1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the primary stateless implementation of the 11 // Alias Analysis interface that implements identities (two different 12 // globals cannot alias, etc), but does no stateful analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/Passes.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/CFG.h" 21 #include "llvm/Analysis/CaptureTracking.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GetElementPtrTypeIterator.h" 32 #include "llvm/IR/GlobalAlias.h" 33 #include "llvm/IR/GlobalVariable.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Target/TargetLibraryInfo.h" 41 #include <algorithm> 42 using namespace llvm; 43 44 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 45 /// in a cycle. Because we are analysing 'through' phi nodes we need to be 46 /// careful with value equivalence. We use reachability to make sure a value 47 /// cannot be involved in a cycle. 48 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 49 50 // The max limit of the search depth in DecomposeGEPExpression() and 51 // GetUnderlyingObject(), both functions need to use the same search 52 // depth otherwise the algorithm in aliasGEP will assert. 53 static const unsigned MaxLookupSearchDepth = 6; 54 55 //===----------------------------------------------------------------------===// 56 // Useful predicates 57 //===----------------------------------------------------------------------===// 58 59 /// isNonEscapingLocalObject - Return true if the pointer is to a function-local 60 /// object that never escapes from the function. 61 static bool isNonEscapingLocalObject(const Value *V) { 62 // If this is a local allocation, check to see if it escapes. 63 if (isa<AllocaInst>(V) || isNoAliasCall(V)) 64 // Set StoreCaptures to True so that we can assume in our callers that the 65 // pointer is not the result of a load instruction. Currently 66 // PointerMayBeCaptured doesn't have any special analysis for the 67 // StoreCaptures=false case; if it did, our callers could be refined to be 68 // more precise. 69 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 70 71 // If this is an argument that corresponds to a byval or noalias argument, 72 // then it has not escaped before entering the function. Check if it escapes 73 // inside the function. 74 if (const Argument *A = dyn_cast<Argument>(V)) 75 if (A->hasByValAttr() || A->hasNoAliasAttr()) 76 // Note even if the argument is marked nocapture we still need to check 77 // for copies made inside the function. The nocapture attribute only 78 // specifies that there are no copies made that outlive the function. 79 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 80 81 return false; 82 } 83 84 /// isEscapeSource - Return true if the pointer is one which would have 85 /// been considered an escape by isNonEscapingLocalObject. 86 static bool isEscapeSource(const Value *V) { 87 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V)) 88 return true; 89 90 // The load case works because isNonEscapingLocalObject considers all 91 // stores to be escapes (it passes true for the StoreCaptures argument 92 // to PointerMayBeCaptured). 93 if (isa<LoadInst>(V)) 94 return true; 95 96 return false; 97 } 98 99 /// getObjectSize - Return the size of the object specified by V, or 100 /// UnknownSize if unknown. 101 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 102 const TargetLibraryInfo &TLI, 103 bool RoundToAlign = false) { 104 uint64_t Size; 105 if (getObjectSize(V, Size, &DL, &TLI, RoundToAlign)) 106 return Size; 107 return AliasAnalysis::UnknownSize; 108 } 109 110 /// isObjectSmallerThan - Return true if we can prove that the object specified 111 /// by V is smaller than Size. 112 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 113 const DataLayout &DL, 114 const TargetLibraryInfo &TLI) { 115 // Note that the meanings of the "object" are slightly different in the 116 // following contexts: 117 // c1: llvm::getObjectSize() 118 // c2: llvm.objectsize() intrinsic 119 // c3: isObjectSmallerThan() 120 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 121 // refers to the "entire object". 122 // 123 // Consider this example: 124 // char *p = (char*)malloc(100) 125 // char *q = p+80; 126 // 127 // In the context of c1 and c2, the "object" pointed by q refers to the 128 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 129 // 130 // However, in the context of c3, the "object" refers to the chunk of memory 131 // being allocated. So, the "object" has 100 bytes, and q points to the middle 132 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 133 // parameter, before the llvm::getObjectSize() is called to get the size of 134 // entire object, we should: 135 // - either rewind the pointer q to the base-address of the object in 136 // question (in this case rewind to p), or 137 // - just give up. It is up to caller to make sure the pointer is pointing 138 // to the base address the object. 139 // 140 // We go for 2nd option for simplicity. 141 if (!isIdentifiedObject(V)) 142 return false; 143 144 // This function needs to use the aligned object size because we allow 145 // reads a bit past the end given sufficient alignment. 146 uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/true); 147 148 return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size; 149 } 150 151 /// isObjectSize - Return true if we can prove that the object specified 152 /// by V has size Size. 153 static bool isObjectSize(const Value *V, uint64_t Size, 154 const DataLayout &DL, const TargetLibraryInfo &TLI) { 155 uint64_t ObjectSize = getObjectSize(V, DL, TLI); 156 return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size; 157 } 158 159 /// isIdentifiedFunctionLocal - Return true if V is umabigously identified 160 /// at the function-level. Different IdentifiedFunctionLocals can't alias. 161 /// Further, an IdentifiedFunctionLocal can not alias with any function 162 /// arguments other than itself, which is not necessarily true for 163 /// IdentifiedObjects. 164 static bool isIdentifiedFunctionLocal(const Value *V) 165 { 166 return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V); 167 } 168 169 170 //===----------------------------------------------------------------------===// 171 // GetElementPtr Instruction Decomposition and Analysis 172 //===----------------------------------------------------------------------===// 173 174 namespace { 175 enum ExtensionKind { 176 EK_NotExtended, 177 EK_SignExt, 178 EK_ZeroExt 179 }; 180 181 struct VariableGEPIndex { 182 const Value *V; 183 ExtensionKind Extension; 184 int64_t Scale; 185 186 bool operator==(const VariableGEPIndex &Other) const { 187 return V == Other.V && Extension == Other.Extension && 188 Scale == Other.Scale; 189 } 190 191 bool operator!