Entry = {Index, ZExtBits, SExtBits,
551                                   static_cast<int64_t>(Scale)};
552         Decomposed.VarIndices.push_back(Entry);
553       }
554     }
555 
556     // Take care of wrap-arounds
557     if (GepHasConstantOffset) {
558       Decomposed.StructOffset =
559           adjustToPointerSize(Decomposed.StructOffset, PointerSize);
560       Decomposed.OtherOffset =
561           adjustToPointerSize(Decomposed.OtherOffset, PointerSize);
562     }
563 
564     // Analyze the base pointer next.
565     V = GEPOp->getOperand(0);
566   } while (--MaxLookup);
567 
568   // If the chain of expressions is too deep, just return early.
569   Decomposed.Base = V;
570   SearchLimitReached++;
571   return true;
572 }
573 
574 /// Returns whether the given pointer value points to memory that is local to
575 /// the function, with global constants being considered local to all
576 /// functions.
577 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
578                                            bool OrLocal) {
579   assert(Visited.empty() && "Visited must be cleared after use!");
580 
581   unsigned MaxLookup = 8;
582   SmallVector<const Value *, 16> Worklist;
583   Worklist.push_back(Loc.Ptr);
584   do {
585     const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
586     if (!Visited.insert(V).second) {
587       Visited.clear();
588       return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
589     }
590 
591     // An alloca instruction defines local memory.
592     if (OrLocal && isa<AllocaInst>(V))
593       continue;
594 
595     // A global constant counts as local memory for our purposes.
596     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
597       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
598       // global to be marked constant in some modules and non-constant in
599       // others.  GV may even be a declaration, not a definition.
600       if (!GV->isConstant()) {
601         Visited.clear();
602         return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
603       }
604       continue;
605     }
606 
607     // If both select values point to local memory, then so does the select.
608     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
609       Worklist.push_back(SI->getTrueValue());
610       Worklist.push_back(SI->getFalseValue());
611       continue;
612     }
613 
614     // If all values incoming to a phi node point to local memory, then so does
615     // the phi.
616     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
617       // Don't bother inspecting phi nodes with many operands.
618       if (PN->getNumIncomingValues() > MaxLookup) {
619         Visited.clear();
620         return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
621       }
622       for (Value *IncValue : PN->incoming_values())
623         Worklist.push_back(IncValue);
624       continue;
625     }
626 
627     // Otherwise be conservative.
628     Visited.clear();
629     return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
630   } while (!Worklist.empty() && --MaxLookup);
631 
632   Visited.clear();
633   return Worklist.empty();
634 }
635 
636 /// Returns the behavior when calling the given call site.
637 FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) {
638   if (CS.doesNotAccessMemory())
639     // Can't do better than this.
640     return FMRB_DoesNotAccessMemory;
641 
642   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
643 
644   // If the callsite knows it only reads memory, don't return worse
645   // than that.
646   if (CS.onlyReadsMemory())
647     Min = FMRB_OnlyReadsMemory;
648   else if (CS.doesNotReadMemory())
649     Min = FMRB_DoesNotReadMemory;
650 
651   if (CS.onlyAccessesArgMemory())
652     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
653   else if (CS.onlyAccessesInaccessibleMemory())
654     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
655   else if (CS.onlyAccessesInaccessibleMemOrArgMem())
656     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
657 
658   // If CS has operand bundles then aliasing attributes from the function it
659   // calls do not directly apply to the CallSite.  This can be made more
660   // precise in the future.
661   if (!CS.hasOperandBundles())
662     if (const Function *F = CS.getCalledFunction())
663       Min =
664           FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
665 
666   return Min;
667 }
668 
669 /// Returns the behavior when calling the given function. For use when the call
670 /// site is not known.
671 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
672   // If the function declares it doesn't access memory, we can't do better.
673   if (F->doesNotAccessMemory())
674     return FMRB_DoesNotAccessMemory;
675 
676   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
677 
678   // If the function declares it only reads memory, go with that.
679   if (F->onlyReadsMemory())
680     Min = FMRB_OnlyReadsMemory;
681   else if (F->doesNotReadMemory())
682     Min = FMRB_DoesNotReadMemory;
683 
684   if (F->onlyAccessesArgMemory())
685     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
686   else if (F->onlyAccessesInaccessibleMemory())
687     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
688   else if (F->onlyAccessesInaccessibleMemOrArgMem())
689     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
690 
691   return Min;
692 }
693 
694 /// Returns true if this is a writeonly (i.e Mod only) parameter.
695 static bool isWriteOnlyParam(ImmutableCallSite CS, unsigned ArgIdx,
696                              const TargetLibraryInfo &TLI) {
697   if (CS.paramHasAttr(ArgIdx, Attribute::WriteOnly))
698     return true;
699 
700   // We can bound the aliasing properties of memset_pattern16 just as we can
701   // for memcpy/memset.  This is particularly important because the
702   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
703   // whenever possible.
704   // FIXME Consider handling this in InferFunctionAttr.cpp together with other
705   // attributes.
706   LibFunc F;
707   if (CS.getCalledFunction() && TLI.getLibFunc(*CS.getCalledFunction(), F) &&
708       F == LibFunc_memset_pattern16 && TLI.has(F))
709     if (ArgIdx == 0)
710       return true;
711 
712   // TODO: memset_pattern4, memset_pattern8
713   // TODO: _chk variants
714   // TODO: strcmp, strcpy
715 
716   return false;
717 }
718 
719 ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS,
720                                            unsigned ArgIdx) {
721   // Checking for known builtin intrinsics and target library functions.
722   if (isWriteOnlyParam(CS, ArgIdx, TLI))
723     return ModRefInfo::Mod;
724 
725   if (CS.paramHasAttr(ArgIdx, Attribute::ReadOnly))
726     return ModRefInfo::Ref;
727 
728   if (CS.paramHasAttr(ArgIdx, Attribute::ReadNone))
729     return ModRefInfo::NoModRef;
730 
731   return AAResultBase::getArgModRefInfo(CS, ArgIdx);
732 }
733 
734 static bool isIntrinsicCall(ImmutableCallSite CS, Intrinsic::ID IID) {
735   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
736   return II && II->getIntrinsicID() == IID;
737 }
738 
739 #ifndef NDEBUG
740 static const Function *getParent(const Value *V) {
741   if (const Instruction *inst = dyn_cast<Instruction>(V)) {
742     if (!inst->getParent())
743       return nullptr;
744     return inst->getParent()->getParent();
745   }
746 
747   if (const Argument *arg = dyn_cast<Argument>(V))
748     return arg->getParent();
749 
750   return nullptr;
751 }
752 
753 static bool notDifferentParent(const Value *O1, const Value *O2) {
754 
755   const Function *F1 = getParent(O1);
756   const Function *F2 = getParent(O2);
757 
758   return !F1 || !F2 || F1 == F2;
759 }
760 #endif
761 
762 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
763                                  const MemoryLocation &LocB) {
764   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
765          "BasicAliasAnalysis doesn't support interprocedural queries.");
766 
767   // If we have a directly cached entry for these locations, we have recursed
768   // through this once, so just return the cached results. Notably, when this
769   // happens, we don't clear the cache.
