1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the primary stateless implementation of the 11 // Alias Analysis interface that implements identities (two different 12 // globals cannot alias, etc), but does no stateful analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/Passes.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/CaptureTracking.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/TargetLibraryInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/GetElementPtrTypeIterator.h" 34 #include "llvm/IR/GlobalAlias.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include <algorithm> 43 using namespace llvm; 44 45 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 46 /// in a cycle. Because we are analysing 'through' phi nodes we need to be 47 /// careful with value equivalence. We use reachability to make sure a value 48 /// cannot be involved in a cycle. 49 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 50 51 // The max limit of the search depth in DecomposeGEPExpression() and 52 // GetUnderlyingObject(), both functions need to use the same search 53 // depth otherwise the algorithm in aliasGEP will assert. 54 static const unsigned MaxLookupSearchDepth = 6; 55 56 //===----------------------------------------------------------------------===// 57 // Useful predicates 58 //===----------------------------------------------------------------------===// 59 60 /// isNonEscapingLocalObject - Return true if the pointer is to a function-local 61 /// object that never escapes from the function. 62 static bool isNonEscapingLocalObject(const Value *V) { 63 // If this is a local allocation, check to see if it escapes. 64 if (isa<AllocaInst>(V) || isNoAliasCall(V)) 65 // Set StoreCaptures to True so that we can assume in our callers that the 66 // pointer is not the result of a load instruction. Currently 67 // PointerMayBeCaptured doesn't have any special analysis for the 68 // StoreCaptures=false case; if it did, our callers could be refined to be 69 // more precise. 70 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 71 72 // If this is an argument that corresponds to a byval or noalias argument, 73 // then it has not escaped before entering the function. Check if it escapes 74 // inside the function. 75 if (const Argument *A = dyn_cast<Argument>(V)) 76 if (A->hasByValAttr() || A->hasNoAliasAttr()) 77 // Note even if the argument is marked nocapture we still need to check 78 // for copies made inside the function. The nocapture attribute only 79 // specifies that there are no copies made that outlive the function. 80 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 81 82 return false; 83 } 84 85 /// isEscapeSource - Return true if the pointer is one which would have 86 /// been considered an escape by isNonEscapingLocalObject. 87 static bool isEscapeSource(const Value *V) { 88 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V)) 89 return true; 90 91 // The load case works because isNonEscapingLocalObject considers all 92 // stores to be escapes (it passes true for the StoreCaptures argument 93 // to PointerMayBeCaptured). 94 if (isa<LoadInst>(V)) 95 return true; 96 97 return false; 98 } 99 100 /// getObjectSize - Return the size of the object specified by V, or 101 /// UnknownSize if unknown. 102 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 103 const TargetLibraryInfo &TLI, 104 bool RoundToAlign = false) { 105 uint64_t Size; 106 if (getObjectSize(V, Size, DL, &TLI, RoundToAlign)) 107 return Size; 108 return MemoryLocation::UnknownSize; 109 } 110 111 /// isObjectSmallerThan - Return true if we can prove that the object specified 112 /// by V is smaller than Size. 113 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 114 const DataLayout &DL, 115 const TargetLibraryInfo &TLI) { 116 // Note that the meanings of the "object" are slightly different in the 117 // following contexts: 118 // c1: llvm::getObjectSize() 119 // c2: llvm.objectsize() intrinsic 120 // c3: isObjectSmallerThan() 121 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 122 // refers to the "entire object". 