1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the primary stateless implementation of the
11 // Alias Analysis interface that implements identities (two different
12 // globals cannot alias, etc), but does no stateful analysis.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Analysis/BasicAliasAnalysis.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/CFG.h"
21 #include "llvm/Analysis/CaptureTracking.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include <algorithm>
40 
41 #define DEBUG_TYPE "basicaa"
42 
43 using namespace llvm;
44 
45 /// Enable analysis of recursive PHI nodes.
46 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden,
47                                           cl::init(false));
48 /// SearchLimitReached / SearchTimes shows how often the limit of
49 /// to decompose GEPs is reached. It will affect the precision
50 /// of basic alias analysis.
51 STATISTIC(SearchLimitReached, "Number of times the limit to "
52                               "decompose GEPs is reached");
53 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
54 
55 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
56 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
57 /// careful with value equivalence. We use reachability to make sure a value
58 /// cannot be involved in a cycle.
59 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
60 
61 // The max limit of the search depth in DecomposeGEPExpression() and
62 // GetUnderlyingObject(), both functions need to use the same search
63 // depth otherwise the algorithm in aliasGEP will assert.
64 static const unsigned MaxLookupSearchDepth = 6;
65 
66 //===----------------------------------------------------------------------===//
67 // Useful predicates
68 //===----------------------------------------------------------------------===//
69 
70 /// Returns true if the pointer is to a function-local object that never
71 /// escapes from the function.
72 static bool isNonEscapingLocalObject(const Value *V) {
73   // If this is a local allocation, check to see if it escapes.
74   if (isa<AllocaInst>(V) || isNoAliasCall(V))
75     // Set StoreCaptures to True so that we can assume in our callers that the
76     // pointer is not the result of a load instruction. Currently
77     // PointerMayBeCaptured doesn't have any special analysis for the
78     // StoreCaptures=false case; if it did, our callers could be refined to be
79     // more precise.
80     return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
81 
82   // If this is an argument that corresponds to a byval or noalias argument,
83   // then it has not escaped before entering the function.  Check if it escapes
84   // inside the function.
85   if (const Argument *A = dyn_cast<Argument>(V))
86     if (A->hasByValAttr() || A->hasNoAliasAttr())
87       // Note even if the argument is marked nocapture, we still need to check
88       // for copies made inside the function. The nocapture attribute only
89       // specifies that there are no copies made that outlive the function.
90       return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
91 
92   return false;
93 }
94 
95 /// Returns true if the pointer is one which would have been considered an
96 /// escape by isNonEscapingLocalObject.
97 static bool isEscapeSource(const Value *V) {
98   if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
99     return true;
100 
101   // The load case works because isNonEscapingLocalObject considers all
102   // stores to be escapes (it passes true for the StoreCaptures argument
103   // to PointerMayBeCaptured).
104   if (isa<LoadInst>(V))
105     return true;
106 
107   return false;
108 }
109 
110 /// Returns the size of the object specified by V or UnknownSize if unknown.
111 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
112                               const TargetLibraryInfo &TLI,
113                               bool RoundToAlign = false) {
114   uint64_t Size;
115   if (getObjectSize(V, Size, DL, &TLI, RoundToAlign))
116     return Size;
117   return MemoryLocation::UnknownSize;
118 }
119 
120 /// Returns true if we can prove that the object specified by V is smaller than
121 /// Size.
122 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
123                                 const DataLayout &DL,
124                                 const TargetLibraryInfo &TLI) {
125   // Note that the meanings of the "object" are slightly different in the
126   // following contexts:
127   //    c1: llvm::getObjectSize()
128   //    c2: llvm.objectsize() intrinsic
129   //    c3: isObjectSmallerThan()
130   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
131   // refers to the "entire object".
132   //
133   //  Consider this example:
134   //     char *p = (char*)malloc(100)
135   //     char *q = p+80;
136   //
137   //  In the context of c1 and c2, the "object" pointed by q refers to the
138   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
139   //
140   //  However, in the context of c3, the "object" refers to the chunk of memory
141   // being allocated. So, the "object" has 100 bytes, and q points to the middle
142   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
143   // parameter, before the llvm::getObjectSize() is called to get the size of
144   // entire object, we should:
145   //    - either rewind the pointer q to the base-address of the object in
146   //      question (in this case rewind to p), or
147   //    - just give up. It is up to caller to make sure the pointer is pointing
148   //      to the base address the object.
149   //
150   // We go for 2nd option for simplicity.
151   if (!isIdentifiedObject(V))
152     return false;
153 
154   // This function needs to use the aligned object size because we allow
155   // reads a bit past the end given sufficient alignment.
156   uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/ true);
157 
158   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
159 }
160 
161 /// Returns true if we can prove that the object specified by V has size Size.
162 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
163                          const TargetLibraryInfo &TLI) {
164   uint64_t ObjectSize = getObjectSize(V, DL, TLI);
165   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
166 }
167 
168 //===----------------------------------------------------------------------===//
169 // GetElementPtr Instruction Decomposition and Analysis
170 //===----------------------------------------------------------------------===//
171 
172 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
173 /// B are constant integers.
174 ///
175 /// Returns the scale and offset values as APInts and return V as a Value*, and
176 /// return whether we looked through any sign or zero extends.  The incoming
177 /// Value is known to have IntegerType, and it may already be sign or zero
178 /// extended.
179 ///
180 /// Note that this looks through extends, so the high bits may not be
181 /// represented in the result.
182 /*static*/ const Value *BasicAAResult::GetLinearExpression(
183     const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
184     unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
185     AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
186   assert(V->getType()->isIntegerTy() && "Not an integer value");
187 
188   // Limit our recursion depth.
189   if (Depth == 6) {
190     Scale = 1;
191     Offset = 0;
192     return V;
193   }
194 
195   if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
196     // If it's a constant, just convert it to an offset and remove the variable.
197     // If we've been called recursively, the Offset bit width will be greater
198     // than the constant's (the Offset's always as wide as the outermost call),
199     // so we'll zext here and process any extension in the isa<SExtInst> &
200     // isa<ZExtInst> cases below.
201     Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
202     assert(Scale == 0 && "Constant values don't have a scale");
203     return V;
204   }
205 
206   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
207     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
208 
209       // If we've been called recursively, then Offset and Scale will be wider
210       // than the BOp operands. We'll always zext it here as we'll process sign
211       // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
212       APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
213 
214       switch (BOp->getOpcode()) {
215       default:
216         // We don't understand this instruction, so we can't decompose it any
217         // further.
218         Scale = 1;
219         Offset = 0;
220         return V;
221       case Instruction::Or:
222         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
223         // analyze it.
224         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
225                                BOp, DT)) {
226           Scale = 1;
227           Offset = 0;
228           return V;
229         }
230         LLVM_FALLTHROUGH;
231       case Instruction::Add:
232         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
233                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
234         Offset += RHS;
235         break;
236       case Instruction::Sub:
237         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
238                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
239         Offset -= RHS;
240         break;
241       case Instruction::Mul:
242         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
243                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
244         Offset *= RHS;
245         Scale *= RHS;
246         break;
247       case Instruction::Shl:
248         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
249                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
250         Offset <<= RHS.getLimitedValue();
251         Scale <<= RHS.getLimitedValue();
252         // the semantics of nsw and nuw for left shifts don't match those of
253         // multiplications, so we won't propagate them.
254         NSW = NUW = false;
255         return V;
256       }
257 
258       if (isa<OverflowingBinaryOperator>(BOp)) {
259         NUW &= BOp->hasNoUnsignedWrap();
260         NSW &= BOp->hasNoSignedWrap();
261       }
262       return V;
263     }
264   }
265 
266   // Since GEP indices are sign extended anyway, we don't care about the high
267   // bits of a sign or zero extended value - just scales and offsets.  The
268   // extensions have to be consistent though.