770   auto CacheIt = AliasCache.find(LocPair(LocA, LocB));
771   if (CacheIt != AliasCache.end())
772     return CacheIt->second;
773 
774   AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
775                                  LocB.Size, LocB.AATags);
776   // AliasCache rarely has more than 1 or 2 elements, always use
777   // shrink_and_clear so it quickly returns to the inline capacity of the
778   // SmallDenseMap if it ever grows larger.
779   // FIXME: This should really be shrink_to_inline_capacity_and_clear().
780   AliasCache.shrink_and_clear();
781   VisitedPhiBBs.clear();
782   return Alias;
783 }
784 
785 /// Checks to see if the specified callsite can clobber the specified memory
786 /// object.
787 ///
788 /// Since we only look at local properties of this function, we really can't
789 /// say much about this query.  We do, however, use simple "address taken"
790 /// analysis on local objects.
791 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS,
792                                         const MemoryLocation &Loc) {
793   assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
794          "AliasAnalysis query involving multiple functions!");
795 
796   const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);
797 
798   // If this is a tail call and Loc.Ptr points to a stack location, we know that
799   // the tail call cannot access or modify the local stack.
800   // We cannot exclude byval arguments here; these belong to the caller of
801   // the current function not to the current function, and a tail callee
802   // may reference them.
803   if (isa<AllocaInst>(Object))
804     if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
805       if (CI->isTailCall())
806         return ModRefInfo::NoModRef;
807 
808   // If the pointer is to a locally allocated object that does not escape,
809   // then the call can not mod/ref the pointer unless the call takes the pointer
810   // as an argument, and itself doesn't capture it.
811   if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
812       isNonEscapingLocalObject(Object)) {
813 
814     // Optimistically assume that call doesn't touch Object and check this
815     // assumption in the following loop.
816     ModRefInfo Result = ModRefInfo::NoModRef;
817     bool IsMustAlias = true;
818 
819     unsigned OperandNo = 0;
820     for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end();
821          CI != CE; ++CI, ++OperandNo) {
822       // Only look at the no-capture or byval pointer arguments.  If this
823       // pointer were passed to arguments that were neither of these, then it
824       // couldn't be no-capture.
825       if (!(*CI)->getType()->isPointerTy() ||
826           (!CS.doesNotCapture(OperandNo) &&
827            OperandNo < CS.getNumArgOperands() && !CS.isByValArgument(OperandNo)))
828         continue;
829 
830       // Call doesn't access memory through this operand, so we don't care
831       // if it aliases with Object.
832       if (CS.doesNotAccessMemory(OperandNo))
833         continue;
834 
835       // If this is a no-capture pointer argument, see if we can tell that it
836       // is impossible to alias the pointer we're checking.
837       AliasResult AR =
838           getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object));
839       if (AR != MustAlias)
840         IsMustAlias = false;
841       // Operand doesnt alias 'Object', continue looking for other aliases
842       if (AR == NoAlias)
843         continue;
844       // Operand aliases 'Object', but call doesn't modify it. Strengthen
845       // initial assumption and keep looking in case if there are more aliases.
846       if (CS.onlyReadsMemory(OperandNo)) {
847         Result = setRef(Result);
848         continue;
849       }
850       // Operand aliases 'Object' but call only writes into it.
851       if (CS.doesNotReadMemory(OperandNo)) {
852         Result = setMod(Result);
853         continue;
854       }
855       // This operand aliases 'Object' and call reads and writes into it.
856       // Setting ModRef will not yield an early return below, MustAlias is not
857       // used further.
858       Result = ModRefInfo::ModRef;
859       break;
860     }
861 
862     // No operand aliases, reset Must bit. Add below if at least one aliases
863     // and all aliases found are MustAlias.
864     if (isNoModRef(Result))
865       IsMustAlias = false;
866 
867     // Early return if we improved mod ref information
868     if (!isModAndRefSet(Result)) {
869       if (isNoModRef(Result))
870         return ModRefInfo::NoModRef;
871       return IsMustAlias ? setMust(Result) : clearMust(Result);
872     }
873   }
874 
875   // If the CallSite is to malloc or calloc, we can assume that it doesn't
876   // modify any IR visible value.  This is only valid because we assume these
877   // routines do not read values visible in the IR.  TODO: Consider special
878   // casing realloc and strdup routines which access only their arguments as
879   // well.  Or alternatively, replace all of this with inaccessiblememonly once
880   // that's implemented fully.
881   auto *Inst = CS.getInstruction();
882   if (isMallocOrCallocLikeFn(Inst, &TLI)) {
883     // Be conservative if the accessed pointer may alias the allocation -
884     // fallback to the generic handling below.
885     if (getBestAAResults().alias(MemoryLocation(Inst), Loc) == NoAlias)
886       return ModRefInfo::NoModRef;
887   }
888 
889   // The semantics of memcpy intrinsics forbid overlap between their respective
890   // operands, i.e., source and destination of any given memcpy must no-alias.
891   // If Loc must-aliases either one of these two locations, then it necessarily
892   // no-aliases the other.
893   if (auto *Inst = dyn_cast<AnyMemCpyInst>(CS.getInstruction())) {
894     AliasResult SrcAA, DestAA;
895 
896     if ((SrcAA = getBestAAResults().alias(MemoryLocation::getForSource(Inst),
897                                           Loc)) == MustAlias)
898       // Loc is exactly the memcpy source thus disjoint from memcpy dest.
899       return ModRefInfo::Ref;
900     if ((DestAA = getBestAAResults().alias(MemoryLocation::getForDest(Inst),
901                                            Loc)) == MustAlias)
902       // The converse case.
903       return ModRefInfo::Mod;
904 
905     // It's also possible for Loc to alias both src and dest, or neither.
