1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the primary stateless implementation of the 10 // Alias Analysis interface that implements identities (two different 11 // globals cannot alias, etc), but does no stateful analysis. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/BasicAliasAnalysis.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/Analysis/CaptureTracking.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/PhiValues.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/Argument.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/GetElementPtrTypeIterator.h" 40 #include "llvm/IR/GlobalAlias.h" 41 #include "llvm/IR/GlobalVariable.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/Operator.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/User.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/InitializePasses.h" 53 #include "llvm/Pass.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Compiler.h" 57 #include "llvm/Support/KnownBits.h" 58 #include <cassert> 59 #include <cstdint> 60 #include <cstdlib> 61 #include <utility> 62 63 #define DEBUG_TYPE "basicaa" 64 65 using namespace llvm; 66 67 /// Enable analysis of recursive PHI nodes. 68 static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden, 69 cl::init(true)); 70 71 /// By default, even on 32-bit architectures we use 64-bit integers for 72 /// calculations. This will allow us to more-aggressively decompose indexing 73 /// expressions calculated using i64 values (e.g., long long in C) which is 74 /// common enough to worry about. 75 static cl::opt<bool> ForceAtLeast64Bits("basic-aa-force-at-least-64b", 76 cl::Hidden, cl::init(true)); 77 static cl::opt<bool> DoubleCalcBits("basic-aa-double-calc-bits", 78 cl::Hidden, cl::init(false)); 79 80 /// SearchLimitReached / SearchTimes shows how often the limit of 81 /// to decompose GEPs is reached. It will affect the precision 82 /// of basic alias analysis. 83 STATISTIC(SearchLimitReached, "Number of times the limit to " 84 "decompose GEPs is reached"); 85 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 86 87 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 88 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be 89 /// careful with value equivalence. We use reachability to make sure a value 90 /// cannot be involved in a cycle. 91 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 92 93 // The max limit of the search depth in DecomposeGEPExpression() and 94 // getUnderlyingObject(), both functions need to use the same search 95 // depth otherwise the algorithm in aliasGEP will assert. 96 static const unsigned MaxLookupSearchDepth = 6; 97 98 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA, 99 FunctionAnalysisManager::Invalidator &Inv) { 100 // We don't care if this analysis itself is preserved, it has no state. But 101 // we need to check that the analyses it depends on have been. Note that we 102 // may be created without handles to some analyses and in that case don't 103 // depend on them. 104 if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) || 105 (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) || 106 (LI && Inv.invalidate<LoopAnalysis>(Fn, PA)) || 107 (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA))) 108 return true; 109 110 // Otherwise this analysis result remains valid. 111 return false; 112 } 113 114 //===----------------------------------------------------------------------===// 115 // Useful predicates 116 //===----------------------------------------------------------------------===// 117 118 /// Returns true if the pointer is one which would have been considered an 119 /// escape by isNonEscapingLocalObject. 120 static bool isEscapeSource(const Value *V) { 121 if (isa<CallBase>(V)) 122 return true; 123 124 if (isa<Argument>(V)) 125 return true; 126 127 // The load case works because isNonEscapingLocalObject considers all 128 // stores to be escapes (it passes true for the StoreCaptures argument 129 // to PointerMayBeCaptured). 130 if (isa<LoadInst>(V)) 131 return true; 132 133 return false; 134 } 135 136 /// Returns the size of the object specified by V or UnknownSize if unknown. 137 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 138 const TargetLibraryInfo &TLI, 139 bool NullIsValidLoc, 140 bool RoundToAlign = false) { 141 uint64_t Size; 142 ObjectSizeOpts Opts; 143 Opts.RoundToAlign = RoundToAlign; 144 Opts.NullIsUnknownSize = NullIsValidLoc; 145 if (getObjectSize(V, Size, DL, &TLI, Opts)) 146 return Size; 147 return MemoryLocation::UnknownSize; 148 } 149 150 /// Returns true if we can prove that the object specified by V is smaller than 151 /// Size. 152 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 153 const DataLayout &DL, 154 const TargetLibraryInfo &TLI, 155 bool NullIsValidLoc) { 156 // Note that the meanings of the "object" are slightly different in the 157 // following contexts: 158 // c1: llvm::getObjectSize() 159 // c2: llvm.objectsize() intrinsic 160 // c3: isObjectSmallerThan() 161 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 162 // refers to the "entire object". 163 // 164 // Consider this example: 165 // char *p = (char*)malloc(100) 166 // char *q = p+80; 167 // 168 // In the context of c1 and c2, the "object" pointed by q refers to the 169 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 170 // 171 // However, in the context of c3, the "object" refers to the chunk of memory 172 // being allocated. So, the "object" has 100 bytes, and q points to the middle 173 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 174 // parameter, before the llvm::getObjectSize() is called to get the size of 175 // entire object, we should: 176 // - either rewind the pointer q to the base-address of the object in 177 // question (in this case rewind to p), or 178 // - just give up. It is up to caller to make sure the pointer is pointing 179 // to the base address the object. 180 // 181 // We go for 2nd option for simplicity. 182 if (!isIdentifiedObject(V)) 183 return false; 184 185 // This function needs to use the aligned object size because we allow 186 // reads a bit past the end given sufficient alignment. 187 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc, 188 /*RoundToAlign*/ true); 189 190 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; 191 } 192 193 /// Return the minimal extent from \p V to the end of the underlying object, 194 /// assuming the result is used in an aliasing query. E.g., we do use the query 195 /// location size and the fact that null pointers cannot alias here. 196 static uint64_t getMinimalExtentFrom(const Value &V, 197 const LocationSize &LocSize, 198 const DataLayout &DL, 199 bool NullIsValidLoc) { 200 // If we have dereferenceability information we know a lower bound for the 201 // extent as accesses for a lower offset would be valid. We need to exclude 202 // the "or null" part if null is a valid pointer. 203 bool CanBeNull; 204 uint64_t DerefBytes = V.getPointerDereferenceableBytes(DL, CanBeNull); 205 DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes; 206 // If queried with a precise location size, we assume that location size to be 207 // accessed, thus valid. 208 if (LocSize.isPrecise()) 209 DerefBytes = std::max(DerefBytes, LocSize.getValue()); 210 return DerefBytes; 211 } 212 213 /// Returns true if we can prove that the object specified by V has size Size. 214 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, 215 const TargetLibraryInfo &TLI, bool NullIsValidLoc) { 216 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc); 217 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; 218 } 219 220 //===----------------------------------------------------------------------===// 221 // GetElementPtr Instruction Decomposition and Analysis 222 //===----------------------------------------------------------------------===// 223 224 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 225 /// B are constant integers. 226 /// 227 /// Returns the scale and offset values as APInts and return V as a Value*, and 228 /// return whether we looked through any sign or zero extends. The incoming 229 /// Value is known to have IntegerType, and it may already be sign or zero 230 /// extended. 231 /// 232 /// Note that this looks through extends, so the high bits may not be 233 /// represented in the result. 234 /*static*/ const Value *BasicAAResult::GetLinearExpression( 235 const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits, 236 unsigned &SExtBits, const DataLayout &DL, unsigned Depth, 237 AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) { 238 assert(V->getType()->isIntegerTy() && "Not an integer value"); 239 240 // Limit our recursion depth. 241 if (Depth == 6) { 242 Scale = 1; 243 Offset = 0; 244 return V; 245 } 246 247 if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) { 248 // If it's a constant, just convert it to an offset and remove the variable. 249 // If we've been called recursively, the Offset bit width will be greater 250 // than the constant's (the Offset's always as wide as the outermost call), 251 // so we'll zext here and process any extension in the isa<SExtInst> & 252 // isa<ZExtInst> cases below. 253 Offset += Const->getValue().zextOrSelf(Offset.getBitWidth()); 254 assert(Scale == 0 && "Constant values don't have a scale"); 255 return V; 256 } 257 258 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 259 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 260 // If we've been called recursively, then Offset and Scale will be wider 261 // than the BOp operands. We'll always zext it here as we'll process sign 262 // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases). 263 APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth()); 264 265 switch (BOp->getOpcode()) { 266 default: 267 // We don't understand this instruction, so we can't decompose it any 268 // further. 