1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the primary stateless implementation of the 11 // Alias Analysis interface that implements identities (two different 12 // globals cannot alias, etc), but does no stateful analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/BasicAliasAnalysis.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/CFG.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/MemoryBuiltins.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/Argument.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GetElementPtrTypeIterator.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/Metadata.h" 49 #include "llvm/IR/Operator.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/User.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/Pass.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Compiler.h" 57 #include "llvm/Support/KnownBits.h" 58 #include <cassert> 59 #include <cstdint> 60 #include <cstdlib> 61 #include <utility> 62 63 #define DEBUG_TYPE "basicaa" 64 65 using namespace llvm; 66 67 /// Enable analysis of recursive PHI nodes. 68 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden, 69 cl::init(false)); 70 /// SearchLimitReached / SearchTimes shows how often the limit of 71 /// to decompose GEPs is reached. It will affect the precision 72 /// of basic alias analysis. 73 STATISTIC(SearchLimitReached, "Number of times the limit to " 74 "decompose GEPs is reached"); 75 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 76 77 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 78 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be 79 /// careful with value equivalence. We use reachability to make sure a value 80 /// cannot be involved in a cycle. 81 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 82 83 // The max limit of the search depth in DecomposeGEPExpression() and 84 // GetUnderlyingObject(), both functions need to use the same search 85 // depth otherwise the algorithm in aliasGEP will assert. 86 static const unsigned MaxLookupSearchDepth = 6; 87 88 bool BasicAAResult::invalidate(Function &F, const PreservedAnalyses &PA, 89 FunctionAnalysisManager::Invalidator &Inv) { 90 // We don't care if this analysis itself is preserved, it has no state. But 91 // we need to check that the analyses it depends on have been. Note that we 92 // may be created without handles to some analyses and in that case don't 93 // depend on them. 94 if (Inv.invalidate<AssumptionAnalysis>(F, PA) || 95 (DT && Inv.invalidate<DominatorTreeAnalysis>(F, PA)) || 96 (LI && Inv.invalidate<LoopAnalysis>(F, PA))) 97 return true; 98 99 // Otherwise this analysis result remains valid. 100 return false; 101 } 102 103 //===----------------------------------------------------------------------===// 104 // Useful predicates 105 //===----------------------------------------------------------------------===// 106 107 /// Returns true if the pointer is to a function-local object that never 108 /// escapes from the function. 109 static bool isNonEscapingLocalObject(const Value *V) { 110 // If this is a local allocation, check to see if it escapes. 111 if (isa<AllocaInst>(V) || isNoAliasCall(V)) 112 // Set StoreCaptures to True so that we can assume in our callers that the 113 // pointer is not the result of a load instruction. Currently 114 // PointerMayBeCaptured doesn't have any special analysis for the 115 // StoreCaptures=false case; if it did, our callers could be refined to be 116 // more precise. 117 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 118 119 // If this is an argument that corresponds to a byval or noalias argument, 120 // then it has not escaped before entering the function. Check if it escapes 121 // inside the function. 122 if (const Argument *A = dyn_cast<Argument>(V)) 123 if (A->hasByValAttr() || A->hasNoAliasAttr()) 124 // Note even if the argument is marked nocapture, we still need to check 125 // for copies made inside the function. The nocapture attribute only 126 // specifies that there are no copies made that outlive the function. 127 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 128 129 return false; 130 } 131 132 /// Returns true if the pointer is one which would have been considered an 133 /// escape by isNonEscapingLocalObject. 134 static bool isEscapeSource(const Value *V) { 135 if (auto CS = ImmutableCallSite(V)) { 136 // launder_invariant_group captures its argument only by returning it, 137 // so it might not be considered an escape by isNonEscapingLocalObject. 138 // Note that adding similar special cases for intrinsics in CaptureTracking 139 // requires handling them here too. 140 if (CS.getIntrinsicID() == Intrinsic::launder_invariant_group) 141 return false; 142 143 return true; 144 } 145 146 if (isa<Argument>(V)) 147 return true; 148 149 // The load case works because isNonEscapingLocalObject considers all 150 // stores to be escapes (it passes true for the StoreCaptures argument 151 // to PointerMayBeCaptured). 152 if (isa<LoadInst>(V)) 153 return true; 154 155 return false; 156 } 157 158 /// Returns the size of the object specified by V or UnknownSize if unknown. 159 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 160 const TargetLibraryInfo &TLI, 161 bool RoundToAlign = false) { 162 uint64_t Size; 163 ObjectSizeOpts Opts; 164 Opts.RoundToAlign = RoundToAlign; 165 if (getObjectSize(V, Size, DL, &TLI, Opts)) 166 return Size; 167 return MemoryLocation::UnknownSize; 168 } 169 170 /// Returns true if we can prove that the object specified by V is smaller than 171 /// Size. 172 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 173 const DataLayout &DL, 174 const TargetLibraryInfo &TLI) { 175 // Note that the meanings of the "object" are slightly different in the 176 // following contexts: 177 // c1: llvm::getObjectSize() 178 // c2: llvm.objectsize() intrinsic 179 // c3: isObjectSmallerThan() 180 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 181 // refers to the "entire object". 182 // 183 // Consider this example: 184 // char *p = (char*)malloc(100) 185 // char *q = p+80; 186 // 187 // In the context of c1 and c2, the "object" pointed by q refers to the 188 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 189 // 190 // However, in the context of c3, the "object" refers to the chunk of memory 191 // being allocated. So, the "object" has 100 bytes, and q points to the middle 192 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 193 // parameter, before the llvm::getObjectSize() is called to get the size of 194 // entire object, we should: 195 // - either rewind the pointer q to the base-address of the object in 196 // question (in this case rewind to p), or 197 // - just give up. It is up to caller to make sure the pointer is pointing 198 // to the base address the object. 199 // 200 // We go for 2nd option for simplicity. 201 if (!isIdentifiedObject(V)) 202 return false; 203 204 // This function needs to use the aligned object size because we allow 205 // reads a bit past the end given sufficient alignment. 206 uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/ true); 207 208 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; 209 } 210 211 /// Returns true if we can prove that the object specified by V has size Size. 212 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, 213 const TargetLibraryInfo &TLI) { 214 uint64_t ObjectSize = getObjectSize(V, DL, TLI); 215 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; 216 } 217 218 //===----------------------------------------------------------------------===// 219 // GetElementPtr Instruction Decomposition and Analysis 220 //===----------------------------------------------------------------------===// 221 222 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 223 /// B are constant integers. 224 /// 225 /// Returns the scale and offset values as APInts and return V as a Value*, and 226 /// return whether we looked through any sign or zero extends. The incoming 227 /// Value is known to have IntegerType, and it may already be sign or zero 228 /// extended. 229 /// 230 /// Note that this looks through extends, so the high bits may not be 231 /// represented in the result. 232 /*static*/ const Value *BasicAAResult::GetLinearExpression( 233 const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits, 234 unsigned &SExtBits, const DataLayout &DL, unsigned Depth, 235 AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) { 236 assert(V->getType()->isIntegerTy() && "Not an integer value"); 237 238 // Limit our recursion depth. 239 if (Depth == 6) { 240 Scale = 1; 241 Offset = 0; 242 return V; 243 } 244 245 if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) { 246 // If it's a constant, just convert it to an offset and remove the variable. 247 // If we've been called recursively, the Offset bit width will be greater 248 // than the constant's (the Offset's always as wide as the outermost call), 249 // so we'll zext here and process any extension in the isa<SExtInst> & 250 // isa<ZExtInst> cases below. 251 Offset += Const->getValue().zextOrSelf(Offset.getBitWidth()); 252 assert(Scale == 0 && "Constant values don't have a scale"); 253 return V; 254 } 255 256 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 257 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 258 // If we've been called recursively, then Offset and Scale will be wider 259 // than the BOp operands. We'll always zext it here as we'll process sign 260 // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases). 