1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the primary stateless implementation of the
10 // Alias Analysis interface that implements identities (two different
11 // globals cannot alias, etc), but does no stateful analysis.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/BasicAliasAnalysis.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/PhiValues.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/ConstantRange.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GetElementPtrTypeIterator.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/Metadata.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/User.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/KnownBits.h"
59 #include <cassert>
60 #include <cstdint>
61 #include <cstdlib>
62 #include <utility>
63 
64 #define DEBUG_TYPE "basicaa"
65 
66 using namespace llvm;
67 
68 /// Enable analysis of recursive PHI nodes.
69 static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden,
70                                           cl::init(true));
71 
72 /// SearchLimitReached / SearchTimes shows how often the limit of
73 /// to decompose GEPs is reached. It will affect the precision
74 /// of basic alias analysis.
75 STATISTIC(SearchLimitReached, "Number of times the limit to "
76                               "decompose GEPs is reached");
77 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
78 
79 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
80 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
81 /// careful with value equivalence. We use reachability to make sure a value
82 /// cannot be involved in a cycle.
83 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
84 
85 // The max limit of the search depth in DecomposeGEPExpression() and
86 // getUnderlyingObject().
87 static const unsigned MaxLookupSearchDepth = 6;
88 
89 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
90                                FunctionAnalysisManager::Invalidator &Inv) {
91   // We don't care if this analysis itself is preserved, it has no state. But
92   // we need to check that the analyses it depends on have been. Note that we
93   // may be created without handles to some analyses and in that case don't
94   // depend on them.
95   if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
96       (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) ||
97       (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA)))
98     return true;
99 
100   // Otherwise this analysis result remains valid.
101   return false;
102 }
103 
104 //===----------------------------------------------------------------------===//
105 // Useful predicates
106 //===----------------------------------------------------------------------===//
107 
108 /// Returns true if the pointer is one which would have been considered an
109 /// escape by isNonEscapingLocalObject.
110 static bool isEscapeSource(const Value *V) {
111   if (isa<CallBase>(V))
112     return true;
113 
114   // The load case works because isNonEscapingLocalObject considers all
115   // stores to be escapes (it passes true for the StoreCaptures argument
116   // to PointerMayBeCaptured).
117   if (isa<LoadInst>(V))
118     return true;
119 
120   // The inttoptr case works because isNonEscapingLocalObject considers all
121   // means of converting or equating a pointer to an int (ptrtoint, ptr store
122   // which could be followed by an integer load, ptr<->int compare) as
123   // escaping, and objects located at well-known addresses via platform-specific
124   // means cannot be considered non-escaping local objects.
125   if (isa<IntToPtrInst>(V))
126     return true;
127 
128   return false;
129 }
130 
131 /// Returns the size of the object specified by V or UnknownSize if unknown.
132 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
133                               const TargetLibraryInfo &TLI,
134                               bool NullIsValidLoc,
135                               bool RoundToAlign = false) {
136   uint64_t Size;
137   ObjectSizeOpts Opts;
138   Opts.RoundToAlign = RoundToAlign;
139   Opts.NullIsUnknownSize = NullIsValidLoc;
140   if (getObjectSize(V, Size, DL, &TLI, Opts))
141     return Size;
142   return MemoryLocation::UnknownSize;
143 }
144 
145 /// Returns true if we can prove that the object specified by V is smaller than
146 /// Size.
147 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
148                                 const DataLayout &DL,
149                                 const TargetLibraryInfo &TLI,
150                                 bool NullIsValidLoc) {
151   // Note that the meanings of the "object" are slightly different in the
152   // following contexts:
153   //    c1: llvm::getObjectSize()
154   //    c2: llvm.objectsize() intrinsic
155   //    c3: isObjectSmallerThan()
156   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
157   // refers to the "entire object".
158   //
159   //  Consider this example:
160   //     char *p = (char*)malloc(100)
161   //     char *q = p+80;
162   //
163   //  In the context of c1 and c2, the "object" pointed by q refers to the
164   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
165   //
166   //  However, in the context of c3, the "object" refers to the chunk of memory
167   // being allocated. So, the "object" has 100 bytes, and q points to the middle
168   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
169   // parameter, before the llvm::getObjectSize() is called to get the size of
170   // entire object, we should:
171   //    - either rewind the pointer q to the base-address of the object in
172   //      question (in this case rewind to p), or
173   //    - just give up. It is up to caller to make sure the pointer is pointing
174   //      to the base address the object.
175   //
176   // We go for 2nd option for simplicity.
177   if (!isIdentifiedObject(V))
178     return false;
179 
180   // This function needs to use the aligned object size because we allow
181   // reads a bit past the end given sufficient alignment.
182   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
183                                       /*RoundToAlign*/ true);
184 
185   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
186 }
187 
188 /// Return the minimal extent from \p V to the end of the underlying object,
189 /// assuming the result is used in an aliasing query. E.g., we do use the query
190 /// location size and the fact that null pointers cannot alias here.
191 static uint64_t getMinimalExtentFrom(const Value &V,
192                                      const LocationSize &LocSize,
193                                      const DataLayout &DL,
194                                      bool NullIsValidLoc) {
195   // If we have dereferenceability information we know a lower bound for the
196   // extent as accesses for a lower offset would be valid. We need to exclude
197   // the "or null" part if null is a valid pointer. We can ignore frees, as an
198   // access after free would be undefined behavior.
199   bool CanBeNull, CanBeFreed;
200   uint64_t DerefBytes =
201     V.getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
202   DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes;
203   // If queried with a precise location size, we assume that location size to be
204   // accessed, thus valid.
205   if (LocSize.isPrecise())
206     DerefBytes = std::max(DerefBytes, LocSize.getValue());
207   return DerefBytes;
208 }
209 
210 /// Returns true if we can prove that the object specified by V has size Size.
211 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
212                          const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
213   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc);
214   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
215 }
216 
217 //===----------------------------------------------------------------------===//
218 // CaptureInfo implementations
219 //===----------------------------------------------------------------------===//
220 
221 CaptureInfo::~CaptureInfo() = default;
222 
223 bool SimpleCaptureInfo::isNotCapturedBeforeOrAt(const Value *Object,
224                                                 const Instruction *I) {
225   return isNonEscapingLocalObject(Object, &IsCapturedCache);
226 }
227 
228 bool EarliestEscapeInfo::isNotCapturedBeforeOrAt(const Value *Object,
229                                                  const Instruction *I) {
230   if (!isIdentifiedFunctionLocal(Object))
231     return false;
232 
233   auto Iter = EarliestEscapes.insert({Object, nullptr});
234   if (Iter.second) {
235     Instruction *EarliestCapture = FindEarliestCapture(
236         Object, *const_cast<Function *>(I->getFunction()),
237         /*ReturnCaptures=*/false, /*StoreCaptures=*/true, DT);
238     if (EarliestCapture) {
239       auto Ins = Inst2Obj.insert({EarliestCapture, {}});
240       Ins.first->second.push_back(Object);
241     }
242     Iter.first->second = EarliestCapture;
243   }
244 
245   // No capturing instruction.
246   if (!Iter.first->second)
247     return true;
248 
249   return I != Iter.first->second &&
250          !isPotentiallyReachable(Iter.first->second, I, nullptr, &DT, &LI);
251 }
252 
253 void EarliestEscapeInfo::removeInstruction(Instruction *I) {
254   auto Iter = Inst2Obj.find(I);
255   if (Iter != Inst2Obj.end()) {
256     for (const Value *Obj : Iter->second)
257       EarliestEscapes.erase(Obj);
258     Inst2Obj.erase(I);
259   }
260 }
261 
262 //===----------------------------------------------------------------------===//
263 // GetElementPtr Instruction Decomposition and Analysis
264 //===----------------------------------------------------------------------===//
265 
266 namespace {
267 /// Represents zext(sext(V)).
268 struct CastedValue {
269   const Value *V;
270   unsigned ZExtBits = 0;
271   unsigned SExtBits = 0;
272 
273   explicit CastedValue(const Value *V) : V(V) {}
274   explicit CastedValue(const Value *V, unsigned ZExtBits, unsigned SExtBits)
275       : V(V), ZExtBits(ZExtBits), SExtBits(SExtBits) {}
276 
277   unsigned getBitWidth() const {
278     return V->getType()->getPrimitiveSizeInBits() + ZExtBits + SExtBits;
279   }
280 
281   CastedValue withValue(const Value *NewV) const {
282     return CastedValue(NewV, ZExtBits, SExtBits);
283   }
284 
285   /// Replace V with zext(NewV)
286   CastedValue withZExtOfValue(const Value *NewV) const {
287     unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() -
288                         NewV->getType()->getPrimitiveSizeInBits();
289     // zext(sext(zext(NewV))) == zext(zext(zext(NewV)))
290     return CastedValue(NewV, ZExtBits + SExtBits + ExtendBy, 0);
291   }
292 
293   /// Replace V with sext(NewV)
294   CastedValue withSExtOfValue(const Value *NewV) const {
295     unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() -
296                         NewV->getType()->getPrimitiveSizeInBits();
297     // zext(sext(sext(NewV)))
298     return CastedValue(NewV, ZExtBits, SExtBits + ExtendBy);
299   }
300 
301   APInt evaluateWith(APInt N) const {
302     assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() &&
303            "Incompatible bit width");
304     if (SExtBits) N = N.sext(N.getBitWidth() + SExtBits);
305     if (ZExtBits) N = N.zext(N.getBitWidth() + ZExtBits);
306     return N;
307   }
308 
309   KnownBits evaluateWith(KnownBits N) const {
310     assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() &&
311            "Incompatible bit width");
312     if (SExtBits) N = N.sext(N.getBitWidth() + SExtBits);
313     if (ZExtBits) N = N.zext(N.getBitWidth() + ZExtBits);
314     return N;
315   }
316 
317   ConstantRange evaluateWith(ConstantRange N) const {
318     assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() &&
319            "Incompatible bit width");
320     if (SExtBits) N = N.signExtend(N.getBitWidth() + SExtBits);
321     if (ZExtBits) N = N.zeroExtend(N.getBitWidth() + ZExtBits);
322     return N;
323   }
324 
325   bool canDistributeOver(bool NUW, bool NSW) const {
326     // zext(x op<nuw> y) == zext(x) op<nuw> zext(y)
327     // sext(x op<nsw> y) == sext(x) op<nsw> sext(y)
328     return (!ZExtBits || NUW) && (!SExtBits || NSW);
329   }
330 
331   bool hasSameCastsAs(const CastedValue &Other) const {
332     return ZExtBits == Other.ZExtBits && SExtBits == Other.SExtBits;
333   }
334 };
335 
336 /// Represents zext(sext(V)) * Scale + Offset.