269 Scale = 1; 270 Offset = 0; 271 return V; 272 case Instruction::Or: 273 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 274 // analyze it. 275 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, 276 BOp, DT)) { 277 Scale = 1; 278 Offset = 0; 279 return V; 280 } 281 LLVM_FALLTHROUGH; 282 case Instruction::Add: 283 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 284 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 285 Offset += RHS; 286 break; 287 case Instruction::Sub: 288 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 289 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 290 Offset -= RHS; 291 break; 292 case Instruction::Mul: 293 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 294 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 295 Offset *= RHS; 296 Scale *= RHS; 297 break; 298 case Instruction::Shl: 299 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 300 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 301 302 // We're trying to linearize an expression of the kind: 303 // shl i8 -128, 36 304 // where the shift count exceeds the bitwidth of the type. 305 // We can't decompose this further (the expression would return 306 // a poison value). 307 if (Offset.getBitWidth() < RHS.getLimitedValue() || 308 Scale.getBitWidth() < RHS.getLimitedValue()) { 309 Scale = 1; 310 Offset = 0; 311 return V; 312 } 313 314 Offset <<= RHS.getLimitedValue(); 315 Scale <<= RHS.getLimitedValue(); 316 // the semantics of nsw and nuw for left shifts don't match those of 317 // multiplications, so we won't propagate them. 318 NSW = NUW = false; 319 return V; 320 } 321 322 if (isa<OverflowingBinaryOperator>(BOp)) { 323 NUW &= BOp->hasNoUnsignedWrap(); 324 NSW &= BOp->hasNoSignedWrap(); 325 } 326 return V; 327 } 328 } 329 330 // Since GEP indices are sign extended anyway, we don't care about the high 331 // bits of a sign or zero extended value - just scales and offsets. The 332 // extensions have to be consistent though. 333 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) { 334 Value *CastOp = cast<CastInst>(V)->getOperand(0); 335 unsigned NewWidth = V->getType()->getPrimitiveSizeInBits(); 336 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 337 unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits; 338 const Value *Result = 339 GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL, 340 Depth + 1, AC, DT, NSW, NUW); 341 342 // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this 343 // by just incrementing the number of bits we've extended by. 344 unsigned ExtendedBy = NewWidth - SmallWidth; 345 346 if (isa<SExtInst>(V) && ZExtBits == 0) { 347 // sext(sext(%x, a), b) == sext(%x, a + b) 348 349 if (NSW) { 350 // We haven't sign-wrapped, so it's valid to decompose sext(%x + c) 351 // into sext(%x) + sext(c). We'll sext the Offset ourselves: 352 unsigned OldWidth = Offset.getBitWidth(); 353 Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth); 354 } else { 355 // We may have signed-wrapped, so don't decompose sext(%x + c) into 356 // sext(%x) + sext(c) 357 Scale = 1; 358 Offset = 0; 359 Result = CastOp; 360 ZExtBits = OldZExtBits; 361 SExtBits = OldSExtBits; 362 } 363 SExtBits += ExtendedBy; 364 } else { 365 // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b) 366 367 if (!NUW) { 368 // We may have unsigned-wrapped, so don't decompose zext(%x + c) into 369 // zext(%x) + zext(c) 370 Scale = 1; 371 Offset = 0; 372 Result = CastOp; 373 ZExtBits = OldZExtBits; 374 SExtBits = OldSExtBits; 375 } 376 ZExtBits += ExtendedBy; 377 } 378 379 return Result; 380 } 381 382 Scale = 1; 383 Offset = 0; 384 return V; 385 } 386 387 /// To ensure a pointer offset fits in an integer of size PointerSize 388 /// (in bits) when that size is smaller than the maximum pointer size. This is 389 /// an issue, for example, in particular for 32b pointers with negative indices 390 /// that rely on two's complement wrap-arounds for precise alias information 391 /// where the maximum pointer size is 64b. 392 static APInt adjustToPointerSize(const APInt &Offset, unsigned PointerSize) { 393 assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!"); 394 unsigned ShiftBits = Offset.getBitWidth() - PointerSize; 395 return (Offset << ShiftBits).ashr(ShiftBits); 396 } 397 398 static unsigned getMaxPointerSize(const DataLayout &DL) { 399 unsigned MaxPointerSize = DL.getMaxPointerSizeInBits(); 400 if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64; 401 if (DoubleCalcBits) MaxPointerSize *= 2; 402 403 return MaxPointerSize; 404 } 405 406 /// If V is a symbolic pointer expression, decompose it into a base pointer 407 /// with a constant offset and a number of scaled symbolic offsets. 408 /// 409 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 410 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 411 /// specified amount, but which may have other unrepresented high bits. As 412 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 413 /// 414 /// When DataLayout is around, this function is capable of analyzing everything 415 /// that getUnderlyingObject can look through. To be able to do that 416 /// getUnderlyingObject and DecomposeGEPExpression must use the same search 417 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks 418 /// through pointer casts. 419 bool BasicAAResult::DecomposeGEPExpression(const Value *V, 420 DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC, 421 DominatorTree *DT) { 422 // Limit recursion depth to limit compile time in crazy cases. 423 unsigned MaxLookup = MaxLookupSearchDepth; 424 SearchTimes++; 425 426 unsigned MaxPointerSize = getMaxPointerSize(DL); 427 Decomposed.VarIndices.clear(); 428 do { 429 // See if this is a bitcast or GEP. 430 const Operator *Op = dyn_cast<Operator>(V); 431 if (!Op) { 432 // The only non-operator case we can handle are GlobalAliases. 433 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 434 if (!GA->isInterposable()) { 435 V = GA->getAliasee(); 436 continue; 437 } 438 } 439 Decomposed.Base = V; 440 return false; 441 } 442 443 if (Op->getOpcode() == Instruction::BitCast || 444 Op->getOpcode() == Instruction::AddrSpaceCast) { 445 V = Op->getOperand(0); 446 continue; 447 } 448 449 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 450 if (!GEPOp) { 451 if (const auto *PHI = dyn_cast<PHINode>(V)) { 452 // Look through single-arg phi nodes created by LCSSA. 453 if (PHI->getNumIncomingValues() == 1) { 454 V = PHI->getIncomingValue(0); 455 continue; 456 } 457 } else if (const auto *Call = dyn_cast<CallBase>(V)) { 458 // CaptureTracking can know about special capturing properties of some 459 // intrinsics like launder.invariant.group, that can't be expressed with 460 // the attributes, but have properties like returning aliasing pointer. 461 // Because some analysis may assume that nocaptured pointer is not 462 // returned from some special intrinsic (because function would have to 463 // be marked with returns attribute), it is crucial to use this function 464 // because it should be in sync with CaptureTracking. Not using it may 465 // cause weird miscompilations where 2 aliasing pointers are assumed to 466 // noalias. 467 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 468 V = RP; 469 continue; 470 } 471 } 472 473 Decomposed.Base = V; 474 return false; 475 } 476 477 // Don't attempt to analyze GEPs over unsized objects. 478 if (!GEPOp->getSourceElementType()->isSized()) { 479 Decomposed.Base = V; 480 return false; 481 } 482 483 // Don't attempt to analyze GEPs if index scale is not a compile-time 484 // constant. 485 if (isa<ScalableVectorType>(GEPOp->getSourceElementType())) { 486 Decomposed.Base = V; 487 Decomposed.HasCompileTimeConstantScale = false; 488 return false; 489 } 490 491 unsigned AS = GEPOp->getPointerAddressSpace(); 492 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 493 gep_type_iterator GTI = gep_type_begin(GEPOp); 494 unsigned PointerSize = DL.getPointerSizeInBits(AS); 495 // Assume all GEP operands are constants until proven otherwise. 496 bool GepHasConstantOffset = true; 497 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 498 I != E; ++I, ++GTI) { 499 const Value *Index = *I; 500 // Compute the (potentially symbolic) offset in bytes for this index. 501 if (StructType *STy = GTI.getStructTypeOrNull()) { 502 // For a struct, add the member offset. 503 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 504 if (FieldNo == 0) 505 continue; 506 507 Decomposed.StructOffset += 508 DL.getStructLayout(STy)->getElementOffset(FieldNo); 509 continue; 510 } 511 512 // For an array/pointer, add the element offset, explicitly scaled. 513 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 514 if (CIdx->isZero()) 515 continue; 516 Decomposed.OtherOffset += 517 (DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize() * 518 CIdx->getValue().sextOrSelf(MaxPointerSize)) 519 .sextOrTrunc(MaxPointerSize); 520 continue; 521 } 522 523 GepHasConstantOffset = false; 524 525 APInt Scale(MaxPointerSize, 526 DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize()); 527 unsigned ZExtBits = 0, SExtBits = 0; 528 529 // If the integer type is smaller than the pointer size, it is implicitly 530 // sign extended to pointer size. 531 unsigned Width = Index->getType()->getIntegerBitWidth(); 532 if (PointerSize > Width) 533 SExtBits += PointerSize - Width; 534 535 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 536 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 537 bool NSW = true, NUW = true; 538 const Value *OrigIndex = Index; 539 Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits, 540 SExtBits, DL, 0, AC, DT, NSW, NUW); 541 542 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 543 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 544 545 // It can be the case that, even through C1*V+C2 does not overflow for 546 // relevant values of V, (C2*Scale) can overflow. In that case, we cannot 547 // decompose the expression in this way. 548 // 549 // FIXME: C1*Scale and the other operations in the decomposed 550 // (C1*Scale)*V+C2*Scale can also overflow. We should check for this 551 // possibility. 