261 APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth()); 262 263 switch (BOp->getOpcode()) { 264 default: 265 // We don't understand this instruction, so we can't decompose it any 266 // further. 267 Scale = 1; 268 Offset = 0; 269 return V; 270 case Instruction::Or: 271 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 272 // analyze it. 273 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, 274 BOp, DT)) { 275 Scale = 1; 276 Offset = 0; 277 return V; 278 } 279 LLVM_FALLTHROUGH; 280 case Instruction::Add: 281 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 282 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 283 Offset += RHS; 284 break; 285 case Instruction::Sub: 286 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 287 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 288 Offset -= RHS; 289 break; 290 case Instruction::Mul: 291 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 292 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 293 Offset *= RHS; 294 Scale *= RHS; 295 break; 296 case Instruction::Shl: 297 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 298 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 299 300 // We're trying to linearize an expression of the kind: 301 // shl i8 -128, 36 302 // where the shift count exceeds the bitwidth of the type. 303 // We can't decompose this further (the expression would return 304 // a poison value). 305 if (Offset.getBitWidth() < RHS.getLimitedValue() || 306 Scale.getBitWidth() < RHS.getLimitedValue()) { 307 Scale = 1; 308 Offset = 0; 309 return V; 310 } 311 312 Offset <<= RHS.getLimitedValue(); 313 Scale <<= RHS.getLimitedValue(); 314 // the semantics of nsw and nuw for left shifts don't match those of 315 // multiplications, so we won't propagate them. 316 NSW = NUW = false; 317 return V; 318 } 319 320 if (isa<OverflowingBinaryOperator>(BOp)) { 321 NUW &= BOp->hasNoUnsignedWrap(); 322 NSW &= BOp->hasNoSignedWrap(); 323 } 324 return V; 325 } 326 } 327 328 // Since GEP indices are sign extended anyway, we don't care about the high 329 // bits of a sign or zero extended value - just scales and offsets. The 330 // extensions have to be consistent though. 331 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) { 332 Value *CastOp = cast<CastInst>(V)->getOperand(0); 333 unsigned NewWidth = V->getType()->getPrimitiveSizeInBits(); 334 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 335 unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits; 336 const Value *Result = 337 GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL, 338 Depth + 1, AC, DT, NSW, NUW); 339 340 // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this 341 // by just incrementing the number of bits we've extended by. 342 unsigned ExtendedBy = NewWidth - SmallWidth; 343 344 if (isa<SExtInst>(V) && ZExtBits == 0) { 345 // sext(sext(%x, a), b) == sext(%x, a + b) 346 347 if (NSW) { 348 // We haven't sign-wrapped, so it's valid to decompose sext(%x + c) 349 // into sext(%x) + sext(c). We'll sext the Offset ourselves: 350 unsigned OldWidth = Offset.getBitWidth(); 351 Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth); 352 } else { 353 // We may have signed-wrapped, so don't decompose sext(%x + c) into 354 // sext(%x) + sext(c) 355 Scale = 1; 356 Offset = 0; 357 Result = CastOp; 358 ZExtBits = OldZExtBits; 359 SExtBits = OldSExtBits; 360 } 361 SExtBits += ExtendedBy; 362 } else { 363 // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b) 364 365 if (!NUW) { 366 // We may have unsigned-wrapped, so don't decompose zext(%x + c) into 367 // zext(%x) + zext(c) 368 Scale = 1; 369 Offset = 0; 370 Result = CastOp; 371 ZExtBits = OldZExtBits; 372 SExtBits = OldSExtBits; 373 } 374 ZExtBits += ExtendedBy; 375 } 376 377 return Result; 378 } 379 380 Scale = 1; 381 Offset = 0; 382 return V; 383 } 384 385 /// To ensure a pointer offset fits in an integer of size PointerSize 386 /// (in bits) when that size is smaller than 64. This is an issue in 387 /// particular for 32b programs with negative indices that rely on two's 388 /// complement wrap-arounds for precise alias information. 389 static int64_t adjustToPointerSize(int64_t Offset, unsigned PointerSize) { 390 assert(PointerSize <= 64 && "Invalid PointerSize!"); 391 unsigned ShiftBits = 64 - PointerSize; 392 return (int64_t)((uint64_t)Offset << ShiftBits) >> ShiftBits; 393 } 394 395 /// If V is a symbolic pointer expression, decompose it into a base pointer 396 /// with a constant offset and a number of scaled symbolic offsets. 397 /// 398 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 399 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 400 /// specified amount, but which may have other unrepresented high bits. As 401 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 402 /// 403 /// When DataLayout is around, this function is capable of analyzing everything 404 /// that GetUnderlyingObject can look through. To be able to do that 405 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search 406 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks 407 /// through pointer casts. 408 bool BasicAAResult::DecomposeGEPExpression(const Value *V, 409 DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC, 410 DominatorTree *DT) { 411 // Limit recursion depth to limit compile time in crazy cases. 412 unsigned MaxLookup = MaxLookupSearchDepth; 413 SearchTimes++; 414 415 Decomposed.StructOffset = 0; 416 Decomposed.OtherOffset = 0; 417 Decomposed.VarIndices.clear(); 418 do { 419 // See if this is a bitcast or GEP. 420 const Operator *Op = dyn_cast<Operator>(V); 421 if (!Op) { 422 // The only non-operator case we can handle are GlobalAliases. 423 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 424 if (!GA->isInterposable()) { 425 V = GA->getAliasee(); 426 continue; 427 } 428 } 429 Decomposed.Base = V; 430 return false; 431 } 432 433 if (Op->getOpcode() == Instruction::BitCast || 434 Op->getOpcode() == Instruction::AddrSpaceCast) { 435 V = Op->getOperand(0); 436 continue; 437 } 438 439 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 440 if (!GEPOp) { 441 if (auto CS = ImmutableCallSite(V)) 442 if (const Value *RV = CS.getReturnedArgOperand()) { 443 V = RV; 444 continue; 445 } 446 447 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 448 // can come up with something. This matches what GetUnderlyingObject does. 449 if (const Instruction *I = dyn_cast<Instruction>(V)) 450 // TODO: Get a DominatorTree and AssumptionCache and use them here 451 // (these are both now available in this function, but this should be 452 // updated when GetUnderlyingObject is updated). TLI should be 453 // provided also. 454 if (const Value *Simplified = 455 SimplifyInstruction(const_cast<Instruction *>(I), DL)) { 456 V = Simplified; 457 continue; 458 } 459 460 Decomposed.Base = V; 461 return false; 462 } 463 464 // Don't attempt to analyze GEPs over unsized objects. 465 if (!GEPOp->getSourceElementType()->isSized()) { 466 Decomposed.Base = V; 467 return false; 468 } 469 470 unsigned AS = GEPOp->getPointerAddressSpace(); 471 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 472 gep_type_iterator GTI = gep_type_begin(GEPOp); 473 unsigned PointerSize = DL.getPointerSizeInBits(AS); 474 // Assume all GEP operands are constants until proven otherwise. 475 bool GepHasConstantOffset = true; 476 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 477 I != E; ++I, ++GTI) { 478 const Value *Index = *I; 479 // Compute the (potentially symbolic) offset in bytes for this index. 480 if (StructType *STy = GTI.getStructTypeOrNull()) { 481 // For a struct, add the member offset. 482 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 483 if (FieldNo == 0) 484 continue; 485 486 Decomposed.StructOffset += 487 DL.getStructLayout(STy)->getElementOffset(FieldNo); 488 continue; 489 } 490 491 // For an array/pointer, add the element offset, explicitly scaled. 492 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 493 if (CIdx->isZero()) 494 continue; 495 Decomposed.OtherOffset += 496 DL.getTypeAllocSize(GTI.getIndexedType()) * CIdx->getSExtValue(); 497 continue; 498 } 499 500 GepHasConstantOffset = false; 501 502 uint64_t Scale = DL.getTypeAllocSize(GTI.getIndexedType()); 503 unsigned ZExtBits = 0, SExtBits = 0; 504 505 // If the integer type is smaller than the pointer size, it is implicitly 506 // sign extended to pointer size. 507 unsigned Width = Index->getType()->getIntegerBitWidth(); 508 if (PointerSize > Width) 509 SExtBits += PointerSize - Width; 510 511 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 512 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 513 bool NSW = true, NUW = true; 514 Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits, 515 SExtBits, DL, 0, AC, DT, NSW, NUW); 516 517 // All GEP math happens in the width of the pointer type, 518 // so we can truncate the value to 64-bits as we don't handle 519 // currently pointers larger than 64 bits and we would crash 520 // later. TODO: Make `Scale` an APInt to avoid this problem. 