269   if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
270     Value *CastOp = cast<CastInst>(V)->getOperand(0);
271     unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
272     unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
273     unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
274     const Value *Result =
275         GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
276                             Depth + 1, AC, DT, NSW, NUW);
277 
278     // zext(zext(%x)) == zext(%x), and similiarly for sext; we'll handle this
279     // by just incrementing the number of bits we've extended by.
280     unsigned ExtendedBy = NewWidth - SmallWidth;
281 
282     if (isa<SExtInst>(V) && ZExtBits == 0) {
283       // sext(sext(%x, a), b) == sext(%x, a + b)
284 
285       if (NSW) {
286         // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
287         // into sext(%x) + sext(c). We'll sext the Offset ourselves:
288         unsigned OldWidth = Offset.getBitWidth();
289         Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
290       } else {
291         // We may have signed-wrapped, so don't decompose sext(%x + c) into
292         // sext(%x) + sext(c)
293         Scale = 1;
294         Offset = 0;
295         Result = CastOp;
296         ZExtBits = OldZExtBits;
297         SExtBits = OldSExtBits;
298       }
299       SExtBits += ExtendedBy;
300     } else {
301       // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
302 
303       if (!NUW) {
304         // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
305         // zext(%x) + zext(c)
306         Scale = 1;
307         Offset = 0;
308         Result = CastOp;
309         ZExtBits = OldZExtBits;
310         SExtBits = OldSExtBits;
311       }
312       ZExtBits += ExtendedBy;
313     }
314 
315     return Result;
316   }
317 
318   Scale = 1;
319   Offset = 0;
320   return V;
321 }
322 
323 /// To ensure a pointer offset fits in an integer of size PointerSize
324 /// (in bits) when that size is smaller than 64. This is an issue in
325 /// particular for 32b programs with negative indices that rely on two's
326 /// complement wrap-arounds for precise alias information.
327 static int64_t adjustToPointerSize(int64_t Offset, unsigned PointerSize) {
328   assert(PointerSize <= 64 && "Invalid PointerSize!");
329   unsigned ShiftBits = 64 - PointerSize;
330   return (int64_t)((uint64_t)Offset << ShiftBits) >> ShiftBits;
331 }
332 
333 /// If V is a symbolic pointer expression, decompose it into a base pointer
334 /// with a constant offset and a number of scaled symbolic offsets.
335 ///
336 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
337 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
338 /// specified amount, but which may have other unrepresented high bits. As
339 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
340 ///
341 /// When DataLayout is around, this function is capable of analyzing everything
342 /// that GetUnderlyingObject can look through. To be able to do that
343 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search
344 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks
345 /// through pointer casts.
346 bool BasicAAResult::DecomposeGEPExpression(const Value *V,
347        DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC,
348        DominatorTree *DT) {
349   // Limit recursion depth to limit compile time in crazy cases.
350   unsigned MaxLookup = MaxLookupSearchDepth;
351   SearchTimes++;
352 
353   Decomposed.StructOffset = 0;
354   Decomposed.OtherOffset = 0;
355   Decomposed.VarIndices.clear();
356   do {
357     // See if this is a bitcast or GEP.
358     const Operator *Op = dyn_cast<Operator>(V);
359     if (!Op) {
360       // The only non-operator case we can handle are GlobalAliases.
361       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
362         if (!GA->isInterposable()) {
363           V = GA->getAliasee();
364           continue;
365         }
366       }
367       Decomposed.Base = V;
368       return false;
369     }
370 
371     if (Op->getOpcode() == Instruction::BitCast ||
372         Op->getOpcode() == Instruction::AddrSpaceCast) {
373       V = Op->getOperand(0);
374       continue;
375     }
376 
377     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
378     if (!GEPOp) {
379       if (auto CS = ImmutableCallSite(V))
380         if (const Value *RV = CS.getReturnedArgOperand()) {
381           V = RV;
382           continue;
383         }
384 
385       // If it's not a GEP, hand it off to SimplifyInstruction to see if it
386       // can come up with something. This matches what GetUnderlyingObject does.
387       if (const Instruction *I = dyn_cast<Instruction>(V))
388         // TODO: Get a DominatorTree and AssumptionCache and use them here
389         // (these are both now available in this function, but this should be
390         // updated when GetUnderlyingObject is updated). TLI should be
391         // provided also.
392         if (const Value *Simplified =
393                 SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
394           V = Simplified;
395           continue;
396         }
397 
398       Decomposed.Base = V;
399       return false;
400     }
401 
402     // Don't attempt to analyze GEPs over unsized objects.
403     if (!GEPOp->getSourceElementType()->isSized()) {
404       Decomposed.Base = V;
405       return false;
406     }
407 
408     unsigned AS = GEPOp->getPointerAddressSpace();
409     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
410     gep_type_iterator GTI = gep_type_begin(GEPOp);
411     unsigned PointerSize = DL.getPointerSizeInBits(AS);
412     // Assume all GEP operands are constants until proven otherwise.
413     bool GepHasConstantOffset = true;
414     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
415          I != E; ++I) {
416       const Value *Index = *I;
417       // Compute the (potentially symbolic) offset in bytes for this index.
418       if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
419         // For a struct, add the member offset.
420         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
421         if (FieldNo == 0)
422           continue;
423 
424         Decomposed.StructOffset +=
425           DL.getStructLayout(STy)->getElementOffset(FieldNo);
426         continue;
427       }
428 
429       // For an array/pointer, add the element offset, explicitly scaled.
430       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
431         if (CIdx->isZero())
432           continue;
433         Decomposed.OtherOffset +=
434           DL.getTypeAllocSize(*GTI) * CIdx->getSExtValue();
435         continue;
436       }
437 
438       GepHasConstantOffset = false;
439 
440       uint64_t Scale = DL.getTypeAllocSize(*GTI);
441       unsigned ZExtBits = 0, SExtBits = 0;
442 
443       // If the integer type is smaller than the pointer size, it is implicitly
444       // sign extended to pointer size.
445       unsigned Width = Index->getType()->getIntegerBitWidth();
446       if (PointerSize > Width)
447         SExtBits += PointerSize - Width;
448 
449       // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
450       APInt IndexScale(Width, 0), IndexOffset(Width, 0);
451       bool NSW = true, NUW = true;
452       Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
453                                   SExtBits, DL, 0, AC, DT, NSW, NUW);
454 
455       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
456       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
457       Decomposed.OtherOffset += IndexOffset.getSExtValue() * Scale;
458       Scale *= IndexScale.getSExtValue();
459 
460       // If we already had an occurrence of this index variable, merge this
461       // scale into it.  For example, we want to handle:
462       //   A[x][x] -> x*16 + x*4 -> x*20
463       // This also ensures that 'x' only appears in the index list once.
464       for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
465         if (Decomposed.VarIndices[i].V == Index &&
466             Decomposed.VarIndices[i].ZExtBits == ZExtBits &&
467             Decomposed.VarIndices[i].SExtBits == SExtBits) {
468           Scale += Decomposed.VarIndices[i].Scale;
469           Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
470           break;
471         }
472       }
473 
474       // Make sure that we have a scale that makes sense for this target's
475       // pointer size.
476       Scale = adjustToPointerSize(Scale, PointerSize);
477 
478       if (Scale) {
479         VariableGEPIndex Entry = {Index, ZExtBits, SExtBits,
480                                   static_cast<int64_t>(Scale)};
481         Decomposed.VarIndices.push_back(Entry);
482       }
483     }
484 
485     // Take care of wrap-arounds
486     if (GepHasConstantOffset) {
487       Decomposed.StructOffset =
488           adjustToPointerSize(Decomposed.StructOffset, PointerSize);
489       Decomposed.OtherOffset =
490           adjustToPointerSize(Decomposed.OtherOffset, PointerSize);
491     }
492 
493     // Analyze the base pointer next.