123 // 124 // Consider this example: 125 // char *p = (char*)malloc(100) 126 // char *q = p+80; 127 // 128 // In the context of c1 and c2, the "object" pointed by q refers to the 129 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 130 // 131 // However, in the context of c3, the "object" refers to the chunk of memory 132 // being allocated. So, the "object" has 100 bytes, and q points to the middle 133 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 134 // parameter, before the llvm::getObjectSize() is called to get the size of 135 // entire object, we should: 136 // - either rewind the pointer q to the base-address of the object in 137 // question (in this case rewind to p), or 138 // - just give up. It is up to caller to make sure the pointer is pointing 139 // to the base address the object. 140 // 141 // We go for 2nd option for simplicity. 142 if (!isIdentifiedObject(V)) 143 return false; 144 145 // This function needs to use the aligned object size because we allow 146 // reads a bit past the end given sufficient alignment. 147 uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/true); 148 149 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; 150 } 151 152 /// isObjectSize - Return true if we can prove that the object specified 153 /// by V has size Size. 154 static bool isObjectSize(const Value *V, uint64_t Size, 155 const DataLayout &DL, const TargetLibraryInfo &TLI) { 156 uint64_t ObjectSize = getObjectSize(V, DL, TLI); 157 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; 158 } 159 160 //===----------------------------------------------------------------------===// 161 // GetElementPtr Instruction Decomposition and Analysis 162 //===----------------------------------------------------------------------===// 163 164 namespace { 165 enum ExtensionKind { 166 EK_NotExtended, 167 EK_SignExt, 168 EK_ZeroExt 169 }; 170 171 struct VariableGEPIndex { 172 const Value *V; 173 ExtensionKind Extension; 174 int64_t Scale; 175 176 bool operator==(const VariableGEPIndex &Other) const { 177 return V == Other.V && Extension == Other.Extension && 178 Scale == Other.Scale; 179 } 180 181 bool operator!=(const VariableGEPIndex &Other) const { 182 return !operator==(Other); 183 } 184 }; 185 } 186 187 188 /// GetLinearExpression - Analyze the specified value as a linear expression: 189 /// "A*V + B", where A and B are constant integers. Return the scale and offset 190 /// values as APInts and return V as a Value*, and return whether we looked 191 /// through any sign or zero extends. The incoming Value is known to have 192 /// IntegerType and it may already be sign or zero extended. 193 /// 194 /// Note that this looks through extends, so the high bits may not be 195 /// represented in the result. 196 static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset, 197 ExtensionKind &Extension, 198 const DataLayout &DL, unsigned Depth, 199 AssumptionCache *AC, DominatorTree *DT) { 200 assert(V->getType()->isIntegerTy() && "Not an integer value"); 201 202 // Limit our recursion depth. 203 if (Depth == 6) { 204 Scale = 1; 205 Offset = 0; 206 return V; 207 } 208 209 if (ConstantInt *Const = dyn_cast<ConstantInt>(V)) { 210 // if it's a constant, just convert it to an offset 211 // and remove the variable. 212 Offset += Const->getValue(); 213 assert(Scale == 0 && "Constant values don't have a scale"); 214 return V; 215 } 216 217 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 218 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 219 switch (BOp->getOpcode()) { 220 default: break; 221 case Instruction::Or: 222 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 223 // analyze it. 224 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, 225 BOp, DT)) 226 break; 227 // FALL THROUGH. 228 case Instruction::Add: 229 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 230 DL, Depth + 1, AC, DT); 231 Offset += RHSC->getValue(); 232 return V; 233 case Instruction::Mul: 234 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 235 DL, Depth + 1, AC, DT); 236 Offset *= RHSC->getValue(); 237 Scale *= RHSC->getValue(); 238 return V; 239 case Instruction::Shl: 240 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 241 DL, Depth + 1, AC, DT); 242 Offset <<= RHSC->getValue().getLimitedValue(); 243 Scale <<= RHSC->getValue().getLimitedValue(); 244 return V; 245 } 246 } 247 } 248 249 // Since GEP indices are sign extended anyway, we don't care about the high 250 // bits of a sign or zero extended value - just scales and offsets. The 251 // extensions have to be consistent though. 