521 if (IndexScale.getBitWidth() > 64) 522 IndexScale = IndexScale.sextOrTrunc(64); 523 524 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 525 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 526 Decomposed.OtherOffset += IndexOffset.getSExtValue() * Scale; 527 Scale *= IndexScale.getSExtValue(); 528 529 // If we already had an occurrence of this index variable, merge this 530 // scale into it. For example, we want to handle: 531 // A[x][x] -> x*16 + x*4 -> x*20 532 // This also ensures that 'x' only appears in the index list once. 533 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { 534 if (Decomposed.VarIndices[i].V == Index && 535 Decomposed.VarIndices[i].ZExtBits == ZExtBits && 536 Decomposed.VarIndices[i].SExtBits == SExtBits) { 537 Scale += Decomposed.VarIndices[i].Scale; 538 Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i); 539 break; 540 } 541 } 542 543 // Make sure that we have a scale that makes sense for this target's 544 // pointer size. 545 Scale = adjustToPointerSize(Scale, PointerSize); 546 547 if (Scale) { 548 VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, 549 static_cast<int64_t>(Scale)}; 550 Decomposed.VarIndices.push_back(Entry); 551 } 552 } 553 554 // Take care of wrap-arounds 555 if (GepHasConstantOffset) { 556 Decomposed.StructOffset = 557 adjustToPointerSize(Decomposed.StructOffset, PointerSize); 558 Decomposed.OtherOffset = 559 adjustToPointerSize(Decomposed.OtherOffset, PointerSize); 560 } 561 562 // Analyze the base pointer next. 563 V = GEPOp->getOperand(0); 564 } while (--MaxLookup); 565 566 // If the chain of expressions is too deep, just return early. 567 Decomposed.Base = V; 568 SearchLimitReached++; 569 return true; 570 } 571 572 /// Returns whether the given pointer value points to memory that is local to 573 /// the function, with global constants being considered local to all 574 /// functions. 575 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc, 576 bool OrLocal) { 577 assert(Visited.empty() && "Visited must be cleared after use!"); 578 579 unsigned MaxLookup = 8; 580 SmallVector<const Value *, 16> Worklist; 581 Worklist.push_back(Loc.Ptr); 582 do { 583 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL); 584 if (!Visited.insert(V).second) { 585 Visited.clear(); 586 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 587 } 588 589 // An alloca instruction defines local memory. 590 if (OrLocal && isa<AllocaInst>(V)) 591 continue; 592 593 // A global constant counts as local memory for our purposes. 594 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 595 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 596 // global to be marked constant in some modules and non-constant in 597 // others. GV may even be a declaration, not a definition. 598 if (!GV->isConstant()) { 599 Visited.clear(); 600 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 601 } 602 continue; 603 } 604 605 // If both select values point to local memory, then so does the select. 606 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 607 Worklist.push_back(SI->getTrueValue()); 608 Worklist.push_back(SI->getFalseValue()); 609 continue; 610 } 611 612 // If all values incoming to a phi node point to local memory, then so does 613 // the phi. 614 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 615 // Don't bother inspecting phi nodes with many operands. 616 if (PN->getNumIncomingValues() > MaxLookup) { 617 Visited.clear(); 618 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 619 } 620 for (Value *IncValue : PN->incoming_values()) 621 Worklist.push_back(IncValue); 622 continue; 623 } 624 625 // Otherwise be conservative. 626 Visited.clear(); 627 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 628 } while (!Worklist.empty() && --MaxLookup); 629 630 Visited.clear(); 631 return Worklist.empty(); 632 } 633 634 /// Returns the behavior when calling the given call site. 635 FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) { 636 if (CS.doesNotAccessMemory()) 637 // Can't do better than this. 638 return FMRB_DoesNotAccessMemory; 639 640 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 641 642 // If the callsite knows it only reads memory, don't return worse 643 // than that. 644 if (CS.onlyReadsMemory()) 645 Min = FMRB_OnlyReadsMemory; 646 else if (CS.doesNotReadMemory()) 647 Min = FMRB_DoesNotReadMemory; 648 649 if (CS.onlyAccessesArgMemory()) 650 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 651 else if (CS.onlyAccessesInaccessibleMemory()) 652 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 653 else if (CS.onlyAccessesInaccessibleMemOrArgMem()) 654 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 655 656 // If CS has operand bundles then aliasing attributes from the function it 657 // calls do not directly apply to the CallSite. This can be made more 658 // precise in the future. 659 if (!CS.hasOperandBundles()) 660 if (const Function *F = CS.getCalledFunction()) 661 Min = 662 FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F)); 663 664 return Min; 665 } 666 667 /// Returns the behavior when calling the given function. For use when the call 668 /// site is not known. 669 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) { 670 // If the function declares it doesn't access memory, we can't do better. 671 if (F->doesNotAccessMemory()) 672 return FMRB_DoesNotAccessMemory; 673 674 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 675 676 // If the function declares it only reads memory, go with that. 677 if (F->onlyReadsMemory()) 678 Min = FMRB_OnlyReadsMemory; 679 else if (F->doesNotReadMemory()) 680 Min = FMRB_DoesNotReadMemory; 681 682 if (F->onlyAccessesArgMemory()) 683 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 684 else if (F->onlyAccessesInaccessibleMemory()) 685 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 686 else if (F->onlyAccessesInaccessibleMemOrArgMem()) 687 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 688 689 return Min; 690 } 691 692 /// Returns true if this is a writeonly (i.e Mod only) parameter. 693 static bool isWriteOnlyParam(ImmutableCallSite CS, unsigned ArgIdx, 694 const TargetLibraryInfo &TLI) { 695 if (CS.paramHasAttr(ArgIdx, Attribute::WriteOnly)) 696 return true; 697 698 // We can bound the aliasing properties of memset_pattern16 just as we can 699 // for memcpy/memset. This is particularly important because the 700 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 701 // whenever possible. 702 // FIXME Consider handling this in InferFunctionAttr.cpp together with other 703 // attributes. 704 LibFunc F; 705 if (CS.getCalledFunction() && TLI.getLibFunc(*CS.getCalledFunction(), F) && 706 F == LibFunc_memset_pattern16 && TLI.has(F)) 707 if (ArgIdx == 0) 708 return true; 709 710 // TODO: memset_pattern4, memset_pattern8 711 // TODO: _chk variants 712 // TODO: strcmp, strcpy 713 714 return false; 715 } 716 717 ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS, 718 unsigned ArgIdx) { 719 // Checking for known builtin intrinsics and target library functions. 720 if (isWriteOnlyParam(CS, ArgIdx, TLI)) 721 return ModRefInfo::Mod; 722 723 if (CS.paramHasAttr(ArgIdx, Attribute::ReadOnly)) 724 return ModRefInfo::Ref; 725 726 if (CS.paramHasAttr(ArgIdx, Attribute::ReadNone)) 727 return ModRefInfo::NoModRef; 728 729 return AAResultBase::getArgModRefInfo(CS, ArgIdx); 730 } 731 732 static bool isIntrinsicCall(ImmutableCallSite CS, Intrinsic::ID IID) { 733 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 734 return II && II->getIntrinsicID() == IID; 735 } 736 737 #ifndef NDEBUG 738 static const Function *getParent(const Value *V) { 739 if (const Instruction *inst = dyn_cast<Instruction>(V)) { 740 if (!inst->getParent()) 741 return nullptr; 742 return inst->getParent()->getParent(); 743 } 744 745 if (const Argument *arg = dyn_cast<Argument>(V)) 746 return arg->getParent(); 747 748 return nullptr; 749 } 750 751 static bool notDifferentParent(const Value *O1, const Value *O2) { 752 753 const Function *F1 = getParent(O1); 754 const Function *F2 = getParent(O2); 755 756 return !F1 || !F2 || F1 == F2; 757 } 758 #endif 759 760 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 761 const MemoryLocation &LocB) { 762 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 763 "BasicAliasAnalysis doesn't support interprocedural queries."); 764 765 // If we have a directly cached entry for these locations, we have recursed 766 // through this once, so just return the cached results. Notably, when this 767 // happens, we don't clear the cache. 768 auto CacheIt = AliasCache.find(LocPair(LocA, LocB)); 769 if (CacheIt != AliasCache.end()) 770 return CacheIt->second; 771 772 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr, 773 LocB.Size, LocB.AATags); 774 // AliasCache rarely has more than 1 or 2 elements, always use 775 // shrink_and_clear so it quickly returns to the inline capacity of the 776 // SmallDenseMap if it ever grows larger. 777 // FIXME: This should really be shrink_to_inline_capacity_and_clear(). 778 AliasCache.shrink_and_clear(); 779 VisitedPhiBBs.clear(); 780 return Alias; 781 } 782 783 /// Checks to see if the specified callsite can clobber the specified memory 784 /// object. 785 /// 786 /// Since we only look at local properties of this function, we really can't 787 /// say much about this query. We do, however, use simple "address taken" 788 /// analysis on local objects. 