337 struct LinearExpression {
338   CastedValue Val;
339   APInt Scale;
340   APInt Offset;
341 
342   /// True if all operations in this expression are NSW.
343   bool IsNSW;
344 
345   LinearExpression(const CastedValue &Val, const APInt &Scale,
346                    const APInt &Offset, bool IsNSW)
347       : Val(Val), Scale(Scale), Offset(Offset), IsNSW(IsNSW) {}
348 
349   LinearExpression(const CastedValue &Val) : Val(Val), IsNSW(true) {
350     unsigned BitWidth = Val.getBitWidth();
351     Scale = APInt(BitWidth, 1);
352     Offset = APInt(BitWidth, 0);
353   }
354 };
355 }
356 
357 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
358 /// B are constant integers.
359 static LinearExpression GetLinearExpression(
360     const CastedValue &Val,  const DataLayout &DL, unsigned Depth,
361     AssumptionCache *AC, DominatorTree *DT) {
362   // Limit our recursion depth.
363   if (Depth == 6)
364     return Val;
365 
366   if (const ConstantInt *Const = dyn_cast<ConstantInt>(Val.V))
367     return LinearExpression(Val, APInt(Val.getBitWidth(), 0),
368                             Val.evaluateWith(Const->getValue()), true);
369 
370   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val.V)) {
371     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
372       APInt RHS = Val.evaluateWith(RHSC->getValue());
373       // The only non-OBO case we deal with is or, and only limited to the
374       // case where it is both nuw and nsw.
375       bool NUW = true, NSW = true;
376       if (isa<OverflowingBinaryOperator>(BOp)) {
377         NUW &= BOp->hasNoUnsignedWrap();
378         NSW &= BOp->hasNoSignedWrap();
379       }
380       if (!Val.canDistributeOver(NUW, NSW))
381         return Val;
382 
383       LinearExpression E(Val);
384       switch (BOp->getOpcode()) {
385       default:
386         // We don't understand this instruction, so we can't decompose it any
387         // further.
388         return Val;
389       case Instruction::Or:
390         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
391         // analyze it.
392         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
393                                BOp, DT))
394           return Val;
395 
396         LLVM_FALLTHROUGH;
397       case Instruction::Add: {
398         E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
399                                 Depth + 1, AC, DT);
400         E.Offset += RHS;
401         E.IsNSW &= NSW;
402         break;
403       }
404       case Instruction::Sub: {
405         E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
406                                 Depth + 1, AC, DT);
407         E.Offset -= RHS;
408         E.IsNSW &= NSW;
409         break;
410       }
411       case Instruction::Mul: {
412         E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
413                                 Depth + 1, AC, DT);
414         E.Offset *= RHS;
415         E.Scale *= RHS;
416         E.IsNSW &= NSW;
417         break;
418       }
419       case Instruction::Shl:
420         // We're trying to linearize an expression of the kind:
421         //   shl i8 -128, 36
422         // where the shift count exceeds the bitwidth of the type.
423         // We can't decompose this further (the expression would return
424         // a poison value).
425         if (RHS.getLimitedValue() > Val.getBitWidth())
426           return Val;
427 
428         E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL,
429                                 Depth + 1, AC, DT);
430         E.Offset <<= RHS.getLimitedValue();
431         E.Scale <<= RHS.getLimitedValue();
432         E.IsNSW &= NSW;
433         break;
434       }
435       return E;
436     }
437   }
438 
439   if (isa<ZExtInst>(Val.V))
440     return GetLinearExpression(
441         Val.withZExtOfValue(cast<CastInst>(Val.V)->getOperand(0)),
442         DL, Depth + 1, AC, DT);
443 
444   if (isa<SExtInst>(Val.V))
445     return GetLinearExpression(
446         Val.withSExtOfValue(cast<CastInst>(Val.V)->getOperand(0)),
447         DL, Depth + 1, AC, DT);
448 
449   return Val;
450 }
451 
452 /// To ensure a pointer offset fits in an integer of size PointerSize
453 /// (in bits) when that size is smaller than the maximum pointer size. This is
454 /// an issue, for example, in particular for 32b pointers with negative indices
455 /// that rely on two's complement wrap-arounds for precise alias information
456 /// where the maximum pointer size is 64b.
457 static APInt adjustToPointerSize(const APInt &Offset, unsigned PointerSize) {
458   assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!");
459   unsigned ShiftBits = Offset.getBitWidth() - PointerSize;
460   return (Offset << ShiftBits).ashr(ShiftBits);
461 }
462 
463 namespace {
464 // A linear transformation of a Value; this class represents
465 // ZExt(SExt(V, SExtBits), ZExtBits) * Scale.
466 struct VariableGEPIndex {
467   CastedValue Val;
468   APInt Scale;
469 
470   // Context instruction to use when querying information about this index.
471   const Instruction *CxtI;
472 
473   /// True if all operations in this expression are NSW.
474   bool IsNSW;
475 
476   void dump() const {
477     print(dbgs());
478     dbgs() << "\n";
479   }
480   void print(raw_ostream &OS) const {
481     OS << "(V=" << Val.V->getName()
482        << ", zextbits=" << Val.ZExtBits
483        << ", sextbits=" << Val.SExtBits
484        << ", scale=" << Scale << ")";
485   }
486 };
487 }
488 
489 // Represents the internal structure of a GEP, decomposed into a base pointer,
490 // constant offsets, and variable scaled indices.
491 struct BasicAAResult::DecomposedGEP {
492   // Base pointer of the GEP
493   const Value *Base;
494   // Total constant offset from base.
495   APInt Offset;
496   // Scaled variable (non-constant) indices.
497   SmallVector<VariableGEPIndex, 4> VarIndices;
498   // Are all operations inbounds GEPs or non-indexing operations?
499   // (None iff expression doesn't involve any geps)
500   Optional<bool> InBounds;
501 
502   void dump() const {
503     print(dbgs());
504     dbgs() << "\n";
505   }
506   void print(raw_ostream &OS) const {
507     OS << "(DecomposedGEP Base=" << Base->getName()
508        << ", Offset=" << Offset
509        << ", VarIndices=[";
510     for (size_t i = 0; i < VarIndices.size(); i++) {
511       if (i != 0)
512         OS << ", ";
513       VarIndices[i].print(OS);
514     }
515     OS << "])";
516   }
517 };
518 
519 
520 /// If V is a symbolic pointer expression, decompose it into a base pointer
521 /// with a constant offset and a number of scaled symbolic offsets.
522 ///
523 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
524 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
525 /// specified amount, but which may have other unrepresented high bits. As
526 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
527 BasicAAResult::DecomposedGEP
528 BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL,
529                                       AssumptionCache *AC, DominatorTree *DT) {
530   // Limit recursion depth to limit compile time in crazy cases.
531   unsigned MaxLookup = MaxLookupSearchDepth;
532   SearchTimes++;
533   const Instruction *CxtI = dyn_cast<Instruction>(V);
534 
535   unsigned MaxPointerSize = DL.getMaxPointerSizeInBits();
536   DecomposedGEP Decomposed;
537   Decomposed.Offset = APInt(MaxPointerSize, 0);
538   do {
539     // See if this is a bitcast or GEP.
540     const Operator *Op = dyn_cast<Operator>(V);
541     if (!Op) {
542       // The only non-operator case we can handle are GlobalAliases.
543       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
544         if (!GA->isInterposable()) {
545           V = GA->getAliasee();
546           continue;
547         }
548       }
549       Decomposed.Base = V;
550       return Decomposed;
551     }
552 
553     if (Op->getOpcode() == Instruction::BitCast ||
554         Op->getOpcode() == Instruction::AddrSpaceCast) {
555       V = Op->getOperand(0);
556       continue;
557     }
558 
559     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
560     if (!GEPOp) {
561       if (const auto *PHI = dyn_cast<PHINode>(V)) {
562         // Look through single-arg phi nodes created by LCSSA.
563         if (PHI->getNumIncomingValues() == 1) {
564           V = PHI->getIncomingValue(0);
565           continue;
566         }
567       } else if (const auto *Call = dyn_cast<CallBase>(V)) {
568         // CaptureTracking can know about special capturing properties of some
569         // intrinsics like launder.invariant.group, that can't be expressed with
570         // the attributes, but have properties like returning aliasing pointer.