906     ModRefInfo rv = ModRefInfo::NoModRef;
907     if (SrcAA != NoAlias)
908       rv = setRef(rv);
909     if (DestAA != NoAlias)
910       rv = setMod(rv);
911     return rv;
912   }
913 
914   // While the assume intrinsic is marked as arbitrarily writing so that
915   // proper control dependencies will be maintained, it never aliases any
916   // particular memory location.
917   if (isIntrinsicCall(CS, Intrinsic::assume))
918     return ModRefInfo::NoModRef;
919 
920   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
921   // that proper control dependencies are maintained but they never mods any
922   // particular memory location.
923   //
924   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
925   // heap state at the point the guard is issued needs to be consistent in case
926   // the guard invokes the "deopt" continuation.
927   if (isIntrinsicCall(CS, Intrinsic::experimental_guard))
928     return ModRefInfo::Ref;
929 
930   // Like assumes, invariant.start intrinsics were also marked as arbitrarily
931   // writing so that proper control dependencies are maintained but they never
932   // mod any particular memory location visible to the IR.
933   // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
934   // intrinsic is now modeled as reading memory. This prevents hoisting the
935   // invariant.start intrinsic over stores. Consider:
936   // *ptr = 40;
937   // *ptr = 50;
938   // invariant_start(ptr)
939   // int val = *ptr;
940   // print(val);
941   //
942   // This cannot be transformed to:
943   //
944   // *ptr = 40;
945   // invariant_start(ptr)
946   // *ptr = 50;
947   // int val = *ptr;
948   // print(val);
949   //
950   // The transformation will cause the second store to be ignored (based on
951   // rules of invariant.start)  and print 40, while the first program always
952   // prints 50.
953   if (isIntrinsicCall(CS, Intrinsic::invariant_start))
954     return ModRefInfo::Ref;
955 
956   // The AAResultBase base class has some smarts, lets use them.
957   return AAResultBase::getModRefInfo(CS, Loc);
958 }
959 
960 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1,
961                                         ImmutableCallSite CS2) {
962   // While the assume intrinsic is marked as arbitrarily writing so that
963   // proper control dependencies will be maintained, it never aliases any
964   // particular memory location.
965   if (isIntrinsicCall(CS1, Intrinsic::assume) ||
966       isIntrinsicCall(CS2, Intrinsic::assume))
967     return ModRefInfo::NoModRef;
968 
969   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
970   // that proper control dependencies are maintained but they never mod any
971   // particular memory location.
972   //
973   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
974   // heap state at the point the guard is issued needs to be consistent in case
975   // the guard invokes the "deopt" continuation.
976 
977   // NB! This function is *not* commutative, so we specical case two
978   // possibilities for guard intrinsics.
979 
980   if (isIntrinsicCall(CS1, Intrinsic::experimental_guard))
981     return isModSet(createModRefInfo(getModRefBehavior(CS2)))
982                ? ModRefInfo::Ref
983                : ModRefInfo::NoModRef;
984 
985   if (isIntrinsicCall(CS2, Intrinsic::experimental_guard))
986     return isModSet(createModRefInfo(getModRefBehavior(CS1)))
987                ? ModRefInfo::Mod
988                : ModRefInfo::NoModRef;
989 
990   // The AAResultBase base class has some smarts, lets use them.
991   return AAResultBase::getModRefInfo(CS1, CS2);
992 }
993 
994 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
995 /// both having the exact same pointer operand.
996 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
997                                             LocationSize V1Size,
998                                             const GEPOperator *GEP2,
999                                             LocationSize V2Size,
1000                                             const DataLayout &DL) {
1001   assert(GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
1002              GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
1003          GEP1->getPointerOperandType() == GEP2->getPointerOperandType() &&
1004          "Expected GEPs with the same pointer operand");
1005 
1006   // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
1007   // such that the struct field accesses provably cannot alias.
1008   // We also need at least two indices (the pointer, and the struct field).
1009   if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
1010       GEP1->getNumIndices() < 2)
1011     return MayAlias;
1012 
1013   // If we don't know the size of the accesses through both GEPs, we can't
1014   // determine whether the struct fields accessed can't alias.
1015   if (V1Size == MemoryLocation::UnknownSize ||
1016       V2Size == MemoryLocation::UnknownSize)
1017     return MayAlias;
1018 
1019   ConstantInt *C1 =
1020       dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
1021   ConstantInt *C2 =
1022       dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
1023 
1024   // If the last (struct) indices are constants and are equal, the other indices
1025   // might be also be dynamically equal, so the GEPs can alias.
1026   if (C1 && C2 && C1->getSExtValue() == C2->getSExtValue())
1027     return MayAlias;
1028 
1029   // Find the last-indexed type of the GEP, i.e., the type you'd get if
1030   // you stripped the last index.
1031   // On the way, look at each indexed type.  If there's something other
1032   // than an array, different indices can lead to different final types.
1033   SmallVector<Value *, 8> IntermediateIndices;
1034 
1035   // Insert the first index; we don't need to check the type indexed
1036   // through it as it only drops the pointer indirection.
1037   assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
1038   IntermediateIndices.push_back(GEP1->getOperand(1));
1039 
1040   // Insert all the remaining indices but the last one.
1041   // Also, check that they all index through arrays.
1042   for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
1043     if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
1044             GEP1->getSourceElementType(), IntermediateIndices)))
1045       return MayAlias;
1046     IntermediateIndices.push_back(GEP1->getOperand(i + 1));
1047   }
1048 
1049   auto *Ty = GetElementPtrInst::getIndexedType(
1050     GEP1->getSourceElementType(), IntermediateIndices);
1051   StructType *LastIndexedStruct = dyn_cast<StructType>(Ty);
1052 
1053   if (isa<SequentialType>(Ty)) {
1054     // We know that:
1055     // - both GEPs begin indexing from the exact same pointer;
1056     // - the last indices in both GEPs are constants, indexing into a sequential
1057     //   type (array or pointer);
1058     // - both GEPs only index through arrays prior to that.
1059     //
1060     // Because array indices greater than the number of elements are valid in
1061     // GEPs, unless we know the intermediate indices are identical between
1062     // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
1063     // partially overlap. We also need to check that the loaded size matches
1064     // the element size, otherwise we could still have overlap.
1065     const uint64_t ElementSize =
1066         DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType());
1067     if (V1Size != ElementSize || V2Size != ElementSize)
1068       return MayAlias;
1069 
1070     for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i)
1071       if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1))
1072         return MayAlias;
1073 
1074     // Now we know that the array/pointer that GEP1 indexes into and that
1075     // that GEP2 indexes into must either precisely overlap or be disjoint.