789 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS, 790 const MemoryLocation &Loc) { 791 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && 792 "AliasAnalysis query involving multiple functions!"); 793 794 const Value *Object = GetUnderlyingObject(Loc.Ptr, DL); 795 796 // If this is a tail call and Loc.Ptr points to a stack location, we know that 797 // the tail call cannot access or modify the local stack. 798 // We cannot exclude byval arguments here; these belong to the caller of 799 // the current function not to the current function, and a tail callee 800 // may reference them. 801 if (isa<AllocaInst>(Object)) 802 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) 803 if (CI->isTailCall()) 804 return ModRefInfo::NoModRef; 805 806 // If the pointer is to a locally allocated object that does not escape, 807 // then the call can not mod/ref the pointer unless the call takes the pointer 808 // as an argument, and itself doesn't capture it. 809 if (!isa<Constant>(Object) && CS.getInstruction() != Object && 810 isNonEscapingLocalObject(Object)) { 811 812 // Optimistically assume that call doesn't touch Object and check this 813 // assumption in the following loop. 814 ModRefInfo Result = ModRefInfo::NoModRef; 815 bool IsMustAlias = true; 816 817 unsigned OperandNo = 0; 818 for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end(); 819 CI != CE; ++CI, ++OperandNo) { 820 // Only look at the no-capture or byval pointer arguments. If this 821 // pointer were passed to arguments that were neither of these, then it 822 // couldn't be no-capture. 823 if (!(*CI)->getType()->isPointerTy() || 824 (!CS.doesNotCapture(OperandNo) && 825 OperandNo < CS.getNumArgOperands() && !CS.isByValArgument(OperandNo))) 826 continue; 827 828 // Call doesn't access memory through this operand, so we don't care 829 // if it aliases with Object. 830 if (CS.doesNotAccessMemory(OperandNo)) 831 continue; 832 833 // If this is a no-capture pointer argument, see if we can tell that it 834 // is impossible to alias the pointer we're checking. 835 AliasResult AR = 836 getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object)); 837 if (AR != MustAlias) 838 IsMustAlias = false; 839 // Operand doesnt alias 'Object', continue looking for other aliases 840 if (AR == NoAlias) 841 continue; 842 // Operand aliases 'Object', but call doesn't modify it. Strengthen 843 // initial assumption and keep looking in case if there are more aliases. 844 if (CS.onlyReadsMemory(OperandNo)) { 845 Result = setRef(Result); 846 continue; 847 } 848 // Operand aliases 'Object' but call only writes into it. 849 if (CS.doesNotReadMemory(OperandNo)) { 850 Result = setMod(Result); 851 continue; 852 } 853 // This operand aliases 'Object' and call reads and writes into it. 854 // Setting ModRef will not yield an early return below, MustAlias is not 855 // used further. 856 Result = ModRefInfo::ModRef; 857 break; 858 } 859 860 // No operand aliases, reset Must bit. Add below if at least one aliases 861 // and all aliases found are MustAlias. 862 if (isNoModRef(Result)) 863 IsMustAlias = false; 864 865 // Early return if we improved mod ref information 866 if (!isModAndRefSet(Result)) { 867 if (isNoModRef(Result)) 868 return ModRefInfo::NoModRef; 869 return IsMustAlias ? setMust(Result) : clearMust(Result); 870 } 871 } 872 873 // If the CallSite is to malloc or calloc, we can assume that it doesn't 874 // modify any IR visible value. This is only valid because we assume these 875 // routines do not read values visible in the IR. TODO: Consider special 876 // casing realloc and strdup routines which access only their arguments as 877 // well. Or alternatively, replace all of this with inaccessiblememonly once 878 // that's implemented fully. 879 auto *Inst = CS.getInstruction(); 880 if (isMallocOrCallocLikeFn(Inst, &TLI)) { 881 // Be conservative if the accessed pointer may alias the allocation - 882 // fallback to the generic handling below. 883 if (getBestAAResults().alias(MemoryLocation(Inst), Loc) == NoAlias) 884 return ModRefInfo::NoModRef; 885 } 886 887 // The semantics of memcpy intrinsics forbid overlap between their respective 888 // operands, i.e., source and destination of any given memcpy must no-alias. 889 // If Loc must-aliases either one of these two locations, then it necessarily 890 // no-aliases the other. 891 if (auto *Inst = dyn_cast<MemCpyInst>(CS.getInstruction())) { 892 AliasResult SrcAA, DestAA; 893 894 if ((SrcAA = getBestAAResults().alias(MemoryLocation::getForSource(Inst), 895 Loc)) == MustAlias) 896 // Loc is exactly the memcpy source thus disjoint from memcpy dest. 897 return ModRefInfo::Ref; 898 if ((DestAA = getBestAAResults().alias(MemoryLocation::getForDest(Inst), 899 Loc)) == MustAlias) 900 // The converse case. 901 return ModRefInfo::Mod; 902 903 // It's also possible for Loc to alias both src and dest, or neither. 904 ModRefInfo rv = ModRefInfo::NoModRef; 905 if (SrcAA != NoAlias) 906 rv = setRef(rv); 907 if (DestAA != NoAlias) 908 rv = setMod(rv); 909 return rv; 910 } 911 912 // While the assume intrinsic is marked as arbitrarily writing so that 913 // proper control dependencies will be maintained, it never aliases any 914 // particular memory location. 915 if (isIntrinsicCall(CS, Intrinsic::assume)) 916 return ModRefInfo::NoModRef; 917 918 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 919 // that proper control dependencies are maintained but they never mods any 920 // particular memory location. 921 // 922 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 923 // heap state at the point the guard is issued needs to be consistent in case 924 // the guard invokes the "deopt" continuation. 925 if (isIntrinsicCall(CS, Intrinsic::experimental_guard)) 926 return ModRefInfo::Ref; 927 928 // Like assumes, invariant.start intrinsics were also marked as arbitrarily 929 // writing so that proper control dependencies are maintained but they never 930 // mod any particular memory location visible to the IR. 931 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start 932 // intrinsic is now modeled as reading memory. This prevents hoisting the 933 // invariant.start intrinsic over stores. Consider: 934 // *ptr = 40; 935 // *ptr = 50; 936 // invariant_start(ptr) 937 // int val = *ptr; 938 // print(val); 939 // 940 // This cannot be transformed to: 941 // 942 // *ptr = 40; 943 // invariant_start(ptr) 944 // *ptr = 50; 945 // int val = *ptr; 946 // print(val); 947 // 948 // The transformation will cause the second store to be ignored (based on 949 // rules of invariant.start) and print 40, while the first program always 950 // prints 50. 951 if (isIntrinsicCall(CS, Intrinsic::invariant_start)) 952 return ModRefInfo::Ref; 953 954 // The AAResultBase base class has some smarts, lets use them. 955 return AAResultBase::getModRefInfo(CS, Loc); 956 } 957 958 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1, 959 ImmutableCallSite CS2) { 960 // While the assume intrinsic is marked as arbitrarily writing so that 961 // proper control dependencies will be maintained, it never aliases any 962 // particular memory location. 963 if (isIntrinsicCall(CS1, Intrinsic::assume) || 964 isIntrinsicCall(CS2, Intrinsic::assume)) 965 return ModRefInfo::NoModRef; 966 967 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 968 // that proper control dependencies are maintained but they never mod any 969 // particular memory location. 970 // 971 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 972 // heap state at the point the guard is issued needs to be consistent in case 973 // the guard invokes the "deopt" continuation. 974 975 // NB! This function is *not* commutative, so we specical case two 976 // possibilities for guard intrinsics. 977 978 if (isIntrinsicCall(CS1, Intrinsic::experimental_guard)) 979 return isModSet(createModRefInfo(getModRefBehavior(CS2))) 980 ? ModRefInfo::Ref 981 : ModRefInfo::NoModRef; 982 983 if (isIntrinsicCall(CS2, Intrinsic::experimental_guard)) 984 return isModSet(createModRefInfo(getModRefBehavior(CS1))) 985 ? ModRefInfo::Mod 986 : ModRefInfo::NoModRef; 987 988 // The AAResultBase base class has some smarts, lets use them. 989 return AAResultBase::getModRefInfo(CS1, CS2); 990 } 991 992 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators, 993 /// both having the exact same pointer operand. 994 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1, 995 uint64_t V1Size, 996 const GEPOperator *GEP2, 997 uint64_t V2Size, 998 const DataLayout &DL) { 999 assert(GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() == 1000 GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() && 1001 GEP1->getPointerOperandType() == GEP2->getPointerOperandType() && 1002 "Expected GEPs with the same pointer operand"); 1003 1004 // Try to determine whether GEP1 and GEP2 index through arrays, into structs, 1005 // such that the struct field accesses provably cannot alias. 1006 // We also need at least two indices (the pointer, and the struct field). 1007 if (GEP1->getNumIndices() != GEP2->getNumIndices() || 1008 GEP1->getNumIndices() < 2) 1009 return MayAlias; 1010 1011 // If we don't know the size of the accesses through both GEPs, we can't 1012 // determine whether the struct fields accessed can't alias. 