252 if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) || 253 (isa<ZExtInst>(V) && Extension != EK_SignExt)) { 254 Value *CastOp = cast<CastInst>(V)->getOperand(0); 255 unsigned OldWidth = Scale.getBitWidth(); 256 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 257 Scale = Scale.trunc(SmallWidth); 258 Offset = Offset.trunc(SmallWidth); 259 Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt; 260 261 Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension, DL, 262 Depth + 1, AC, DT); 263 Scale = Scale.zext(OldWidth); 264 265 // We have to sign-extend even if Extension == EK_ZeroExt as we can't 266 // decompose a sign extension (i.e. zext(x - 1) != zext(x) - zext(-1)). 267 Offset = Offset.sext(OldWidth); 268 269 return Result; 270 } 271 272 Scale = 1; 273 Offset = 0; 274 return V; 275 } 276 277 /// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it 278 /// into a base pointer with a constant offset and a number of scaled symbolic 279 /// offsets. 280 /// 281 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale in 282 /// the VarIndices vector) are Value*'s that are known to be scaled by the 283 /// specified amount, but which may have other unrepresented high bits. As such, 284 /// the gep cannot necessarily be reconstructed from its decomposed form. 285 /// 286 /// When DataLayout is around, this function is capable of analyzing everything 287 /// that GetUnderlyingObject can look through. To be able to do that 288 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search 289 /// depth (MaxLookupSearchDepth). 290 /// When DataLayout not is around, it just looks through pointer casts. 291 /// 292 static const Value * 293 DecomposeGEPExpression(const Value *V, int64_t &BaseOffs, 294 SmallVectorImpl<VariableGEPIndex> &VarIndices, 295 bool &MaxLookupReached, const DataLayout &DL, 296 AssumptionCache *AC, DominatorTree *DT) { 297 // Limit recursion depth to limit compile time in crazy cases. 298 unsigned MaxLookup = MaxLookupSearchDepth; 299 MaxLookupReached = false; 300 301 BaseOffs = 0; 302 do { 303 // See if this is a bitcast or GEP. 304 const Operator *Op = dyn_cast<Operator>(V); 305 if (!Op) { 306 // The only non-operator case we can handle are GlobalAliases. 307 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 308 if (!GA->mayBeOverridden()) { 309 V = GA->getAliasee(); 310 continue; 311 } 312 } 313 return V; 314 } 315 316 if (Op->getOpcode() == Instruction::BitCast || 317 Op->getOpcode() == Instruction::AddrSpaceCast) { 318 V = Op->getOperand(0); 319 continue; 320 } 321 322 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 323 if (!GEPOp) { 324 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 325 // can come up with something. This matches what GetUnderlyingObject does. 326 if (const Instruction *I = dyn_cast<Instruction>(V)) 327 // TODO: Get a DominatorTree and AssumptionCache and use them here 328 // (these are both now available in this function, but this should be 329 // updated when GetUnderlyingObject is updated). TLI should be 330 // provided also. 331 if (const Value *Simplified = 332 SimplifyInstruction(const_cast<Instruction *>(I), DL)) { 333 V = Simplified; 334 continue; 335 } 336 337 return V; 338 } 339 340 // Don't attempt to analyze GEPs over unsized objects. 341 if (!GEPOp->getOperand(0)->getType()->getPointerElementType()->isSized()) 342 return V; 343 344 unsigned AS = GEPOp->getPointerAddressSpace(); 345 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 346 gep_type_iterator GTI = gep_type_begin(GEPOp); 347 for (User::const_op_iterator I = GEPOp->op_begin()+1, 348 E = GEPOp->op_end(); I != E; ++I) { 349 Value *Index = *I; 350 // Compute the (potentially symbolic) offset in bytes for this index. 351 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 352 // For a struct, add the member offset. 353 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 354 if (FieldNo == 0) continue; 355 356 BaseOffs += DL.getStructLayout(STy)->getElementOffset(FieldNo); 357 continue; 358 } 359 360 // For an array/pointer, add the element offset, explicitly scaled. 