494     V = GEPOp->getOperand(0);
495   } while (--MaxLookup);
496 
497   // If the chain of expressions is too deep, just return early.
498   Decomposed.Base = V;
499   SearchLimitReached++;
500   return true;
501 }
502 
503 /// Returns whether the given pointer value points to memory that is local to
504 /// the function, with global constants being considered local to all
505 /// functions.
506 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
507                                            bool OrLocal) {
508   assert(Visited.empty() && "Visited must be cleared after use!");
509 
510   unsigned MaxLookup = 8;
511   SmallVector<const Value *, 16> Worklist;
512   Worklist.push_back(Loc.Ptr);
513   do {
514     const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
515     if (!Visited.insert(V).second) {
516       Visited.clear();
517       return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
518     }
519 
520     // An alloca instruction defines local memory.
521     if (OrLocal && isa<AllocaInst>(V))
522       continue;
523 
524     // A global constant counts as local memory for our purposes.
525     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
526       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
527       // global to be marked constant in some modules and non-constant in
528       // others.  GV may even be a declaration, not a definition.
529       if (!GV->isConstant()) {
530         Visited.clear();
531         return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
532       }
533       continue;
534     }
535 
536     // If both select values point to local memory, then so does the select.
537     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
538       Worklist.push_back(SI->getTrueValue());
539       Worklist.push_back(SI->getFalseValue());
540       continue;
541     }
542 
543     // If all values incoming to a phi node point to local memory, then so does
544     // the phi.
545     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
546       // Don't bother inspecting phi nodes with many operands.
547       if (PN->getNumIncomingValues() > MaxLookup) {
548         Visited.clear();
549         return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
550       }
551       for (Value *IncValue : PN->incoming_values())
552         Worklist.push_back(IncValue);
553       continue;
554     }
555 
556     // Otherwise be conservative.
557     Visited.clear();
558     return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
559 
560   } while (!Worklist.empty() && --MaxLookup);
561 
562   Visited.clear();
563   return Worklist.empty();
564 }
565 
566 /// Returns the behavior when calling the given call site.
567 FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) {
568   if (CS.doesNotAccessMemory())
569     // Can't do better than this.
570     return FMRB_DoesNotAccessMemory;
571 
572   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
573 
574   // If the callsite knows it only reads memory, don't return worse
575   // than that.
576   if (CS.onlyReadsMemory())
577     Min = FMRB_OnlyReadsMemory;
578   else if (CS.doesNotReadMemory())
579     Min = FMRB_DoesNotReadMemory;
580 
581   if (CS.onlyAccessesArgMemory())
582     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
583 
584   // If CS has operand bundles then aliasing attributes from the function it
585   // calls do not directly apply to the CallSite.  This can be made more
586   // precise in the future.
587   if (!CS.hasOperandBundles())
588     if (const Function *F = CS.getCalledFunction())
589       Min =
590           FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
591 
592   return Min;
593 }
594 
595 /// Returns the behavior when calling the given function. For use when the call
596 /// site is not known.
597 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
598   // If the function declares it doesn't access memory, we can't do better.
599   if (F->doesNotAccessMemory())
600     return FMRB_DoesNotAccessMemory;
601 
602   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
603 
604   // If the function declares it only reads memory, go with that.
605   if (F->onlyReadsMemory())
606     Min = FMRB_OnlyReadsMemory;
607   else if (F->doesNotReadMemory())
608     Min = FMRB_DoesNotReadMemory;
609 
610   if (F->onlyAccessesArgMemory())
611     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
612 
613   return Min;
614 }
615 
616 /// Returns true if this is a writeonly (i.e Mod only) parameter.
617 static bool isWriteOnlyParam(ImmutableCallSite CS, unsigned ArgIdx,
618                              const TargetLibraryInfo &TLI) {
619   if (CS.paramHasAttr(ArgIdx + 1, Attribute::WriteOnly))
620     return true;
621 
622   // We can bound the aliasing properties of memset_pattern16 just as we can
623   // for memcpy/memset.  This is particularly important because the
624   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
625   // whenever possible.
626   // FIXME Consider handling this in InferFunctionAttr.cpp together with other
627   // attributes.
628   LibFunc::Func F;
629   if (CS.getCalledFunction() && TLI.getLibFunc(*CS.getCalledFunction(), F) &&
630       F == LibFunc::memset_pattern16 && TLI.has(F))
631     if (ArgIdx == 0)
632       return true;
633 
634   // TODO: memset_pattern4, memset_pattern8
635   // TODO: _chk variants
636   // TODO: strcmp, strcpy
637 
638   return false;
639 }
640 
641 ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS,
642                                            unsigned ArgIdx) {
643 
644   // Checking for known builtin intrinsics and target library functions.
645   if (isWriteOnlyParam(CS, ArgIdx, TLI))
646     return MRI_Mod;
647 
648   if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadOnly))
649     return MRI_Ref;
650 
651   if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadNone))
652     return MRI_NoModRef;
653 
654   return AAResultBase::getArgModRefInfo(CS, ArgIdx);
655 }
656 
657 static bool isIntrinsicCall(ImmutableCallSite CS, Intrinsic::ID IID) {
658   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
659   return II && II->getIntrinsicID() == IID;
660 }
661 
662 #ifndef NDEBUG
663 static const Function *getParent(const Value *V) {
664   if (const Instruction *inst = dyn_cast<Instruction>(V))
665     return inst->getParent()->getParent();
666 
667   if (const Argument *arg = dyn_cast<Argument>(V))
668     return arg->getParent();
669 
670   return nullptr;
671 }
672 
673 static bool notDifferentParent(const Value *O1, const Value *O2) {
674 
675   const Function *F1 = getParent(O1);
676   const Function *F2 = getParent(O2);
677 
678   return !F1 || !F2 || F1 == F2;
679 }
680 #endif
681 
682 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
683                                  const MemoryLocation &LocB) {
684   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
685          "BasicAliasAnalysis doesn't support interprocedural queries.");
686 
687   // If we have a directly cached entry for these locations, we have recursed
688   // through this once, so just return the cached results. Notably, when this
689   // happens, we don't clear the cache.
690   auto CacheIt = AliasCache.find(LocPair(LocA, LocB));
691   if (CacheIt != AliasCache.end())
692     return CacheIt->second;
693 
694   AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
695                                  LocB.Size, LocB.AATags);
696   // AliasCache rarely has more than 1 or 2 elements, always use
697   // shrink_and_clear so it quickly returns to the inline capacity of the
698   // SmallDenseMap if it ever grows larger.
699   // FIXME: This should really be shrink_to_inline_capacity_and_clear().
700   AliasCache.shrink_and_clear();
701   VisitedPhiBBs.clear();
702   return Alias;
703 }
704 
705 /// Checks to see if the specified callsite can clobber the specified memory
706 /// object.
707 ///
708 /// Since we only look at local properties of this function, we really can't
709 /// say much about this query.  We do, however, use simple "address taken"
710 /// analysis on local objects.
711 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS,
712                                         const MemoryLocation &Loc) {
713   assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
714          "AliasAnalysis query involving multiple functions!");
715 
716   const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);
717 
718   // If this is a tail call and Loc.Ptr points to a stack location, we know that
719   // the tail call cannot access or modify the local stack.
720   // We cannot exclude byval arguments here; these belong to the caller of
721   // the current function not to the current function, and a tail callee
722   // may reference them.
723   if (isa<AllocaInst>(Object))
724     if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
725       if (CI->isTailCall())
726         return MRI_NoModRef;
727 
728   // If the pointer is to a locally allocated object that does not escape,
729   // then the call can not mod/ref the pointer unless the call takes the pointer
730   // as an argument, and itself doesn't capture it.