552 APInt WideScaledOffset = IndexOffset.sextOrTrunc(MaxPointerSize*2) * 553 Scale.sext(MaxPointerSize*2); 554 if (WideScaledOffset.getMinSignedBits() > MaxPointerSize) { 555 Index = OrigIndex; 556 IndexScale = 1; 557 IndexOffset = 0; 558 559 ZExtBits = SExtBits = 0; 560 if (PointerSize > Width) 561 SExtBits += PointerSize - Width; 562 } else { 563 Decomposed.OtherOffset += IndexOffset.sextOrTrunc(MaxPointerSize) * Scale; 564 Scale *= IndexScale.sextOrTrunc(MaxPointerSize); 565 } 566 567 // If we already had an occurrence of this index variable, merge this 568 // scale into it. For example, we want to handle: 569 // A[x][x] -> x*16 + x*4 -> x*20 570 // This also ensures that 'x' only appears in the index list once. 571 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { 572 if (Decomposed.VarIndices[i].V == Index && 573 Decomposed.VarIndices[i].ZExtBits == ZExtBits && 574 Decomposed.VarIndices[i].SExtBits == SExtBits) { 575 Scale += Decomposed.VarIndices[i].Scale; 576 Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i); 577 break; 578 } 579 } 580 581 // Make sure that we have a scale that makes sense for this target's 582 // pointer size. 583 Scale = adjustToPointerSize(Scale, PointerSize); 584 585 if (!!Scale) { 586 VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, Scale}; 587 Decomposed.VarIndices.push_back(Entry); 588 } 589 } 590 591 // Take care of wrap-arounds 592 if (GepHasConstantOffset) { 593 Decomposed.StructOffset = 594 adjustToPointerSize(Decomposed.StructOffset, PointerSize); 595 Decomposed.OtherOffset = 596 adjustToPointerSize(Decomposed.OtherOffset, PointerSize); 597 } 598 599 // Analyze the base pointer next. 600 V = GEPOp->getOperand(0); 601 } while (--MaxLookup); 602 603 // If the chain of expressions is too deep, just return early. 604 Decomposed.Base = V; 605 SearchLimitReached++; 606 return true; 607 } 608 609 /// Returns whether the given pointer value points to memory that is local to 610 /// the function, with global constants being considered local to all 611 /// functions. 612 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc, 613 AAQueryInfo &AAQI, bool OrLocal) { 614 assert(Visited.empty() && "Visited must be cleared after use!"); 615 616 unsigned MaxLookup = 8; 617 SmallVector<const Value *, 16> Worklist; 618 Worklist.push_back(Loc.Ptr); 619 do { 620 const Value *V = getUnderlyingObject(Worklist.pop_back_val()); 621 if (!Visited.insert(V).second) { 622 Visited.clear(); 623 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 624 } 625 626 // An alloca instruction defines local memory. 627 if (OrLocal && isa<AllocaInst>(V)) 628 continue; 629 630 // A global constant counts as local memory for our purposes. 631 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 632 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 633 // global to be marked constant in some modules and non-constant in 634 // others. GV may even be a declaration, not a definition. 635 if (!GV->isConstant()) { 636 Visited.clear(); 637 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 638 } 639 continue; 640 } 641 642 // If both select values point to local memory, then so does the select. 643 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 644 Worklist.push_back(SI->getTrueValue()); 645 Worklist.push_back(SI->getFalseValue()); 646 continue; 647 } 648 649 // If all values incoming to a phi node point to local memory, then so does 650 // the phi. 651 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 652 // Don't bother inspecting phi nodes with many operands. 653 if (PN->getNumIncomingValues() > MaxLookup) { 654 Visited.clear(); 655 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 656 } 657 for (Value *IncValue : PN->incoming_values()) 658 Worklist.push_back(IncValue); 659 continue; 660 } 661 662 // Otherwise be conservative. 663 Visited.clear(); 664 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 665 } while (!Worklist.empty() && --MaxLookup); 666 667 Visited.clear(); 668 return Worklist.empty(); 669 } 670 671 /// Returns the behavior when calling the given call site. 672 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) { 673 if (Call->doesNotAccessMemory()) 674 // Can't do better than this. 675 return FMRB_DoesNotAccessMemory; 676 677 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 678 679 // If the callsite knows it only reads memory, don't return worse 680 // than that. 681 if (Call->onlyReadsMemory()) 682 Min = FMRB_OnlyReadsMemory; 683 else if (Call->doesNotReadMemory()) 684 Min = FMRB_OnlyWritesMemory; 685 686 if (Call->onlyAccessesArgMemory()) 687 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 688 else if (Call->onlyAccessesInaccessibleMemory()) 689 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 690 else if (Call->onlyAccessesInaccessibleMemOrArgMem()) 691 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 692 693 // If the call has operand bundles then aliasing attributes from the function 694 // it calls do not directly apply to the call. This can be made more precise 695 // in the future. 696 if (!Call->hasOperandBundles()) 697 if (const Function *F = Call->getCalledFunction()) 698 Min = 699 FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F)); 700 701 return Min; 702 } 703 704 /// Returns the behavior when calling the given function. For use when the call 705 /// site is not known. 706 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) { 707 // If the function declares it doesn't access memory, we can't do better. 708 if (F->doesNotAccessMemory()) 709 return FMRB_DoesNotAccessMemory; 710 711 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 712 713 // If the function declares it only reads memory, go with that. 714 if (F->onlyReadsMemory()) 715 Min = FMRB_OnlyReadsMemory; 716 else if (F->doesNotReadMemory()) 717 Min = FMRB_OnlyWritesMemory; 718 719 if (F->onlyAccessesArgMemory()) 720 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 721 else if (F->onlyAccessesInaccessibleMemory()) 722 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 723 else if (F->onlyAccessesInaccessibleMemOrArgMem()) 724 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 725 726 return Min; 727 } 728 729 /// Returns true if this is a writeonly (i.e Mod only) parameter. 730 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx, 731 const TargetLibraryInfo &TLI) { 732 if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly)) 733 return true; 734 735 // We can bound the aliasing properties of memset_pattern16 just as we can 736 // for memcpy/memset. This is particularly important because the 737 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 738 // whenever possible. 739 // FIXME Consider handling this in InferFunctionAttr.cpp together with other 740 // attributes. 741 LibFunc F; 742 if (Call->getCalledFunction() && 743 TLI.getLibFunc(*Call->getCalledFunction(), F) && 744 F == LibFunc_memset_pattern16 && TLI.has(F)) 745 if (ArgIdx == 0) 746 return true; 747 748 // TODO: memset_pattern4, memset_pattern8 749 // TODO: _chk variants 750 // TODO: strcmp, strcpy 751 752 return false; 753 } 754 755 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call, 756 unsigned ArgIdx) { 757 // Checking for known builtin intrinsics and target library functions. 758 if (isWriteOnlyParam(Call, ArgIdx, TLI)) 759 return ModRefInfo::Mod; 760 761 if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly)) 762 return ModRefInfo::Ref; 763 764 if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone)) 765 return ModRefInfo::NoModRef; 766 767 return AAResultBase::getArgModRefInfo(Call, ArgIdx); 768 } 769 770 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) { 771 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call); 772 return II && II->getIntrinsicID() == IID; 773 } 774 775 #ifndef NDEBUG 776 static const Function *getParent(const Value *V) { 777 if (const Instruction *inst = dyn_cast<Instruction>(V)) { 778 if (!inst->getParent()) 779 return nullptr; 780 return inst->getParent()->getParent(); 781 } 782 783 if (const Argument *arg = dyn_cast<Argument>(V)) 784 return arg->getParent(); 785 786 return nullptr; 787 } 788 789 static bool notDifferentParent(const Value *O1, const Value *O2) { 790 791 const Function *F1 = getParent(O1); 792 const Function *F2 = getParent(O2); 793 794 return !F1 || !F2 || F1 == F2; 795 } 796 #endif 797 798 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 799 const MemoryLocation &LocB, 800 AAQueryInfo &AAQI) { 801 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 802 "BasicAliasAnalysis doesn't support interprocedural queries."); 803 804 // If we have a directly cached entry for these locations, we have recursed 805 // through this once, so just return the cached results. Notably, when this 806 // happens, we don't clear the cache. 807 auto CacheIt = AAQI.AliasCache.find(AAQueryInfo::LocPair(LocA, LocB)); 808 if (CacheIt != AAQI.AliasCache.end()) 809 return CacheIt->second; 810 811 CacheIt = AAQI.AliasCache.find(AAQueryInfo::LocPair(LocB, LocA)); 812 if (CacheIt != AAQI.AliasCache.end()) 813 return CacheIt->second; 814 815 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr, 816 LocB.Size, LocB.AATags, AAQI); 817 818 VisitedPhiBBs.clear(); 819 return Alias; 820 } 821 822 /// Checks to see if the specified callsite can clobber the specified memory 823 /// object. 824 /// 825 /// Since we only look at local properties of this function, we really can't 826 /// say much about this query. We do, however, use simple "address taken" 827 /// analysis on local objects. 828 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call, 829 const MemoryLocation &Loc, 830 AAQueryInfo &AAQI) { 831 assert(notDifferentParent(Call, Loc.Ptr) && 832 "AliasAnalysis query involving multiple functions!"); 833 834 const Value *Object = getUnderlyingObject(Loc.Ptr); 835 836 // Calls marked 'tail' cannot read or write allocas from the current frame 837 // because the current frame might be destroyed by the time they run. However, 838 // a tail call may use an alloca with byval. Calling with byval copies the 839 // contents of the alloca into argument registers or stack slots, so there is 840 // no lifetime issue. 841 if (isa<AllocaInst>(Object)) 842 if (const CallInst *CI = dyn_cast<CallInst>(Call)) 843 if (CI->isTailCall() && 844 !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal)) 845 return ModRefInfo::NoModRef; 846 847 // Stack restore is able to modify unescaped dynamic allocas. Assume it may 848 // modify them even though the alloca is not escaped. 