=(const VariableGEPIndex &Other) const { 192 return !operator==(Other); 193 } 194 }; 195 } 196 197 198 /// GetLinearExpression - Analyze the specified value as a linear expression: 199 /// "A*V + B", where A and B are constant integers. Return the scale and offset 200 /// values as APInts and return V as a Value*, and return whether we looked 201 /// through any sign or zero extends. The incoming Value is known to have 202 /// IntegerType and it may already be sign or zero extended. 203 /// 204 /// Note that this looks through extends, so the high bits may not be 205 /// represented in the result. 206 static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset, 207 ExtensionKind &Extension, 208 const DataLayout &DL, unsigned Depth) { 209 assert(V->getType()->isIntegerTy() && "Not an integer value"); 210 211 // Limit our recursion depth. 212 if (Depth == 6) { 213 Scale = 1; 214 Offset = 0; 215 return V; 216 } 217 218 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 219 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 220 switch (BOp->getOpcode()) { 221 default: break; 222 case Instruction::Or: 223 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 224 // analyze it. 225 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &DL)) 226 break; 227 // FALL THROUGH. 228 case Instruction::Add: 229 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 230 DL, Depth+1); 231 Offset += RHSC->getValue(); 232 return V; 233 case Instruction::Mul: 234 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 235 DL, Depth+1); 236 Offset *= RHSC->getValue(); 237 Scale *= RHSC->getValue(); 238 return V; 239 case Instruction::Shl: 240 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 241 DL, Depth+1); 242 Offset <<= RHSC->getValue().getLimitedValue(); 243 Scale <<= RHSC->getValue().getLimitedValue(); 244 return V; 245 } 246 } 247 } 248 249 // Since GEP indices are sign extended anyway, we don't care about the high 250 // bits of a sign or zero extended value - just scales and offsets. The 251 // extensions have to be consistent though. 252 if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) || 253 (isa<ZExtInst>(V) && Extension != EK_SignExt)) { 254 Value *CastOp = cast<CastInst>(V)->getOperand(0); 255 unsigned OldWidth = Scale.getBitWidth(); 256 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 257 Scale = Scale.trunc(SmallWidth); 258 Offset = Offset.trunc(SmallWidth); 259 Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt; 260 261 Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension, 262 DL, Depth+1); 263 Scale = Scale.zext(OldWidth); 264 Offset = Offset.zext(OldWidth); 265 266 return Result; 267 } 268 269 Scale = 1; 270 Offset = 0; 271 return V; 272 } 273 274 /// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it 275 /// into a base pointer with a constant offset and a number of scaled symbolic 276 /// offsets. 277 /// 278 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale in 279 /// the VarIndices vector) are Value*'s that are known to be scaled by the 280 /// specified amount, but which may have other unrepresented high bits. As such, 281 /// the gep cannot necessarily be reconstructed from its decomposed form. 282 /// 283 /// When DataLayout is around, this function is capable of analyzing everything 284 /// that GetUnderlyingObject can look through. To be able to do that 285 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search 286 /// depth (MaxLookupSearchDepth). 287 /// When DataLayout not is around, it just looks through pointer casts. 288 /// 289 static const Value * 290 DecomposeGEPExpression(const Value *V, int64_t &BaseOffs, 291 SmallVectorImpl<VariableGEPIndex> &VarIndices, 292 bool &MaxLookupReached, const DataLayout *DL) { 293 // Limit recursion depth to limit compile time in crazy cases. 294 unsigned MaxLookup = MaxLookupSearchDepth; 295 MaxLookupReached = false; 296 297 BaseOffs = 0; 298 do { 299 // See if this is a bitcast or GEP. 300 const Operator *Op = dyn_cast<Operator>(V); 301 if (!Op) { 302 // The only non-operator case we can handle are GlobalAliases. 303 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 304 if (!GA->mayBeOverridden()) { 305 V = GA->getAliasee(); 306 continue; 307 } 308 } 309 return V; 310 } 311 312 if (Op->getOpcode() == Instruction::BitCast || 313 Op->getOpcode() == Instruction::AddrSpaceCast) { 314 V = Op->getOperand(0); 315 continue; 316 } 317 318 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 319 if (!GEPOp) { 320 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 321 // can come up with something. This matches what GetUnderlyingObject does. 322 if (const Instruction *I = dyn_cast<Instruction>(V)) 323 // TODO: Get a DominatorTree and use it here. 324 if (const Value *Simplified = 325 SimplifyInstruction(const_cast<Instruction *>(I), DL)) { 326 V = Simplified; 327 continue; 328 } 329 330 return V; 331 } 332 333 // Don't attempt to analyze GEPs over unsized objects. 334 if (!GEPOp->getOperand(0)->getType()->getPointerElementType()->isSized()) 335 return V; 336 337 // If we are lacking DataLayout information, we can't compute the offets of 338 // elements computed by GEPs. However, we can handle bitcast equivalent 339 // GEPs. 340 if (!DL) { 341 if (!GEPOp->hasAllZeroIndices()) 342 return V; 343 V = GEPOp->getOperand(0); 344 continue; 345 } 346 347 unsigned AS = GEPOp->getPointerAddressSpace(); 348 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 349 gep_type_iterator GTI = gep_type_begin(GEPOp); 350 for (User::const_op_iterator I = GEPOp->op_begin()+1, 351 E = GEPOp->op_end(); I != E; ++I) { 352 Value *Index = *I; 353 // Compute the (potentially symbolic) offset in bytes for this index. 354 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 355 // For a struct, add the member offset. 356 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 357 if (FieldNo == 0) continue; 358 359 BaseOffs += DL->getStructLayout(STy)->getElementOffset(FieldNo); 360 continue; 361 } 362 363 // For an array/pointer, add the element offset, explicitly scaled. 