571         // Because some analysis may assume that nocaptured pointer is not
572         // returned from some special intrinsic (because function would have to
573         // be marked with returns attribute), it is crucial to use this function
574         // because it should be in sync with CaptureTracking. Not using it may
575         // cause weird miscompilations where 2 aliasing pointers are assumed to
576         // noalias.
577         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
578           V = RP;
579           continue;
580         }
581       }
582 
583       Decomposed.Base = V;
584       return Decomposed;
585     }
586 
587     // Track whether we've seen at least one in bounds gep, and if so, whether
588     // all geps parsed were in bounds.
589     if (Decomposed.InBounds == None)
590       Decomposed.InBounds = GEPOp->isInBounds();
591     else if (!GEPOp->isInBounds())
592       Decomposed.InBounds = false;
593 
594     assert(GEPOp->getSourceElementType()->isSized() && "GEP must be sized");
595 
596     // Don't attempt to analyze GEPs if index scale is not a compile-time
597     // constant.
598     if (isa<ScalableVectorType>(GEPOp->getSourceElementType())) {
599       Decomposed.Base = V;
600       return Decomposed;
601     }
602 
603     unsigned AS = GEPOp->getPointerAddressSpace();
604     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
605     gep_type_iterator GTI = gep_type_begin(GEPOp);
606     unsigned PointerSize = DL.getPointerSizeInBits(AS);
607     // Assume all GEP operands are constants until proven otherwise.
608     bool GepHasConstantOffset = true;
609     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
610          I != E; ++I, ++GTI) {
611       const Value *Index = *I;
612       // Compute the (potentially symbolic) offset in bytes for this index.
613       if (StructType *STy = GTI.getStructTypeOrNull()) {
614         // For a struct, add the member offset.
615         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
616         if (FieldNo == 0)
617           continue;
618 
619         Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo);
620         continue;
621       }
622 
623       // For an array/pointer, add the element offset, explicitly scaled.
624       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
625         if (CIdx->isZero())
626           continue;
627         Decomposed.Offset +=
628             DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize() *
629             CIdx->getValue().sextOrTrunc(MaxPointerSize);
630         continue;
631       }
632 
633       GepHasConstantOffset = false;
634 
635       APInt Scale(MaxPointerSize,
636                   DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize());
637       // If the integer type is smaller than the pointer size, it is implicitly
638       // sign extended to pointer size.
639       unsigned Width = Index->getType()->getIntegerBitWidth();
640       unsigned SExtBits = PointerSize > Width ? PointerSize - Width : 0;
641       LinearExpression LE = GetLinearExpression(
642           CastedValue(Index, 0, SExtBits), DL, 0, AC, DT);
643 
644       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
645       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
646 
647       // It can be the case that, even through C1*V+C2 does not overflow for
648       // relevant values of V, (C2*Scale) can overflow. In that case, we cannot
649       // decompose the expression in this way.
650       //
651       // FIXME: C1*Scale and the other operations in the decomposed
652       // (C1*Scale)*V+C2*Scale can also overflow. We should check for this
653       // possibility.
654       bool Overflow;
655       APInt ScaledOffset = LE.Offset.sextOrTrunc(MaxPointerSize)
656                            .smul_ov(Scale, Overflow);
657       if (Overflow) {
658         LE = LinearExpression(CastedValue(Index, 0, SExtBits));
659       } else {
660         Decomposed.Offset += ScaledOffset;
661         Scale *= LE.Scale.sextOrTrunc(MaxPointerSize);
662       }
663 
664       // If we already had an occurrence of this index variable, merge this
665       // scale into it.  For example, we want to handle:
666       //   A[x][x] -> x*16 + x*4 -> x*20
667       // This also ensures that 'x' only appears in the index list once.
668       for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
669         if (Decomposed.VarIndices[i].Val.V == LE.Val.V &&
670             Decomposed.VarIndices[i].Val.hasSameCastsAs(LE.Val)) {
671           Scale += Decomposed.VarIndices[i].Scale;
672           Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
673           break;
674         }
675       }
676 
677       // Make sure that we have a scale that makes sense for this target's
678       // pointer size.
679       Scale = adjustToPointerSize(Scale, PointerSize);
680 
681       if (!!Scale) {
682         VariableGEPIndex Entry = {LE.Val, Scale, CxtI, LE.IsNSW};
683         Decomposed.VarIndices.push_back(Entry);
684       }
685     }
686 
687     // Take care of wrap-arounds
688     if (GepHasConstantOffset)
689       Decomposed.Offset = adjustToPointerSize(Decomposed.Offset, PointerSize);
690 
691     // Analyze the base pointer next.
692     V = GEPOp->getOperand(0);
693   } while (--MaxLookup);
694 
695   // If the chain of expressions is too deep, just return early.
696   Decomposed.Base = V;
697   SearchLimitReached++;
698   return Decomposed;
699 }
700 
701 /// Returns whether the given pointer value points to memory that is local to
702 /// the function, with global constants being considered local to all
703 /// functions.
704 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
705                                            AAQueryInfo &AAQI, bool OrLocal) {
706   assert(Visited.empty() && "Visited must be cleared after use!");
707 
708   unsigned MaxLookup = 8;
709   SmallVector<const Value *, 16> Worklist;
710   Worklist.push_back(Loc.Ptr);
711   do {
712     const Value *V = getUnderlyingObject(Worklist.pop_back_val());
713     if (!Visited.insert(V).second) {
714       Visited.clear();
715       return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
716     }
717 
718     // An alloca instruction defines local memory.
719     if (OrLocal && isa<AllocaInst>(V))
720       continue;
721 
722     // A global constant counts as local memory for our purposes.
723     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
724       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
725       // global to be marked constant in some modules and non-constant in
726       // others.  GV may even be a declaration, not a definition.
727       if (!GV->isConstant()) {
728         Visited.clear();
729         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
730       }
731       continue;
732     }
733 
734     // If both select values point to local memory, then so does the select.
735     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
736       Worklist.push_back(SI->getTrueValue());
737       Worklist.push_back(SI->getFalseValue());
738       continue;
739     }
740 
741     // If all values incoming to a phi node point to local memory, then so does
742     // the phi.
743     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
744       // Don't bother inspecting phi nodes with many operands.
745       if (PN->getNumIncomingValues() > MaxLookup) {
746         Visited.clear();
747         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
748       }
749       append_range(Worklist, PN->incoming_values());
750       continue;
751     }
752 
753     // Otherwise be conservative.
754     Visited.clear();
755     return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
756   } while (!Worklist.empty() && --MaxLookup);
757 
758   Visited.clear();
759   return Worklist.empty();
760 }
761 
762 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
763   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
764   return II && II->getIntrinsicID() == IID;
765 }
766 
767 /// Returns the behavior when calling the given call site.
768 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) {
769   if (Call->doesNotAccessMemory())
770     // Can't do better than this.
771     return FMRB_DoesNotAccessMemory;
772 
773   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
774 
775   // If the callsite knows it only reads memory, don't return worse
776   // than that.
777   if (Call->onlyReadsMemory())
778     Min = FMRB_OnlyReadsMemory;
779   else if (Call->doesNotReadMemory())
780     Min = FMRB_OnlyWritesMemory;
781 
782   if (Call->onlyAccessesArgMemory())
783     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
784   else if (Call->onlyAccessesInaccessibleMemory())
785     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
786   else if (Call->onlyAccessesInaccessibleMemOrArgMem())
787     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
788 
789   // If the call has operand bundles then aliasing attributes from the function
790   // it calls do not directly apply to the call.  This can be made more precise
791   // in the future.
792   if (!Call->hasOperandBundles())
793     if (const Function *F = Call->getCalledFunction())
794       Min =
795           FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
796 
797   return Min;
798 }
799 
800 /// Returns the behavior when calling the given function. For use when the call
801 /// site is not known.
802 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
803   // If the function declares it doesn't access memory, we can't do better.
804   if (F->doesNotAccessMemory())
805     return FMRB_DoesNotAccessMemory;
806 
807   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
808 
809   // If the function declares it only reads memory, go with that.
810   if (F->onlyReadsMemory())
811     Min = FMRB_OnlyReadsMemory;
812   else if (F->doesNotReadMemory())
813     Min = FMRB_OnlyWritesMemory;
814 
815   if (F->onlyAccessesArgMemory())
816     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
817   else if (F->onlyAccessesInaccessibleMemory())
818     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
819   else if (F->onlyAccessesInaccessibleMemOrArgMem())
820     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
821 
822   return Min;
823 }
824 
825 /// Returns true if this is a writeonly (i.e Mod only) parameter.
826 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx,
827                              const TargetLibraryInfo &TLI) {
828   if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly))
829     return true;
830 
831   // We can bound the aliasing properties of memset_pattern16 just as we can
832   // for memcpy/memset.  This is particularly important because the
833   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
834   // whenever possible.
835   // FIXME Consider handling this in InferFunctionAttr.cpp together with other
836   // attributes.
837   LibFunc F;
838   if (Call->getCalledFunction() &&
839       TLI.getLibFunc(*Call->getCalledFunction(), F) &&
840       F == LibFunc_memset_pattern16 && TLI.has(F))
841     if (ArgIdx == 0)
842       return true;
843 
844   // TODO: memset_pattern4, memset_pattern8
845   // TODO: _chk variants
846   // TODO: strcmp, strcpy
847 
848   return false;
849 }
850 
851 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
852                                            unsigned ArgIdx) {
853   // Checking for known builtin intrinsics and target library functions.