731   if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
732       isNonEscapingLocalObject(Object)) {
733     bool PassedAsArg = false;
734     unsigned OperandNo = 0;
735     for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end();
736          CI != CE; ++CI, ++OperandNo) {
737       // Only look at the no-capture or byval pointer arguments.  If this
738       // pointer were passed to arguments that were neither of these, then it
739       // couldn't be no-capture.
740       if (!(*CI)->getType()->isPointerTy() ||
741           (!CS.doesNotCapture(OperandNo) && !CS.isByValArgument(OperandNo)))
742         continue;
743 
744       // If this is a no-capture pointer argument, see if we can tell that it
745       // is impossible to alias the pointer we're checking.  If not, we have to
746       // assume that the call could touch the pointer, even though it doesn't
747       // escape.
748       AliasResult AR =
749           getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object));
750       if (AR) {
751         PassedAsArg = true;
752         break;
753       }
754     }
755 
756     if (!PassedAsArg)
757       return MRI_NoModRef;
758   }
759 
760   // If the CallSite is to malloc or calloc, we can assume that it doesn't
761   // modify any IR visible value.  This is only valid because we assume these
762   // routines do not read values visible in the IR.  TODO: Consider special
763   // casing realloc and strdup routines which access only their arguments as
764   // well.  Or alternatively, replace all of this with inaccessiblememonly once
765   // that's implemented fully.
766   auto *Inst = CS.getInstruction();
767   if (isMallocLikeFn(Inst, &TLI) || isCallocLikeFn(Inst, &TLI)) {
768     // Be conservative if the accessed pointer may alias the allocation -
769     // fallback to the generic handling below.
770     if (getBestAAResults().alias(MemoryLocation(Inst), Loc) == NoAlias)
771       return MRI_NoModRef;
772   }
773 
774   // While the assume intrinsic is marked as arbitrarily writing so that
775   // proper control dependencies will be maintained, it never aliases any
776   // particular memory location.
777   if (isIntrinsicCall(CS, Intrinsic::assume))
778     return MRI_NoModRef;
779 
780   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
781   // that proper control dependencies are maintained but they never mods any
782   // particular memory location.
783   //
784   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
785   // heap state at the point the guard is issued needs to be consistent in case
786   // the guard invokes the "deopt" continuation.
787   if (isIntrinsicCall(CS, Intrinsic::experimental_guard))
788     return MRI_Ref;
789 
790   // Like assumes, invariant.start intrinsics were also marked as arbitrarily
791   // writing so that proper control dependencies are maintained but they never
792   // mod any particular memory location visible to the IR.
793   // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
794   // intrinsic is now modeled as reading memory. This prevents hoisting the
795   // invariant.start intrinsic over stores. Consider:
796   // *ptr = 40;
797   // *ptr = 50;
798   // invariant_start(ptr)
799   // int val = *ptr;
800   // print(val);
801   //
802   // This cannot be transformed to:
803   //
804   // *ptr = 40;
805   // invariant_start(ptr)
806   // *ptr = 50;
807   // int val = *ptr;
808   // print(val);
809   //
810   // The transformation will cause the second store to be ignored (based on
811   // rules of invariant.start)  and print 40, while the first program always
812   // prints 50.
813   if (isIntrinsicCall(CS, Intrinsic::invariant_start))
814     return MRI_Ref;
815 
816   // The AAResultBase base class has some smarts, lets use them.
817   return AAResultBase::getModRefInfo(CS, Loc);
818 }
819 
820 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1,
821                                         ImmutableCallSite CS2) {
822   // While the assume intrinsic is marked as arbitrarily writing so that
823   // proper control dependencies will be maintained, it never aliases any
824   // particular memory location.
825   if (isIntrinsicCall(CS1, Intrinsic::assume) ||
826       isIntrinsicCall(CS2, Intrinsic::assume))
827     return MRI_NoModRef;
828 
829   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
830   // that proper control dependencies are maintained but they never mod any
831   // particular memory location.
832   //
833   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
834   // heap state at the point the guard is issued needs to be consistent in case
835   // the guard invokes the "deopt" continuation.
836 
837   // NB! This function is *not* commutative, so we specical case two
838   // possibilities for guard intrinsics.
839 
840   if (isIntrinsicCall(CS1, Intrinsic::experimental_guard))
841     return getModRefBehavior(CS2) & MRI_Mod ? MRI_Ref : MRI_NoModRef;
842 
843   if (isIntrinsicCall(CS2, Intrinsic::experimental_guard))
844     return getModRefBehavior(CS1) & MRI_Mod ? MRI_Mod : MRI_NoModRef;
845 
846   // The AAResultBase base class has some smarts, lets use them.
847   return AAResultBase::getModRefInfo(CS1, CS2);
848 }
849 
850 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
851 /// both having the exact same pointer operand.
852 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
853                                             uint64_t V1Size,
854                                             const GEPOperator *GEP2,
855                                             uint64_t V2Size,
856                                             const DataLayout &DL) {
857 
858   assert(GEP1->getPointerOperand()->stripPointerCasts() ==
859          GEP2->getPointerOperand()->stripPointerCasts() &&
860          GEP1->getPointerOperand()->getType() ==
861          GEP2->getPointerOperand()->getType() &&
862          "Expected GEPs with the same pointer operand");
863 
864   // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
865   // such that the struct field accesses provably cannot alias.
866   // We also need at least two indices (the pointer, and the struct field).
867   if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
868       GEP1->getNumIndices() < 2)
869     return MayAlias;
870 
871   // If we don't know the size of the accesses through both GEPs, we can't
872   // determine whether the struct fields accessed can't alias.
873   if (V1Size == MemoryLocation::UnknownSize ||
874       V2Size == MemoryLocation::UnknownSize)
875     return MayAlias;
876 
877   ConstantInt *C1 =
878       dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
879   ConstantInt *C2 =
880       dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
881 
882   // If the last (struct) indices are constants and are equal, the other indices
883   // might be also be dynamically equal, so the GEPs can alias.
884   if (C1 && C2 && C1->getSExtValue() == C2->getSExtValue())
885     return MayAlias;
886 
887   // Find the last-indexed type of the GEP, i.e., the type you'd get if
888   // you stripped the last index.
889   // On the way, look at each indexed type.  If there's something other
890   // than an array, different indices can lead to different final types.
891   SmallVector<Value *, 8> IntermediateIndices;
892 
893   // Insert the first index; we don't need to check the type indexed
894   // through it as it only drops the pointer indirection.
895   assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
896   IntermediateIndices.push_back(GEP1->getOperand(1));
897 
898   // Insert all the remaining indices but the last one.
899   // Also, check that they all index through arrays.
900   for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
901     if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
902             GEP1->getSourceElementType(), IntermediateIndices)))
903       return MayAlias;
904     IntermediateIndices.push_back(GEP1->getOperand(i + 1));
905   }
906 
907   auto *Ty = GetElementPtrInst::getIndexedType(
908     GEP1->getSourceElementType(), IntermediateIndices);
909   StructType *LastIndexedStruct = dyn_cast<StructType>(Ty);
910 
911   if (isa<SequentialType>(Ty)) {
912     // We know that:
913     // - both GEPs begin indexing from the exact same pointer;
914     // - the last indices in both GEPs are constants, indexing into a sequential
915     //   type (array or pointer);
916     // - both GEPs only index through arrays prior to that.
917     //
918     // Because array indices greater than the number of elements are valid in
919     // GEPs, unless we know the intermediate indices are identical between
920     // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
921     // partially overlap. We also need to check that the loaded size matches
922     // the element size, otherwise we could still have overlap.