364 if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 365 if (CIdx->isZero()) continue; 366 BaseOffs += DL->getTypeAllocSize(*GTI)*CIdx->getSExtValue(); 367 continue; 368 } 369 370 uint64_t Scale = DL->getTypeAllocSize(*GTI); 371 ExtensionKind Extension = EK_NotExtended; 372 373 // If the integer type is smaller than the pointer size, it is implicitly 374 // sign extended to pointer size. 375 unsigned Width = Index->getType()->getIntegerBitWidth(); 376 if (DL->getPointerSizeInBits(AS) > Width) 377 Extension = EK_SignExt; 378 379 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 380 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 381 Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension, 382 *DL, 0); 383 384 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 385 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 386 BaseOffs += IndexOffset.getSExtValue()*Scale; 387 Scale *= IndexScale.getSExtValue(); 388 389 // If we already had an occurrence of this index variable, merge this 390 // scale into it. For example, we want to handle: 391 // A[x][x] -> x*16 + x*4 -> x*20 392 // This also ensures that 'x' only appears in the index list once. 393 for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) { 394 if (VarIndices[i].V == Index && 395 VarIndices[i].Extension == Extension) { 396 Scale += VarIndices[i].Scale; 397 VarIndices.erase(VarIndices.begin()+i); 398 break; 399 } 400 } 401 402 // Make sure that we have a scale that makes sense for this target's 403 // pointer size. 404 if (unsigned ShiftBits = 64 - DL->getPointerSizeInBits(AS)) { 405 Scale <<= ShiftBits; 406 Scale = (int64_t)Scale >> ShiftBits; 407 } 408 409 if (Scale) { 410 VariableGEPIndex Entry = {Index, Extension, 411 static_cast<int64_t>(Scale)}; 412 VarIndices.push_back(Entry); 413 } 414 } 415 416 // Analyze the base pointer next. 417 V = GEPOp->getOperand(0); 418 } while (--MaxLookup); 419 420 // If the chain of expressions is too deep, just return early. 421 MaxLookupReached = true; 422 return V; 423 } 424 425 //===----------------------------------------------------------------------===// 426 // BasicAliasAnalysis Pass 427 //===----------------------------------------------------------------------===// 428 429 #ifndef NDEBUG 430 static const Function *getParent(const Value *V) { 431 if (const Instruction *inst = dyn_cast<Instruction>(V)) 432 return inst->getParent()->getParent(); 433 434 if (const Argument *arg = dyn_cast<Argument>(V)) 435 return arg->getParent(); 436 437 return nullptr; 438 } 439 440 static bool notDifferentParent(const Value *O1, const Value *O2) { 441 442 const Function *F1 = getParent(O1); 443 const Function *F2 = getParent(O2); 444 445 return !F1 || !F2 || F1 == F2; 446 } 447 #endif 448 449 namespace { 450 /// BasicAliasAnalysis - This is the primary alias analysis implementation. 451 struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis { 452 static char ID; // Class identification, replacement for typeinfo 453 BasicAliasAnalysis() : ImmutablePass(ID) { 454 initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry()); 455 } 456 457 void initializePass() override { 458 InitializeAliasAnalysis(this); 459 } 460 461 void getAnalysisUsage(AnalysisUsage &AU) const override { 462 AU.addRequired<AliasAnalysis>(); 463 AU.addRequired<TargetLibraryInfo>(); 464 } 465 466 AliasResult alias(const Location &LocA, const Location &LocB) override { 467 assert(AliasCache.empty() && "AliasCache must be cleared after use!"); 468 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 469 "BasicAliasAnalysis doesn't support interprocedural queries."); 470 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.TBAATag, 471 LocB.Ptr, LocB.Size, LocB.TBAATag); 472 // AliasCache rarely has more than 1 or 2 elements, always use 473 // shrink_and_clear so it quickly returns to the inline capacity of the 474 // SmallDenseMap if it ever grows larger. 475 // FIXME: This should really be shrink_to_inline_capacity_and_clear(). 476 AliasCache.shrink_and_clear(); 477 VisitedPhiBBs.clear(); 478 return Alias; 479 } 480 481 ModRefResult getModRefInfo(ImmutableCallSite CS, 482 const Location &Loc) override; 483 484 ModRefResult getModRefInfo(ImmutableCallSite CS1, 485 ImmutableCallSite CS2) override { 486 // The AliasAnalysis base class has some smarts, lets use them. 487 return AliasAnalysis::getModRefInfo(CS1, CS2); 488 } 489 490 /// pointsToConstantMemory - Chase pointers until we find a (constant 491 /// global) or not. 492 bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override; 493 494 /// getModRefBehavior - Return the behavior when calling the given 495 /// call site. 496 ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override; 497 498 /// getModRefBehavior - Return the behavior when calling the given function. 499 /// For use when the call site is not known. 500 ModRefBehavior getModRefBehavior(const Function *F) override; 501 502 /// getAdjustedAnalysisPointer - This method is used when a pass implements 503 /// an analysis interface through multiple inheritance. If needed, it 504 /// should override this to adjust the this pointer as needed for the 505 /// specified pass info. 506 void *getAdjustedAnalysisPointer(const void *ID) override { 507 if (ID == &AliasAnalysis::ID) 508 return (AliasAnalysis*)this; 509 return this; 510 } 511 512 private: 513 // AliasCache - Track alias queries to guard against recursion. 514 typedef std::pair<Location, Location> LocPair; 515 typedef SmallDenseMap<LocPair, AliasResult, 8> AliasCacheTy; 516 AliasCacheTy AliasCache; 517 518 /// \brief Track phi nodes we have visited. When interpret "Value" pointer 519 /// equality as value equality we need to make sure that the "Value" is not 520 /// part of a cycle. Otherwise, two uses could come from different 521 /// "iterations" of a cycle and see different values for the same "Value" 522 /// pointer. 523 /// The following example shows the problem: 524 /// %p = phi(%alloca1, %addr2) 525 /// %l = load %ptr 526 /// %addr1 = gep, %alloca2, 0, %l 527 /// %addr2 = gep %alloca2, 0, (%l + 1) 528 /// alias(%p, %addr1) -> MayAlias ! 529 /// store %l, ... 530 SmallPtrSet<const BasicBlock*, 8> VisitedPhiBBs; 531 532 // Visited - Track instructions visited by pointsToConstantMemory. 533 SmallPtrSet<const Value*, 16> Visited; 534 535 /// \brief Check whether two Values can be considered equivalent. 536 /// 537 /// In addition to pointer equivalence of \p V1 and \p V2 this checks 538 /// whether they can not be part of a cycle in the value graph by looking at 539 /// all visited phi nodes an making sure that the phis cannot reach the 540 /// value. We have to do this because we are looking through phi nodes (That 541 /// is we say noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 542 bool isValueEqualInPotentialCycles(const Value *V1, const Value *V2); 543 544 /// \brief Dest and Src are the variable indices from two decomposed 545 /// GetElementPtr instructions GEP1 and GEP2 which have common base 546 /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic 547 /// difference between the two pointers. 