1013 if (V1Size == MemoryLocation::UnknownSize || 1014 V2Size == MemoryLocation::UnknownSize) 1015 return MayAlias; 1016 1017 ConstantInt *C1 = 1018 dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1)); 1019 ConstantInt *C2 = 1020 dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1)); 1021 1022 // If the last (struct) indices are constants and are equal, the other indices 1023 // might be also be dynamically equal, so the GEPs can alias. 1024 if (C1 && C2 && C1->getSExtValue() == C2->getSExtValue()) 1025 return MayAlias; 1026 1027 // Find the last-indexed type of the GEP, i.e., the type you'd get if 1028 // you stripped the last index. 1029 // On the way, look at each indexed type. If there's something other 1030 // than an array, different indices can lead to different final types. 1031 SmallVector<Value *, 8> IntermediateIndices; 1032 1033 // Insert the first index; we don't need to check the type indexed 1034 // through it as it only drops the pointer indirection. 1035 assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine"); 1036 IntermediateIndices.push_back(GEP1->getOperand(1)); 1037 1038 // Insert all the remaining indices but the last one. 1039 // Also, check that they all index through arrays. 1040 for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) { 1041 if (!isa<ArrayType>(GetElementPtrInst::getIndexedType( 1042 GEP1->getSourceElementType(), IntermediateIndices))) 1043 return MayAlias; 1044 IntermediateIndices.push_back(GEP1->getOperand(i + 1)); 1045 } 1046 1047 auto *Ty = GetElementPtrInst::getIndexedType( 1048 GEP1->getSourceElementType(), IntermediateIndices); 1049 StructType *LastIndexedStruct = dyn_cast<StructType>(Ty); 1050 1051 if (isa<SequentialType>(Ty)) { 1052 // We know that: 1053 // - both GEPs begin indexing from the exact same pointer; 1054 // - the last indices in both GEPs are constants, indexing into a sequential 1055 // type (array or pointer); 1056 // - both GEPs only index through arrays prior to that. 1057 // 1058 // Because array indices greater than the number of elements are valid in 1059 // GEPs, unless we know the intermediate indices are identical between 1060 // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't 1061 // partially overlap. We also need to check that the loaded size matches 1062 // the element size, otherwise we could still have overlap. 1063 const uint64_t ElementSize = 1064 DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType()); 1065 if (V1Size != ElementSize || V2Size != ElementSize) 1066 return MayAlias; 1067 1068 for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i) 1069 if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1)) 1070 return MayAlias; 1071 1072 // Now we know that the array/pointer that GEP1 indexes into and that 1073 // that GEP2 indexes into must either precisely overlap or be disjoint. 1074 // Because they cannot partially overlap and because fields in an array 1075 // cannot overlap, if we can prove the final indices are different between 1076 // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias. 1077 1078 // If the last indices are constants, we've already checked they don't 1079 // equal each other so we can exit early. 1080 if (C1 && C2) 1081 return NoAlias; 1082 { 1083 Value *GEP1LastIdx = GEP1->getOperand(GEP1->getNumOperands() - 1); 1084 Value *GEP2LastIdx = GEP2->getOperand(GEP2->getNumOperands() - 1); 1085 if (isa<PHINode>(GEP1LastIdx) || isa<PHINode>(GEP2LastIdx)) { 1086 // If one of the indices is a PHI node, be safe and only use 1087 // computeKnownBits so we don't make any assumptions about the 1088 // relationships between the two indices. This is important if we're 1089 // asking about values from different loop iterations. See PR32314. 1090 // TODO: We may be able to change the check so we only do this when 1091 // we definitely looked through a PHINode. 1092 if (GEP1LastIdx != GEP2LastIdx && 1093 GEP1LastIdx->getType() == GEP2LastIdx->getType()) { 1094 KnownBits Known1 = computeKnownBits(GEP1LastIdx, DL); 1095 KnownBits Known2 = computeKnownBits(GEP2LastIdx, DL); 1096 if (Known1.Zero.intersects(Known2.One) || 1097 Known1.One.intersects(Known2.Zero)) 1098 return NoAlias; 1099 } 1100 } else if (isKnownNonEqual(GEP1LastIdx, GEP2LastIdx, DL)) 1101 return NoAlias; 1102 } 1103 return MayAlias; 1104 } else if (!LastIndexedStruct || !C1 || !C2) { 1105 return MayAlias; 1106 } 1107 1108 // We know that: 1109 // - both GEPs begin indexing from the exact same pointer; 1110 // - the last indices in both GEPs are constants, indexing into a struct; 1111 // - said indices are different, hence, the pointed-to fields are different; 1112 // - both GEPs only index through arrays prior to that. 1113 // 1114 // This lets us determine that the struct that GEP1 indexes into and the 1115 // struct that GEP2 indexes into must either precisely overlap or be 1116 // completely disjoint. Because they cannot partially overlap, indexing into 1117 // different non-overlapping fields of the struct will never alias. 1118 1119 // Therefore, the only remaining thing needed to show that both GEPs can't 1120 // alias is that the fields are not overlapping. 1121 const StructLayout *SL = DL.getStructLayout(LastIndexedStruct); 1122 const uint64_t StructSize = SL->getSizeInBytes(); 1123 const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue()); 1124 const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue()); 1125 1126 auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size, 1127 uint64_t V2Off, uint64_t V2Size) { 1128 return V1Off < V2Off && V1Off + V1Size <= V2Off && 1129 ((V2Off + V2Size <= StructSize) || 1130 (V2Off + V2Size - StructSize <= V1Off)); 1131 }; 1132 1133 if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) || 1134 EltsDontOverlap(V2Off, V2Size, V1Off, V1Size)) 1135 return NoAlias; 1136 1137 return MayAlias; 1138 } 1139 1140 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the 1141 // beginning of the object the GEP points would have a negative offset with 1142 // repsect to the alloca, that means the GEP can not alias pointer (b). 1143 // Note that the pointer based on the alloca may not be a GEP. For 1144 // example, it may be the alloca itself. 1145 // The same applies if (b) is based on a GlobalVariable. Note that just being 1146 // based on isIdentifiedObject() is not enough - we need an identified object 1147 // that does not permit access to negative offsets. For example, a negative 1148 // offset from a noalias argument or call can be inbounds w.r.t the actual 1149 // underlying object. 1150 // 1151 // For example, consider: 1152 // 1153 // struct { int f0, int f1, ...} foo; 1154 // foo alloca; 1155 // foo* random = bar(alloca); 1156 // int *f0 = &alloca.f0 1157 // int *f1 = &random->f1; 1158 // 1159 // Which is lowered, approximately, to: 1160 // 1161 // %alloca = alloca %struct.foo 1162 // %random = call %struct.foo* @random(%struct.foo* %alloca) 1163 // %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0 1164 // %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1 1165 // 1166 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated 1167 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also 1168 // point into the same object. But since %f0 points to the beginning of %alloca, 1169 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher 1170 // than (%alloca - 1), and so is not inbounds, a contradiction. 1171 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp, 1172 const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject, 1173 uint64_t ObjectAccessSize) { 1174 // If the object access size is unknown, or the GEP isn't inbounds, bail. 1175 if (ObjectAccessSize == MemoryLocation::UnknownSize || !GEPOp->isInBounds()) 1176 return false; 1177 1178 // We need the object to be an alloca or a globalvariable, and want to know 1179 // the offset of the pointer from the object precisely, so no variable 1180 // indices are allowed. 1181 if (!(isa<AllocaInst>(DecompObject.Base) || 1182 isa<GlobalVariable>(DecompObject.Base)) || 1183 !DecompObject.VarIndices.empty()) 1184 return false; 1185 1186 int64_t ObjectBaseOffset = DecompObject.StructOffset + 1187 DecompObject.OtherOffset; 1188 1189 // If the GEP has no variable indices, we know the precise offset 1190 // from the base, then use it. If the GEP has variable indices, 1191 // we can't get exact GEP offset to identify pointer alias. So return 1192 // false in that case. 1193 if (!DecompGEP.VarIndices.empty()) 1194 return false; 1195 int64_t GEPBaseOffset = DecompGEP.StructOffset; 1196 GEPBaseOffset += DecompGEP.OtherOffset; 1197 1198 return (GEPBaseOffset >= ObjectBaseOffset + (int64_t)ObjectAccessSize); 1199 } 1200 1201 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 1202 /// another pointer. 1203 /// 1204 /// We know that V1 is a GEP, but we don't know anything about V2. 1205 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for 1206 /// V2. 1207 AliasResult BasicAAResult::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, 1208 const AAMDNodes &V1AAInfo, const Value *V2, 1209 uint64_t V2Size, const AAMDNodes &V2AAInfo, 1210 const Value *UnderlyingV1, 1211 const Value *UnderlyingV2) { 1212 DecomposedGEP DecompGEP1, DecompGEP2; 1213 bool GEP1MaxLookupReached = 1214 DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT); 1215 bool GEP2MaxLookupReached = 1216 DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT); 1217 1218 int64_t GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset; 1219 int64_t GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset; 1220 1221 assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 && 1222 "DecomposeGEPExpression returned a result different from " 1223 "GetUnderlyingObject"); 1224 1225 // If the GEP's offset relative to its base is such that the base would 1226 // fall below the start of the object underlying V2, then the GEP and V2 1227 // cannot alias. 