854   if (isWriteOnlyParam(Call, ArgIdx, TLI))
855     return ModRefInfo::Mod;
856 
857   if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly))
858     return ModRefInfo::Ref;
859 
860   if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone))
861     return ModRefInfo::NoModRef;
862 
863   return AAResultBase::getArgModRefInfo(Call, ArgIdx);
864 }
865 
866 #ifndef NDEBUG
867 static const Function *getParent(const Value *V) {
868   if (const Instruction *inst = dyn_cast<Instruction>(V)) {
869     if (!inst->getParent())
870       return nullptr;
871     return inst->getParent()->getParent();
872   }
873 
874   if (const Argument *arg = dyn_cast<Argument>(V))
875     return arg->getParent();
876 
877   return nullptr;
878 }
879 
880 static bool notDifferentParent(const Value *O1, const Value *O2) {
881 
882   const Function *F1 = getParent(O1);
883   const Function *F2 = getParent(O2);
884 
885   return !F1 || !F2 || F1 == F2;
886 }
887 #endif
888 
889 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
890                                  const MemoryLocation &LocB,
891                                  AAQueryInfo &AAQI) {
892   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
893          "BasicAliasAnalysis doesn't support interprocedural queries.");
894   return aliasCheck(LocA.Ptr, LocA.Size, LocB.Ptr, LocB.Size, AAQI);
895 }
896 
897 /// Checks to see if the specified callsite can clobber the specified memory
898 /// object.
899 ///
900 /// Since we only look at local properties of this function, we really can't
901 /// say much about this query.  We do, however, use simple "address taken"
902 /// analysis on local objects.
903 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
904                                         const MemoryLocation &Loc,
905                                         AAQueryInfo &AAQI) {
906   assert(notDifferentParent(Call, Loc.Ptr) &&
907          "AliasAnalysis query involving multiple functions!");
908 
909   const Value *Object = getUnderlyingObject(Loc.Ptr);
910 
911   // Calls marked 'tail' cannot read or write allocas from the current frame
912   // because the current frame might be destroyed by the time they run. However,
913   // a tail call may use an alloca with byval. Calling with byval copies the
914   // contents of the alloca into argument registers or stack slots, so there is
915   // no lifetime issue.
916   if (isa<AllocaInst>(Object))
917     if (const CallInst *CI = dyn_cast<CallInst>(Call))
918       if (CI->isTailCall() &&
919           !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal))
920         return ModRefInfo::NoModRef;
921 
922   // Stack restore is able to modify unescaped dynamic allocas. Assume it may
923   // modify them even though the alloca is not escaped.
924   if (auto *AI = dyn_cast<AllocaInst>(Object))
925     if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore))
926       return ModRefInfo::Mod;
927 
928   // If the pointer is to a locally allocated object that does not escape,
929   // then the call can not mod/ref the pointer unless the call takes the pointer
930   // as an argument, and itself doesn't capture it.
931   if (!isa<Constant>(Object) && Call != Object &&
932       AAQI.CI->isNotCapturedBeforeOrAt(Object, Call)) {
933 
934     // Optimistically assume that call doesn't touch Object and check this
935     // assumption in the following loop.
936     ModRefInfo Result = ModRefInfo::NoModRef;
937     bool IsMustAlias = true;
938 
939     unsigned OperandNo = 0;
940     for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
941          CI != CE; ++CI, ++OperandNo) {
942       // Only look at the no-capture or byval pointer arguments.  If this
943       // pointer were passed to arguments that were neither of these, then it
944       // couldn't be no-capture.
945       if (!(*CI)->getType()->isPointerTy() ||
946           (!Call->doesNotCapture(OperandNo) && OperandNo < Call->arg_size() &&
947            !Call->isByValArgument(OperandNo)))
948         continue;
949 
950       // Call doesn't access memory through this operand, so we don't care
951       // if it aliases with Object.
952       if (Call->doesNotAccessMemory(OperandNo))
953         continue;
954 
955       // If this is a no-capture pointer argument, see if we can tell that it
956       // is impossible to alias the pointer we're checking.
957       AliasResult AR = getBestAAResults().alias(
958           MemoryLocation::getBeforeOrAfter(*CI),
959           MemoryLocation::getBeforeOrAfter(Object), AAQI);
960       if (AR != AliasResult::MustAlias)
961         IsMustAlias = false;
962       // Operand doesn't alias 'Object', continue looking for other aliases
963       if (AR == AliasResult::NoAlias)
964         continue;
965       // Operand aliases 'Object', but call doesn't modify it. Strengthen
966       // initial assumption and keep looking in case if there are more aliases.
967       if (Call->onlyReadsMemory(OperandNo)) {
968         Result = setRef(Result);
969         continue;
970       }
971       // Operand aliases 'Object' but call only writes into it.
972       if (Call->doesNotReadMemory(OperandNo)) {
973         Result = setMod(Result);
974         continue;
975       }
976       // This operand aliases 'Object' and call reads and writes into it.
977       // Setting ModRef will not yield an early return below, MustAlias is not
978       // used further.
979       Result = ModRefInfo::ModRef;
980       break;
981     }
982 
983     // No operand aliases, reset Must bit. Add below if at least one aliases
984     // and all aliases found are MustAlias.
985     if (isNoModRef(Result))
986       IsMustAlias = false;
987 
988     // Early return if we improved mod ref information
989     if (!isModAndRefSet(Result)) {
990       if (isNoModRef(Result))
991         return ModRefInfo::NoModRef;
992       return IsMustAlias ? setMust(Result) : clearMust(Result);
993     }
994   }
995 
996   // If the call is malloc/calloc like, we can assume that it doesn't
997   // modify any IR visible value.  This is only valid because we assume these
998   // routines do not read values visible in the IR.  TODO: Consider special
999   // casing realloc and strdup routines which access only their arguments as
1000   // well.  Or alternatively, replace all of this with inaccessiblememonly once
1001   // that's implemented fully.
1002   if (isMallocOrCallocLikeFn(Call, &TLI)) {
1003     // Be conservative if the accessed pointer may alias the allocation -
1004     // fallback to the generic handling below.
1005     if (getBestAAResults().alias(MemoryLocation::getBeforeOrAfter(Call), Loc,
1006                                  AAQI) == AliasResult::NoAlias)
1007       return ModRefInfo::NoModRef;
1008   }
1009 
1010   // The semantics of memcpy intrinsics either exactly overlap or do not
1011   // overlap, i.e., source and destination of any given memcpy are either
1012   // no-alias or must-alias.
1013   if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) {
1014     AliasResult SrcAA =
1015         getBestAAResults().alias(MemoryLocation::getForSource(Inst), Loc, AAQI);
1016     AliasResult DestAA =
1017         getBestAAResults().alias(MemoryLocation::getForDest(Inst), Loc, AAQI);
1018     // It's also possible for Loc to alias both src and dest, or neither.
1019     ModRefInfo rv = ModRefInfo::NoModRef;
1020     if (SrcAA != AliasResult::NoAlias)
1021       rv = setRef(rv);
1022     if (DestAA != AliasResult::NoAlias)
1023       rv = setMod(rv);
1024     return rv;
1025   }
1026 
1027   // Guard intrinsics are marked as arbitrarily writing so that proper control
1028   // dependencies are maintained but they never mods any particular memory
1029   // location.
1030   //
1031   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1032   // heap state at the point the guard is issued needs to be consistent in case
1033   // the guard invokes the "deopt" continuation.
1034   if (isIntrinsicCall(Call, Intrinsic::experimental_guard))
1035     return ModRefInfo::Ref;
1036   // The same applies to deoptimize which is essentially a guard(false).
1037   if (isIntrinsicCall(Call, Intrinsic::experimental_deoptimize))
1038     return ModRefInfo::Ref;
1039 
1040   // Like assumes, invariant.start intrinsics were also marked as arbitrarily
1041   // writing so that proper control dependencies are maintained but they never
1042   // mod any particular memory location visible to the IR.
1043   // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
1044   // intrinsic is now modeled as reading memory. This prevents hoisting the
1045   // invariant.start intrinsic over stores. Consider:
1046   // *ptr = 40;
1047   // *ptr = 50;
1048   // invariant_start(ptr)
1049   // int val = *ptr;
1050   // print(val);
1051   //
1052   // This cannot be transformed to:
1053   //
1054   // *ptr = 40;
1055   // invariant_start(ptr)
1056   // *ptr = 50;
1057   // int val = *ptr;
1058   // print(val);
1059   //
1060   // The transformation will cause the second store to be ignored (based on
1061   // rules of invariant.start)  and print 40, while the first program always
1062   // prints 50.
1063   if (isIntrinsicCall(Call, Intrinsic::invariant_start))
1064     return ModRefInfo::Ref;
1065 
1066   // The AAResultBase base class has some smarts, lets use them.
1067   return AAResultBase::getModRefInfo(Call, Loc, AAQI);
1068 }
1069 
1070 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
1071                                         const CallBase *Call2,
1072                                         AAQueryInfo &AAQI) {
1073   // Guard intrinsics are marked as arbitrarily writing so that proper control
1074   // dependencies are maintained but they never mods any particular memory
1075   // location.
1076   //
1077   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1078   // heap state at the point the guard is issued needs to be consistent in case
1079   // the guard invokes the "deopt" continuation.