548 void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest, 549 const SmallVectorImpl<VariableGEPIndex> &Src); 550 551 // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP 552 // instruction against another. 553 AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size, 554 const MDNode *V1TBAAInfo, 555 const Value *V2, uint64_t V2Size, 556 const MDNode *V2TBAAInfo, 557 const Value *UnderlyingV1, const Value *UnderlyingV2); 558 559 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI 560 // instruction against another. 561 AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize, 562 const MDNode *PNTBAAInfo, 563 const Value *V2, uint64_t V2Size, 564 const MDNode *V2TBAAInfo); 565 566 /// aliasSelect - Disambiguate a Select instruction against another value. 567 AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize, 568 const MDNode *SITBAAInfo, 569 const Value *V2, uint64_t V2Size, 570 const MDNode *V2TBAAInfo); 571 572 AliasResult aliasCheck(const Value *V1, uint64_t V1Size, 573 const MDNode *V1TBAATag, 574 const Value *V2, uint64_t V2Size, 575 const MDNode *V2TBAATag); 576 }; 577 } // End of anonymous namespace 578 579 // Register this pass... 580 char BasicAliasAnalysis::ID = 0; 581 INITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa", 582 "Basic Alias Analysis (stateless AA impl)", 583 false, true, false) 584 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 585 INITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa", 586 "Basic Alias Analysis (stateless AA impl)", 587 false, true, false) 588 589 590 ImmutablePass *llvm::createBasicAliasAnalysisPass() { 591 return new BasicAliasAnalysis(); 592 } 593 594 /// pointsToConstantMemory - Returns whether the given pointer value 595 /// points to memory that is local to the function, with global constants being 596 /// considered local to all functions. 597 bool 598 BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) { 599 assert(Visited.empty() && "Visited must be cleared after use!"); 600 601 unsigned MaxLookup = 8; 602 SmallVector<const Value *, 16> Worklist; 603 Worklist.push_back(Loc.Ptr); 604 do { 605 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL); 606 if (!Visited.insert(V)) { 607 Visited.clear(); 608 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 609 } 610 611 // An alloca instruction defines local memory. 612 if (OrLocal && isa<AllocaInst>(V)) 613 continue; 614 615 // A global constant counts as local memory for our purposes. 616 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 617 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 618 // global to be marked constant in some modules and non-constant in 619 // others. GV may even be a declaration, not a definition. 620 if (!GV->isConstant()) { 621 Visited.clear(); 622 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 623 } 624 continue; 625 } 626 627 // If both select values point to local memory, then so does the select. 628 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 629 Worklist.push_back(SI->getTrueValue()); 630 Worklist.push_back(SI->getFalseValue()); 631 continue; 632 } 633 634 // If all values incoming to a phi node point to local memory, then so does 635 // the phi. 636 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 637 // Don't bother inspecting phi nodes with many operands. 638 if (PN->getNumIncomingValues() > MaxLookup) { 639 Visited.clear(); 640 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 641 } 642 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 643 Worklist.push_back(PN->getIncomingValue(i)); 644 continue; 645 } 646 647 // Otherwise be conservative. 648 Visited.clear(); 649 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 650 651 } while (!Worklist.empty() && --MaxLookup); 652 653 Visited.clear(); 654 return Worklist.empty(); 655 } 656 657 /// getModRefBehavior - Return the behavior when calling the given call site. 658 AliasAnalysis::ModRefBehavior 659 BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) { 660 if (CS.doesNotAccessMemory()) 661 // Can't do better than this. 662 return DoesNotAccessMemory; 663 664 ModRefBehavior Min = UnknownModRefBehavior; 665 666 // If the callsite knows it only reads memory, don't return worse 667 // than that. 668 if (CS.onlyReadsMemory()) 669 Min = OnlyReadsMemory; 670 671 // The AliasAnalysis base class has some smarts, lets use them. 672 return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min); 673 } 674 675 /// getModRefBehavior - Return the behavior when calling the given function. 676 /// For use when the call site is not known. 677 AliasAnalysis::ModRefBehavior 678 BasicAliasAnalysis::getModRefBehavior(const Function *F) { 679 // If the function declares it doesn't access memory, we can't do better. 680 if (F->doesNotAccessMemory()) 681 return DoesNotAccessMemory; 682 683 // For intrinsics, we can check the table. 684 if (unsigned iid = F->getIntrinsicID()) { 685 #define GET_INTRINSIC_MODREF_BEHAVIOR 686 #include "llvm/IR/Intrinsics.gen" 687 #undef GET_INTRINSIC_MODREF_BEHAVIOR 688 } 689 690 ModRefBehavior Min = UnknownModRefBehavior; 691 692 // If the function declares it only reads memory, go with that. 693 if (F->onlyReadsMemory()) 694 Min = OnlyReadsMemory; 695 696 // Otherwise be conservative. 697 return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min); 698 } 699 700 /// getModRefInfo - Check to see if the specified callsite can clobber the 701 /// specified memory object. Since we only look at local properties of this 702 /// function, we really can't say much about this query. We do, however, use 703 /// simple "address taken" analysis on local objects. 704 AliasAnalysis::ModRefResult 705 BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS, 706 const Location &Loc) { 707 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && 708 "AliasAnalysis query involving multiple functions!"); 709 710 const Value *Object = GetUnderlyingObject(Loc.Ptr, DL); 711 712 // If this is a tail call and Loc.Ptr points to a stack location, we know that 713 // the tail call cannot access or modify the local stack. 714 // We cannot exclude byval arguments here; these belong to the caller of 715 // the current function not to the current function, and a tail callee 716 // may reference them. 717 if (isa<AllocaInst>(Object)) 718 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) 719 if (CI->isTailCall()) 720 return NoModRef; 721 722 // If the pointer is to a locally allocated object that does not escape, 723 // then the call can not mod/ref the pointer unless the call takes the pointer 724 // as an argument, and itself doesn't capture it. 725 if (!isa<Constant>(Object) && CS.getInstruction() != Object && 726 isNonEscapingLocalObject(Object)) { 727 bool PassedAsArg = false; 728 unsigned ArgNo = 0; 729 for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end(); 730 CI != CE; ++CI, ++ArgNo) { 731 // Only look at the no-capture or byval pointer arguments. If this 732 // pointer were passed to arguments that were neither of these, then it 733 // couldn't be no-capture. 