1076     // Because they cannot partially overlap and because fields in an array
1077     // cannot overlap, if we can prove the final indices are different between
1078     // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
1079 
1080     // If the last indices are constants, we've already checked they don't
1081     // equal each other so we can exit early.
1082     if (C1 && C2)
1083       return NoAlias;
1084     {
1085       Value *GEP1LastIdx = GEP1->getOperand(GEP1->getNumOperands() - 1);
1086       Value *GEP2LastIdx = GEP2->getOperand(GEP2->getNumOperands() - 1);
1087       if (isa<PHINode>(GEP1LastIdx) || isa<PHINode>(GEP2LastIdx)) {
1088         // If one of the indices is a PHI node, be safe and only use
1089         // computeKnownBits so we don't make any assumptions about the
1090         // relationships between the two indices. This is important if we're
1091         // asking about values from different loop iterations. See PR32314.
1092         // TODO: We may be able to change the check so we only do this when
1093         // we definitely looked through a PHINode.
1094         if (GEP1LastIdx != GEP2LastIdx &&
1095             GEP1LastIdx->getType() == GEP2LastIdx->getType()) {
1096           KnownBits Known1 = computeKnownBits(GEP1LastIdx, DL);
1097           KnownBits Known2 = computeKnownBits(GEP2LastIdx, DL);
1098           if (Known1.Zero.intersects(Known2.One) ||
1099               Known1.One.intersects(Known2.Zero))
1100             return NoAlias;
1101         }
1102       } else if (isKnownNonEqual(GEP1LastIdx, GEP2LastIdx, DL))
1103         return NoAlias;
1104     }
1105     return MayAlias;
1106   } else if (!LastIndexedStruct || !C1 || !C2) {
1107     return MayAlias;
1108   }
1109 
1110   // We know that:
1111   // - both GEPs begin indexing from the exact same pointer;
1112   // - the last indices in both GEPs are constants, indexing into a struct;
1113   // - said indices are different, hence, the pointed-to fields are different;
1114   // - both GEPs only index through arrays prior to that.
1115   //
1116   // This lets us determine that the struct that GEP1 indexes into and the
1117   // struct that GEP2 indexes into must either precisely overlap or be
1118   // completely disjoint.  Because they cannot partially overlap, indexing into
1119   // different non-overlapping fields of the struct will never alias.
1120 
1121   // Therefore, the only remaining thing needed to show that both GEPs can't
1122   // alias is that the fields are not overlapping.
1123   const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
1124   const uint64_t StructSize = SL->getSizeInBytes();
1125   const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
1126   const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
1127 
1128   auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
1129                                       uint64_t V2Off, uint64_t V2Size) {
1130     return V1Off < V2Off && V1Off + V1Size <= V2Off &&
1131            ((V2Off + V2Size <= StructSize) ||
1132             (V2Off + V2Size - StructSize <= V1Off));
1133   };
1134 
1135   if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
1136       EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
1137     return NoAlias;
1138 
1139   return MayAlias;
1140 }
1141 
1142 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the
1143 // beginning of the object the GEP points would have a negative offset with
1144 // repsect to the alloca, that means the GEP can not alias pointer (b).
1145 // Note that the pointer based on the alloca may not be a GEP. For
1146 // example, it may be the alloca itself.
1147 // The same applies if (b) is based on a GlobalVariable. Note that just being
1148 // based on isIdentifiedObject() is not enough - we need an identified object
1149 // that does not permit access to negative offsets. For example, a negative
1150 // offset from a noalias argument or call can be inbounds w.r.t the actual
1151 // underlying object.
1152 //
1153 // For example, consider:
1154 //
1155 //   struct { int f0, int f1, ...} foo;
1156 //   foo alloca;
1157 //   foo* random = bar(alloca);
1158 //   int *f0 = &alloca.f0
1159 //   int *f1 = &random->f1;
1160 //
1161 // Which is lowered, approximately, to:
1162 //
1163 //  %alloca = alloca %struct.foo
1164 //  %random = call %struct.foo* @random(%struct.foo* %alloca)
1165 //  %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0
1166 //  %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1
1167 //
1168 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated
1169 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also
1170 // point into the same object. But since %f0 points to the beginning of %alloca,
1171 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher
1172 // than (%alloca - 1), and so is not inbounds, a contradiction.
1173 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp,
1174       const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject,
1175       LocationSize ObjectAccessSize) {
1176   // If the object access size is unknown, or the GEP isn't inbounds, bail.
1177   if (ObjectAccessSize == MemoryLocation::UnknownSize || !GEPOp->isInBounds())
1178     return false;
1179 
1180   // We need the object to be an alloca or a globalvariable, and want to know
1181   // the offset of the pointer from the object precisely, so no variable
1182   // indices are allowed.
1183   if (!(isa<AllocaInst>(DecompObject.Base) ||
1184         isa<GlobalVariable>(DecompObject.Base)) ||
1185       !DecompObject.VarIndices.empty())
1186     return false;
1187 
1188   int64_t ObjectBaseOffset = DecompObject.StructOffset +
1189                              DecompObject.OtherOffset;
1190 
1191   // If the GEP has no variable indices, we know the precise offset
1192   // from the base, then use it. If the GEP has variable indices,
1193   // we can't get exact GEP offset to identify pointer alias. So return
1194   // false in that case.
1195   if (!DecompGEP.VarIndices.empty())
1196     return false;
1197   int64_t GEPBaseOffset = DecompGEP.StructOffset;
1198   GEPBaseOffset += DecompGEP.OtherOffset;
1199 
1200   return (GEPBaseOffset >= ObjectBaseOffset + (int64_t)ObjectAccessSize);
1201 }
1202 
1203 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1204 /// another pointer.
1205 ///
1206 /// We know that V1 is a GEP, but we don't know anything about V2.
1207 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for
1208 /// V2.
1209 AliasResult
1210 BasicAAResult::aliasGEP(const GEPOperator *GEP1, LocationSize V1Size,
1211                         const AAMDNodes &V1AAInfo, const Value *V2,
1212                         LocationSize V2Size, const AAMDNodes &V2AAInfo,
1213                         const Value *UnderlyingV1, const Value *UnderlyingV2) {
1214   DecomposedGEP DecompGEP1, DecompGEP2;
1215   bool GEP1MaxLookupReached =
1216     DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT);
1217   bool GEP2MaxLookupReached =
1218     DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT);
1219 
1220   int64_t GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset;
1221   int64_t GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset;
1222 
1223   assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
1224          "DecomposeGEPExpression returned a result different from "
1225          "GetUnderlyingObject");
1226 
1227   // If the GEP's offset relative to its base is such that the base would
1228   // fall below the start of the object underlying V2, then the GEP and V2
1229   // cannot alias.