1080 
1081   // NB! This function is *not* commutative, so we special case two
1082   // possibilities for guard intrinsics.
1083 
1084   if (isIntrinsicCall(Call1, Intrinsic::experimental_guard))
1085     return isModSet(createModRefInfo(getModRefBehavior(Call2)))
1086                ? ModRefInfo::Ref
1087                : ModRefInfo::NoModRef;
1088 
1089   if (isIntrinsicCall(Call2, Intrinsic::experimental_guard))
1090     return isModSet(createModRefInfo(getModRefBehavior(Call1)))
1091                ? ModRefInfo::Mod
1092                : ModRefInfo::NoModRef;
1093 
1094   // The AAResultBase base class has some smarts, lets use them.
1095   return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
1096 }
1097 
1098 /// Return true if we know V to the base address of the corresponding memory
1099 /// object.  This implies that any address less than V must be out of bounds
1100 /// for the underlying object.  Note that just being isIdentifiedObject() is
1101 /// not enough - For example, a negative offset from a noalias argument or call
1102 /// can be inbounds w.r.t the actual underlying object.
1103 static bool isBaseOfObject(const Value *V) {
1104   // TODO: We can handle other cases here
1105   // 1) For GC languages, arguments to functions are often required to be
1106   //    base pointers.
1107   // 2) Result of allocation routines are often base pointers.  Leverage TLI.
1108   return (isa<AllocaInst>(V) || isa<GlobalVariable>(V));
1109 }
1110 
1111 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1112 /// another pointer.
1113 ///
1114 /// We know that V1 is a GEP, but we don't know anything about V2.
1115 /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for
1116 /// V2.
1117 AliasResult BasicAAResult::aliasGEP(
1118     const GEPOperator *GEP1, LocationSize V1Size,
1119     const Value *V2, LocationSize V2Size,
1120     const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) {
1121   if (!V1Size.hasValue() && !V2Size.hasValue()) {
1122     // TODO: This limitation exists for compile-time reasons. Relax it if we
1123     // can avoid exponential pathological cases.
1124     if (!isa<GEPOperator>(V2))
1125       return AliasResult::MayAlias;
1126 
1127     // If both accesses have unknown size, we can only check whether the base
1128     // objects don't alias.
1129     AliasResult BaseAlias = getBestAAResults().alias(
1130         MemoryLocation::getBeforeOrAfter(UnderlyingV1),
1131         MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI);
1132     return BaseAlias == AliasResult::NoAlias ? AliasResult::NoAlias
1133                                              : AliasResult::MayAlias;
1134   }
1135 
1136   DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT);
1137   DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT);
1138 
1139   // Bail if we were not able to decompose anything.
1140   if (DecompGEP1.Base == GEP1 && DecompGEP2.Base == V2)
1141     return AliasResult::MayAlias;
1142 
1143   // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1144   // symbolic difference.
1145   subtractDecomposedGEPs(DecompGEP1, DecompGEP2);
1146 
1147   // If an inbounds GEP would have to start from an out of bounds address
1148   // for the two to alias, then we can assume noalias.
1149   if (*DecompGEP1.InBounds && DecompGEP1.VarIndices.empty() &&
1150       V2Size.hasValue() && DecompGEP1.Offset.sge(V2Size.getValue()) &&
1151       isBaseOfObject(DecompGEP2.Base))
1152     return AliasResult::NoAlias;
1153 
1154   if (isa<GEPOperator>(V2)) {
1155     // Symmetric case to above.
1156     if (*DecompGEP2.InBounds && DecompGEP1.VarIndices.empty() &&
1157         V1Size.hasValue() && DecompGEP1.Offset.sle(-V1Size.getValue()) &&
1158         isBaseOfObject(DecompGEP1.Base))
1159       return AliasResult::NoAlias;
1160   }
1161 
1162   // For GEPs with identical offsets, we can preserve the size and AAInfo
1163   // when performing the alias check on the underlying objects.
1164   if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty())
1165     return getBestAAResults().alias(MemoryLocation(DecompGEP1.Base, V1Size),
1166                                     MemoryLocation(DecompGEP2.Base, V2Size),
1167                                     AAQI);
1168 
1169   // Do the base pointers alias?
1170   AliasResult BaseAlias = getBestAAResults().alias(
1171       MemoryLocation::getBeforeOrAfter(DecompGEP1.Base),
1172       MemoryLocation::getBeforeOrAfter(DecompGEP2.Base), AAQI);
1173 
1174   // If we get a No or May, then return it immediately, no amount of analysis
1175   // will improve this situation.
1176   if (BaseAlias != AliasResult::MustAlias) {
1177     assert(BaseAlias == AliasResult::NoAlias ||
1178            BaseAlias == AliasResult::MayAlias);
1179     return BaseAlias;
1180   }
1181 
1182   // If there is a constant difference between the pointers, but the difference
1183   // is less than the size of the associated memory object, then we know
1184   // that the objects are partially overlapping.  If the difference is
1185   // greater, we know they do not overlap.
1186   if (DecompGEP1.Offset != 0 && DecompGEP1.VarIndices.empty()) {
1187     APInt &Off = DecompGEP1.Offset;
1188 
1189     // Initialize for Off >= 0 (V2 <= GEP1) case.
1190     const Value *LeftPtr = V2;
1191     const Value *RightPtr = GEP1;
1192     LocationSize VLeftSize = V2Size;
1193     LocationSize VRightSize = V1Size;
1194     const bool Swapped = Off.isNegative();
1195 
1196     if (Swapped) {
1197       // Swap if we have the situation where:
1198       // +                +
1199       // | BaseOffset     |
1200       // ---------------->|
1201       // |-->V1Size       |-------> V2Size
1202       // GEP1             V2
1203       std::swap(LeftPtr, RightPtr);
1204       std::swap(VLeftSize, VRightSize);
1205       Off = -Off;
1206     }
1207 
1208     if (VLeftSize.hasValue()) {
1209       const uint64_t LSize = VLeftSize.getValue();
1210       if (Off.ult(LSize)) {
1211         // Conservatively drop processing if a phi was visited and/or offset is
1212         // too big.
1213         AliasResult AR = AliasResult::PartialAlias;
1214         if (VRightSize.hasValue() && Off.ule(INT32_MAX) &&
1215             (Off + VRightSize.getValue()).ule(LSize)) {
1216           // Memory referenced by right pointer is nested. Save the offset in
1217           // cache. Note that originally offset estimated as GEP1-V2, but
1218           // AliasResult contains the shift that represents GEP1+Offset=V2.
1219           AR.setOffset(-Off.getSExtValue());
1220           AR.swap(Swapped);
1221         }
1222         return AR;
1223       }
1224       return AliasResult::NoAlias;
1225     }
1226   }
1227 
1228   if (!DecompGEP1.VarIndices.empty()) {
1229     APInt GCD;
1230     bool AllNonNegative = DecompGEP1.Offset.isNonNegative();
1231     bool AllNonPositive = DecompGEP1.Offset.isNonPositive();
1232     for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1233       const VariableGEPIndex &Index = DecompGEP1.VarIndices[i];
1234       const APInt &Scale = Index.Scale;
1235       APInt ScaleForGCD = Scale;
1236       if (!Index.IsNSW)
1237         ScaleForGCD = APInt::getOneBitSet(Scale.getBitWidth(),
1238                                           Scale.countTrailingZeros());
1239 
1240       if (i == 0)
1241         GCD = ScaleForGCD.abs();
1242       else
1243         GCD = APIntOps::GreatestCommonDivisor(GCD, ScaleForGCD.abs());
1244 
1245       if (AllNonNegative || AllNonPositive) {
1246         KnownBits Known = Index.Val.evaluateWith(
1247             computeKnownBits(Index.Val.V, DL, 0, &AC, Index.CxtI, DT));
1248         // TODO: Account for implicit trunc.
1249         bool SignKnownZero = Known.isNonNegative();
1250         bool SignKnownOne = Known.isNegative();
1251         AllNonNegative &= (SignKnownZero && Scale.isNonNegative()) ||
1252                           (SignKnownOne && Scale.isNonPositive());
1253         AllNonPositive &= (SignKnownZero && Scale.isNonPositive()) ||
1254                           (SignKnownOne && Scale.isNonNegative());
1255       }
1256     }
1257 
1258     // We now have accesses at two offsets from the same base:
1259     //  1. (...)*GCD + DecompGEP1.Offset with size V1Size
1260     //  2. 0 with size V2Size
1261     // Using arithmetic modulo GCD, the accesses are at
1262     // [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits
1263     // into the range [V2Size..GCD), then we know they cannot overlap.
1264     APInt ModOffset = DecompGEP1.Offset.srem(GCD);
1265     if (ModOffset.isNegative())
1266       ModOffset += GCD; // We want mod, not rem.
1267     if (V1Size.hasValue() && V2Size.hasValue() &&
1268         ModOffset.uge(V2Size.getValue()) &&
1269         (GCD - ModOffset).uge(V1Size.getValue()))
1270       return AliasResult::NoAlias;
1271 
1272     // If we know all the variables are non-negative, then the total offset is
1273     // also non-negative and >= DecompGEP1.Offset. We have the following layout:
1274     // [0, V2Size) ... [TotalOffset, TotalOffer+V1Size]
1275     // If DecompGEP1.Offset >= V2Size, the accesses don't alias.