923     const uint64_t ElementSize =
924         DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType());
925     if (V1Size != ElementSize || V2Size != ElementSize)
926       return MayAlias;
927 
928     for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i)
929       if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1))
930         return MayAlias;
931 
932     // Now we know that the array/pointer that GEP1 indexes into and that
933     // that GEP2 indexes into must either precisely overlap or be disjoint.
934     // Because they cannot partially overlap and because fields in an array
935     // cannot overlap, if we can prove the final indices are different between
936     // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
937 
938     // If the last indices are constants, we've already checked they don't
939     // equal each other so we can exit early.
940     if (C1 && C2)
941       return NoAlias;
942     if (isKnownNonEqual(GEP1->getOperand(GEP1->getNumOperands() - 1),
943                         GEP2->getOperand(GEP2->getNumOperands() - 1),
944                         DL))
945       return NoAlias;
946     return MayAlias;
947   } else if (!LastIndexedStruct || !C1 || !C2) {
948     return MayAlias;
949   }
950 
951   // We know that:
952   // - both GEPs begin indexing from the exact same pointer;
953   // - the last indices in both GEPs are constants, indexing into a struct;
954   // - said indices are different, hence, the pointed-to fields are different;
955   // - both GEPs only index through arrays prior to that.
956   //
957   // This lets us determine that the struct that GEP1 indexes into and the
958   // struct that GEP2 indexes into must either precisely overlap or be
959   // completely disjoint.  Because they cannot partially overlap, indexing into
960   // different non-overlapping fields of the struct will never alias.
961 
962   // Therefore, the only remaining thing needed to show that both GEPs can't
963   // alias is that the fields are not overlapping.
964   const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
965   const uint64_t StructSize = SL->getSizeInBytes();
966   const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
967   const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
968 
969   auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
970                                       uint64_t V2Off, uint64_t V2Size) {
971     return V1Off < V2Off && V1Off + V1Size <= V2Off &&
972            ((V2Off + V2Size <= StructSize) ||
973             (V2Off + V2Size - StructSize <= V1Off));
974   };
975 
976   if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
977       EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
978     return NoAlias;
979 
980   return MayAlias;
981 }
982 
983 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the
984 // beginning of the object the GEP points would have a negative offset with
985 // repsect to the alloca, that means the GEP can not alias pointer (b).
986 // Note that the pointer based on the alloca may not be a GEP. For
987 // example, it may be the alloca itself.
988 // The same applies if (b) is based on a GlobalVariable. Note that just being
989 // based on isIdentifiedObject() is not enough - we need an identified object
990 // that does not permit access to negative offsets. For example, a negative
991 // offset from a noalias argument or call can be inbounds w.r.t the actual
992 // underlying object.
993 //
994 // For example, consider:
995 //
996 //   struct { int f0, int f1, ...} foo;
997 //   foo alloca;
998 //   foo* random = bar(alloca);
999 //   int *f0 = &alloca.f0
1000 //   int *f1 = &random->f1;
1001 //
1002 // Which is lowered, approximately, to:
1003 //
1004 //  %alloca = alloca %struct.foo
1005 //  %random = call %struct.foo* @random(%struct.foo* %alloca)
1006 //  %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0
1007 //  %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1
1008 //
1009 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated
1010 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also
1011 // point into the same object. But since %f0 points to the beginning of %alloca,
1012 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher
1013 // than (%alloca - 1), and so is not inbounds, a contradiction.
1014 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp,
1015       const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject,
1016       uint64_t ObjectAccessSize) {
1017   // If the object access size is unknown, or the GEP isn't inbounds, bail.
1018   if (ObjectAccessSize == MemoryLocation::UnknownSize || !GEPOp->isInBounds())
1019     return false;
1020 
1021   // We need the object to be an alloca or a globalvariable, and want to know
1022   // the offset of the pointer from the object precisely, so no variable
1023   // indices are allowed.
1024   if (!(isa<AllocaInst>(DecompObject.Base) ||
1025         isa<GlobalVariable>(DecompObject.Base)) ||
1026       !DecompObject.VarIndices.empty())
1027     return false;
1028 
1029   int64_t ObjectBaseOffset = DecompObject.StructOffset +
1030                              DecompObject.OtherOffset;
1031 
1032   // If the GEP has no variable indices, we know the precise offset
1033   // from the base, then use it. If the GEP has variable indices, we're in
1034   // a bit more trouble: we can't count on the constant offsets that come
1035   // from non-struct sources, since these can be "rewound" by a negative
1036   // variable offset. So use only offsets that came from structs.
1037   int64_t GEPBaseOffset = DecompGEP.StructOffset;
1038   if (DecompGEP.VarIndices.empty())
1039     GEPBaseOffset += DecompGEP.OtherOffset;
1040 
1041   return (GEPBaseOffset >= ObjectBaseOffset + (int64_t)ObjectAccessSize);
1042 }
1043 
1044 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1045 /// another pointer.
1046 ///
1047 /// We know that V1 is a GEP, but we don't know anything about V2.
1048 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for
1049 /// V2.
1050 AliasResult BasicAAResult::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
1051                                     const AAMDNodes &V1AAInfo, const Value *V2,
1052                                     uint64_t V2Size, const AAMDNodes &V2AAInfo,
1053                                     const Value *UnderlyingV1,
1054                                     const Value *UnderlyingV2) {
1055   DecomposedGEP DecompGEP1, DecompGEP2;
1056   bool GEP1MaxLookupReached =
1057     DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT);
1058   bool GEP2MaxLookupReached =
1059     DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT);
1060 
1061   int64_t GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset;
1062   int64_t GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset;
1063 
1064   assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
1065          "DecomposeGEPExpression returned a result different from "
1066          "GetUnderlyingObject");
1067 
1068   // If the GEP's offset relative to its base is such that the base would
1069   // fall below the start of the object underlying V2, then the GEP and V2
1070   // cannot alias.
1071   if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1072       isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size))
1073     return NoAlias;
1074   // If we have two gep instructions with must-alias or not-alias'ing base
1075   // pointers, figure out if the indexes to the GEP tell us anything about the
1076   // derived pointer.
1077   if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
1078     // Check for the GEP base being at a negative offset, this time in the other
1079     // direction.
1080     if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1081         isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size))
1082       return NoAlias;
1083     // Do the base pointers alias?
1084     AliasResult BaseAlias =
1085         aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(),
1086                    UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes());
1087 
1088     // Check for geps of non-aliasing underlying pointers where the offsets are
1089     // identical.
1090     if ((BaseAlias == MayAlias) && V1Size == V2Size) {
1091       // Do the base pointers alias assuming type and size.
1092       AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo,
1093                                                 UnderlyingV2, V2Size, V2AAInfo);
1094       if (PreciseBaseAlias == NoAlias) {
1095         // See if the computed offset from the common pointer tells us about the
1096         // relation of the resulting pointer.
1097         // If the max search depth is reached the result is undefined
1098         if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1099           return MayAlias;
1100 
1101         // Same offsets.
1102         if (GEP1BaseOffset == GEP2BaseOffset &&
1103             DecompGEP1.VarIndices == DecompGEP2.VarIndices)
1104           return NoAlias;
1105       }
1106     }
1107 
1108     // If we get a No or May, then return it immediately, no amount of analysis
1109     // will improve this situation.
1110     if (BaseAlias != MustAlias)
1111       return BaseAlias;
1112 
1113     // Otherwise, we have a MustAlias.  Since the base pointers alias each other
1114     // exactly, see if the computed offset from the common pointer tells us
1115     // about the relation of the resulting pointer.
1116     // If we know the two GEPs are based off of the exact same pointer (and not
1117     // just the same underlying object), see if that tells us anything about
1118     // the resulting pointers.