849 if (auto *AI = dyn_cast<AllocaInst>(Object)) 850 if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore)) 851 return ModRefInfo::Mod; 852 853 // If the pointer is to a locally allocated object that does not escape, 854 // then the call can not mod/ref the pointer unless the call takes the pointer 855 // as an argument, and itself doesn't capture it. 856 if (!isa<Constant>(Object) && Call != Object && 857 isNonEscapingLocalObject(Object, &AAQI.IsCapturedCache)) { 858 859 // Optimistically assume that call doesn't touch Object and check this 860 // assumption in the following loop. 861 ModRefInfo Result = ModRefInfo::NoModRef; 862 bool IsMustAlias = true; 863 864 unsigned OperandNo = 0; 865 for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end(); 866 CI != CE; ++CI, ++OperandNo) { 867 // Only look at the no-capture or byval pointer arguments. If this 868 // pointer were passed to arguments that were neither of these, then it 869 // couldn't be no-capture. 870 if (!(*CI)->getType()->isPointerTy() || 871 (!Call->doesNotCapture(OperandNo) && 872 OperandNo < Call->getNumArgOperands() && 873 !Call->isByValArgument(OperandNo))) 874 continue; 875 876 // Call doesn't access memory through this operand, so we don't care 877 // if it aliases with Object. 878 if (Call->doesNotAccessMemory(OperandNo)) 879 continue; 880 881 // If this is a no-capture pointer argument, see if we can tell that it 882 // is impossible to alias the pointer we're checking. 883 AliasResult AR = getBestAAResults().alias(MemoryLocation(*CI), 884 MemoryLocation(Object), AAQI); 885 if (AR != MustAlias) 886 IsMustAlias = false; 887 // Operand doesn't alias 'Object', continue looking for other aliases 888 if (AR == NoAlias) 889 continue; 890 // Operand aliases 'Object', but call doesn't modify it. Strengthen 891 // initial assumption and keep looking in case if there are more aliases. 892 if (Call->onlyReadsMemory(OperandNo)) { 893 Result = setRef(Result); 894 continue; 895 } 896 // Operand aliases 'Object' but call only writes into it. 897 if (Call->doesNotReadMemory(OperandNo)) { 898 Result = setMod(Result); 899 continue; 900 } 901 // This operand aliases 'Object' and call reads and writes into it. 902 // Setting ModRef will not yield an early return below, MustAlias is not 903 // used further. 904 Result = ModRefInfo::ModRef; 905 break; 906 } 907 908 // No operand aliases, reset Must bit. Add below if at least one aliases 909 // and all aliases found are MustAlias. 910 if (isNoModRef(Result)) 911 IsMustAlias = false; 912 913 // Early return if we improved mod ref information 914 if (!isModAndRefSet(Result)) { 915 if (isNoModRef(Result)) 916 return ModRefInfo::NoModRef; 917 return IsMustAlias ? setMust(Result) : clearMust(Result); 918 } 919 } 920 921 // If the call is malloc/calloc like, we can assume that it doesn't 922 // modify any IR visible value. This is only valid because we assume these 923 // routines do not read values visible in the IR. TODO: Consider special 924 // casing realloc and strdup routines which access only their arguments as 925 // well. Or alternatively, replace all of this with inaccessiblememonly once 926 // that's implemented fully. 927 if (isMallocOrCallocLikeFn(Call, &TLI)) { 928 // Be conservative if the accessed pointer may alias the allocation - 929 // fallback to the generic handling below. 930 if (getBestAAResults().alias(MemoryLocation(Call), Loc, AAQI) == NoAlias) 931 return ModRefInfo::NoModRef; 932 } 933 934 // The semantics of memcpy intrinsics either exactly overlap or do not 935 // overlap, i.e., source and destination of any given memcpy are either 936 // no-alias or must-alias. 937 if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) { 938 AliasResult SrcAA = 939 getBestAAResults().alias(MemoryLocation::getForSource(Inst), Loc, AAQI); 940 AliasResult DestAA = 941 getBestAAResults().alias(MemoryLocation::getForDest(Inst), Loc, AAQI); 942 // It's also possible for Loc to alias both src and dest, or neither. 943 ModRefInfo rv = ModRefInfo::NoModRef; 944 if (SrcAA != NoAlias) 945 rv = setRef(rv); 946 if (DestAA != NoAlias) 947 rv = setMod(rv); 948 return rv; 949 } 950 951 // While the assume intrinsic is marked as arbitrarily writing so that 952 // proper control dependencies will be maintained, it never aliases any 953 // particular memory location. 954 if (isIntrinsicCall(Call, Intrinsic::assume)) 955 return ModRefInfo::NoModRef; 956 957 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 958 // that proper control dependencies are maintained but they never mods any 959 // particular memory location. 960 // 961 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 962 // heap state at the point the guard is issued needs to be consistent in case 963 // the guard invokes the "deopt" continuation. 964 if (isIntrinsicCall(Call, Intrinsic::experimental_guard)) 965 return ModRefInfo::Ref; 966 967 // Like assumes, invariant.start intrinsics were also marked as arbitrarily 968 // writing so that proper control dependencies are maintained but they never 969 // mod any particular memory location visible to the IR. 970 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start 971 // intrinsic is now modeled as reading memory. This prevents hoisting the 972 // invariant.start intrinsic over stores. Consider: 973 // *ptr = 40; 974 // *ptr = 50; 975 // invariant_start(ptr) 976 // int val = *ptr; 977 // print(val); 978 // 979 // This cannot be transformed to: 980 // 981 // *ptr = 40; 982 // invariant_start(ptr) 983 // *ptr = 50; 984 // int val = *ptr; 985 // print(val); 986 // 987 // The transformation will cause the second store to be ignored (based on 988 // rules of invariant.start) and print 40, while the first program always 989 // prints 50. 990 if (isIntrinsicCall(Call, Intrinsic::invariant_start)) 991 return ModRefInfo::Ref; 992 993 // The AAResultBase base class has some smarts, lets use them. 994 return AAResultBase::getModRefInfo(Call, Loc, AAQI); 995 } 996 997 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1, 998 const CallBase *Call2, 999 AAQueryInfo &AAQI) { 1000 // While the assume intrinsic is marked as arbitrarily writing so that 1001 // proper control dependencies will be maintained, it never aliases any 1002 // particular memory location. 1003 if (isIntrinsicCall(Call1, Intrinsic::assume) || 1004 isIntrinsicCall(Call2, Intrinsic::assume)) 1005 return ModRefInfo::NoModRef; 1006 1007 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 1008 // that proper control dependencies are maintained but they never mod any 1009 // particular memory location. 1010 // 1011 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 1012 // heap state at the point the guard is issued needs to be consistent in case 1013 // the guard invokes the "deopt" continuation. 1014 1015 // NB! This function is *not* commutative, so we special case two 1016 // possibilities for guard intrinsics. 1017 1018 if (isIntrinsicCall(Call1, Intrinsic::experimental_guard)) 1019 return isModSet(createModRefInfo(getModRefBehavior(Call2))) 1020 ? ModRefInfo::Ref 1021 : ModRefInfo::NoModRef; 1022 1023 if (isIntrinsicCall(Call2, Intrinsic::experimental_guard)) 1024 return isModSet(createModRefInfo(getModRefBehavior(Call1))) 1025 ? ModRefInfo::Mod 1026 : ModRefInfo::NoModRef; 1027 1028 // The AAResultBase base class has some smarts, lets use them. 1029 return AAResultBase::getModRefInfo(Call1, Call2, AAQI); 1030 } 1031 1032 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators, 1033 /// both having the exact same pointer operand. 1034 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1, 1035 LocationSize MaybeV1Size, 1036 const GEPOperator *GEP2, 1037 LocationSize MaybeV2Size, 1038 const DataLayout &DL) { 1039 assert(GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() == 1040 GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() && 1041 GEP1->getPointerOperandType() == GEP2->getPointerOperandType() && 1042 "Expected GEPs with the same pointer operand"); 1043 1044 // Try to determine whether GEP1 and GEP2 index through arrays, into structs, 1045 // such that the struct field accesses provably cannot alias. 1046 // We also need at least two indices (the pointer, and the struct field). 1047 if (GEP1->getNumIndices() != GEP2->getNumIndices() || 1048 GEP1->getNumIndices() < 2) 1049 return MayAlias; 1050 1051 // If we don't know the size of the accesses through both GEPs, we can't 1052 // determine whether the struct fields accessed can't alias. 1053 if (MaybeV1Size == LocationSize::unknown() || 1054 MaybeV2Size == LocationSize::unknown()) 1055 return MayAlias; 1056 1057 const uint64_t V1Size = MaybeV1Size.getValue(); 1058 const uint64_t V2Size = MaybeV2Size.getValue(); 1059 1060 ConstantInt *C1 = 1061 dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1)); 1062 ConstantInt *C2 = 1063 dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1)); 1064 1065 // If the last (struct) indices are constants and are equal, the other indices 1066 // might be also be dynamically equal, so the GEPs can alias. 1067 if (C1 && C2) { 1068 unsigned BitWidth = std::max(C1->getBitWidth(), C2->getBitWidth()); 1069 if (C1->getValue().sextOrSelf(BitWidth) == 1070 C2->getValue().sextOrSelf(BitWidth)) 1071 return MayAlias; 1072 } 1073 1074 // Find the last-indexed type of the GEP, i.e., the type you'd get if 1075 // you stripped the last index. 1076 // On the way, look at each indexed type. If there's something other 1077 // than an array, different indices can lead to different final types. 1078 SmallVector<Value *, 8> IntermediateIndices; 1079 1080 // Insert the first index; we don't need to check the type indexed 1081 // through it as it only drops the pointer indirection. 1082 assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine"); 1083 IntermediateIndices.push_back(GEP1->getOperand(1)); 1084 1085 // Insert all the remaining indices but the last one. 1086 // Also, check that they all index through arrays. 