1230   if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1231       isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size))
1232     return NoAlias;
1233   // If we have two gep instructions with must-alias or not-alias'ing base
1234   // pointers, figure out if the indexes to the GEP tell us anything about the
1235   // derived pointer.
1236   if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
1237     // Check for the GEP base being at a negative offset, this time in the other
1238     // direction.
1239     if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1240         isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size))
1241       return NoAlias;
1242     // Do the base pointers alias?
1243     AliasResult BaseAlias =
1244         aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(),
1245                    UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes());
1246 
1247     // Check for geps of non-aliasing underlying pointers where the offsets are
1248     // identical.
1249     if ((BaseAlias == MayAlias) && V1Size == V2Size) {
1250       // Do the base pointers alias assuming type and size.
1251       AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo,
1252                                                 UnderlyingV2, V2Size, V2AAInfo);
1253       if (PreciseBaseAlias == NoAlias) {
1254         // See if the computed offset from the common pointer tells us about the
1255         // relation of the resulting pointer.
1256         // If the max search depth is reached the result is undefined
1257         if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1258           return MayAlias;
1259 
1260         // Same offsets.
1261         if (GEP1BaseOffset == GEP2BaseOffset &&
1262             DecompGEP1.VarIndices == DecompGEP2.VarIndices)
1263           return NoAlias;
1264       }
1265     }
1266 
1267     // If we get a No or May, then return it immediately, no amount of analysis
1268     // will improve this situation.
1269     if (BaseAlias != MustAlias) {
1270       assert(BaseAlias == NoAlias || BaseAlias == MayAlias);
1271       return BaseAlias;
1272     }
1273 
1274     // Otherwise, we have a MustAlias.  Since the base pointers alias each other
1275     // exactly, see if the computed offset from the common pointer tells us
1276     // about the relation of the resulting pointer.
1277     // If we know the two GEPs are based off of the exact same pointer (and not
1278     // just the same underlying object), see if that tells us anything about
1279     // the resulting pointers.
1280     if (GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
1281             GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
1282         GEP1->getPointerOperandType() == GEP2->getPointerOperandType()) {
1283       AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL);
1284       // If we couldn't find anything interesting, don't abandon just yet.
1285       if (R != MayAlias)
1286         return R;
1287     }
1288 
1289     // If the max search depth is reached, the result is undefined
1290     if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1291       return MayAlias;
1292 
1293     // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1294     // symbolic difference.
1295     GEP1BaseOffset -= GEP2BaseOffset;
1296     GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);
1297 
1298   } else {
1299     // Check to see if these two pointers are related by the getelementptr
1300     // instruction.  If one pointer is a GEP with a non-zero index of the other
1301     // pointer, we know they cannot alias.
1302 
1303     // If both accesses are unknown size, we can't do anything useful here.
1304     if (V1Size == MemoryLocation::UnknownSize &&
1305         V2Size == MemoryLocation::UnknownSize)
1306       return MayAlias;
1307 
1308     AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize,
1309                                AAMDNodes(), V2, MemoryLocation::UnknownSize,
1310                                V2AAInfo, nullptr, UnderlyingV2);
1311     if (R != MustAlias) {
1312       // If V2 may alias GEP base pointer, conservatively returns MayAlias.
1313       // If V2 is known not to alias GEP base pointer, then the two values
1314       // cannot alias per GEP semantics: "Any memory access must be done through
1315       // a pointer value associated with an address range of the memory access,
1316       // otherwise the behavior is undefined.".
1317       assert(R == NoAlias || R == MayAlias);
1318       return R;
1319     }
1320 
1321     // If the max search depth is reached the result is undefined
1322     if (GEP1MaxLookupReached)
1323       return MayAlias;
1324   }
1325 
1326   // In the two GEP Case, if there is no difference in the offsets of the
1327   // computed pointers, the resultant pointers are a must alias.  This
1328   // happens when we have two lexically identical GEP's (for example).
1329   //
1330   // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
1331   // must aliases the GEP, the end result is a must alias also.
1332   if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty())
1333     return MustAlias;
1334 
1335   // If there is a constant difference between the pointers, but the difference
1336   // is less than the size of the associated memory object, then we know
1337   // that the objects are partially overlapping.  If the difference is
1338   // greater, we know they do not overlap.
1339   if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) {
1340     if (GEP1BaseOffset >= 0) {
1341       if (V2Size != MemoryLocation::UnknownSize) {
1342         if ((uint64_t)GEP1BaseOffset < V2Size)
1343           return PartialAlias;
1344         return NoAlias;
1345       }
1346     } else {
1347       // We have the situation where:
1348       // +                +
1349       // | BaseOffset     |
1350       // ---------------->|
1351       // |-->V1Size       |-------> V2Size
1352       // GEP1             V2
1353       // We need to know that V2Size is not unknown, otherwise we might have
1354       // stripped a gep with negative index ('gep <ptr>, -1, ...).
1355       if (V1Size != MemoryLocation::UnknownSize &&
1356           V2Size != MemoryLocation::UnknownSize) {
1357         if (-(uint64_t)GEP1BaseOffset < V1Size)
1358           return PartialAlias;
1359         return NoAlias;
1360       }
1361     }
1362   }
1363 
1364   if (!DecompGEP1.VarIndices.empty()) {
1365     uint64_t Modulo = 0;
1366     bool AllPositive = true;
1367     for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1368 
1369       // Try to distinguish something like &A[i][1] against &A[42][0].
1370       // Grab the least significant bit set in any of the scales. We
1371       // don't need std::abs here (even if the scale's negative) as we'll
1372       // be ^'ing Modulo with itself later.
1373       Modulo |= (uint64_t)DecompGEP1.VarIndices[i].Scale;
1374 
1375       if (AllPositive) {
1376         // If the Value could change between cycles, then any reasoning about
1377         // the Value this cycle may not hold in the next cycle. We'll just
1378         // give up if we can't determine conditions that hold for every cycle:
1379         const Value *V = DecompGEP1.VarIndices[i].V;
1380 
1381         KnownBits Known = computeKnownBits(V, DL, 0, &AC, nullptr, DT);
1382         bool SignKnownZero = Known.isNonNegative();
1383         bool SignKnownOne = Known.isNegative();
1384 
1385         // Zero-extension widens the variable, and so forces the sign
1386         // bit to zero.