734 if (!(*CI)->getType()->isPointerTy() || 735 (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo))) 736 continue; 737 738 // If this is a no-capture pointer argument, see if we can tell that it 739 // is impossible to alias the pointer we're checking. If not, we have to 740 // assume that the call could touch the pointer, even though it doesn't 741 // escape. 742 if (!isNoAlias(Location(*CI), Location(Object))) { 743 PassedAsArg = true; 744 break; 745 } 746 } 747 748 if (!PassedAsArg) 749 return NoModRef; 750 } 751 752 const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>(); 753 ModRefResult Min = ModRef; 754 755 // Finally, handle specific knowledge of intrinsics. 756 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 757 if (II != nullptr) 758 switch (II->getIntrinsicID()) { 759 default: break; 760 case Intrinsic::memcpy: 761 case Intrinsic::memmove: { 762 uint64_t Len = UnknownSize; 763 if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) 764 Len = LenCI->getZExtValue(); 765 Value *Dest = II->getArgOperand(0); 766 Value *Src = II->getArgOperand(1); 767 // If it can't overlap the source dest, then it doesn't modref the loc. 768 if (isNoAlias(Location(Dest, Len), Loc)) { 769 if (isNoAlias(Location(Src, Len), Loc)) 770 return NoModRef; 771 // If it can't overlap the dest, then worst case it reads the loc. 772 Min = Ref; 773 } else if (isNoAlias(Location(Src, Len), Loc)) { 774 // If it can't overlap the source, then worst case it mutates the loc. 775 Min = Mod; 776 } 777 break; 778 } 779 case Intrinsic::memset: 780 // Since memset is 'accesses arguments' only, the AliasAnalysis base class 781 // will handle it for the variable length case. 782 if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) { 783 uint64_t Len = LenCI->getZExtValue(); 784 Value *Dest = II->getArgOperand(0); 785 if (isNoAlias(Location(Dest, Len), Loc)) 786 return NoModRef; 787 } 788 // We know that memset doesn't load anything. 789 Min = Mod; 790 break; 791 case Intrinsic::lifetime_start: 792 case Intrinsic::lifetime_end: 793 case Intrinsic::invariant_start: { 794 uint64_t PtrSize = 795 cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(); 796 if (isNoAlias(Location(II->getArgOperand(1), 797 PtrSize, 798 II->getMetadata(LLVMContext::MD_tbaa)), 799 Loc)) 800 return NoModRef; 801 break; 802 } 803 case Intrinsic::invariant_end: { 804 uint64_t PtrSize = 805 cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(); 806 if (isNoAlias(Location(II->getArgOperand(2), 807 PtrSize, 808 II->getMetadata(LLVMContext::MD_tbaa)), 809 Loc)) 810 return NoModRef; 811 break; 812 } 813 case Intrinsic::arm_neon_vld1: { 814 // LLVM's vld1 and vst1 intrinsics currently only support a single 815 // vector register. 816 uint64_t Size = 817 DL ? DL->getTypeStoreSize(II->getType()) : UnknownSize; 818 if (isNoAlias(Location(II->getArgOperand(0), Size, 819 II->getMetadata(LLVMContext::MD_tbaa)), 820 Loc)) 821 return NoModRef; 822 break; 823 } 824 case Intrinsic::arm_neon_vst1: { 825 uint64_t Size = 826 DL ? DL->getTypeStoreSize(II->getArgOperand(1)->getType()) : UnknownSize; 827 if (isNoAlias(Location(II->getArgOperand(0), Size, 828 II->getMetadata(LLVMContext::MD_tbaa)), 829 Loc)) 830 return NoModRef; 831 break; 832 } 833 } 834 835 // We can bound the aliasing properties of memset_pattern16 just as we can 836 // for memcpy/memset. This is particularly important because the 837 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 838 // whenever possible. 839 else if (TLI.has(LibFunc::memset_pattern16) && 840 CS.getCalledFunction() && 841 CS.getCalledFunction()->getName() == "memset_pattern16") { 842 const Function *MS = CS.getCalledFunction(); 843 FunctionType *MemsetType = MS->getFunctionType(); 844 if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 && 845 isa<PointerType>(MemsetType->getParamType(0)) && 846 isa<PointerType>(MemsetType->getParamType(1)) && 847 isa<IntegerType>(MemsetType->getParamType(2))) { 848 uint64_t Len = UnknownSize; 849 if (const ConstantInt *LenCI = dyn_cast<ConstantInt>(CS.getArgument(2))) 850 Len = LenCI->getZExtValue(); 851 const Value *Dest = CS.getArgument(0); 852 const Value *Src = CS.getArgument(1); 853 // If it can't overlap the source dest, then it doesn't modref the loc. 854 if (isNoAlias(Location(Dest, Len), Loc)) { 855 // Always reads 16 bytes of the source. 856 if (isNoAlias(Location(Src, 16), Loc)) 857 return NoModRef; 858 // If it can't overlap the dest, then worst case it reads the loc. 859 Min = Ref; 860 // Always reads 16 bytes of the source. 861 } else if (isNoAlias(Location(Src, 16), Loc)) { 862 // If it can't overlap the source, then worst case it mutates the loc. 863 Min = Mod; 864 } 865 } 866 } 867 868 // The AliasAnalysis base class has some smarts, lets use them. 869 return ModRefResult(AliasAnalysis::getModRefInfo(CS, Loc) & Min); 870 } 871 872 /// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction 873 /// against another pointer. We know that V1 is a GEP, but we don't know 874 /// anything about V2. UnderlyingV1 is GetUnderlyingObject(GEP1, DL), 875 /// UnderlyingV2 is the same for V2. 876 /// 877 AliasAnalysis::AliasResult 878 BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, 879 const MDNode *V1TBAAInfo, 880 const Value *V2, uint64_t V2Size, 881 const MDNode *V2TBAAInfo, 882 const Value *UnderlyingV1, 883 const Value *UnderlyingV2) { 884 int64_t GEP1BaseOffset; 885 bool GEP1MaxLookupReached; 886 SmallVector<VariableGEPIndex, 4> GEP1VariableIndices; 887 888 // If we have two gep instructions with must-alias or not-alias'ing base 889 // pointers, figure out if the indexes to the GEP tell us anything about the 890 // derived pointer. 891 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 892 // Do the base pointers alias? 893 AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, nullptr, 894 UnderlyingV2, UnknownSize, nullptr); 895 896 // Check for geps of non-aliasing underlying pointers where the offsets are 897 // identical. 898 if ((BaseAlias == MayAlias) && V1Size == V2Size) { 899 // Do the base pointers alias assuming type and size. 900 AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, 901 V1TBAAInfo, UnderlyingV2, 902 V2Size, V2TBAAInfo); 903 if (PreciseBaseAlias == NoAlias) { 904 // See if the computed offset from the common pointer tells us about the 905 // relation of the resulting pointer. 