1228 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1229 isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size)) 1230 return NoAlias; 1231 // If we have two gep instructions with must-alias or not-alias'ing base 1232 // pointers, figure out if the indexes to the GEP tell us anything about the 1233 // derived pointer. 1234 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 1235 // Check for the GEP base being at a negative offset, this time in the other 1236 // direction. 1237 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1238 isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size)) 1239 return NoAlias; 1240 // Do the base pointers alias? 1241 AliasResult BaseAlias = 1242 aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(), 1243 UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes()); 1244 1245 // Check for geps of non-aliasing underlying pointers where the offsets are 1246 // identical. 1247 if ((BaseAlias == MayAlias) && V1Size == V2Size) { 1248 // Do the base pointers alias assuming type and size. 1249 AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo, 1250 UnderlyingV2, V2Size, V2AAInfo); 1251 if (PreciseBaseAlias == NoAlias) { 1252 // See if the computed offset from the common pointer tells us about the 1253 // relation of the resulting pointer. 1254 // If the max search depth is reached the result is undefined 1255 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1256 return MayAlias; 1257 1258 // Same offsets. 1259 if (GEP1BaseOffset == GEP2BaseOffset && 1260 DecompGEP1.VarIndices == DecompGEP2.VarIndices) 1261 return NoAlias; 1262 } 1263 } 1264 1265 // If we get a No or May, then return it immediately, no amount of analysis 1266 // will improve this situation. 1267 if (BaseAlias != MustAlias) { 1268 assert(BaseAlias == NoAlias || BaseAlias == MayAlias); 1269 return BaseAlias; 1270 } 1271 1272 // Otherwise, we have a MustAlias. Since the base pointers alias each other 1273 // exactly, see if the computed offset from the common pointer tells us 1274 // about the relation of the resulting pointer. 1275 // If we know the two GEPs are based off of the exact same pointer (and not 1276 // just the same underlying object), see if that tells us anything about 1277 // the resulting pointers. 1278 if (GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() == 1279 GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() && 1280 GEP1->getPointerOperandType() == GEP2->getPointerOperandType()) { 1281 AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL); 1282 // If we couldn't find anything interesting, don't abandon just yet. 1283 if (R != MayAlias) 1284 return R; 1285 } 1286 1287 // If the max search depth is reached, the result is undefined 1288 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1289 return MayAlias; 1290 1291 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1292 // symbolic difference. 1293 GEP1BaseOffset -= GEP2BaseOffset; 1294 GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices); 1295 1296 } else { 1297 // Check to see if these two pointers are related by the getelementptr 1298 // instruction. If one pointer is a GEP with a non-zero index of the other 1299 // pointer, we know they cannot alias. 1300 1301 // If both accesses are unknown size, we can't do anything useful here. 1302 if (V1Size == MemoryLocation::UnknownSize && 1303 V2Size == MemoryLocation::UnknownSize) 1304 return MayAlias; 1305 1306 AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, 1307 AAMDNodes(), V2, MemoryLocation::UnknownSize, 1308 V2AAInfo, nullptr, UnderlyingV2); 1309 if (R != MustAlias) { 1310 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 1311 // If V2 is known not to alias GEP base pointer, then the two values 1312 // cannot alias per GEP semantics: "Any memory access must be done through 1313 // a pointer value associated with an address range of the memory access, 1314 // otherwise the behavior is undefined.". 1315 assert(R == NoAlias || R == MayAlias); 1316 return R; 1317 } 1318 1319 // If the max search depth is reached the result is undefined 1320 if (GEP1MaxLookupReached) 1321 return MayAlias; 1322 } 1323 1324 // In the two GEP Case, if there is no difference in the offsets of the 1325 // computed pointers, the resultant pointers are a must alias. This 1326 // happens when we have two lexically identical GEP's (for example). 1327 // 1328 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 1329 // must aliases the GEP, the end result is a must alias also. 1330 if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty()) 1331 return MustAlias; 1332 1333 // If there is a constant difference between the pointers, but the difference 1334 // is less than the size of the associated memory object, then we know 1335 // that the objects are partially overlapping. If the difference is 1336 // greater, we know they do not overlap. 1337 if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) { 1338 if (GEP1BaseOffset >= 0) { 1339 if (V2Size != MemoryLocation::UnknownSize) { 1340 if ((uint64_t)GEP1BaseOffset < V2Size) 1341 return PartialAlias; 1342 return NoAlias; 1343 } 1344 } else { 1345 // We have the situation where: 1346 // + + 1347 // | BaseOffset | 1348 // ---------------->| 1349 // |-->V1Size |-------> V2Size 1350 // GEP1 V2 1351 // We need to know that V2Size is not unknown, otherwise we might have 1352 // stripped a gep with negative index ('gep <ptr>, -1, ...). 1353 if (V1Size != MemoryLocation::UnknownSize && 1354 V2Size != MemoryLocation::UnknownSize) { 1355 if (-(uint64_t)GEP1BaseOffset < V1Size) 1356 return PartialAlias; 1357 return NoAlias; 1358 } 1359 } 1360 } 1361 1362 if (!DecompGEP1.VarIndices.empty()) { 1363 uint64_t Modulo = 0; 1364 bool AllPositive = true; 1365 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { 1366 1367 // Try to distinguish something like &A[i][1] against &A[42][0]. 1368 // Grab the least significant bit set in any of the scales. We 1369 // don't need std::abs here (even if the scale's negative) as we'll 1370 // be ^'ing Modulo with itself later. 1371 Modulo |= (uint64_t)DecompGEP1.VarIndices[i].Scale; 1372 1373 if (AllPositive) { 1374 // If the Value could change between cycles, then any reasoning about 1375 // the Value this cycle may not hold in the next cycle. We'll just 1376 // give up if we can't determine conditions that hold for every cycle: 1377 const Value *V = DecompGEP1.VarIndices[i].V; 1378 1379 KnownBits Known = computeKnownBits(V, DL, 0, &AC, nullptr, DT); 1380 bool SignKnownZero = Known.isNonNegative(); 1381 bool SignKnownOne = Known.isNegative(); 1382 1383 // Zero-extension widens the variable, and so forces the sign 1384 // bit to zero. 1385 bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V); 1386 SignKnownZero |= IsZExt; 1387 SignKnownOne &= !IsZExt; 1388 1389 // If the variable begins with a zero then we know it's 1390 // positive, regardless of whether the value is signed or 1391 // unsigned. 1392 int64_t Scale = DecompGEP1.VarIndices[i].Scale; 1393 AllPositive = 1394 (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0); 1395 } 1396 } 1397 1398 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1399 1400 // We can compute the difference between the two addresses 1401 // mod Modulo. Check whether that difference guarantees that the 1402 // two locations do not alias. 1403 uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1); 1404 if (V1Size != MemoryLocation::UnknownSize && 1405 V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size && 1406 V1Size <= Modulo - ModOffset) 1407 return NoAlias; 1408 1409 // If we know all the variables are positive, then GEP1 >= GEP1BasePtr. 1410 // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers 1411 // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr. 1412 if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset) 1413 return NoAlias; 1414 1415 if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size, 1416 GEP1BaseOffset, &AC, DT)) 1417 return NoAlias; 1418 } 1419 1420 // Statically, we can see that the base objects are the same, but the 1421 // pointers have dynamic offsets which we can't resolve. And none of our 1422 // little tricks above worked. 1423 return MayAlias; 1424 } 1425 1426 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1427 // If the results agree, take it. 1428 if (A == B) 1429 return A; 1430 // A mix of PartialAlias and MustAlias is PartialAlias. 1431 if ((A == PartialAlias && B == MustAlias) || 1432 (B == PartialAlias && A == MustAlias)) 1433 return PartialAlias; 1434 // Otherwise, we don't know anything. 1435 return MayAlias; 1436 } 1437 1438 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1439 /// against another. 