1387         bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
1388         SignKnownZero |= IsZExt;
1389         SignKnownOne &= !IsZExt;
1390 
1391         // If the variable begins with a zero then we know it's
1392         // positive, regardless of whether the value is signed or
1393         // unsigned.
1394         int64_t Scale = DecompGEP1.VarIndices[i].Scale;
1395         AllPositive =
1396             (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0);
1397       }
1398     }
1399 
1400     Modulo = Modulo ^ (Modulo & (Modulo - 1));
1401 
1402     // We can compute the difference between the two addresses
1403     // mod Modulo. Check whether that difference guarantees that the
1404     // two locations do not alias.
1405     uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
1406     if (V1Size != MemoryLocation::UnknownSize &&
1407         V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size &&
1408         V1Size <= Modulo - ModOffset)
1409       return NoAlias;
1410 
1411     // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
1412     // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
1413     // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
1414     if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset)
1415       return NoAlias;
1416 
1417     if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
1418                                 GEP1BaseOffset, &AC, DT))
1419       return NoAlias;
1420   }
1421 
1422   // Statically, we can see that the base objects are the same, but the
1423   // pointers have dynamic offsets which we can't resolve. And none of our
1424   // little tricks above worked.
1425   return MayAlias;
1426 }
1427 
1428 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1429   // If the results agree, take it.
1430   if (A == B)
1431     return A;
1432   // A mix of PartialAlias and MustAlias is PartialAlias.
1433   if ((A == PartialAlias && B == MustAlias) ||
1434       (B == PartialAlias && A == MustAlias))
1435     return PartialAlias;
1436   // Otherwise, we don't know anything.
1437   return MayAlias;
1438 }
1439 
1440 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1441 /// against another.
1442 AliasResult BasicAAResult::aliasSelect(const SelectInst *SI,
1443                                        LocationSize SISize,
1444                                        const AAMDNodes &SIAAInfo,
1445                                        const Value *V2, LocationSize V2Size,
1446                                        const AAMDNodes &V2AAInfo,
1447                                        const Value *UnderV2) {
1448   // If the values are Selects with the same condition, we can do a more precise
1449   // check: just check for aliases between the values on corresponding arms.
1450   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1451     if (SI->getCondition() == SI2->getCondition()) {
1452       AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo,
1453                                      SI2->getTrueValue(), V2Size, V2AAInfo);
1454       if (Alias == MayAlias)
1455         return MayAlias;
1456       AliasResult ThisAlias =
1457           aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
1458                      SI2->getFalseValue(), V2Size, V2AAInfo);
1459       return MergeAliasResults(ThisAlias, Alias);
1460     }
1461 
1462   // If both arms of the Select node NoAlias or MustAlias V2, then returns
1463   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1464   AliasResult Alias =
1465       aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(),
1466                  SISize, SIAAInfo, UnderV2);
1467   if (Alias == MayAlias)
1468     return MayAlias;
1469 
1470   AliasResult ThisAlias =
1471       aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo,
1472                  UnderV2);
1473   return MergeAliasResults(ThisAlias, Alias);
1474 }
1475 
1476 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1477 /// another.
1478 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
1479                                     const AAMDNodes &PNAAInfo, const Value *V2,
1480                                     LocationSize V2Size,
1481                                     const AAMDNodes &V2AAInfo,
1482                                     const Value *UnderV2) {
1483   // Track phi nodes we have visited. We use this information when we determine
1484   // value equivalence.
1485   VisitedPhiBBs.insert(PN->getParent());
1486 
1487   // If the values are PHIs in the same block, we can do a more precise
1488   // as well as efficient check: just check for aliases between the values
1489   // on corresponding edges.
1490   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1491     if (PN2->getParent() == PN->getParent()) {
1492       LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
1493                    MemoryLocation(V2, V2Size, V2AAInfo));
1494       if (PN > V2)
1495         std::swap(Locs.first, Locs.second);
1496       // Analyse the PHIs' inputs under the assumption that the PHIs are
1497       // NoAlias.
1498       // If the PHIs are May/MustAlias there must be (recursively) an input
1499       // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1500       // there must be an operation on the PHIs within the PHIs' value cycle
1501       // that causes a MayAlias.
1502       // Pretend the phis do not alias.
1503       AliasResult Alias = NoAlias;
1504       assert(AliasCache.count(Locs) &&
1505              "There must exist an entry for the phi node");
1506       AliasResult OrigAliasResult = AliasCache[Locs];
1507       AliasCache[Locs] = NoAlias;
1508 
1509       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1510         AliasResult ThisAlias =
1511             aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
1512                        PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1513                        V2Size, V2AAInfo);
1514         Alias = MergeAliasResults(ThisAlias, Alias);
1515         if (Alias == MayAlias)
1516           break;
1517       }
1518 
1519       // Reset if speculation failed.
1520       if (Alias != NoAlias)
1521         AliasCache[Locs] = OrigAliasResult;
1522 
1523       return Alias;
1524     }
1525 
1526   SmallPtrSet<Value *, 4> UniqueSrc;
1527   SmallVector<Value *, 4> V1Srcs;
1528   bool isRecursive = false;
1529   for (Value *PV1 : PN->incoming_values()) {
1530     if (isa<PHINode>(PV1))
1531       // If any of the source itself is a PHI, return MayAlias conservatively
1532       // to avoid compile time explosion. The worst possible case is if both
1533       // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1534       // and 'n' are the number of PHI sources.
1535       return MayAlias;
1536 
1537     if (EnableRecPhiAnalysis)
1538       if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
1539         // Check whether the incoming value is a GEP that advances the pointer
1540         // result of this PHI node (e.g. in a loop). If this is the case, we
1541         // would recurse and always get a MayAlias. Handle this case specially
1542         // below.
1543         if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
1544             isa<ConstantInt>(PV1GEP->idx_begin())) {
1545           isRecursive = true;
1546           continue;
1547         }
1548       }
1549 
1550     if (UniqueSrc.insert(PV1).second)
1551       V1Srcs.push_back(PV1);
1552   }
1553 
1554   // If this PHI node is recursive, set the size of the accessed memory to
1555   // unknown to represent all the possible values the GEP could advance the
1556   // pointer to.