906 int64_t GEP2BaseOffset; 907 bool GEP2MaxLookupReached; 908 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 909 const Value *GEP2BasePtr = 910 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, 911 GEP2MaxLookupReached, DL); 912 const Value *GEP1BasePtr = 913 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 914 GEP1MaxLookupReached, DL); 915 // DecomposeGEPExpression and GetUnderlyingObject should return the 916 // same result except when DecomposeGEPExpression has no DataLayout. 917 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 918 assert(!DL && 919 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 920 return MayAlias; 921 } 922 // If the max search depth is reached the result is undefined 923 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 924 return MayAlias; 925 926 // Same offsets. 927 if (GEP1BaseOffset == GEP2BaseOffset && 928 GEP1VariableIndices == GEP2VariableIndices) 929 return NoAlias; 930 GEP1VariableIndices.clear(); 931 } 932 } 933 934 // If we get a No or May, then return it immediately, no amount of analysis 935 // will improve this situation. 936 if (BaseAlias != MustAlias) return BaseAlias; 937 938 // Otherwise, we have a MustAlias. Since the base pointers alias each other 939 // exactly, see if the computed offset from the common pointer tells us 940 // about the relation of the resulting pointer. 941 const Value *GEP1BasePtr = 942 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 943 GEP1MaxLookupReached, DL); 944 945 int64_t GEP2BaseOffset; 946 bool GEP2MaxLookupReached; 947 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 948 const Value *GEP2BasePtr = 949 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, 950 GEP2MaxLookupReached, DL); 951 952 // DecomposeGEPExpression and GetUnderlyingObject should return the 953 // same result except when DecomposeGEPExpression has no DataLayout. 954 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 955 assert(!DL && 956 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 957 return MayAlias; 958 } 959 // If the max search depth is reached the result is undefined 960 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 961 return MayAlias; 962 963 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 964 // symbolic difference. 965 GEP1BaseOffset -= GEP2BaseOffset; 966 GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices); 967 968 } else { 969 // Check to see if these two pointers are related by the getelementptr 970 // instruction. If one pointer is a GEP with a non-zero index of the other 971 // pointer, we know they cannot alias. 972 973 // If both accesses are unknown size, we can't do anything useful here. 974 if (V1Size == UnknownSize && V2Size == UnknownSize) 975 return MayAlias; 976 977 AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, nullptr, 978 V2, V2Size, V2TBAAInfo); 979 if (R != MustAlias) 980 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 981 // If V2 is known not to alias GEP base pointer, then the two values 982 // cannot alias per GEP semantics: "A pointer value formed from a 983 // getelementptr instruction is associated with the addresses associated 984 // with the first operand of the getelementptr". 985 return R; 986 987 const Value *GEP1BasePtr = 988 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 989 GEP1MaxLookupReached, DL); 990 991 // DecomposeGEPExpression and GetUnderlyingObject should return the 992 // same result except when DecomposeGEPExpression has no DataLayout. 993 if (GEP1BasePtr != UnderlyingV1) { 994 assert(!DL && 995 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 996 return MayAlias; 997 } 998 // If the max search depth is reached the result is undefined 999 if (GEP1MaxLookupReached) 1000 return MayAlias; 1001 } 1002 1003 // In the two GEP Case, if there is no difference in the offsets of the 1004 // computed pointers, the resultant pointers are a must alias. This 1005 // hapens when we have two lexically identical GEP's (for example). 1006 // 1007 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 1008 // must aliases the GEP, the end result is a must alias also. 1009 if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty()) 1010 return MustAlias; 1011 1012 // If there is a constant difference between the pointers, but the difference 1013 // is less than the size of the associated memory object, then we know 1014 // that the objects are partially overlapping. If the difference is 1015 // greater, we know they do not overlap. 1016 if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) { 1017 if (GEP1BaseOffset >= 0) { 1018 if (V2Size != UnknownSize) { 1019 if ((uint64_t)GEP1BaseOffset < V2Size) 1020 return PartialAlias; 1021 return NoAlias; 1022 } 1023 } else { 1024 // We have the situation where: 1025 // + + 1026 // | BaseOffset | 1027 // ---------------->| 1028 // |-->V1Size |-------> V2Size 1029 // GEP1 V2 1030 // We need to know that V2Size is not unknown, otherwise we might have 1031 // stripped a gep with negative index ('gep <ptr>, -1, ...). 1032 if (V1Size != UnknownSize && V2Size != UnknownSize) { 1033 if (-(uint64_t)GEP1BaseOffset < V1Size) 1034 return PartialAlias; 1035 return NoAlias; 1036 } 1037 } 1038 } 1039 1040 // Try to distinguish something like &A[i][1] against &A[42][0]. 1041 // Grab the least significant bit set in any of the scales. 1042 if (!GEP1VariableIndices.empty()) { 1043 uint64_t Modulo = 0; 1044 for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) 1045 Modulo |= (uint64_t)GEP1VariableIndices[i].Scale; 1046 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1047 1048 // We can compute the difference between the two addresses 1049 // mod Modulo. Check whether that difference guarantees that the 1050 // two locations do not alias. 1051 uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1); 1052 if (V1Size != UnknownSize && V2Size != UnknownSize && 1053 ModOffset >= V2Size && V1Size <= Modulo - ModOffset) 1054 return NoAlias; 1055 } 1056 1057 // Statically, we can see that the base objects are the same, but the 1058 // pointers have dynamic offsets which we can't resolve. And none of our 1059 // little tricks above worked. 1060 // 1061 // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the 1062 // practical effect of this is protecting TBAA in the case of dynamic 1063 // indices into arrays of unions or malloc'd memory. 1064 return PartialAlias; 1065 } 1066 1067 static AliasAnalysis::AliasResult 1068 MergeAliasResults(AliasAnalysis::AliasResult A, AliasAnalysis::AliasResult B) { 1069 // If the results agree, take it. 1070 if (A == B) 1071 return A; 1072 // A mix of PartialAlias and MustAlias is PartialAlias. 