1276     if (AllNonNegative && V2Size.hasValue() &&
1277         DecompGEP1.Offset.uge(V2Size.getValue()))
1278       return AliasResult::NoAlias;
1279     // Similarly, if the variables are non-positive, then the total offset is
1280     // also non-positive and <= DecompGEP1.Offset. We have the following layout:
1281     // [TotalOffset, TotalOffset+V1Size) ... [0, V2Size)
1282     // If -DecompGEP1.Offset >= V1Size, the accesses don't alias.
1283     if (AllNonPositive && V1Size.hasValue() &&
1284         (-DecompGEP1.Offset).uge(V1Size.getValue()))
1285       return AliasResult::NoAlias;
1286 
1287     if (V1Size.hasValue() && V2Size.hasValue()) {
1288       // Try to determine the range of values for VarIndex.
1289       // VarIndexRange is such that:
1290       //    (VarIndex <= -MinAbsVarIndex || MinAbsVarIndex <= VarIndex) &&
1291       //    VarIndexRange.contains(VarIndex)
1292       Optional<APInt> MinAbsVarIndex;
1293       Optional<ConstantRange> VarIndexRange;
1294       if (DecompGEP1.VarIndices.size() == 1) {
1295         // VarIndex = Scale*V.
1296         const VariableGEPIndex &Var = DecompGEP1.VarIndices[0];
1297         if (isKnownNonZero(Var.Val.V, DL, 0, &AC, Var.CxtI, DT)) {
1298           // If V != 0 then abs(VarIndex) >= abs(Scale).
1299           MinAbsVarIndex = Var.Scale.abs();
1300         }
1301         ConstantRange R = Var.Val.evaluateWith(
1302             computeConstantRange(Var.Val.V, true, &AC, Var.CxtI));
1303         if (!R.isFullSet() && !R.isEmptySet())
1304           VarIndexRange = R.sextOrTrunc(Var.Scale.getBitWidth())
1305                               .smul_fast(ConstantRange(Var.Scale));
1306       } else if (DecompGEP1.VarIndices.size() == 2) {
1307         // VarIndex = Scale*V0 + (-Scale)*V1.
1308         // If V0 != V1 then abs(VarIndex) >= abs(Scale).
1309         // Check that VisitedPhiBBs is empty, to avoid reasoning about
1310         // inequality of values across loop iterations.
1311         const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0];
1312         const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1];
1313         if (Var0.Scale == -Var1.Scale &&
1314             Var0.Val.hasSameCastsAs(Var1.Val) && VisitedPhiBBs.empty() &&
1315             isKnownNonEqual(Var0.Val.V, Var1.Val.V, DL, &AC, /* CxtI */ nullptr,
1316                             DT))
1317           MinAbsVarIndex = Var0.Scale.abs();
1318       }
1319 
1320       if (MinAbsVarIndex) {
1321         // The constant offset will have added at least +/-MinAbsVarIndex to it.
1322         APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex;
1323         APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex;
1324         // We know that Offset <= OffsetLo || Offset >= OffsetHi
1325         if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) &&
1326             OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue()))
1327           return AliasResult::NoAlias;
1328       }
1329 
1330       if (VarIndexRange) {
1331         ConstantRange OffsetRange =
1332             VarIndexRange->add(ConstantRange(DecompGEP1.Offset));
1333 
1334         // We know that Offset >= MinOffset.
1335         // (MinOffset >= V2Size) => (Offset >= V2Size) => NoAlias.
1336         if (OffsetRange.getSignedMin().sge(V2Size.getValue()))
1337           return AliasResult::NoAlias;
1338 
1339         // We know that Offset <= MaxOffset.
1340         // (MaxOffset <= -V1Size) => (Offset <= -V1Size) => NoAlias.
1341         if (OffsetRange.getSignedMax().sle(-V1Size.getValue()))
1342           return AliasResult::NoAlias;
1343       }
1344     }
1345 
1346     if (constantOffsetHeuristic(DecompGEP1, V1Size, V2Size, &AC, DT))
1347       return AliasResult::NoAlias;
1348   }
1349 
1350   // Statically, we can see that the base objects are the same, but the
1351   // pointers have dynamic offsets which we can't resolve. And none of our
1352   // little tricks above worked.
1353   return AliasResult::MayAlias;
1354 }
1355 
1356 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1357   // If the results agree, take it.
1358   if (A == B)
1359     return A;
1360   // A mix of PartialAlias and MustAlias is PartialAlias.
1361   if ((A == AliasResult::PartialAlias && B == AliasResult::MustAlias) ||
1362       (B == AliasResult::PartialAlias && A == AliasResult::MustAlias))
1363     return AliasResult::PartialAlias;
1364   // Otherwise, we don't know anything.
1365   return AliasResult::MayAlias;
1366 }
1367 
1368 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1369 /// against another.
1370 AliasResult
1371 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize,
1372                            const Value *V2, LocationSize V2Size,
1373                            AAQueryInfo &AAQI) {
1374   // If the values are Selects with the same condition, we can do a more precise
1375   // check: just check for aliases between the values on corresponding arms.
1376   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1377     if (SI->getCondition() == SI2->getCondition()) {
1378       AliasResult Alias = getBestAAResults().alias(
1379           MemoryLocation(SI->getTrueValue(), SISize),
1380           MemoryLocation(SI2->getTrueValue(), V2Size), AAQI);
1381       if (Alias == AliasResult::MayAlias)
1382         return AliasResult::MayAlias;
1383       AliasResult ThisAlias = getBestAAResults().alias(
1384           MemoryLocation(SI->getFalseValue(), SISize),
1385           MemoryLocation(SI2->getFalseValue(), V2Size), AAQI);
1386       return MergeAliasResults(ThisAlias, Alias);
1387     }
1388 
1389   // If both arms of the Select node NoAlias or MustAlias V2, then returns
1390   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1391   AliasResult Alias = getBestAAResults().alias(
1392       MemoryLocation(V2, V2Size),
1393       MemoryLocation(SI->getTrueValue(), SISize), AAQI);
1394   if (Alias == AliasResult::MayAlias)
1395     return AliasResult::MayAlias;
1396 
1397   AliasResult ThisAlias = getBestAAResults().alias(
1398       MemoryLocation(V2, V2Size),
1399       MemoryLocation(SI->getFalseValue(), SISize), AAQI);
1400   return MergeAliasResults(ThisAlias, Alias);
1401 }
1402 
1403 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1404 /// another.
1405 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
1406                                     const Value *V2, LocationSize V2Size,
1407                                     AAQueryInfo &AAQI) {
1408   if (!PN->getNumIncomingValues())
1409     return AliasResult::NoAlias;
1410   // If the values are PHIs in the same block, we can do a more precise
1411   // as well as efficient check: just check for aliases between the values
1412   // on corresponding edges.
1413   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1414     if (PN2->getParent() == PN->getParent()) {
1415       Optional<AliasResult> Alias;
1416       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1417         AliasResult ThisAlias = getBestAAResults().alias(
1418             MemoryLocation(PN->getIncomingValue(i), PNSize),
1419             MemoryLocation(
1420                 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size),
1421             AAQI);
1422         if (Alias)
1423           *Alias = MergeAliasResults(*Alias, ThisAlias);
1424         else
1425           Alias = ThisAlias;
1426         if (*Alias == AliasResult::MayAlias)
1427           break;
1428       }
1429       return *Alias;
1430     }
1431 
1432   SmallVector<Value *, 4> V1Srcs;
1433   // If a phi operand recurses back to the phi, we can still determine NoAlias
1434   // if we don't alias the underlying objects of the other phi operands, as we
1435   // know that the recursive phi needs to be based on them in some way.
1436   bool isRecursive = false;
1437   auto CheckForRecPhi = [&](Value *PV) {
1438     if (!EnableRecPhiAnalysis)
1439       return false;
1440     if (getUnderlyingObject(PV) == PN) {
1441       isRecursive = true;
1442       return true;
1443     }
1444     return false;
1445   };
1446 
1447   if (PV) {
1448     // If we have PhiValues then use it to get the underlying phi values.
1449     const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN);
1450     // If we have more phi values than the search depth then return MayAlias
1451     // conservatively to avoid compile time explosion. The worst possible case
1452     // is if both sides are PHI nodes. In which case, this is O(m x n) time
1453     // where 'm' and 'n' are the number of PHI sources.
1454     if (PhiValueSet.size() > MaxLookupSearchDepth)
1455       return AliasResult::MayAlias;
1456     // Add the values to V1Srcs
1457     for (Value *PV1 : PhiValueSet) {
1458       if (CheckForRecPhi(PV1))
1459         continue;
1460       V1Srcs.push_back(PV1);
1461     }
1462   } else {
1463     // If we don't have PhiInfo then just look at the operands of the phi itself
1464     // FIXME: Remove this once we can guarantee that we have PhiInfo always
1465     SmallPtrSet<Value *, 4> UniqueSrc;
1466     Value *OnePhi = nullptr;
1467     for (Value *PV1 : PN->incoming_values()) {
1468       if (isa<PHINode>(PV1)) {
1469         if (OnePhi && OnePhi != PV1) {
1470           // To control potential compile time explosion, we choose to be
1471           // conserviate when we have more than one Phi input.  It is important
1472           // that we handle the single phi case as that lets us handle LCSSA
1473           // phi nodes and (combined with the recursive phi handling) simple
1474           // pointer induction variable patterns.