1557   if (isRecursive)
1558     PNSize = MemoryLocation::UnknownSize;
1559 
1560   AliasResult Alias =
1561       aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0],
1562                  PNSize, PNAAInfo, UnderV2);
1563 
1564   // Early exit if the check of the first PHI source against V2 is MayAlias.
1565   // Other results are not possible.
1566   if (Alias == MayAlias)
1567     return MayAlias;
1568 
1569   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1570   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1571   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1572     Value *V = V1Srcs[i];
1573 
1574     AliasResult ThisAlias =
1575         aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, UnderV2);
1576     Alias = MergeAliasResults(ThisAlias, Alias);
1577     if (Alias == MayAlias)
1578       break;
1579   }
1580 
1581   return Alias;
1582 }
1583 
1584 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1585 /// array references.
1586 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
1587                                       AAMDNodes V1AAInfo, const Value *V2,
1588                                       LocationSize V2Size, AAMDNodes V2AAInfo,
1589                                       const Value *O1, const Value *O2) {
1590   // If either of the memory references is empty, it doesn't matter what the
1591   // pointer values are.
1592   if (V1Size == 0 || V2Size == 0)
1593     return NoAlias;
1594 
1595   // Strip off any casts if they exist.
1596   V1 = V1->stripPointerCastsAndInvariantGroups();
1597   V2 = V2->stripPointerCastsAndInvariantGroups();
1598 
1599   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1600   // value for undef that aliases nothing in the program.
1601   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1602     return NoAlias;
1603 
1604   // Are we checking for alias of the same value?
1605   // Because we look 'through' phi nodes, we could look at "Value" pointers from
1606   // different iterations. We must therefore make sure that this is not the
1607   // case. The function isValueEqualInPotentialCycles ensures that this cannot
1608   // happen by looking at the visited phi nodes and making sure they cannot
1609   // reach the value.
1610   if (isValueEqualInPotentialCycles(V1, V2))
1611     return MustAlias;
1612 
1613   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1614     return NoAlias; // Scalars cannot alias each other
1615 
1616   // Figure out what objects these things are pointing to if we can.
1617   if (O1 == nullptr)
1618     O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
1619 
1620   if (O2 == nullptr)
1621     O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);
1622 
1623   // Null values in the default address space don't point to any object, so they
1624   // don't alias any other pointer.
1625   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1626     if (CPN->getType()->getAddressSpace() == 0)
1627       return NoAlias;
1628   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1629     if (CPN->getType()->getAddressSpace() == 0)
1630       return NoAlias;
1631 
1632   if (O1 != O2) {
1633     // If V1/V2 point to two different objects, we know that we have no alias.
1634     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1635       return NoAlias;
1636 
1637     // Constant pointers can't alias with non-const isIdentifiedObject objects.
1638     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1639         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1640       return NoAlias;
1641 
1642     // Function arguments can't alias with things that are known to be
1643     // unambigously identified at the function level.
1644     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1645         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1646       return NoAlias;
1647 
1648     // If one pointer is the result of a call/invoke or load and the other is a
1649     // non-escaping local object within the same function, then we know the
1650     // object couldn't escape to a point where the call could return it.
1651     //
1652     // Note that if the pointers are in different functions, there are a
1653     // variety of complications. A call with a nocapture argument may still
1654     // temporary store the nocapture argument's value in a temporary memory
1655     // location if that memory location doesn't escape. Or it may pass a
1656     // nocapture value to other functions as long as they don't capture it.
1657     if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
1658       return NoAlias;
1659     if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
1660       return NoAlias;
1661   }
1662 
1663   // If the size of one access is larger than the entire object on the other
1664   // side, then we know such behavior is undefined and can assume no alias.
1665   if ((V1Size != MemoryLocation::UnknownSize &&
1666        isObjectSmallerThan(O2, V1Size, DL, TLI)) ||
1667       (V2Size != MemoryLocation::UnknownSize &&
1668        isObjectSmallerThan(O1, V2Size, DL, TLI)))
1669     return NoAlias;
1670 
1671   // Check the cache before climbing up use-def chains. This also terminates
1672   // otherwise infinitely recursive queries.
1673   LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
1674                MemoryLocation(V2, V2Size, V2AAInfo));
1675   if (V1 > V2)
1676     std::swap(Locs.first, Locs.second);
1677   std::pair<AliasCacheTy::iterator, bool> Pair =
1678       AliasCache.insert(std::make_pair(Locs, MayAlias));
1679   if (!Pair.second)
1680     return Pair.first->second;
1681 
1682   // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1683   // GEP can't simplify, we don't even look at the PHI cases.
1684   if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1685     std::swap(V1, V2);
1686     std::swap(V1Size, V2Size);
1687     std::swap(O1, O2);
1688     std::swap(V1AAInfo, V2AAInfo);
1689   }
1690   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1691     AliasResult Result =
1692         aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2);
1693     if (Result != MayAlias)
1694       return AliasCache[Locs] = Result;
1695   }
1696 
1697   if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1698     std::swap(V1, V2);
1699     std::swap(O1, O2);
1700     std::swap(V1Size, V2Size);
1701     std::swap(V1AAInfo, V2AAInfo);
1702   }
1703   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1704     AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo,
1705                                   V2, V2Size, V2AAInfo, O2);
1706     if (Result != MayAlias)
1707       return AliasCache[Locs] = Result;
1708   }
1709 
1710   if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1711     std::swap(V1, V2);
1712     std::swap(O1, O2);
1713     std::swap(V1Size, V2Size);
1714     std::swap(V1AAInfo, V2AAInfo);
1715   }
1716   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1717     AliasResult Result =
1718         aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2);
1719     if (Result != MayAlias)
1720       return AliasCache[Locs] = Result;
1721   }
1722 
1723   // If both pointers are pointing into the same object and one of them
1724   // accesses the entire object, then the accesses must overlap in some way.
1725   if (O1 == O2)
1726     if (V1Size != MemoryLocation::UnknownSize &&
1727         V2Size != MemoryLocation::UnknownSize &&
1728         (isObjectSize(O1, V1Size, DL, TLI) ||
1729          isObjectSize(O2, V2Size, DL, TLI)))
1730       return AliasCache[Locs] = PartialAlias;
1731 
1732   // Recurse back into the best AA results we have, potentially with refined
1733   // memory locations. We have already ensured that BasicAA has a MayAlias
1734   // cache result for these, so any recursion back into BasicAA won't loop.