1440 AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, uint64_t SISize, 1441 const AAMDNodes &SIAAInfo, 1442 const Value *V2, uint64_t V2Size, 1443 const AAMDNodes &V2AAInfo, 1444 const Value *UnderV2) { 1445 // If the values are Selects with the same condition, we can do a more precise 1446 // check: just check for aliases between the values on corresponding arms. 1447 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1448 if (SI->getCondition() == SI2->getCondition()) { 1449 AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, 1450 SI2->getTrueValue(), V2Size, V2AAInfo); 1451 if (Alias == MayAlias) 1452 return MayAlias; 1453 AliasResult ThisAlias = 1454 aliasCheck(SI->getFalseValue(), SISize, SIAAInfo, 1455 SI2->getFalseValue(), V2Size, V2AAInfo); 1456 return MergeAliasResults(ThisAlias, Alias); 1457 } 1458 1459 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1460 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1461 AliasResult Alias = 1462 aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), 1463 SISize, SIAAInfo, UnderV2); 1464 if (Alias == MayAlias) 1465 return MayAlias; 1466 1467 AliasResult ThisAlias = 1468 aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo, 1469 UnderV2); 1470 return MergeAliasResults(ThisAlias, Alias); 1471 } 1472 1473 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1474 /// another. 1475 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, uint64_t PNSize, 1476 const AAMDNodes &PNAAInfo, const Value *V2, 1477 uint64_t V2Size, const AAMDNodes &V2AAInfo, 1478 const Value *UnderV2) { 1479 // Track phi nodes we have visited. We use this information when we determine 1480 // value equivalence. 1481 VisitedPhiBBs.insert(PN->getParent()); 1482 1483 // If the values are PHIs in the same block, we can do a more precise 1484 // as well as efficient check: just check for aliases between the values 1485 // on corresponding edges. 1486 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1487 if (PN2->getParent() == PN->getParent()) { 1488 LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo), 1489 MemoryLocation(V2, V2Size, V2AAInfo)); 1490 if (PN > V2) 1491 std::swap(Locs.first, Locs.second); 1492 // Analyse the PHIs' inputs under the assumption that the PHIs are 1493 // NoAlias. 1494 // If the PHIs are May/MustAlias there must be (recursively) an input 1495 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1496 // there must be an operation on the PHIs within the PHIs' value cycle 1497 // that causes a MayAlias. 1498 // Pretend the phis do not alias. 1499 AliasResult Alias = NoAlias; 1500 assert(AliasCache.count(Locs) && 1501 "There must exist an entry for the phi node"); 1502 AliasResult OrigAliasResult = AliasCache[Locs]; 1503 AliasCache[Locs] = NoAlias; 1504 1505 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1506 AliasResult ThisAlias = 1507 aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo, 1508 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1509 V2Size, V2AAInfo); 1510 Alias = MergeAliasResults(ThisAlias, Alias); 1511 if (Alias == MayAlias) 1512 break; 1513 } 1514 1515 // Reset if speculation failed. 1516 if (Alias != NoAlias) 1517 AliasCache[Locs] = OrigAliasResult; 1518 1519 return Alias; 1520 } 1521 1522 SmallPtrSet<Value *, 4> UniqueSrc; 1523 SmallVector<Value *, 4> V1Srcs; 1524 bool isRecursive = false; 1525 for (Value *PV1 : PN->incoming_values()) { 1526 if (isa<PHINode>(PV1)) 1527 // If any of the source itself is a PHI, return MayAlias conservatively 1528 // to avoid compile time explosion. The worst possible case is if both 1529 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1530 // and 'n' are the number of PHI sources. 1531 return MayAlias; 1532 1533 if (EnableRecPhiAnalysis) 1534 if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) { 1535 // Check whether the incoming value is a GEP that advances the pointer 1536 // result of this PHI node (e.g. in a loop). If this is the case, we 1537 // would recurse and always get a MayAlias. Handle this case specially 1538 // below. 1539 if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 && 1540 isa<ConstantInt>(PV1GEP->idx_begin())) { 1541 isRecursive = true; 1542 continue; 1543 } 1544 } 1545 1546 if (UniqueSrc.insert(PV1).second) 1547 V1Srcs.push_back(PV1); 1548 } 1549 1550 // If this PHI node is recursive, set the size of the accessed memory to 1551 // unknown to represent all the possible values the GEP could advance the 1552 // pointer to. 1553 if (isRecursive) 1554 PNSize = MemoryLocation::UnknownSize; 1555 1556 AliasResult Alias = 1557 aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], 1558 PNSize, PNAAInfo, UnderV2); 1559 1560 // Early exit if the check of the first PHI source against V2 is MayAlias. 1561 // Other results are not possible. 1562 if (Alias == MayAlias) 1563 return MayAlias; 1564 1565 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1566 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1567 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1568 Value *V = V1Srcs[i]; 1569 1570 AliasResult ThisAlias = 1571 aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, UnderV2); 1572 Alias = MergeAliasResults(ThisAlias, Alias); 1573 if (Alias == MayAlias) 1574 break; 1575 } 1576 1577 return Alias; 1578 } 1579 1580 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1581 /// array references. 1582 AliasResult BasicAAResult::aliasCheck(const Value *V1, uint64_t V1Size, 1583 AAMDNodes V1AAInfo, const Value *V2, 1584 uint64_t V2Size, AAMDNodes V2AAInfo, 1585 const Value *O1, const Value *O2) { 1586 // If either of the memory references is empty, it doesn't matter what the 1587 // pointer values are. 1588 if (V1Size == 0 || V2Size == 0) 1589 return NoAlias; 1590 1591 // Strip off any casts if they exist. 1592 V1 = V1->stripPointerCastsAndInvariantGroups(); 1593 V2 = V2->stripPointerCastsAndInvariantGroups(); 1594 1595 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1596 // value for undef that aliases nothing in the program. 1597 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1598 return NoAlias; 1599 1600 // Are we checking for alias of the same value? 1601 // Because we look 'through' phi nodes, we could look at "Value" pointers from 1602 // different iterations. We must therefore make sure that this is not the 1603 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1604 // happen by looking at the visited phi nodes and making sure they cannot 1605 // reach the value. 1606 if (isValueEqualInPotentialCycles(V1, V2)) 1607 return MustAlias; 1608 1609 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1610 return NoAlias; // Scalars cannot alias each other 1611 1612 // Figure out what objects these things are pointing to if we can. 1613 if (O1 == nullptr) 1614 O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth); 1615 1616 if (O2 == nullptr) 1617 O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth); 1618 1619 // Null values in the default address space don't point to any object, so they 1620 // don't alias any other pointer. 1621 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1622 if (CPN->getType()->getAddressSpace() == 0) 1623 return NoAlias; 1624 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1625 if (CPN->getType()->getAddressSpace() == 0) 1626 return NoAlias; 1627 1628 if (O1 != O2) { 1629 // If V1/V2 point to two different objects, we know that we have no alias. 1630 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1631 return NoAlias; 1632 1633 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1634 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1635 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1636 return NoAlias; 1637 1638 // Function arguments can't alias with things that are known to be 1639 // unambigously identified at the function level. 1640 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1641 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1642 return NoAlias; 1643 1644 // If one pointer is the result of a call/invoke or load and the other is a 1645 // non-escaping local object within the same function, then we know the 1646 // object couldn't escape to a point where the call could return it. 1647 // 1648 // Note that if the pointers are in different functions, there are a 1649 // variety of complications. A call with a nocapture argument may still 1650 // temporary store the nocapture argument's value in a temporary memory 1651 // location if that memory location doesn't escape. Or it may pass a 1652 // nocapture value to other functions as long as they don't capture it. 1653 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) 1654 return NoAlias; 1655 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) 1656 return NoAlias; 1657 } 1658 1659 // If the size of one access is larger than the entire object on the other 1660 // side, then we know such behavior is undefined and can assume no alias. 1661 if ((V1Size != MemoryLocation::UnknownSize && 1662 isObjectSmallerThan(O2, V1Size, DL, TLI)) || 1663 (V2Size != MemoryLocation::UnknownSize && 1664 isObjectSmallerThan(O1, V2Size, DL, TLI))) 1665 return NoAlias; 1666 1667 // Check the cache before climbing up use-def chains. This also terminates 1668 // otherwise infinitely recursive queries. 1669 LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo), 1670 MemoryLocation(V2, V2Size, V2AAInfo)); 1671 if (V1 > V2) 1672 std::swap(Locs.first, Locs.second); 1673 std::pair<AliasCacheTy::iterator, bool> Pair = 1674 AliasCache.insert(std::make_pair(Locs, MayAlias)); 1675 if (!Pair.second) 1676 return Pair.first->second; 1677 1678 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1679 // GEP can't simplify, we don't even look at the PHI cases. 