1087 for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) { 1088 if (!isa<ArrayType>(GetElementPtrInst::getIndexedType( 1089 GEP1->getSourceElementType(), IntermediateIndices))) 1090 return MayAlias; 1091 IntermediateIndices.push_back(GEP1->getOperand(i + 1)); 1092 } 1093 1094 auto *Ty = GetElementPtrInst::getIndexedType( 1095 GEP1->getSourceElementType(), IntermediateIndices); 1096 StructType *LastIndexedStruct = dyn_cast<StructType>(Ty); 1097 1098 if (isa<ArrayType>(Ty) || isa<VectorType>(Ty)) { 1099 // We know that: 1100 // - both GEPs begin indexing from the exact same pointer; 1101 // - the last indices in both GEPs are constants, indexing into a sequential 1102 // type (array or vector); 1103 // - both GEPs only index through arrays prior to that. 1104 // 1105 // Because array indices greater than the number of elements are valid in 1106 // GEPs, unless we know the intermediate indices are identical between 1107 // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't 1108 // partially overlap. We also need to check that the loaded size matches 1109 // the element size, otherwise we could still have overlap. 1110 Type *LastElementTy = GetElementPtrInst::getTypeAtIndex(Ty, (uint64_t)0); 1111 const uint64_t ElementSize = 1112 DL.getTypeStoreSize(LastElementTy).getFixedSize(); 1113 if (V1Size != ElementSize || V2Size != ElementSize) 1114 return MayAlias; 1115 1116 for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i) 1117 if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1)) 1118 return MayAlias; 1119 1120 // Now we know that the array/pointer that GEP1 indexes into and that 1121 // that GEP2 indexes into must either precisely overlap or be disjoint. 1122 // Because they cannot partially overlap and because fields in an array 1123 // cannot overlap, if we can prove the final indices are different between 1124 // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias. 1125 1126 // If the last indices are constants, we've already checked they don't 1127 // equal each other so we can exit early. 1128 if (C1 && C2) 1129 return NoAlias; 1130 { 1131 Value *GEP1LastIdx = GEP1->getOperand(GEP1->getNumOperands() - 1); 1132 Value *GEP2LastIdx = GEP2->getOperand(GEP2->getNumOperands() - 1); 1133 if (isa<PHINode>(GEP1LastIdx) || isa<PHINode>(GEP2LastIdx)) { 1134 // If one of the indices is a PHI node, be safe and only use 1135 // computeKnownBits so we don't make any assumptions about the 1136 // relationships between the two indices. This is important if we're 1137 // asking about values from different loop iterations. See PR32314. 1138 // TODO: We may be able to change the check so we only do this when 1139 // we definitely looked through a PHINode. 1140 if (GEP1LastIdx != GEP2LastIdx && 1141 GEP1LastIdx->getType() == GEP2LastIdx->getType()) { 1142 KnownBits Known1 = computeKnownBits(GEP1LastIdx, DL); 1143 KnownBits Known2 = computeKnownBits(GEP2LastIdx, DL); 1144 if (Known1.Zero.intersects(Known2.One) || 1145 Known1.One.intersects(Known2.Zero)) 1146 return NoAlias; 1147 } 1148 } else if (isKnownNonEqual(GEP1LastIdx, GEP2LastIdx, DL)) 1149 return NoAlias; 1150 } 1151 return MayAlias; 1152 } else if (!LastIndexedStruct || !C1 || !C2) { 1153 return MayAlias; 1154 } 1155 1156 if (C1->getValue().getActiveBits() > 64 || 1157 C2->getValue().getActiveBits() > 64) 1158 return MayAlias; 1159 1160 // We know that: 1161 // - both GEPs begin indexing from the exact same pointer; 1162 // - the last indices in both GEPs are constants, indexing into a struct; 1163 // - said indices are different, hence, the pointed-to fields are different; 1164 // - both GEPs only index through arrays prior to that. 1165 // 1166 // This lets us determine that the struct that GEP1 indexes into and the 1167 // struct that GEP2 indexes into must either precisely overlap or be 1168 // completely disjoint. Because they cannot partially overlap, indexing into 1169 // different non-overlapping fields of the struct will never alias. 1170 1171 // Therefore, the only remaining thing needed to show that both GEPs can't 1172 // alias is that the fields are not overlapping. 1173 const StructLayout *SL = DL.getStructLayout(LastIndexedStruct); 1174 const uint64_t StructSize = SL->getSizeInBytes(); 1175 const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue()); 1176 const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue()); 1177 1178 auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size, 1179 uint64_t V2Off, uint64_t V2Size) { 1180 return V1Off < V2Off && V1Off + V1Size <= V2Off && 1181 ((V2Off + V2Size <= StructSize) || 1182 (V2Off + V2Size - StructSize <= V1Off)); 1183 }; 1184 1185 if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) || 1186 EltsDontOverlap(V2Off, V2Size, V1Off, V1Size)) 1187 return NoAlias; 1188 1189 return MayAlias; 1190 } 1191 1192 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the 1193 // beginning of the object the GEP points would have a negative offset with 1194 // repsect to the alloca, that means the GEP can not alias pointer (b). 1195 // Note that the pointer based on the alloca may not be a GEP. For 1196 // example, it may be the alloca itself. 1197 // The same applies if (b) is based on a GlobalVariable. Note that just being 1198 // based on isIdentifiedObject() is not enough - we need an identified object 1199 // that does not permit access to negative offsets. For example, a negative 1200 // offset from a noalias argument or call can be inbounds w.r.t the actual 1201 // underlying object. 1202 // 1203 // For example, consider: 1204 // 1205 // struct { int f0, int f1, ...} foo; 1206 // foo alloca; 1207 // foo* random = bar(alloca); 1208 // int *f0 = &alloca.f0 1209 // int *f1 = &random->f1; 1210 // 1211 // Which is lowered, approximately, to: 1212 // 1213 // %alloca = alloca %struct.foo 1214 // %random = call %struct.foo* @random(%struct.foo* %alloca) 1215 // %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0 1216 // %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1 1217 // 1218 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated 1219 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also 1220 // point into the same object. But since %f0 points to the beginning of %alloca, 1221 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher 1222 // than (%alloca - 1), and so is not inbounds, a contradiction. 1223 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp, 1224 const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject, 1225 LocationSize MaybeObjectAccessSize) { 1226 // If the object access size is unknown, or the GEP isn't inbounds, bail. 1227 if (MaybeObjectAccessSize == LocationSize::unknown() || !GEPOp->isInBounds()) 1228 return false; 1229 1230 const uint64_t ObjectAccessSize = MaybeObjectAccessSize.getValue(); 1231 1232 // We need the object to be an alloca or a globalvariable, and want to know 1233 // the offset of the pointer from the object precisely, so no variable 1234 // indices are allowed. 1235 if (!(isa<AllocaInst>(DecompObject.Base) || 1236 isa<GlobalVariable>(DecompObject.Base)) || 1237 !DecompObject.VarIndices.empty()) 1238 return false; 1239 1240 APInt ObjectBaseOffset = DecompObject.StructOffset + 1241 DecompObject.OtherOffset; 1242 1243 // If the GEP has no variable indices, we know the precise offset 1244 // from the base, then use it. If the GEP has variable indices, 1245 // we can't get exact GEP offset to identify pointer alias. So return 1246 // false in that case. 1247 if (!DecompGEP.VarIndices.empty()) 1248 return false; 1249 1250 APInt GEPBaseOffset = DecompGEP.StructOffset; 1251 GEPBaseOffset += DecompGEP.OtherOffset; 1252 1253 return GEPBaseOffset.sge(ObjectBaseOffset + (int64_t)ObjectAccessSize); 1254 } 1255 1256 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 1257 /// another pointer. 1258 /// 1259 /// We know that V1 is a GEP, but we don't know anything about V2. 1260 /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for 1261 /// V2. 1262 AliasResult BasicAAResult::aliasGEP( 1263 const GEPOperator *GEP1, LocationSize V1Size, const AAMDNodes &V1AAInfo, 1264 const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo, 1265 const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) { 1266 DecomposedGEP DecompGEP1, DecompGEP2; 1267 unsigned MaxPointerSize = getMaxPointerSize(DL); 1268 DecompGEP1.StructOffset = DecompGEP1.OtherOffset = APInt(MaxPointerSize, 0); 1269 DecompGEP2.StructOffset = DecompGEP2.OtherOffset = APInt(MaxPointerSize, 0); 1270 DecompGEP1.HasCompileTimeConstantScale = 1271 DecompGEP2.HasCompileTimeConstantScale = true; 1272 1273 bool GEP1MaxLookupReached = 1274 DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT); 1275 bool GEP2MaxLookupReached = 1276 DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT); 1277 1278 // Don't attempt to analyze the decomposed GEP if index scale is not a 1279 // compile-time constant. 1280 if (!DecompGEP1.HasCompileTimeConstantScale || 1281 !DecompGEP2.HasCompileTimeConstantScale) 1282 return MayAlias; 1283 1284 APInt GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset; 1285 APInt GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset; 1286 1287 assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 && 1288 "DecomposeGEPExpression returned a result different from " 1289 "getUnderlyingObject"); 1290 1291 // If the GEP's offset relative to its base is such that the base would 1292 // fall below the start of the object underlying V2, then the GEP and V2 1293 // cannot alias. 1294 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1295 isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size)) 1296 return NoAlias; 1297 // If we have two gep instructions with must-alias or not-alias'ing base 1298 // pointers, figure out if the indexes to the GEP tell us anything about the 1299 // derived pointer. 1300 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 1301 // Check for the GEP base being at a negative offset, this time in the other 1302 // direction. 1303 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1304 isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size)) 1305 return NoAlias; 1306 // Do the base pointers alias? 1307 AliasResult BaseAlias = 1308 aliasCheck(UnderlyingV1, LocationSize::unknown(), AAMDNodes(), 1309 UnderlyingV2, LocationSize::unknown(), AAMDNodes(), AAQI); 1310 1311 // Check for geps of non-aliasing underlying pointers where the offsets are 1312 // identical. 