361 if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 362 if (CIdx->isZero()) continue; 363 BaseOffs += DL.getTypeAllocSize(*GTI) * CIdx->getSExtValue(); 364 continue; 365 } 366 367 uint64_t Scale = DL.getTypeAllocSize(*GTI); 368 ExtensionKind Extension = EK_NotExtended; 369 370 // If the integer type is smaller than the pointer size, it is implicitly 371 // sign extended to pointer size. 372 unsigned Width = Index->getType()->getIntegerBitWidth(); 373 if (DL.getPointerSizeInBits(AS) > Width) 374 Extension = EK_SignExt; 375 376 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 377 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 378 Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension, DL, 379 0, AC, DT); 380 381 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 382 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 383 BaseOffs += IndexOffset.getSExtValue()*Scale; 384 Scale *= IndexScale.getSExtValue(); 385 386 // If we already had an occurrence of this index variable, merge this 387 // scale into it. For example, we want to handle: 388 // A[x][x] -> x*16 + x*4 -> x*20 389 // This also ensures that 'x' only appears in the index list once. 390 for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) { 391 if (VarIndices[i].V == Index && 392 VarIndices[i].Extension == Extension) { 393 Scale += VarIndices[i].Scale; 394 VarIndices.erase(VarIndices.begin()+i); 395 break; 396 } 397 } 398 399 // Make sure that we have a scale that makes sense for this target's 400 // pointer size. 401 if (unsigned ShiftBits = 64 - DL.getPointerSizeInBits(AS)) { 402 Scale <<= ShiftBits; 403 Scale = (int64_t)Scale >> ShiftBits; 404 } 405 406 if (Scale) { 407 VariableGEPIndex Entry = {Index, Extension, 408 static_cast<int64_t>(Scale)}; 409 VarIndices.push_back(Entry); 410 } 411 } 412 413 // Analyze the base pointer next. 414 V = GEPOp->getOperand(0); 415 } while (--MaxLookup); 416 417 // If the chain of expressions is too deep, just return early. 418 MaxLookupReached = true; 419 return V; 420 } 421 422 //===----------------------------------------------------------------------===// 423 // BasicAliasAnalysis Pass 424 //===----------------------------------------------------------------------===// 425 426 #ifndef NDEBUG 427 static const Function *getParent(const Value *V) { 428 if (const Instruction *inst = dyn_cast<Instruction>(V)) 429 return inst->getParent()->getParent(); 430 431 if (const Argument *arg = dyn_cast<Argument>(V)) 432 return arg->getParent(); 433 434 return nullptr; 435 } 436 437 static bool notDifferentParent(const Value *O1, const Value *O2) { 438 439 const Function *F1 = getParent(O1); 440 const Function *F2 = getParent(O2); 441 442 return !F1 || !F2 || F1 == F2; 443 } 444 #endif 445 446 namespace { 447 /// BasicAliasAnalysis - This is the primary alias analysis implementation. 448 struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis { 449 static char ID; // Class identification, replacement for typeinfo 450 BasicAliasAnalysis() : ImmutablePass(ID) { 451 initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry()); 452 } 453 454 bool doInitialization(Module &M) override; 455 456 void getAnalysisUsage(AnalysisUsage &AU) const override { 457 AU.addRequired<AliasAnalysis>(); 458 AU.addRequired<AssumptionCacheTracker>(); 459 AU.addRequired<TargetLibraryInfoWrapperPass>(); 460 } 461 462 AliasResult alias(const MemoryLocation &LocA, 463 const MemoryLocation &LocB) override { 464 assert(AliasCache.empty() && "AliasCache must be cleared after use!"); 465 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 466 "BasicAliasAnalysis doesn't support interprocedural queries."); 467 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, 468 LocB.Ptr, LocB.Size, LocB.AATags); 469 // AliasCache rarely has more than 1 or 2 elements, always use 470 // shrink_and_clear so it quickly returns to the inline capacity of the 471 // SmallDenseMap if it ever grows larger. 472 // FIXME: This should really be shrink_to_inline_capacity_and_clear(). 473 AliasCache.shrink_and_clear(); 474 VisitedPhiBBs.clear(); 475 return Alias; 476 } 477 478 ModRefResult getModRefInfo(ImmutableCallSite CS, 479 const MemoryLocation &Loc) override; 480 481 ModRefResult getModRefInfo(ImmutableCallSite CS1, 482 ImmutableCallSite CS2) override; 483 484 /// pointsToConstantMemory - Chase pointers until we find a (constant 485 /// global) or not. 486 bool pointsToConstantMemory(const MemoryLocation &Loc, 487 bool OrLocal) override; 488 489 /// Get the location associated with a pointer argument of a callsite. 