1073 if ((A == AliasAnalysis::PartialAlias && B == AliasAnalysis::MustAlias) || 1074 (B == AliasAnalysis::PartialAlias && A == AliasAnalysis::MustAlias)) 1075 return AliasAnalysis::PartialAlias; 1076 // Otherwise, we don't know anything. 1077 return AliasAnalysis::MayAlias; 1078 } 1079 1080 /// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select 1081 /// instruction against another. 1082 AliasAnalysis::AliasResult 1083 BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize, 1084 const MDNode *SITBAAInfo, 1085 const Value *V2, uint64_t V2Size, 1086 const MDNode *V2TBAAInfo) { 1087 // If the values are Selects with the same condition, we can do a more precise 1088 // check: just check for aliases between the values on corresponding arms. 1089 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1090 if (SI->getCondition() == SI2->getCondition()) { 1091 AliasResult Alias = 1092 aliasCheck(SI->getTrueValue(), SISize, SITBAAInfo, 1093 SI2->getTrueValue(), V2Size, V2TBAAInfo); 1094 if (Alias == MayAlias) 1095 return MayAlias; 1096 AliasResult ThisAlias = 1097 aliasCheck(SI->getFalseValue(), SISize, SITBAAInfo, 1098 SI2->getFalseValue(), V2Size, V2TBAAInfo); 1099 return MergeAliasResults(ThisAlias, Alias); 1100 } 1101 1102 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1103 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1104 AliasResult Alias = 1105 aliasCheck(V2, V2Size, V2TBAAInfo, SI->getTrueValue(), SISize, SITBAAInfo); 1106 if (Alias == MayAlias) 1107 return MayAlias; 1108 1109 AliasResult ThisAlias = 1110 aliasCheck(V2, V2Size, V2TBAAInfo, SI->getFalseValue(), SISize, SITBAAInfo); 1111 return MergeAliasResults(ThisAlias, Alias); 1112 } 1113 1114 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction 1115 // against another. 1116 AliasAnalysis::AliasResult 1117 BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize, 1118 const MDNode *PNTBAAInfo, 1119 const Value *V2, uint64_t V2Size, 1120 const MDNode *V2TBAAInfo) { 1121 // Track phi nodes we have visited. We use this information when we determine 1122 // value equivalence. 1123 VisitedPhiBBs.insert(PN->getParent()); 1124 1125 // If the values are PHIs in the same block, we can do a more precise 1126 // as well as efficient check: just check for aliases between the values 1127 // on corresponding edges. 1128 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1129 if (PN2->getParent() == PN->getParent()) { 1130 LocPair Locs(Location(PN, PNSize, PNTBAAInfo), 1131 Location(V2, V2Size, V2TBAAInfo)); 1132 if (PN > V2) 1133 std::swap(Locs.first, Locs.second); 1134 // Analyse the PHIs' inputs under the assumption that the PHIs are 1135 // NoAlias. 1136 // If the PHIs are May/MustAlias there must be (recursively) an input 1137 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1138 // there must be an operation on the PHIs within the PHIs' value cycle 1139 // that causes a MayAlias. 1140 // Pretend the phis do not alias. 1141 AliasResult Alias = NoAlias; 1142 assert(AliasCache.count(Locs) && 1143 "There must exist an entry for the phi node"); 1144 AliasResult OrigAliasResult = AliasCache[Locs]; 1145 AliasCache[Locs] = NoAlias; 1146 1147 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1148 AliasResult ThisAlias = 1149 aliasCheck(PN->getIncomingValue(i), PNSize, PNTBAAInfo, 1150 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1151 V2Size, V2TBAAInfo); 1152 Alias = MergeAliasResults(ThisAlias, Alias); 1153 if (Alias == MayAlias) 1154 break; 1155 } 1156 1157 // Reset if speculation failed. 1158 if (Alias != NoAlias) 1159 AliasCache[Locs] = OrigAliasResult; 1160 1161 return Alias; 1162 } 1163 1164 SmallPtrSet<Value*, 4> UniqueSrc; 1165 SmallVector<Value*, 4> V1Srcs; 1166 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1167 Value *PV1 = PN->getIncomingValue(i); 1168 if (isa<PHINode>(PV1)) 1169 // If any of the source itself is a PHI, return MayAlias conservatively 1170 // to avoid compile time explosion. The worst possible case is if both 1171 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1172 // and 'n' are the number of PHI sources. 1173 return MayAlias; 1174 if (UniqueSrc.insert(PV1)) 1175 V1Srcs.push_back(PV1); 1176 } 1177 1178 AliasResult Alias = aliasCheck(V2, V2Size, V2TBAAInfo, 1179 V1Srcs[0], PNSize, PNTBAAInfo); 1180 // Early exit if the check of the first PHI source against V2 is MayAlias. 1181 // Other results are not possible. 1182 if (Alias == MayAlias) 1183 return MayAlias; 1184 1185 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1186 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1187 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1188 Value *V = V1Srcs[i]; 1189 1190 AliasResult ThisAlias = aliasCheck(V2, V2Size, V2TBAAInfo, 1191 V, PNSize, PNTBAAInfo); 1192 Alias = MergeAliasResults(ThisAlias, Alias); 1193 if (Alias == MayAlias) 1194 break; 1195 } 1196 1197 return Alias; 1198 } 1199 1200 // aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases, 1201 // such as array references. 1202 // 1203 AliasAnalysis::AliasResult 1204 BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size, 1205 const MDNode *V1TBAAInfo, 1206 const Value *V2, uint64_t V2Size, 1207 const MDNode *V2TBAAInfo) { 1208 // If either of the memory references is empty, it doesn't matter what the 1209 // pointer values are. 1210 if (V1Size == 0 || V2Size == 0) 1211 return NoAlias; 1212 1213 // Strip off any casts if they exist. 1214 V1 = V1->stripPointerCasts(); 1215 V2 = V2->stripPointerCasts(); 1216 1217 // Are we checking for alias of the same value? 1218 // Because we look 'through' phi nodes we could look at "Value" pointers from 1219 // different iterations. We must therefore make sure that this is not the 1220 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1221 // happen by looking at the visited phi nodes and making sure they cannot 1222 // reach the value. 1223 if (isValueEqualInPotentialCycles(V1, V2)) 1224 return MustAlias; 1225 1226 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1227 return NoAlias; // Scalars cannot alias each other 1228 1229 // Figure out what objects these things are pointing to if we can. 1230 const Value *O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth); 1231 const Value *O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth); 1232 1233 // Null values in the default address space don't point to any object, so they 1234 // don't alias any other pointer. 1235 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1236 if (CPN->getType()->getAddressSpace() == 0) 1237 return NoAlias; 1238 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1239 if (CPN->getType()->getAddressSpace() == 0) 1240 return NoAlias; 1241 1242 if (O1 != O2) { 1243 // If V1/V2 point to two different objects we know that we have no alias. 