1735   AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second);
1736   return AliasCache[Locs] = Result;
1737 }
1738 
1739 /// Check whether two Values can be considered equivalent.
1740 ///
1741 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1742 /// they can not be part of a cycle in the value graph by looking at all
1743 /// visited phi nodes an making sure that the phis cannot reach the value. We
1744 /// have to do this because we are looking through phi nodes (That is we say
1745 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1746 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1747                                                   const Value *V2) {
1748   if (V != V2)
1749     return false;
1750 
1751   const Instruction *Inst = dyn_cast<Instruction>(V);
1752   if (!Inst)
1753     return true;
1754 
1755   if (VisitedPhiBBs.empty())
1756     return true;
1757 
1758   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1759     return false;
1760 
1761   // Make sure that the visited phis cannot reach the Value. This ensures that
1762   // the Values cannot come from different iterations of a potential cycle the
1763   // phi nodes could be involved in.
1764   for (auto *P : VisitedPhiBBs)
1765     if (isPotentiallyReachable(&P->front(), Inst, DT, LI))
1766       return false;
1767 
1768   return true;
1769 }
1770 
1771 /// Computes the symbolic difference between two de-composed GEPs.
1772 ///
1773 /// Dest and Src are the variable indices from two decomposed GetElementPtr
1774 /// instructions GEP1 and GEP2 which have common base pointers.
1775 void BasicAAResult::GetIndexDifference(
1776     SmallVectorImpl<VariableGEPIndex> &Dest,
1777     const SmallVectorImpl<VariableGEPIndex> &Src) {
1778   if (Src.empty())
1779     return;
1780 
1781   for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1782     const Value *V = Src[i].V;
1783     unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
1784     int64_t Scale = Src[i].Scale;
1785 
1786     // Find V in Dest.  This is N^2, but pointer indices almost never have more
1787     // than a few variable indexes.
1788     for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1789       if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1790           Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
1791         continue;
1792 
1793       // If we found it, subtract off Scale V's from the entry in Dest.  If it
1794       // goes to zero, remove the entry.
1795       if (Dest[j].Scale != Scale)
1796         Dest[j].Scale -= Scale;
1797       else
1798         Dest.erase(Dest.begin() + j);
1799       Scale = 0;
1800       break;
1801     }
1802 
1803     // If we didn't consume this entry, add it to the end of the Dest list.
1804     if (Scale) {
1805       VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale};
1806       Dest.push_back(Entry);
1807     }
1808   }
1809 }
1810 
1811 bool BasicAAResult::constantOffsetHeuristic(
1812     const SmallVectorImpl<VariableGEPIndex> &VarIndices, LocationSize V1Size,
1813     LocationSize V2Size, int64_t BaseOffset, AssumptionCache *AC,
1814     DominatorTree *DT) {
1815   if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize ||
1816       V2Size == MemoryLocation::UnknownSize)
1817     return false;
1818 
1819   const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
1820 
1821   if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
1822       Var0.Scale != -Var1.Scale)
1823     return false;
1824 
1825   unsigned Width = Var1.V->getType()->getIntegerBitWidth();
1826 
1827   // We'll strip off the Extensions of Var0 and Var1 and do another round
1828   // of GetLinearExpression decomposition. In the example above, if Var0
1829   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1830 
1831   APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
1832       V1Offset(Width, 0);
1833   bool NSW = true, NUW = true;
1834   unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
1835   const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
1836                                         V0SExtBits, DL, 0, AC, DT, NSW, NUW);
1837   NSW = true;
1838   NUW = true;
1839   const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
1840                                         V1SExtBits, DL, 0, AC, DT, NSW, NUW);
1841 
1842   if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
1843       V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
1844     return false;
1845 
1846   // We have a hit - Var0 and Var1 only differ by a constant offset!
1847 
1848   // If we've been sext'ed then zext'd the maximum difference between Var0 and
1849   // Var1 is possible to calculate, but we're just interested in the absolute
1850   // minimum difference between the two. The minimum distance may occur due to
1851   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1852   // the minimum distance between %i and %i + 5 is 3.
1853   APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
1854   MinDiff = APIntOps::umin(MinDiff, Wrapped);
1855   uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale);
1856 
1857   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
1858   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
1859   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
1860   // V2Size can fit in the MinDiffBytes gap.
1861   return V1Size + std::abs(BaseOffset) <= MinDiffBytes &&
1862          V2Size + std::abs(BaseOffset) <= MinDiffBytes;
1863 }
1864 
1865 //===----------------------------------------------------------------------===//
1866 // BasicAliasAnalysis Pass
1867 //===----------------------------------------------------------------------===//
1868 
1869 AnalysisKey BasicAA::Key;
1870 
1871 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
1872   return BasicAAResult(F.getParent()->getDataLayout(),
1873                        AM.getResult<TargetLibraryAnalysis>(F),
1874                        AM.getResult<AssumptionAnalysis>(F),
1875                        &AM.getResult<DominatorTreeAnalysis>(F),
1876                        AM.getCachedResult<LoopAnalysis>(F));
1877 }
1878 
1879 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
1880     initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
1881 }
1882 
1883 char BasicAAWrapperPass::ID = 0;
1884 
1885 void BasicAAWrapperPass::anchor() {}
1886 
1887 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa",
1888                       "Basic Alias Analysis (stateless AA impl)", true, true)
1889 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1890 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1891 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1892 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa",
1893                     "Basic Alias Analysis (stateless AA impl)", true, true)
1894 
1895 FunctionPass *llvm::createBasicAAWrapperPass() {
1896   return new BasicAAWrapperPass();
1897 }
1898 
1899 bool BasicAAWrapperPass::runOnFunction(Function &F) {
1900   auto &ACT = getAnalysis<AssumptionCacheTracker>();
1901   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
1902   auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
1903   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
1904 
1905   Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), TLIWP.getTLI(),
1906                                  ACT.getAssumptionCache(F), &DTWP.getDomTree(),
1907                                  LIWP ? &LIWP->getLoopInfo() : nullptr));
1908 
1909   return false;
1910 }
1911 
1912 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1913   AU.setPreservesAll();
1914   AU.addRequired<AssumptionCacheTracker>();
1915   AU.addRequired<DominatorTreeWrapperPass>();
1916   AU.addRequired<TargetLibraryInfoWrapperPass>();
1917 }
1918 
1919 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
1920   return BasicAAResult(
1921       F.getParent()->getDataLayout(),
1922       P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
1923       P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
1924 }
1925