1313 if ((BaseAlias == MayAlias) && V1Size == V2Size) { 1314 // Do the base pointers alias assuming type and size. 1315 AliasResult PreciseBaseAlias = aliasCheck( 1316 UnderlyingV1, V1Size, V1AAInfo, UnderlyingV2, V2Size, V2AAInfo, AAQI); 1317 if (PreciseBaseAlias == NoAlias) { 1318 // See if the computed offset from the common pointer tells us about the 1319 // relation of the resulting pointer. 1320 // If the max search depth is reached the result is undefined 1321 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1322 return MayAlias; 1323 1324 // Same offsets. 1325 if (GEP1BaseOffset == GEP2BaseOffset && 1326 DecompGEP1.VarIndices == DecompGEP2.VarIndices) 1327 return NoAlias; 1328 } 1329 } 1330 1331 // If we get a No or May, then return it immediately, no amount of analysis 1332 // will improve this situation. 1333 if (BaseAlias != MustAlias) { 1334 assert(BaseAlias == NoAlias || BaseAlias == MayAlias); 1335 return BaseAlias; 1336 } 1337 1338 // Otherwise, we have a MustAlias. Since the base pointers alias each other 1339 // exactly, see if the computed offset from the common pointer tells us 1340 // about the relation of the resulting pointer. 1341 // If we know the two GEPs are based off of the exact same pointer (and not 1342 // just the same underlying object), see if that tells us anything about 1343 // the resulting pointers. 1344 if (GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() == 1345 GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() && 1346 GEP1->getPointerOperandType() == GEP2->getPointerOperandType()) { 1347 AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL); 1348 // If we couldn't find anything interesting, don't abandon just yet. 1349 if (R != MayAlias) 1350 return R; 1351 } 1352 1353 // If the max search depth is reached, the result is undefined 1354 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1355 return MayAlias; 1356 1357 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1358 // symbolic difference. 1359 GEP1BaseOffset -= GEP2BaseOffset; 1360 GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices); 1361 1362 } else { 1363 // Check to see if these two pointers are related by the getelementptr 1364 // instruction. If one pointer is a GEP with a non-zero index of the other 1365 // pointer, we know they cannot alias. 1366 1367 // If both accesses are unknown size, we can't do anything useful here. 1368 if (V1Size == LocationSize::unknown() && V2Size == LocationSize::unknown()) 1369 return MayAlias; 1370 1371 AliasResult R = aliasCheck(UnderlyingV1, LocationSize::unknown(), 1372 AAMDNodes(), V2, LocationSize::unknown(), 1373 V2AAInfo, AAQI, nullptr, UnderlyingV2); 1374 if (R != MustAlias) { 1375 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 1376 // If V2 is known not to alias GEP base pointer, then the two values 1377 // cannot alias per GEP semantics: "Any memory access must be done through 1378 // a pointer value associated with an address range of the memory access, 1379 // otherwise the behavior is undefined.". 1380 assert(R == NoAlias || R == MayAlias); 1381 return R; 1382 } 1383 1384 // If the max search depth is reached the result is undefined 1385 if (GEP1MaxLookupReached) 1386 return MayAlias; 1387 } 1388 1389 // In the two GEP Case, if there is no difference in the offsets of the 1390 // computed pointers, the resultant pointers are a must alias. This 1391 // happens when we have two lexically identical GEP's (for example). 1392 // 1393 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 1394 // must aliases the GEP, the end result is a must alias also. 1395 if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty()) 1396 return MustAlias; 1397 1398 // If there is a constant difference between the pointers, but the difference 1399 // is less than the size of the associated memory object, then we know 1400 // that the objects are partially overlapping. If the difference is 1401 // greater, we know they do not overlap. 1402 if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) { 1403 if (GEP1BaseOffset.sge(0)) { 1404 if (V2Size != LocationSize::unknown()) { 1405 if (GEP1BaseOffset.ult(V2Size.getValue())) 1406 return PartialAlias; 1407 return NoAlias; 1408 } 1409 } else { 1410 // We have the situation where: 1411 // + + 1412 // | BaseOffset | 1413 // ---------------->| 1414 // |-->V1Size |-------> V2Size 1415 // GEP1 V2 1416 // We need to know that V2Size is not unknown, otherwise we might have 1417 // stripped a gep with negative index ('gep <ptr>, -1, ...). 1418 if (V1Size != LocationSize::unknown() && 1419 V2Size != LocationSize::unknown()) { 1420 if ((-GEP1BaseOffset).ult(V1Size.getValue())) 1421 return PartialAlias; 1422 return NoAlias; 1423 } 1424 } 1425 } 1426 1427 if (!DecompGEP1.VarIndices.empty()) { 1428 APInt Modulo(MaxPointerSize, 0); 1429 bool AllPositive = true; 1430 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { 1431 1432 // Try to distinguish something like &A[i][1] against &A[42][0]. 1433 // Grab the least significant bit set in any of the scales. We 1434 // don't need std::abs here (even if the scale's negative) as we'll 1435 // be ^'ing Modulo with itself later. 1436 Modulo |= DecompGEP1.VarIndices[i].Scale; 1437 1438 if (AllPositive) { 1439 // If the Value could change between cycles, then any reasoning about 1440 // the Value this cycle may not hold in the next cycle. We'll just 1441 // give up if we can't determine conditions that hold for every cycle: 1442 const Value *V = DecompGEP1.VarIndices[i].V; 1443 1444 KnownBits Known = 1445 computeKnownBits(V, DL, 0, &AC, dyn_cast<Instruction>(GEP1), DT); 1446 bool SignKnownZero = Known.isNonNegative(); 1447 bool SignKnownOne = Known.isNegative(); 1448 1449 // Zero-extension widens the variable, and so forces the sign 1450 // bit to zero. 1451 bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V); 1452 SignKnownZero |= IsZExt; 1453 SignKnownOne &= !IsZExt; 1454 1455 // If the variable begins with a zero then we know it's 1456 // positive, regardless of whether the value is signed or 1457 // unsigned. 1458 APInt Scale = DecompGEP1.VarIndices[i].Scale; 1459 AllPositive = 1460 (SignKnownZero && Scale.sge(0)) || (SignKnownOne && Scale.slt(0)); 1461 } 1462 } 1463 1464 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1465 1466 // We can compute the difference between the two addresses 1467 // mod Modulo. Check whether that difference guarantees that the 1468 // two locations do not alias. 1469 APInt ModOffset = GEP1BaseOffset & (Modulo - 1); 1470 if (V1Size != LocationSize::unknown() && 1471 V2Size != LocationSize::unknown() && ModOffset.uge(V2Size.getValue()) && 1472 (Modulo - ModOffset).uge(V1Size.getValue())) 1473 return NoAlias; 1474 1475 // If we know all the variables are positive, then GEP1 >= GEP1BasePtr. 1476 // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers 1477 // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr. 1478 if (AllPositive && GEP1BaseOffset.sgt(0) && 1479 V2Size != LocationSize::unknown() && 1480 GEP1BaseOffset.uge(V2Size.getValue())) 1481 return NoAlias; 1482 1483 if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size, 1484 GEP1BaseOffset, &AC, DT)) 1485 return NoAlias; 1486 } 1487 1488 // Statically, we can see that the base objects are the same, but the 1489 // pointers have dynamic offsets which we can't resolve. And none of our 1490 // little tricks above worked. 1491 return MayAlias; 1492 } 1493 1494 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1495 // If the results agree, take it. 1496 if (A == B) 1497 return A; 1498 // A mix of PartialAlias and MustAlias is PartialAlias. 1499 if ((A == PartialAlias && B == MustAlias) || 1500 (B == PartialAlias && A == MustAlias)) 1501 return PartialAlias; 1502 // Otherwise, we don't know anything. 1503 return MayAlias; 1504 } 1505 1506 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1507 /// against another. 1508 AliasResult 1509 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize, 1510 const AAMDNodes &SIAAInfo, const Value *V2, 1511 LocationSize V2Size, const AAMDNodes &V2AAInfo, 1512 const Value *UnderV2, AAQueryInfo &AAQI) { 1513 // If the values are Selects with the same condition, we can do a more precise 1514 // check: just check for aliases between the values on corresponding arms. 1515 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1516 if (SI->getCondition() == SI2->getCondition()) { 1517 AliasResult Alias = 1518 aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, SI2->getTrueValue(), 1519 V2Size, V2AAInfo, AAQI); 1520 if (Alias == MayAlias) 1521 return MayAlias; 1522 AliasResult ThisAlias = 1523 aliasCheck(SI->getFalseValue(), SISize, SIAAInfo, 1524 SI2->getFalseValue(), V2Size, V2AAInfo, AAQI); 1525 return MergeAliasResults(ThisAlias, Alias); 1526 } 1527 1528 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1529 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1530 AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), 1531 SISize, SIAAInfo, AAQI, UnderV2); 1532 if (Alias == MayAlias) 1533 return MayAlias; 1534 1535 AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), 1536 SISize, SIAAInfo, AAQI, UnderV2); 1537 return MergeAliasResults(ThisAlias, Alias); 1538 } 1539 1540 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1541 /// another. 1542 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize, 1543 const AAMDNodes &PNAAInfo, const Value *V2, 1544 LocationSize V2Size, 1545 const AAMDNodes &V2AAInfo, 1546 const Value *UnderV2, AAQueryInfo &AAQI) { 1547 // Track phi nodes we have visited. We use this information when we determine 1548 // value equivalence. 1549 VisitedPhiBBs.insert(PN->getParent()); 1550 1551 // If the values are PHIs in the same block, we can do a more precise 1552 // as well as efficient check: just check for aliases between the values 1553 // on corresponding edges. 1554 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1555 if (PN2->getParent() == PN->getParent()) { 1556 AAQueryInfo::LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo), 1557 MemoryLocation(V2, V2Size, V2AAInfo)); 1558 if (PN > V2) 1559 std::swap(Locs.first, Locs.second); 1560 // Analyse the PHIs' inputs under the assumption that the PHIs are 1561 // NoAlias. 