1475           return AliasResult::MayAlias;
1476         }
1477         OnePhi = PV1;
1478       }
1479 
1480       if (CheckForRecPhi(PV1))
1481         continue;
1482 
1483       if (UniqueSrc.insert(PV1).second)
1484         V1Srcs.push_back(PV1);
1485     }
1486 
1487     if (OnePhi && UniqueSrc.size() > 1)
1488       // Out of an abundance of caution, allow only the trivial lcssa and
1489       // recursive phi cases.
1490       return AliasResult::MayAlias;
1491   }
1492 
1493   // If V1Srcs is empty then that means that the phi has no underlying non-phi
1494   // value. This should only be possible in blocks unreachable from the entry
1495   // block, but return MayAlias just in case.
1496   if (V1Srcs.empty())
1497     return AliasResult::MayAlias;
1498 
1499   // If this PHI node is recursive, indicate that the pointer may be moved
1500   // across iterations. We can only prove NoAlias if different underlying
1501   // objects are involved.
1502   if (isRecursive)
1503     PNSize = LocationSize::beforeOrAfterPointer();
1504 
1505   // In the recursive alias queries below, we may compare values from two
1506   // different loop iterations. Keep track of visited phi blocks, which will
1507   // be used when determining value equivalence.
1508   bool BlockInserted = VisitedPhiBBs.insert(PN->getParent()).second;
1509   auto _ = make_scope_exit([&]() {
1510     if (BlockInserted)
1511       VisitedPhiBBs.erase(PN->getParent());
1512   });
1513 
1514   // If we inserted a block into VisitedPhiBBs, alias analysis results that
1515   // have been cached earlier may no longer be valid. Perform recursive queries
1516   // with a new AAQueryInfo.
1517   AAQueryInfo NewAAQI = AAQI.withEmptyCache();
1518   AAQueryInfo *UseAAQI = BlockInserted ? &NewAAQI : &AAQI;
1519 
1520   AliasResult Alias = getBestAAResults().alias(
1521       MemoryLocation(V2, V2Size),
1522       MemoryLocation(V1Srcs[0], PNSize), *UseAAQI);
1523 
1524   // Early exit if the check of the first PHI source against V2 is MayAlias.
1525   // Other results are not possible.
1526   if (Alias == AliasResult::MayAlias)
1527     return AliasResult::MayAlias;
1528   // With recursive phis we cannot guarantee that MustAlias/PartialAlias will
1529   // remain valid to all elements and needs to conservatively return MayAlias.
1530   if (isRecursive && Alias != AliasResult::NoAlias)
1531     return AliasResult::MayAlias;
1532 
1533   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1534   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1535   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1536     Value *V = V1Srcs[i];
1537 
1538     AliasResult ThisAlias = getBestAAResults().alias(
1539         MemoryLocation(V2, V2Size), MemoryLocation(V, PNSize), *UseAAQI);
1540     Alias = MergeAliasResults(ThisAlias, Alias);
1541     if (Alias == AliasResult::MayAlias)
1542       break;
1543   }
1544 
1545   return Alias;
1546 }
1547 
1548 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1549 /// array references.
1550 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
1551                                       const Value *V2, LocationSize V2Size,
1552                                       AAQueryInfo &AAQI) {
1553   // If either of the memory references is empty, it doesn't matter what the
1554   // pointer values are.
1555   if (V1Size.isZero() || V2Size.isZero())
1556     return AliasResult::NoAlias;
1557 
1558   // Strip off any casts if they exist.
1559   V1 = V1->stripPointerCastsForAliasAnalysis();
1560   V2 = V2->stripPointerCastsForAliasAnalysis();
1561 
1562   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1563   // value for undef that aliases nothing in the program.
1564   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1565     return AliasResult::NoAlias;
1566 
1567   // Are we checking for alias of the same value?
1568   // Because we look 'through' phi nodes, we could look at "Value" pointers from
1569   // different iterations. We must therefore make sure that this is not the
1570   // case. The function isValueEqualInPotentialCycles ensures that this cannot
1571   // happen by looking at the visited phi nodes and making sure they cannot
1572   // reach the value.
1573   if (isValueEqualInPotentialCycles(V1, V2))
1574     return AliasResult::MustAlias;
1575 
1576   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1577     return AliasResult::NoAlias; // Scalars cannot alias each other
1578 
1579   // Figure out what objects these things are pointing to if we can.
1580   const Value *O1 = getUnderlyingObject(V1, MaxLookupSearchDepth);
1581   const Value *O2 = getUnderlyingObject(V2, MaxLookupSearchDepth);
1582 
1583   // Null values in the default address space don't point to any object, so they
1584   // don't alias any other pointer.
1585   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1586     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1587       return AliasResult::NoAlias;
1588   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1589     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1590       return AliasResult::NoAlias;
1591 
1592   if (O1 != O2) {
1593     // If V1/V2 point to two different objects, we know that we have no alias.
1594     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1595       return AliasResult::NoAlias;
1596 
1597     // Constant pointers can't alias with non-const isIdentifiedObject objects.
1598     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1599         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1600       return AliasResult::NoAlias;
1601 
1602     // Function arguments can't alias with things that are known to be
1603     // unambigously identified at the function level.
1604     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1605         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1606       return AliasResult::NoAlias;
1607 
1608     // If one pointer is the result of a call/invoke or load and the other is a
1609     // non-escaping local object within the same function, then we know the
1610     // object couldn't escape to a point where the call could return it.
1611     //
1612     // Note that if the pointers are in different functions, there are a
1613     // variety of complications. A call with a nocapture argument may still
1614     // temporary store the nocapture argument's value in a temporary memory
1615     // location if that memory location doesn't escape. Or it may pass a
1616     // nocapture value to other functions as long as they don't capture it.
1617     if (isEscapeSource(O1) &&
1618         AAQI.CI->isNotCapturedBeforeOrAt(O2, cast<Instruction>(O1)))
1619       return AliasResult::NoAlias;
1620     if (isEscapeSource(O2) &&
1621         AAQI.CI->isNotCapturedBeforeOrAt(O1, cast<Instruction>(O2)))
1622       return AliasResult::NoAlias;
1623   }
1624 
1625   // If the size of one access is larger than the entire object on the other
1626   // side, then we know such behavior is undefined and can assume no alias.
1627   bool NullIsValidLocation = NullPointerIsDefined(&F);
1628   if ((isObjectSmallerThan(
1629           O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL,
1630           TLI, NullIsValidLocation)) ||
1631       (isObjectSmallerThan(
1632           O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL,
1633           TLI, NullIsValidLocation)))
1634     return AliasResult::NoAlias;
1635 
1636   // If one the accesses may be before the accessed pointer, canonicalize this
1637   // by using unknown after-pointer sizes for both accesses. This is
1638   // equivalent, because regardless of which pointer is lower, one of them
1639   // will always came after the other, as long as the underlying objects aren't
1640   // disjoint. We do this so that the rest of BasicAA does not have to deal
1641   // with accesses before the base pointer, and to improve cache utilization by
1642   // merging equivalent states.
1643   if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) {
1644     V1Size = LocationSize::afterPointer();
1645     V2Size = LocationSize::afterPointer();
1646   }
1647 
1648   // FIXME: If this depth limit is hit, then we may cache sub-optimal results
1649   // for recursive queries. For this reason, this limit is chosen to be large
1650   // enough to be very rarely hit, while still being small enough to avoid
1651   // stack overflows.
1652   if (AAQI.Depth >= 512)
1653     return AliasResult::MayAlias;
1654 
1655   // Check the cache before climbing up use-def chains. This also terminates
1656   // otherwise infinitely recursive queries.
1657   AAQueryInfo::LocPair Locs({V1, V1Size}, {V2, V2Size});
1658   const bool Swapped = V1 > V2;
1659   if (Swapped)
1660     std::swap(Locs.first, Locs.second);
1661   const auto &Pair = AAQI.AliasCache.try_emplace(
1662       Locs, AAQueryInfo::CacheEntry{AliasResult::NoAlias, 0});
1663   if (!Pair.second) {
1664     auto &Entry = Pair.first->second;
1665     if (!Entry.isDefinitive()) {
1666       // Remember that we used an assumption.
1667       ++Entry.NumAssumptionUses;
1668       ++AAQI.NumAssumptionUses;
1669     }
1670     // Cache contains sorted {V1,V2} pairs but we should return original order.
1671     auto Result = Entry.Result;
1672     Result.swap(Swapped);
1673     return Result;
1674   }
1675 
1676   int OrigNumAssumptionUses = AAQI.NumAssumptionUses;
1677   unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size();
1678   AliasResult Result =
1679       aliasCheckRecursive(V1, V1Size, V2, V2Size, AAQI, O1, O2);
1680 
1681   auto It = AAQI.AliasCache.find(Locs);
1682   assert(It != AAQI.AliasCache.end() && "Must be in cache");
1683   auto &Entry = It->second;
1684 
1685   // Check whether a NoAlias assumption has been used, but disproven.
1686   bool AssumptionDisproven =
1687       Entry.NumAssumptionUses > 0 && Result != AliasResult::NoAlias;
1688   if (AssumptionDisproven)
1689     Result = AliasResult::MayAlias;
1690 
1691   // This is a definitive result now, when considered as a root query.
1692   AAQI.NumAssumptionUses -= Entry.NumAssumptionUses;
1693   Entry.Result = Result;
1694   // Cache contains sorted {V1,V2} pairs.
1695   Entry.Result.swap(Swapped);
1696   Entry.NumAssumptionUses = -1;
1697 
1698   // If the assumption has been disproven, remove any results that may have
1699   // been based on this assumption. Do this after the Entry updates above to
1700   // avoid iterator invalidation.