1244 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1245 return NoAlias; 1246 1247 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1248 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1249 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1250 return NoAlias; 1251 1252 // Function arguments can't alias with things that are known to be 1253 // unambigously identified at the function level. 1254 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1255 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1256 return NoAlias; 1257 1258 // Most objects can't alias null. 1259 if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) || 1260 (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2))) 1261 return NoAlias; 1262 1263 // If one pointer is the result of a call/invoke or load and the other is a 1264 // non-escaping local object within the same function, then we know the 1265 // object couldn't escape to a point where the call could return it. 1266 // 1267 // Note that if the pointers are in different functions, there are a 1268 // variety of complications. A call with a nocapture argument may still 1269 // temporary store the nocapture argument's value in a temporary memory 1270 // location if that memory location doesn't escape. Or it may pass a 1271 // nocapture value to other functions as long as they don't capture it. 1272 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) 1273 return NoAlias; 1274 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) 1275 return NoAlias; 1276 } 1277 1278 // If the size of one access is larger than the entire object on the other 1279 // side, then we know such behavior is undefined and can assume no alias. 1280 if (DL) 1281 if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *DL, *TLI)) || 1282 (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *DL, *TLI))) 1283 return NoAlias; 1284 1285 // Check the cache before climbing up use-def chains. This also terminates 1286 // otherwise infinitely recursive queries. 1287 LocPair Locs(Location(V1, V1Size, V1TBAAInfo), 1288 Location(V2, V2Size, V2TBAAInfo)); 1289 if (V1 > V2) 1290 std::swap(Locs.first, Locs.second); 1291 std::pair<AliasCacheTy::iterator, bool> Pair = 1292 AliasCache.insert(std::make_pair(Locs, MayAlias)); 1293 if (!Pair.second) 1294 return Pair.first->second; 1295 1296 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1297 // GEP can't simplify, we don't even look at the PHI cases. 1298 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1299 std::swap(V1, V2); 1300 std::swap(V1Size, V2Size); 1301 std::swap(O1, O2); 1302 std::swap(V1TBAAInfo, V2TBAAInfo); 1303 } 1304 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1305 AliasResult Result = aliasGEP(GV1, V1Size, V1TBAAInfo, V2, V2Size, V2TBAAInfo, O1, O2); 1306 if (Result != MayAlias) return AliasCache[Locs] = Result; 1307 } 1308 1309 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1310 std::swap(V1, V2); 1311 std::swap(V1Size, V2Size); 1312 std::swap(V1TBAAInfo, V2TBAAInfo); 1313 } 1314 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1315 AliasResult Result = aliasPHI(PN, V1Size, V1TBAAInfo, 1316 V2, V2Size, V2TBAAInfo); 1317 if (Result != MayAlias) return AliasCache[Locs] = Result; 1318 } 1319 1320 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1321 std::swap(V1, V2); 1322 std::swap(V1Size, V2Size); 1323 std::swap(V1TBAAInfo, V2TBAAInfo); 1324 } 1325 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1326 AliasResult Result = aliasSelect(S1, V1Size, V1TBAAInfo, 1327 V2, V2Size, V2TBAAInfo); 1328 if (Result != MayAlias) return AliasCache[Locs] = Result; 1329 } 1330 1331 // If both pointers are pointing into the same object and one of them 1332 // accesses is accessing the entire object, then the accesses must 1333 // overlap in some way. 1334 if (DL && O1 == O2) 1335 if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *DL, *TLI)) || 1336 (V2Size != UnknownSize && isObjectSize(O2, V2Size, *DL, *TLI))) 1337 return AliasCache[Locs] = PartialAlias; 1338 1339 AliasResult Result = 1340 AliasAnalysis::alias(Location(V1, V1Size, V1TBAAInfo), 1341 Location(V2, V2Size, V2TBAAInfo)); 1342 return AliasCache[Locs] = Result; 1343 } 1344 1345 bool BasicAliasAnalysis::isValueEqualInPotentialCycles(const Value *V, 1346 const Value *V2) { 1347 if (V != V2) 1348 return false; 1349 1350 const Instruction *Inst = dyn_cast<Instruction>(V); 1351 if (!Inst) 1352 return true; 1353 1354 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1355 return false; 1356 1357 // Use dominance or loop info if available. 1358 DominatorTreeWrapperPass *DTWP = 1359 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1360 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 1361 LoopInfo *LI = getAnalysisIfAvailable<LoopInfo>(); 1362 1363 // Make sure that the visited phis cannot reach the Value. This ensures that 1364 // the Values cannot come from different iterations of a potential cycle the 1365 // phi nodes could be involved in. 1366 for (SmallPtrSet<const BasicBlock *, 8>::iterator PI = VisitedPhiBBs.begin(), 1367 PE = VisitedPhiBBs.end(); 1368 PI != PE; ++PI) 1369 if (isPotentiallyReachable((*PI)->begin(), Inst, DT, LI)) 1370 return false; 1371 1372 return true; 1373 } 1374 1375 /// GetIndexDifference - Dest and Src are the variable indices from two 1376 /// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base 1377 /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic 1378 /// difference between the two pointers. 1379 void BasicAliasAnalysis::GetIndexDifference( 1380 SmallVectorImpl<VariableGEPIndex> &Dest, 1381 const SmallVectorImpl<VariableGEPIndex> &Src) { 1382 if (Src.empty()) 1383 return; 1384 1385 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1386 const Value *V = Src[i].V; 1387 ExtensionKind Extension = Src[i].Extension; 1388 int64_t Scale = Src[i].Scale; 1389 1390 // Find V in Dest. This is N^2, but pointer indices almost never have more 1391 // than a few variable indexes. 1392 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1393 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1394 Dest[j].Extension != Extension) 1395 continue; 1396 1397 // If we found it, subtract off Scale V's from the entry in Dest. If it 1398 // goes to zero, remove the entry. 1399 if (Dest[j].Scale != Scale) 1400 Dest[j].Scale -= Scale; 1401 else 1402 Dest.erase(Dest.begin() + j); 1403 Scale = 0; 1404 break; 1405 } 1406 1407 // If we didn't consume this entry, add it to the end of the Dest list. 1408 if (Scale) { 1409 VariableGEPIndex Entry = { V, Extension, -Scale }; 1410 Dest.push_back(Entry); 1411 } 1412 } 1413 } 1414