1562 // If the PHIs are May/MustAlias there must be (recursively) an input 1563 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1564 // there must be an operation on the PHIs within the PHIs' value cycle 1565 // that causes a MayAlias. 1566 // Pretend the phis do not alias. 1567 AliasResult Alias = NoAlias; 1568 AliasResult OrigAliasResult; 1569 { 1570 // Limited lifetime iterator invalidated by the aliasCheck call below. 1571 auto CacheIt = AAQI.AliasCache.find(Locs); 1572 assert((CacheIt != AAQI.AliasCache.end()) && 1573 "There must exist an entry for the phi node"); 1574 OrigAliasResult = CacheIt->second; 1575 CacheIt->second = NoAlias; 1576 } 1577 1578 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1579 AliasResult ThisAlias = 1580 aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo, 1581 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1582 V2Size, V2AAInfo, AAQI); 1583 Alias = MergeAliasResults(ThisAlias, Alias); 1584 if (Alias == MayAlias) 1585 break; 1586 } 1587 1588 // Reset if speculation failed. 1589 if (Alias != NoAlias) { 1590 auto Pair = 1591 AAQI.AliasCache.insert(std::make_pair(Locs, OrigAliasResult)); 1592 assert(!Pair.second && "Entry must have existed"); 1593 Pair.first->second = OrigAliasResult; 1594 } 1595 return Alias; 1596 } 1597 1598 SmallVector<Value *, 4> V1Srcs; 1599 // For a recursive phi, that recurses through a contant gep, we can perform 1600 // aliasing calculations using the other phi operands with an unknown size to 1601 // specify that an unknown number of elements after the initial value are 1602 // potentially accessed. 1603 bool isRecursive = false; 1604 auto CheckForRecPhi = [&](Value *PV) { 1605 if (!EnableRecPhiAnalysis) 1606 return false; 1607 if (GEPOperator *PVGEP = dyn_cast<GEPOperator>(PV)) { 1608 // Check whether the incoming value is a GEP that advances the pointer 1609 // result of this PHI node (e.g. in a loop). If this is the case, we 1610 // would recurse and always get a MayAlias. Handle this case specially 1611 // below. We need to ensure that the phi is inbounds and has a constant 1612 // positive operand so that we can check for alias with the initial value 1613 // and an unknown but positive size. 1614 if (PVGEP->getPointerOperand() == PN && PVGEP->isInBounds() && 1615 PVGEP->getNumIndices() == 1 && isa<ConstantInt>(PVGEP->idx_begin()) && 1616 !cast<ConstantInt>(PVGEP->idx_begin())->isNegative()) { 1617 isRecursive = true; 1618 return true; 1619 } 1620 } 1621 return false; 1622 }; 1623 1624 if (PV) { 1625 // If we have PhiValues then use it to get the underlying phi values. 1626 const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN); 1627 // If we have more phi values than the search depth then return MayAlias 1628 // conservatively to avoid compile time explosion. The worst possible case 1629 // is if both sides are PHI nodes. In which case, this is O(m x n) time 1630 // where 'm' and 'n' are the number of PHI sources. 1631 if (PhiValueSet.size() > MaxLookupSearchDepth) 1632 return MayAlias; 1633 // Add the values to V1Srcs 1634 for (Value *PV1 : PhiValueSet) { 1635 if (CheckForRecPhi(PV1)) 1636 continue; 1637 V1Srcs.push_back(PV1); 1638 } 1639 } else { 1640 // If we don't have PhiInfo then just look at the operands of the phi itself 1641 // FIXME: Remove this once we can guarantee that we have PhiInfo always 1642 SmallPtrSet<Value *, 4> UniqueSrc; 1643 for (Value *PV1 : PN->incoming_values()) { 1644 if (isa<PHINode>(PV1)) 1645 // If any of the source itself is a PHI, return MayAlias conservatively 1646 // to avoid compile time explosion. The worst possible case is if both 1647 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1648 // and 'n' are the number of PHI sources. 1649 return MayAlias; 1650 1651 if (CheckForRecPhi(PV1)) 1652 continue; 1653 1654 if (UniqueSrc.insert(PV1).second) 1655 V1Srcs.push_back(PV1); 1656 } 1657 } 1658 1659 // If V1Srcs is empty then that means that the phi has no underlying non-phi 1660 // value. This should only be possible in blocks unreachable from the entry 1661 // block, but return MayAlias just in case. 1662 if (V1Srcs.empty()) 1663 return MayAlias; 1664 1665 // If this PHI node is recursive, set the size of the accessed memory to 1666 // unknown to represent all the possible values the GEP could advance the 1667 // pointer to. 1668 if (isRecursive) 1669 PNSize = LocationSize::unknown(); 1670 1671 AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize, 1672 PNAAInfo, AAQI, UnderV2); 1673 1674 // Early exit if the check of the first PHI source against V2 is MayAlias. 1675 // Other results are not possible. 1676 if (Alias == MayAlias) 1677 return MayAlias; 1678 // With recursive phis we cannot guarantee that MustAlias/PartialAlias will 1679 // remain valid to all elements and needs to conservatively return MayAlias. 1680 if (isRecursive && Alias != NoAlias) 1681 return MayAlias; 1682 1683 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1684 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1685 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1686 Value *V = V1Srcs[i]; 1687 1688 AliasResult ThisAlias = 1689 aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, AAQI, UnderV2); 1690 Alias = MergeAliasResults(ThisAlias, Alias); 1691 if (Alias == MayAlias) 1692 break; 1693 } 1694 1695 return Alias; 1696 } 1697 1698 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1699 /// array references. 1700 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size, 1701 AAMDNodes V1AAInfo, const Value *V2, 1702 LocationSize V2Size, AAMDNodes V2AAInfo, 1703 AAQueryInfo &AAQI, const Value *O1, 1704 const Value *O2) { 1705 // If either of the memory references is empty, it doesn't matter what the 1706 // pointer values are. 1707 if (V1Size.isZero() || V2Size.isZero()) 1708 return NoAlias; 1709 1710 // Strip off any casts if they exist. 1711 V1 = V1->stripPointerCastsAndInvariantGroups(); 1712 V2 = V2->stripPointerCastsAndInvariantGroups(); 1713 1714 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1715 // value for undef that aliases nothing in the program. 1716 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1717 return NoAlias; 1718 1719 // Are we checking for alias of the same value? 1720 // Because we look 'through' phi nodes, we could look at "Value" pointers from 1721 // different iterations. We must therefore make sure that this is not the 1722 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1723 // happen by looking at the visited phi nodes and making sure they cannot 1724 // reach the value. 1725 if (isValueEqualInPotentialCycles(V1, V2)) 1726 return MustAlias; 1727 1728 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1729 return NoAlias; // Scalars cannot alias each other 1730 1731 // Figure out what objects these things are pointing to if we can. 1732 if (O1 == nullptr) 1733 O1 = getUnderlyingObject(V1, MaxLookupSearchDepth); 1734 1735 if (O2 == nullptr) 1736 O2 = getUnderlyingObject(V2, MaxLookupSearchDepth); 1737 1738 // Null values in the default address space don't point to any object, so they 1739 // don't alias any other pointer. 1740 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1741 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1742 return NoAlias; 1743 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1744 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1745 return NoAlias; 1746 1747 if (O1 != O2) { 1748 // If V1/V2 point to two different objects, we know that we have no alias. 1749 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1750 return NoAlias; 1751 1752 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1753 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1754 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1755 return NoAlias; 1756 1757 // Function arguments can't alias with things that are known to be 1758 // unambigously identified at the function level. 1759 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1760 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1761 return NoAlias; 1762 1763 // If one pointer is the result of a call/invoke or load and the other is a 1764 // non-escaping local object within the same function, then we know the 1765 // object couldn't escape to a point where the call could return it. 1766 // 1767 // Note that if the pointers are in different functions, there are a 1768 // variety of complications. A call with a nocapture argument may still 1769 // temporary store the nocapture argument's value in a temporary memory 1770 // location if that memory location doesn't escape. Or it may pass a 1771 // nocapture value to other functions as long as they don't capture it. 1772 if (isEscapeSource(O1) && 1773 isNonEscapingLocalObject(O2, &AAQI.IsCapturedCache)) 1774 return NoAlias; 1775 if (isEscapeSource(O2) && 1776 isNonEscapingLocalObject(O1, &AAQI.IsCapturedCache)) 1777 return NoAlias; 1778 } 1779 1780 // If the size of one access is larger than the entire object on the other 1781 // side, then we know such behavior is undefined and can assume no alias. 1782 bool NullIsValidLocation = NullPointerIsDefined(&F); 1783 if ((isObjectSmallerThan( 1784 O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL, 1785 TLI, NullIsValidLocation)) || 1786 (isObjectSmallerThan( 1787 O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL, 1788 TLI, NullIsValidLocation))) 1789 return NoAlias; 1790 1791 // Check the cache before climbing up use-def chains. This also terminates 1792 // otherwise infinitely recursive queries. 1793 AAQueryInfo::LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo), 1794 MemoryLocation(V2, V2Size, V2AAInfo)); 1795 if (V1 > V2) 1796 std::swap(Locs.first, Locs.second); 1797 std::pair<AAQueryInfo::AliasCacheT::iterator, bool> Pair = 1798 AAQI.AliasCache.try_emplace(Locs, MayAlias); 1799 if (!Pair.second) 1800 return Pair.first->second; 1801 1802 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1803 // GEP can't simplify, we don't even look at the PHI cases. 