1119     if (GEP1->getPointerOperand()->stripPointerCasts() ==
1120         GEP2->getPointerOperand()->stripPointerCasts() &&
1121         GEP1->getPointerOperand()->getType() ==
1122         GEP2->getPointerOperand()->getType()) {
1123       AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL);
1124       // If we couldn't find anything interesting, don't abandon just yet.
1125       if (R != MayAlias)
1126         return R;
1127     }
1128 
1129     // If the max search depth is reached, the result is undefined
1130     if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1131       return MayAlias;
1132 
1133     // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1134     // symbolic difference.
1135     GEP1BaseOffset -= GEP2BaseOffset;
1136     GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);
1137 
1138   } else {
1139     // Check to see if these two pointers are related by the getelementptr
1140     // instruction.  If one pointer is a GEP with a non-zero index of the other
1141     // pointer, we know they cannot alias.
1142 
1143     // If both accesses are unknown size, we can't do anything useful here.
1144     if (V1Size == MemoryLocation::UnknownSize &&
1145         V2Size == MemoryLocation::UnknownSize)
1146       return MayAlias;
1147 
1148     AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize,
1149                                AAMDNodes(), V2, V2Size, V2AAInfo,
1150                                nullptr, UnderlyingV2);
1151     if (R != MustAlias)
1152       // If V2 may alias GEP base pointer, conservatively returns MayAlias.
1153       // If V2 is known not to alias GEP base pointer, then the two values
1154       // cannot alias per GEP semantics: "A pointer value formed from a
1155       // getelementptr instruction is associated with the addresses associated
1156       // with the first operand of the getelementptr".
1157       return R;
1158 
1159     // If the max search depth is reached the result is undefined
1160     if (GEP1MaxLookupReached)
1161       return MayAlias;
1162   }
1163 
1164   // In the two GEP Case, if there is no difference in the offsets of the
1165   // computed pointers, the resultant pointers are a must alias.  This
1166   // happens when we have two lexically identical GEP's (for example).
1167   //
1168   // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
1169   // must aliases the GEP, the end result is a must alias also.
1170   if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty())
1171     return MustAlias;
1172 
1173   // If there is a constant difference between the pointers, but the difference
1174   // is less than the size of the associated memory object, then we know
1175   // that the objects are partially overlapping.  If the difference is
1176   // greater, we know they do not overlap.
1177   if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) {
1178     if (GEP1BaseOffset >= 0) {
1179       if (V2Size != MemoryLocation::UnknownSize) {
1180         if ((uint64_t)GEP1BaseOffset < V2Size)
1181           return PartialAlias;
1182         return NoAlias;
1183       }
1184     } else {
1185       // We have the situation where:
1186       // +                +
1187       // | BaseOffset     |
1188       // ---------------->|
1189       // |-->V1Size       |-------> V2Size
1190       // GEP1             V2
1191       // We need to know that V2Size is not unknown, otherwise we might have
1192       // stripped a gep with negative index ('gep <ptr>, -1, ...).
1193       if (V1Size != MemoryLocation::UnknownSize &&
1194           V2Size != MemoryLocation::UnknownSize) {
1195         if (-(uint64_t)GEP1BaseOffset < V1Size)
1196           return PartialAlias;
1197         return NoAlias;
1198       }
1199     }
1200   }
1201 
1202   if (!DecompGEP1.VarIndices.empty()) {
1203     uint64_t Modulo = 0;
1204     bool AllPositive = true;
1205     for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1206 
1207       // Try to distinguish something like &A[i][1] against &A[42][0].
1208       // Grab the least significant bit set in any of the scales. We
1209       // don't need std::abs here (even if the scale's negative) as we'll
1210       // be ^'ing Modulo with itself later.
1211       Modulo |= (uint64_t)DecompGEP1.VarIndices[i].Scale;
1212 
1213       if (AllPositive) {
1214         // If the Value could change between cycles, then any reasoning about
1215         // the Value this cycle may not hold in the next cycle. We'll just
1216         // give up if we can't determine conditions that hold for every cycle:
1217         const Value *V = DecompGEP1.VarIndices[i].V;
1218 
1219         bool SignKnownZero, SignKnownOne;
1220         ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, DL,
1221                        0, &AC, nullptr, DT);
1222 
1223         // Zero-extension widens the variable, and so forces the sign
1224         // bit to zero.
1225         bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
1226         SignKnownZero |= IsZExt;
1227         SignKnownOne &= !IsZExt;
1228 
1229         // If the variable begins with a zero then we know it's
1230         // positive, regardless of whether the value is signed or
1231         // unsigned.
1232         int64_t Scale = DecompGEP1.VarIndices[i].Scale;
1233         AllPositive =
1234             (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0);
1235       }
1236     }
1237 
1238     Modulo = Modulo ^ (Modulo & (Modulo - 1));
1239 
1240     // We can compute the difference between the two addresses
1241     // mod Modulo. Check whether that difference guarantees that the
1242     // two locations do not alias.
1243     uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
1244     if (V1Size != MemoryLocation::UnknownSize &&
1245         V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size &&
1246         V1Size <= Modulo - ModOffset)
1247       return NoAlias;
1248 
1249     // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
1250     // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
1251     // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
1252     if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset)
1253       return NoAlias;
1254 
1255     if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
1256                                 GEP1BaseOffset, &AC, DT))
1257       return NoAlias;
1258   }
1259 
1260   // Statically, we can see that the base objects are the same, but the
1261   // pointers have dynamic offsets which we can't resolve. And none of our
1262   // little tricks above worked.
1263   //
1264   // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
1265   // practical effect of this is protecting TBAA in the case of dynamic
1266   // indices into arrays of unions or malloc'd memory.
1267   return PartialAlias;
1268 }
1269 
1270 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1271   // If the results agree, take it.
1272   if (A == B)
1273     return A;
1274   // A mix of PartialAlias and MustAlias is PartialAlias.
1275   if ((A == PartialAlias && B == MustAlias) ||
1276       (B == PartialAlias && A == MustAlias))
1277     return PartialAlias;
1278   // Otherwise, we don't know anything.
1279   return MayAlias;
1280 }
1281 
1282 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1283 /// against another.
1284 AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, uint64_t SISize,
1285                                        const AAMDNodes &SIAAInfo,
1286                                        const Value *V2, uint64_t V2Size,
1287                                        const AAMDNodes &V2AAInfo,
1288                                        const Value *UnderV2) {
1289   // If the values are Selects with the same condition, we can do a more precise
1290   // check: just check for aliases between the values on corresponding arms.
1291   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1292     if (SI->getCondition() == SI2->getCondition()) {
1293       AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo,
1294                                      SI2->getTrueValue(), V2Size, V2AAInfo);
1295       if (Alias == MayAlias)
1296         return MayAlias;
1297       AliasResult ThisAlias =
1298           aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
1299                      SI2->getFalseValue(), V2Size, V2AAInfo);
1300       return MergeAliasResults(ThisAlias, Alias);
1301     }
1302 
1303   // If both arms of the Select node NoAlias or MustAlias V2, then returns
1304   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1305   AliasResult Alias =
1306       aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(),
1307                  SISize, SIAAInfo, UnderV2);
1308   if (Alias == MayAlias)
1309     return MayAlias;
1310 
1311   AliasResult ThisAlias =
1312       aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo,
1313                  UnderV2);
1314   return MergeAliasResults(ThisAlias, Alias);
1315 }
1316 
1317 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1318 /// another.
1319 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, uint64_t PNSize,
1320                                     const AAMDNodes &PNAAInfo, const Value *V2,
1321                                     uint64_t V2Size, const AAMDNodes &V2AAInfo,
1322                                     const Value *UnderV2) {
1323   // Track phi nodes we have visited. We use this information when we determine
1324   // value equivalence.
1325   VisitedPhiBBs.insert(PN->getParent());
1326 
1327   // If the values are PHIs in the same block, we can do a more precise
1328   // as well as efficient check: just check for aliases between the values
1329   // on corresponding edges.