1680 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1681 std::swap(V1, V2); 1682 std::swap(V1Size, V2Size); 1683 std::swap(O1, O2); 1684 std::swap(V1AAInfo, V2AAInfo); 1685 } 1686 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1687 AliasResult Result = 1688 aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2); 1689 if (Result != MayAlias) 1690 return AliasCache[Locs] = Result; 1691 } 1692 1693 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1694 std::swap(V1, V2); 1695 std::swap(O1, O2); 1696 std::swap(V1Size, V2Size); 1697 std::swap(V1AAInfo, V2AAInfo); 1698 } 1699 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1700 AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, 1701 V2, V2Size, V2AAInfo, O2); 1702 if (Result != MayAlias) 1703 return AliasCache[Locs] = Result; 1704 } 1705 1706 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1707 std::swap(V1, V2); 1708 std::swap(O1, O2); 1709 std::swap(V1Size, V2Size); 1710 std::swap(V1AAInfo, V2AAInfo); 1711 } 1712 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1713 AliasResult Result = 1714 aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2); 1715 if (Result != MayAlias) 1716 return AliasCache[Locs] = Result; 1717 } 1718 1719 // If both pointers are pointing into the same object and one of them 1720 // accesses the entire object, then the accesses must overlap in some way. 1721 if (O1 == O2) 1722 if (V1Size != MemoryLocation::UnknownSize && 1723 V2Size != MemoryLocation::UnknownSize && 1724 (isObjectSize(O1, V1Size, DL, TLI) || 1725 isObjectSize(O2, V2Size, DL, TLI))) 1726 return AliasCache[Locs] = PartialAlias; 1727 1728 // Recurse back into the best AA results we have, potentially with refined 1729 // memory locations. We have already ensured that BasicAA has a MayAlias 1730 // cache result for these, so any recursion back into BasicAA won't loop. 1731 AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second); 1732 return AliasCache[Locs] = Result; 1733 } 1734 1735 /// Check whether two Values can be considered equivalent. 1736 /// 1737 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether 1738 /// they can not be part of a cycle in the value graph by looking at all 1739 /// visited phi nodes an making sure that the phis cannot reach the value. We 1740 /// have to do this because we are looking through phi nodes (That is we say 1741 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1742 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1743 const Value *V2) { 1744 if (V != V2) 1745 return false; 1746 1747 const Instruction *Inst = dyn_cast<Instruction>(V); 1748 if (!Inst) 1749 return true; 1750 1751 if (VisitedPhiBBs.empty()) 1752 return true; 1753 1754 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1755 return false; 1756 1757 // Make sure that the visited phis cannot reach the Value. This ensures that 1758 // the Values cannot come from different iterations of a potential cycle the 1759 // phi nodes could be involved in. 1760 for (auto *P : VisitedPhiBBs) 1761 if (isPotentiallyReachable(&P->front(), Inst, DT, LI)) 1762 return false; 1763 1764 return true; 1765 } 1766 1767 /// Computes the symbolic difference between two de-composed GEPs. 1768 /// 1769 /// Dest and Src are the variable indices from two decomposed GetElementPtr 1770 /// instructions GEP1 and GEP2 which have common base pointers. 1771 void BasicAAResult::GetIndexDifference( 1772 SmallVectorImpl<VariableGEPIndex> &Dest, 1773 const SmallVectorImpl<VariableGEPIndex> &Src) { 1774 if (Src.empty()) 1775 return; 1776 1777 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1778 const Value *V = Src[i].V; 1779 unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits; 1780 int64_t Scale = Src[i].Scale; 1781 1782 // Find V in Dest. This is N^2, but pointer indices almost never have more 1783 // than a few variable indexes. 1784 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1785 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1786 Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits) 1787 continue; 1788 1789 // If we found it, subtract off Scale V's from the entry in Dest. If it 1790 // goes to zero, remove the entry. 1791 if (Dest[j].Scale != Scale) 1792 Dest[j].Scale -= Scale; 1793 else 1794 Dest.erase(Dest.begin() + j); 1795 Scale = 0; 1796 break; 1797 } 1798 1799 // If we didn't consume this entry, add it to the end of the Dest list. 1800 if (Scale) { 1801 VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale}; 1802 Dest.push_back(Entry); 1803 } 1804 } 1805 } 1806 1807 bool BasicAAResult::constantOffsetHeuristic( 1808 const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size, 1809 uint64_t V2Size, int64_t BaseOffset, AssumptionCache *AC, 1810 DominatorTree *DT) { 1811 if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize || 1812 V2Size == MemoryLocation::UnknownSize) 1813 return false; 1814 1815 const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1]; 1816 1817 if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits || 1818 Var0.Scale != -Var1.Scale) 1819 return false; 1820 1821 unsigned Width = Var1.V->getType()->getIntegerBitWidth(); 1822 1823 // We'll strip off the Extensions of Var0 and Var1 and do another round 1824 // of GetLinearExpression decomposition. In the example above, if Var0 1825 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 1826 1827 APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0), 1828 V1Offset(Width, 0); 1829 bool NSW = true, NUW = true; 1830 unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0; 1831 const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits, 1832 V0SExtBits, DL, 0, AC, DT, NSW, NUW); 1833 NSW = true; 1834 NUW = true; 1835 const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits, 1836 V1SExtBits, DL, 0, AC, DT, NSW, NUW); 1837 1838 if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits || 1839 V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1)) 1840 return false; 1841 1842 // We have a hit - Var0 and Var1 only differ by a constant offset! 1843 1844 // If we've been sext'ed then zext'd the maximum difference between Var0 and 1845 // Var1 is possible to calculate, but we're just interested in the absolute 1846 // minimum difference between the two. The minimum distance may occur due to 1847 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 1848 // the minimum distance between %i and %i + 5 is 3. 1849 APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff; 1850 MinDiff = APIntOps::umin(MinDiff, Wrapped); 1851 uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale); 1852 1853 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 1854 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 1855 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 1856 // V2Size can fit in the MinDiffBytes gap. 1857 return V1Size + std::abs(BaseOffset) <= MinDiffBytes && 1858 V2Size + std::abs(BaseOffset) <= MinDiffBytes; 1859 } 1860 1861 //===----------------------------------------------------------------------===// 1862 // BasicAliasAnalysis Pass 1863 //===----------------------------------------------------------------------===// 1864 1865 AnalysisKey BasicAA::Key; 1866 1867 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) { 1868 return BasicAAResult(F.getParent()->getDataLayout(), 1869 AM.getResult<TargetLibraryAnalysis>(F), 1870 AM.getResult<AssumptionAnalysis>(F), 1871 &AM.getResult<DominatorTreeAnalysis>(F), 1872 AM.getCachedResult<LoopAnalysis>(F)); 1873 } 1874 1875 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 1876 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1877 } 1878 1879 char BasicAAWrapperPass::ID = 0; 1880 1881 void BasicAAWrapperPass::anchor() {} 1882 1883 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa", 1884 "Basic Alias Analysis (stateless AA impl)", true, true) 1885 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1886 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1887 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1888 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa", 1889 "Basic Alias Analysis (stateless AA impl)", true, true) 1890 1891 FunctionPass *llvm::createBasicAAWrapperPass() { 1892 return new BasicAAWrapperPass(); 1893 } 1894 1895 bool BasicAAWrapperPass::runOnFunction(Function &F) { 1896 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 1897 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 1898 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); 1899 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 1900 1901 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), TLIWP.getTLI(), 1902 ACT.getAssumptionCache(F), &DTWP.getDomTree(), 1903 LIWP ? &LIWP->getLoopInfo() : nullptr)); 1904 1905 return false; 1906 } 1907 1908 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1909 AU.setPreservesAll(); 1910 AU.addRequired<AssumptionCacheTracker>(); 1911 AU.addRequired<DominatorTreeWrapperPass>(); 1912 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1913 } 1914 1915 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { 1916 return BasicAAResult( 1917 F.getParent()->getDataLayout(), 1918 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 1919 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 1920 } 1921