1701   if (AssumptionDisproven)
1702     while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults)
1703       AAQI.AliasCache.erase(AAQI.AssumptionBasedResults.pop_back_val());
1704 
1705   // The result may still be based on assumptions higher up in the chain.
1706   // Remember it, so it can be purged from the cache later.
1707   if (OrigNumAssumptionUses != AAQI.NumAssumptionUses &&
1708       Result != AliasResult::MayAlias)
1709     AAQI.AssumptionBasedResults.push_back(Locs);
1710   return Result;
1711 }
1712 
1713 AliasResult BasicAAResult::aliasCheckRecursive(
1714     const Value *V1, LocationSize V1Size,
1715     const Value *V2, LocationSize V2Size,
1716     AAQueryInfo &AAQI, const Value *O1, const Value *O2) {
1717   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1718     AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, O1, O2, AAQI);
1719     if (Result != AliasResult::MayAlias)
1720       return Result;
1721   } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) {
1722     AliasResult Result = aliasGEP(GV2, V2Size, V1, V1Size, O2, O1, AAQI);
1723     if (Result != AliasResult::MayAlias)
1724       return Result;
1725   }
1726 
1727   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1728     AliasResult Result = aliasPHI(PN, V1Size, V2, V2Size, AAQI);
1729     if (Result != AliasResult::MayAlias)
1730       return Result;
1731   } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) {
1732     AliasResult Result = aliasPHI(PN, V2Size, V1, V1Size, AAQI);
1733     if (Result != AliasResult::MayAlias)
1734       return Result;
1735   }
1736 
1737   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1738     AliasResult Result = aliasSelect(S1, V1Size, V2, V2Size, AAQI);
1739     if (Result != AliasResult::MayAlias)
1740       return Result;
1741   } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) {
1742     AliasResult Result = aliasSelect(S2, V2Size, V1, V1Size, AAQI);
1743     if (Result != AliasResult::MayAlias)
1744       return Result;
1745   }
1746 
1747   // If both pointers are pointing into the same object and one of them
1748   // accesses the entire object, then the accesses must overlap in some way.
1749   if (O1 == O2) {
1750     bool NullIsValidLocation = NullPointerIsDefined(&F);
1751     if (V1Size.isPrecise() && V2Size.isPrecise() &&
1752         (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
1753          isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation)))
1754       return AliasResult::PartialAlias;
1755   }
1756 
1757   return AliasResult::MayAlias;
1758 }
1759 
1760 /// Check whether two Values can be considered equivalent.
1761 ///
1762 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1763 /// they can not be part of a cycle in the value graph by looking at all
1764 /// visited phi nodes an making sure that the phis cannot reach the value. We
1765 /// have to do this because we are looking through phi nodes (That is we say
1766 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1767 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1768                                                   const Value *V2) {
1769   if (V != V2)
1770     return false;
1771 
1772   const Instruction *Inst = dyn_cast<Instruction>(V);
1773   if (!Inst)
1774     return true;
1775 
1776   if (VisitedPhiBBs.empty())
1777     return true;
1778 
1779   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1780     return false;
1781 
1782   // Make sure that the visited phis cannot reach the Value. This ensures that
1783   // the Values cannot come from different iterations of a potential cycle the
1784   // phi nodes could be involved in.
1785   for (auto *P : VisitedPhiBBs)
1786     if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT))
1787       return false;
1788 
1789   return true;
1790 }
1791 
1792 /// Computes the symbolic difference between two de-composed GEPs.
1793 void BasicAAResult::subtractDecomposedGEPs(DecomposedGEP &DestGEP,
1794                                            const DecomposedGEP &SrcGEP) {
1795   DestGEP.Offset -= SrcGEP.Offset;
1796   for (const VariableGEPIndex &Src : SrcGEP.VarIndices) {
1797     // Find V in Dest.  This is N^2, but pointer indices almost never have more
1798     // than a few variable indexes.
1799     bool Found = false;
1800     for (auto I : enumerate(DestGEP.VarIndices)) {
1801       VariableGEPIndex &Dest = I.value();
1802       if (!isValueEqualInPotentialCycles(Dest.Val.V, Src.Val.V) ||
1803           !Dest.Val.hasSameCastsAs(Src.Val))
1804         continue;
1805 
1806       // If we found it, subtract off Scale V's from the entry in Dest.  If it
1807       // goes to zero, remove the entry.
1808       if (Dest.Scale != Src.Scale) {
1809         Dest.Scale -= Src.Scale;
1810         Dest.IsNSW = false;
1811       } else {
1812         DestGEP.VarIndices.erase(DestGEP.VarIndices.begin() + I.index());
1813       }
1814       Found = true;
1815       break;
1816     }
1817 
1818     // If we didn't consume this entry, add it to the end of the Dest list.
1819     if (!Found) {
1820       VariableGEPIndex Entry = {Src.Val, -Src.Scale, Src.CxtI, Src.IsNSW};
1821       DestGEP.VarIndices.push_back(Entry);
1822     }
1823   }
1824 }
1825 
1826 bool BasicAAResult::constantOffsetHeuristic(
1827     const DecomposedGEP &GEP, LocationSize MaybeV1Size,
1828     LocationSize MaybeV2Size, AssumptionCache *AC, DominatorTree *DT) {
1829   if (GEP.VarIndices.size() != 2 || !MaybeV1Size.hasValue() ||
1830       !MaybeV2Size.hasValue())
1831     return false;
1832 
1833   const uint64_t V1Size = MaybeV1Size.getValue();
1834   const uint64_t V2Size = MaybeV2Size.getValue();
1835 
1836   const VariableGEPIndex &Var0 = GEP.VarIndices[0], &Var1 = GEP.VarIndices[1];
1837 
1838   if (!Var0.Val.hasSameCastsAs(Var1.Val) || Var0.Scale != -Var1.Scale ||
1839       Var0.Val.V->getType() != Var1.Val.V->getType())
1840     return false;
1841 
1842   // We'll strip off the Extensions of Var0 and Var1 and do another round
1843   // of GetLinearExpression decomposition. In the example above, if Var0
1844   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1845 
1846   LinearExpression E0 =
1847       GetLinearExpression(CastedValue(Var0.Val.V), DL, 0, AC, DT);
1848   LinearExpression E1 =
1849       GetLinearExpression(CastedValue(Var1.Val.V), DL, 0, AC, DT);
1850   if (E0.Scale != E1.Scale || !E0.Val.hasSameCastsAs(E1.Val) ||
1851       !isValueEqualInPotentialCycles(E0.Val.V, E1.Val.V))
1852     return false;
1853 
1854   // We have a hit - Var0 and Var1 only differ by a constant offset!
1855 
1856   // If we've been sext'ed then zext'd the maximum difference between Var0 and
1857   // Var1 is possible to calculate, but we're just interested in the absolute
1858   // minimum difference between the two. The minimum distance may occur due to
1859   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1860   // the minimum distance between %i and %i + 5 is 3.
1861   APInt MinDiff = E0.Offset - E1.Offset, Wrapped = -MinDiff;
1862   MinDiff = APIntOps::umin(MinDiff, Wrapped);
1863   APInt MinDiffBytes =
1864     MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs();
1865 
1866   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
1867   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
1868   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
1869   // V2Size can fit in the MinDiffBytes gap.
1870   return MinDiffBytes.uge(V1Size + GEP.Offset.abs()) &&
1871          MinDiffBytes.uge(V2Size + GEP.Offset.abs());
1872 }
1873 
1874 //===----------------------------------------------------------------------===//
1875 // BasicAliasAnalysis Pass
1876 //===----------------------------------------------------------------------===//
1877 
1878 AnalysisKey BasicAA::Key;
1879 
1880 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
1881   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1882   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1883   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1884   auto *PV = AM.getCachedResult<PhiValuesAnalysis>(F);
1885   return BasicAAResult(F.getParent()->getDataLayout(), F, TLI, AC, DT, PV);
1886 }
1887 
1888 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
1889   initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
1890 }
1891 
1892 char BasicAAWrapperPass::ID = 0;
1893 
1894 void BasicAAWrapperPass::anchor() {}
1895 
1896 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa",
1897                       "Basic Alias Analysis (stateless AA impl)", true, true)
1898 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1899 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1900 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1901 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
1902 INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa",
1903                     "Basic Alias Analysis (stateless AA impl)", true, true)
1904 
1905 FunctionPass *llvm::createBasicAAWrapperPass() {
1906   return new BasicAAWrapperPass();
1907 }
1908 
1909 bool BasicAAWrapperPass::runOnFunction(Function &F) {
1910   auto &ACT = getAnalysis<AssumptionCacheTracker>();
1911   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
1912   auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
1913   auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>();
1914 
1915   Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F,
1916                                  TLIWP.getTLI(F), ACT.getAssumptionCache(F),
1917                                  &DTWP.getDomTree(),
1918                                  PVWP ? &PVWP->getResult() : nullptr));
1919 
1920   return false;
1921 }
1922 
1923 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1924   AU.setPreservesAll();
1925   AU.addRequiredTransitive<AssumptionCacheTracker>();
1926   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
1927   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1928   AU.addUsedIfAvailable<PhiValuesWrapperPass>();
1929 }
1930 
1931 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
1932   return BasicAAResult(
1933       F.getParent()->getDataLayout(), F,
1934       P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
1935       P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
1936 }
1937