1330   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1331     if (PN2->getParent() == PN->getParent()) {
1332       LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
1333                    MemoryLocation(V2, V2Size, V2AAInfo));
1334       if (PN > V2)
1335         std::swap(Locs.first, Locs.second);
1336       // Analyse the PHIs' inputs under the assumption that the PHIs are
1337       // NoAlias.
1338       // If the PHIs are May/MustAlias there must be (recursively) an input
1339       // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1340       // there must be an operation on the PHIs within the PHIs' value cycle
1341       // that causes a MayAlias.
1342       // Pretend the phis do not alias.
1343       AliasResult Alias = NoAlias;
1344       assert(AliasCache.count(Locs) &&
1345              "There must exist an entry for the phi node");
1346       AliasResult OrigAliasResult = AliasCache[Locs];
1347       AliasCache[Locs] = NoAlias;
1348 
1349       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1350         AliasResult ThisAlias =
1351             aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
1352                        PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1353                        V2Size, V2AAInfo);
1354         Alias = MergeAliasResults(ThisAlias, Alias);
1355         if (Alias == MayAlias)
1356           break;
1357       }
1358 
1359       // Reset if speculation failed.
1360       if (Alias != NoAlias)
1361         AliasCache[Locs] = OrigAliasResult;
1362 
1363       return Alias;
1364     }
1365 
1366   SmallPtrSet<Value *, 4> UniqueSrc;
1367   SmallVector<Value *, 4> V1Srcs;
1368   bool isRecursive = false;
1369   for (Value *PV1 : PN->incoming_values()) {
1370     if (isa<PHINode>(PV1))
1371       // If any of the source itself is a PHI, return MayAlias conservatively
1372       // to avoid compile time explosion. The worst possible case is if both
1373       // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1374       // and 'n' are the number of PHI sources.
1375       return MayAlias;
1376 
1377     if (EnableRecPhiAnalysis)
1378       if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
1379         // Check whether the incoming value is a GEP that advances the pointer
1380         // result of this PHI node (e.g. in a loop). If this is the case, we
1381         // would recurse and always get a MayAlias. Handle this case specially
1382         // below.
1383         if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
1384             isa<ConstantInt>(PV1GEP->idx_begin())) {
1385           isRecursive = true;
1386           continue;
1387         }
1388       }
1389 
1390     if (UniqueSrc.insert(PV1).second)
1391       V1Srcs.push_back(PV1);
1392   }
1393 
1394   // If this PHI node is recursive, set the size of the accessed memory to
1395   // unknown to represent all the possible values the GEP could advance the
1396   // pointer to.
1397   if (isRecursive)
1398     PNSize = MemoryLocation::UnknownSize;
1399 
1400   AliasResult Alias =
1401       aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0],
1402                  PNSize, PNAAInfo, UnderV2);
1403 
1404   // Early exit if the check of the first PHI source against V2 is MayAlias.
1405   // Other results are not possible.
1406   if (Alias == MayAlias)
1407     return MayAlias;
1408 
1409   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1410   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1411   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1412     Value *V = V1Srcs[i];
1413 
1414     AliasResult ThisAlias =
1415         aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, UnderV2);
1416     Alias = MergeAliasResults(ThisAlias, Alias);
1417     if (Alias == MayAlias)
1418       break;
1419   }
1420 
1421   return Alias;
1422 }
1423 
1424 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1425 /// array references.
1426 AliasResult BasicAAResult::aliasCheck(const Value *V1, uint64_t V1Size,
1427                                       AAMDNodes V1AAInfo, const Value *V2,
1428                                       uint64_t V2Size, AAMDNodes V2AAInfo,
1429                                       const Value *O1, const Value *O2) {
1430   // If either of the memory references is empty, it doesn't matter what the
1431   // pointer values are.
1432   if (V1Size == 0 || V2Size == 0)
1433     return NoAlias;
1434 
1435   // Strip off any casts if they exist.
1436   V1 = V1->stripPointerCasts();
1437   V2 = V2->stripPointerCasts();
1438 
1439   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1440   // value for undef that aliases nothing in the program.
1441   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1442     return NoAlias;
1443 
1444   // Are we checking for alias of the same value?
1445   // Because we look 'through' phi nodes, we could look at "Value" pointers from
1446   // different iterations. We must therefore make sure that this is not the
1447   // case. The function isValueEqualInPotentialCycles ensures that this cannot
1448   // happen by looking at the visited phi nodes and making sure they cannot
1449   // reach the value.
1450   if (isValueEqualInPotentialCycles(V1, V2))
1451     return MustAlias;
1452 
1453   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1454     return NoAlias; // Scalars cannot alias each other
1455 
1456   // Figure out what objects these things are pointing to if we can.
1457   if (O1 == nullptr)
1458     O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
1459 
1460   if (O2 == nullptr)
1461     O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);
1462 
1463   // Null values in the default address space don't point to any object, so they
1464   // don't alias any other pointer.
1465   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1466     if (CPN->getType()->getAddressSpace() == 0)
1467       return NoAlias;
1468   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1469     if (CPN->getType()->getAddressSpace() == 0)
1470       return NoAlias;
1471 
1472   if (O1 != O2) {
1473     // If V1/V2 point to two different objects, we know that we have no alias.
1474     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1475       return NoAlias;
1476 
1477     // Constant pointers can't alias with non-const isIdentifiedObject objects.
1478     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1479         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1480       return NoAlias;
1481 
1482     // Function arguments can't alias with things that are known to be
1483     // unambigously identified at the function level.
1484     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1485         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1486       return NoAlias;
1487 
1488     // Most objects can't alias null.
1489     if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
1490         (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
1491       return NoAlias;
1492 
1493     // If one pointer is the result of a call/invoke or load and the other is a
1494     // non-escaping local object within the same function, then we know the
1495     // object couldn't escape to a point where the call could return it.
1496     //
1497     // Note that if the pointers are in different functions, there are a
1498     // variety of complications. A call with a nocapture argument may still
1499     // temporary store the nocapture argument's value in a temporary memory
1500     // location if that memory location doesn't escape. Or it may pass a
1501     // nocapture value to other functions as long as they don't capture it.
1502     if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
1503       return NoAlias;
1504     if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
1505       return NoAlias;
1506   }
1507 
1508   // If the size of one access is larger than the entire object on the other
1509   // side, then we know such behavior is undefined and can assume no alias.
1510   if ((V1Size != MemoryLocation::UnknownSize &&
1511        isObjectSmallerThan(O2, V1Size, DL, TLI)) ||
1512       (V2Size != MemoryLocation::UnknownSize &&
1513        isObjectSmallerThan(O1, V2Size, DL, TLI)))
1514     return NoAlias;
1515 
1516   // Check the cache before climbing up use-def chains. This also terminates
1517   // otherwise infinitely recursive queries.
1518   LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
1519                MemoryLocation(V2, V2Size, V2AAInfo));
1520   if (V1 > V2)
1521     std::swap(Locs.first, Locs.second);
1522   std::pair<AliasCacheTy::iterator, bool> Pair =
1523       AliasCache.insert(std::make_pair(Locs, MayAlias));
1524   if (!Pair.second)
1525     return Pair.first->second;
1526 
1527   // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1528   // GEP can't simplify, we don't even look at the PHI cases.