1804 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1805 std::swap(V1, V2); 1806 std::swap(V1Size, V2Size); 1807 std::swap(O1, O2); 1808 std::swap(V1AAInfo, V2AAInfo); 1809 } 1810 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1811 AliasResult Result = 1812 aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2, AAQI); 1813 if (Result != MayAlias) { 1814 auto ItInsPair = AAQI.AliasCache.insert(std::make_pair(Locs, Result)); 1815 assert(!ItInsPair.second && "Entry must have existed"); 1816 ItInsPair.first->second = Result; 1817 return Result; 1818 } 1819 } 1820 1821 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1822 std::swap(V1, V2); 1823 std::swap(O1, O2); 1824 std::swap(V1Size, V2Size); 1825 std::swap(V1AAInfo, V2AAInfo); 1826 } 1827 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1828 AliasResult Result = 1829 aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI); 1830 if (Result != MayAlias) { 1831 Pair = AAQI.AliasCache.try_emplace(Locs, Result); 1832 assert(!Pair.second && "Entry must have existed"); 1833 return Pair.first->second = Result; 1834 } 1835 } 1836 1837 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1838 std::swap(V1, V2); 1839 std::swap(O1, O2); 1840 std::swap(V1Size, V2Size); 1841 std::swap(V1AAInfo, V2AAInfo); 1842 } 1843 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1844 AliasResult Result = 1845 aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI); 1846 if (Result != MayAlias) { 1847 Pair = AAQI.AliasCache.try_emplace(Locs, Result); 1848 assert(!Pair.second && "Entry must have existed"); 1849 return Pair.first->second = Result; 1850 } 1851 } 1852 1853 // If both pointers are pointing into the same object and one of them 1854 // accesses the entire object, then the accesses must overlap in some way. 1855 if (O1 == O2) 1856 if (V1Size.isPrecise() && V2Size.isPrecise() && 1857 (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) || 1858 isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation))) { 1859 Pair = AAQI.AliasCache.try_emplace(Locs, PartialAlias); 1860 assert(!Pair.second && "Entry must have existed"); 1861 return Pair.first->second = PartialAlias; 1862 } 1863 1864 // Recurse back into the best AA results we have, potentially with refined 1865 // memory locations. We have already ensured that BasicAA has a MayAlias 1866 // cache result for these, so any recursion back into BasicAA won't loop. 1867 AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second, AAQI); 1868 Pair = AAQI.AliasCache.try_emplace(Locs, Result); 1869 assert(!Pair.second && "Entry must have existed"); 1870 return Pair.first->second = Result; 1871 } 1872 1873 /// Check whether two Values can be considered equivalent. 1874 /// 1875 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether 1876 /// they can not be part of a cycle in the value graph by looking at all 1877 /// visited phi nodes an making sure that the phis cannot reach the value. We 1878 /// have to do this because we are looking through phi nodes (That is we say 1879 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1880 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1881 const Value *V2) { 1882 if (V != V2) 1883 return false; 1884 1885 const Instruction *Inst = dyn_cast<Instruction>(V); 1886 if (!Inst) 1887 return true; 1888 1889 if (VisitedPhiBBs.empty()) 1890 return true; 1891 1892 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1893 return false; 1894 1895 // Make sure that the visited phis cannot reach the Value. This ensures that 1896 // the Values cannot come from different iterations of a potential cycle the 1897 // phi nodes could be involved in. 1898 for (auto *P : VisitedPhiBBs) 1899 if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT, LI)) 1900 return false; 1901 1902 return true; 1903 } 1904 1905 /// Computes the symbolic difference between two de-composed GEPs. 1906 /// 1907 /// Dest and Src are the variable indices from two decomposed GetElementPtr 1908 /// instructions GEP1 and GEP2 which have common base pointers. 1909 void BasicAAResult::GetIndexDifference( 1910 SmallVectorImpl<VariableGEPIndex> &Dest, 1911 const SmallVectorImpl<VariableGEPIndex> &Src) { 1912 if (Src.empty()) 1913 return; 1914 1915 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1916 const Value *V = Src[i].V; 1917 unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits; 1918 APInt Scale = Src[i].Scale; 1919 1920 // Find V in Dest. This is N^2, but pointer indices almost never have more 1921 // than a few variable indexes. 1922 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1923 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1924 Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits) 1925 continue; 1926 1927 // If we found it, subtract off Scale V's from the entry in Dest. If it 1928 // goes to zero, remove the entry. 1929 if (Dest[j].Scale != Scale) 1930 Dest[j].Scale -= Scale; 1931 else 1932 Dest.erase(Dest.begin() + j); 1933 Scale = 0; 1934 break; 1935 } 1936 1937 // If we didn't consume this entry, add it to the end of the Dest list. 1938 if (!!Scale) { 1939 VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale}; 1940 Dest.push_back(Entry); 1941 } 1942 } 1943 } 1944 1945 bool BasicAAResult::constantOffsetHeuristic( 1946 const SmallVectorImpl<VariableGEPIndex> &VarIndices, 1947 LocationSize MaybeV1Size, LocationSize MaybeV2Size, const APInt &BaseOffset, 1948 AssumptionCache *AC, DominatorTree *DT) { 1949 if (VarIndices.size() != 2 || MaybeV1Size == LocationSize::unknown() || 1950 MaybeV2Size == LocationSize::unknown()) 1951 return false; 1952 1953 const uint64_t V1Size = MaybeV1Size.getValue(); 1954 const uint64_t V2Size = MaybeV2Size.getValue(); 1955 1956 const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1]; 1957 1958 if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits || 1959 Var0.Scale != -Var1.Scale) 1960 return false; 1961 1962 unsigned Width = Var1.V->getType()->getIntegerBitWidth(); 1963 1964 // We'll strip off the Extensions of Var0 and Var1 and do another round 1965 // of GetLinearExpression decomposition. In the example above, if Var0 1966 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 1967 1968 APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0), 1969 V1Offset(Width, 0); 1970 bool NSW = true, NUW = true; 1971 unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0; 1972 const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits, 1973 V0SExtBits, DL, 0, AC, DT, NSW, NUW); 1974 NSW = true; 1975 NUW = true; 1976 const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits, 1977 V1SExtBits, DL, 0, AC, DT, NSW, NUW); 1978 1979 if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits || 1980 V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1)) 1981 return false; 1982 1983 // We have a hit - Var0 and Var1 only differ by a constant offset! 1984 1985 // If we've been sext'ed then zext'd the maximum difference between Var0 and 1986 // Var1 is possible to calculate, but we're just interested in the absolute 1987 // minimum difference between the two. The minimum distance may occur due to 1988 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 1989 // the minimum distance between %i and %i + 5 is 3. 1990 APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff; 1991 MinDiff = APIntOps::umin(MinDiff, Wrapped); 1992 APInt MinDiffBytes = 1993 MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs(); 1994 1995 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 1996 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 1997 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 1998 // V2Size can fit in the MinDiffBytes gap. 1999 return MinDiffBytes.uge(V1Size + BaseOffset.abs()) && 2000 MinDiffBytes.uge(V2Size + BaseOffset.abs()); 2001 } 2002 2003 //===----------------------------------------------------------------------===// 2004 // BasicAliasAnalysis Pass 2005 //===----------------------------------------------------------------------===// 2006 2007 AnalysisKey BasicAA::Key; 2008 2009 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) { 2010 return BasicAAResult(F.getParent()->getDataLayout(), 2011 F, 2012 AM.getResult<TargetLibraryAnalysis>(F), 2013 AM.getResult<AssumptionAnalysis>(F), 2014 &AM.getResult<DominatorTreeAnalysis>(F), 2015 AM.getCachedResult<LoopAnalysis>(F), 2016 AM.getCachedResult<PhiValuesAnalysis>(F)); 2017 } 2018 2019 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 2020 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 2021 } 2022 2023 char BasicAAWrapperPass::ID = 0; 2024 2025 void BasicAAWrapperPass::anchor() {} 2026 2027 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa", 2028 "Basic Alias Analysis (stateless AA impl)", true, true) 2029 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2030 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2031 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2032 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass) 2033 INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa", 2034 "Basic Alias Analysis (stateless AA impl)", true, true) 2035 2036 FunctionPass *llvm::createBasicAAWrapperPass() { 2037 return new BasicAAWrapperPass(); 2038 } 2039 2040 bool BasicAAWrapperPass::runOnFunction(Function &F) { 2041 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 2042 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 2043 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); 2044 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 2045 auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>(); 2046 2047 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F, 2048 TLIWP.getTLI(F), ACT.getAssumptionCache(F), 2049 &DTWP.getDomTree(), 2050 LIWP ? &LIWP->getLoopInfo() : nullptr, 2051 PVWP ? &PVWP->getResult() : nullptr)); 2052 2053 return false; 2054 } 2055 2056 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 2057 AU.setPreservesAll(); 2058 AU.addRequired<AssumptionCacheTracker>(); 2059 AU.addRequired<DominatorTreeWrapperPass>(); 2060 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2061 AU.addUsedIfAvailable<PhiValuesWrapperPass>(); 2062 } 2063 2064 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { 2065 return BasicAAResult( 2066 F.getParent()->getDataLayout(), F, 2067 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 2068 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 2069 } 2070