1529   if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1530     std::swap(V1, V2);
1531     std::swap(V1Size, V2Size);
1532     std::swap(O1, O2);
1533     std::swap(V1AAInfo, V2AAInfo);
1534   }
1535   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1536     AliasResult Result =
1537         aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2);
1538     if (Result != MayAlias)
1539       return AliasCache[Locs] = Result;
1540   }
1541 
1542   if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1543     std::swap(V1, V2);
1544     std::swap(O1, O2);
1545     std::swap(V1Size, V2Size);
1546     std::swap(V1AAInfo, V2AAInfo);
1547   }
1548   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1549     AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo,
1550                                   V2, V2Size, V2AAInfo, O2);
1551     if (Result != MayAlias)
1552       return AliasCache[Locs] = Result;
1553   }
1554 
1555   if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1556     std::swap(V1, V2);
1557     std::swap(O1, O2);
1558     std::swap(V1Size, V2Size);
1559     std::swap(V1AAInfo, V2AAInfo);
1560   }
1561   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1562     AliasResult Result =
1563         aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2);
1564     if (Result != MayAlias)
1565       return AliasCache[Locs] = Result;
1566   }
1567 
1568   // If both pointers are pointing into the same object and one of them
1569   // accesses the entire object, then the accesses must overlap in some way.
1570   if (O1 == O2)
1571     if ((V1Size != MemoryLocation::UnknownSize &&
1572          isObjectSize(O1, V1Size, DL, TLI)) ||
1573         (V2Size != MemoryLocation::UnknownSize &&
1574          isObjectSize(O2, V2Size, DL, TLI)))
1575       return AliasCache[Locs] = PartialAlias;
1576 
1577   // Recurse back into the best AA results we have, potentially with refined
1578   // memory locations. We have already ensured that BasicAA has a MayAlias
1579   // cache result for these, so any recursion back into BasicAA won't loop.
1580   AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second);
1581   return AliasCache[Locs] = Result;
1582 }
1583 
1584 /// Check whether two Values can be considered equivalent.
1585 ///
1586 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1587 /// they can not be part of a cycle in the value graph by looking at all
1588 /// visited phi nodes an making sure that the phis cannot reach the value. We
1589 /// have to do this because we are looking through phi nodes (That is we say
1590 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1591 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1592                                                   const Value *V2) {
1593   if (V != V2)
1594     return false;
1595 
1596   const Instruction *Inst = dyn_cast<Instruction>(V);
1597   if (!Inst)
1598     return true;
1599 
1600   if (VisitedPhiBBs.empty())
1601     return true;
1602 
1603   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1604     return false;
1605 
1606   // Make sure that the visited phis cannot reach the Value. This ensures that
1607   // the Values cannot come from different iterations of a potential cycle the
1608   // phi nodes could be involved in.
1609   for (auto *P : VisitedPhiBBs)
1610     if (isPotentiallyReachable(&P->front(), Inst, DT, LI))
1611       return false;
1612 
1613   return true;
1614 }
1615 
1616 /// Computes the symbolic difference between two de-composed GEPs.
1617 ///
1618 /// Dest and Src are the variable indices from two decomposed GetElementPtr
1619 /// instructions GEP1 and GEP2 which have common base pointers.
1620 void BasicAAResult::GetIndexDifference(
1621     SmallVectorImpl<VariableGEPIndex> &Dest,
1622     const SmallVectorImpl<VariableGEPIndex> &Src) {
1623   if (Src.empty())
1624     return;
1625 
1626   for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1627     const Value *V = Src[i].V;
1628     unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
1629     int64_t Scale = Src[i].Scale;
1630 
1631     // Find V in Dest.  This is N^2, but pointer indices almost never have more
1632     // than a few variable indexes.
1633     for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1634       if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1635           Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
1636         continue;
1637 
1638       // If we found it, subtract off Scale V's from the entry in Dest.  If it
1639       // goes to zero, remove the entry.
1640       if (Dest[j].Scale != Scale)
1641         Dest[j].Scale -= Scale;
1642       else
1643         Dest.erase(Dest.begin() + j);
1644       Scale = 0;
1645       break;
1646     }
1647 
1648     // If we didn't consume this entry, add it to the end of the Dest list.
1649     if (Scale) {
1650       VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale};
1651       Dest.push_back(Entry);
1652     }
1653   }
1654 }
1655 
1656 bool BasicAAResult::constantOffsetHeuristic(
1657     const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size,
1658     uint64_t V2Size, int64_t BaseOffset, AssumptionCache *AC,
1659     DominatorTree *DT) {
1660   if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize ||
1661       V2Size == MemoryLocation::UnknownSize)
1662     return false;
1663 
1664   const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
1665 
1666   if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
1667       Var0.Scale != -Var1.Scale)
1668     return false;
1669 
1670   unsigned Width = Var1.V->getType()->getIntegerBitWidth();
1671 
1672   // We'll strip off the Extensions of Var0 and Var1 and do another round
1673   // of GetLinearExpression decomposition. In the example above, if Var0
1674   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1675 
1676   APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
1677       V1Offset(Width, 0);
1678   bool NSW = true, NUW = true;
1679   unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
1680   const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
1681                                         V0SExtBits, DL, 0, AC, DT, NSW, NUW);
1682   NSW = true;
1683   NUW = true;
1684   const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
1685                                         V1SExtBits, DL, 0, AC, DT, NSW, NUW);
1686 
1687   if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
1688       V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
1689     return false;
1690 
1691   // We have a hit - Var0 and Var1 only differ by a constant offset!
1692 
1693   // If we've been sext'ed then zext'd the maximum difference between Var0 and
1694   // Var1 is possible to calculate, but we're just interested in the absolute
1695   // minimum difference between the two. The minimum distance may occur due to
1696   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1697   // the minimum distance between %i and %i + 5 is 3.
1698   APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
1699   MinDiff = APIntOps::umin(MinDiff, Wrapped);
1700   uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale);
1701 
1702   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
1703   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
1704   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
1705   // V2Size can fit in the MinDiffBytes gap.
1706   return V1Size + std::abs(BaseOffset) <= MinDiffBytes &&
1707          V2Size + std::abs(BaseOffset) <= MinDiffBytes;
1708 }
1709 
1710 //===----------------------------------------------------------------------===//
1711 // BasicAliasAnalysis Pass
1712 //===----------------------------------------------------------------------===//
1713 
1714 char BasicAA::PassID;
1715 
1716 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
1717   return BasicAAResult(F.getParent()->getDataLayout(),
1718                        AM.getResult<TargetLibraryAnalysis>(F),
1719                        AM.getResult<AssumptionAnalysis>(F),
1720                        &AM.getResult<DominatorTreeAnalysis>(F),
1721                        AM.getCachedResult<LoopAnalysis>(F));
1722 }
1723 
1724 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
1725     initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
1726 }
1727 
1728 char BasicAAWrapperPass::ID = 0;
1729 void BasicAAWrapperPass::anchor() {}
1730 
1731 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa",
1732                       "Basic Alias Analysis (stateless AA impl)", true, true)
1733 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1734 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1735 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1736 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa",
1737                     "Basic Alias Analysis (stateless AA impl)", true, true)
1738 
1739 FunctionPass *llvm::createBasicAAWrapperPass() {
1740   return new BasicAAWrapperPass();
1741 }
1742 
1743 bool BasicAAWrapperPass::runOnFunction(Function &F) {
1744   auto &ACT = getAnalysis<AssumptionCacheTracker>();
1745   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
1746   auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
1747   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
1748 
1749   Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), TLIWP.getTLI(),
1750                                  ACT.getAssumptionCache(F), &DTWP.getDomTree(),
1751                                  LIWP ? &LIWP->getLoopInfo() : nullptr));
1752 
1753   return false;
1754 }
1755 
1756 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1757   AU.setPreservesAll();
1758   AU.addRequired<AssumptionCacheTracker>();
1759   AU.addRequired<DominatorTreeWrapperPass>();
1760   AU.addRequired<TargetLibraryInfoWrapperPass>();
1761 }
1762 
1763 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
1764   return BasicAAResult(
1765       F.getParent()->getDataLayout(),
1766       P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
1767       P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
1768 }
1769