490 ModRefResult getArgModRefInfo(ImmutableCallSite CS, 491 unsigned ArgIdx) override; 492 493 /// getModRefBehavior - Return the behavior when calling the given 494 /// call site. 495 ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override; 496 497 /// getModRefBehavior - Return the behavior when calling the given function. 498 /// For use when the call site is not known. 499 ModRefBehavior getModRefBehavior(const Function *F) override; 500 501 /// getAdjustedAnalysisPointer - This method is used when a pass implements 502 /// an analysis interface through multiple inheritance. If needed, it 503 /// should override this to adjust the this pointer as needed for the 504 /// specified pass info. 505 void *getAdjustedAnalysisPointer(const void *ID) override { 506 if (ID == &AliasAnalysis::ID) 507 return (AliasAnalysis*)this; 508 return this; 509 } 510 511 private: 512 // AliasCache - Track alias queries to guard against recursion. 513 typedef std::pair<MemoryLocation, MemoryLocation> LocPair; 514 typedef SmallDenseMap<LocPair, AliasResult, 8> AliasCacheTy; 515 AliasCacheTy AliasCache; 516 517 /// \brief Track phi nodes we have visited. When interpret "Value" pointer 518 /// equality as value equality we need to make sure that the "Value" is not 519 /// part of a cycle. Otherwise, two uses could come from different 520 /// "iterations" of a cycle and see different values for the same "Value" 521 /// pointer. 522 /// The following example shows the problem: 523 /// %p = phi(%alloca1, %addr2) 524 /// %l = load %ptr 525 /// %addr1 = gep, %alloca2, 0, %l 526 /// %addr2 = gep %alloca2, 0, (%l + 1) 527 /// alias(%p, %addr1) -> MayAlias ! 528 /// store %l, ... 529 SmallPtrSet<const BasicBlock*, 8> VisitedPhiBBs; 530 531 // Visited - Track instructions visited by pointsToConstantMemory. 532 SmallPtrSet<const Value*, 16> Visited; 533 534 /// \brief Check whether two Values can be considered equivalent. 535 /// 536 /// In addition to pointer equivalence of \p V1 and \p V2 this checks 537 /// whether they can not be part of a cycle in the value graph by looking at 538 /// all visited phi nodes an making sure that the phis cannot reach the 539 /// value. We have to do this because we are looking through phi nodes (That 540 /// is we say noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 541 bool isValueEqualInPotentialCycles(const Value *V1, const Value *V2); 542 543 /// \brief Dest and Src are the variable indices from two decomposed 544 /// GetElementPtr instructions GEP1 and GEP2 which have common base 545 /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic 546 /// difference between the two pointers. 547 void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest, 548 const SmallVectorImpl<VariableGEPIndex> &Src); 549 550 // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP 551 // instruction against another. 552 AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size, 553 const AAMDNodes &V1AAInfo, 554 const Value *V2, uint64_t V2Size, 555 const AAMDNodes &V2AAInfo, 556 const Value *UnderlyingV1, const Value *UnderlyingV2); 557 558 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI 559 // instruction against another. 560 AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize, 561 const AAMDNodes &PNAAInfo, 562 const Value *V2, uint64_t V2Size, 563 const AAMDNodes &V2AAInfo); 564 565 /// aliasSelect - Disambiguate a Select instruction against another value. 566 AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize, 567 const AAMDNodes &SIAAInfo, 568 const Value *V2, uint64_t V2Size, 569 const AAMDNodes &V2AAInfo); 570 571 AliasResult aliasCheck(const Value *V1, uint64_t V1Size, 572 AAMDNodes V1AATag, 573 const Value *V2, uint64_t V2Size, 574 AAMDNodes V2AATag); 575 }; 576 } // End of anonymous namespace 577 578 // Register this pass... 579 char BasicAliasAnalysis::ID = 0; 580 INITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa", 581 "Basic Alias Analysis (stateless AA impl)", 582 false, true, false) 583 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 584 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 585 INITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa", 586 "Basic Alias Analysis (stateless AA impl)", 587 false, true, false) 588 589 590 ImmutablePass *llvm::createBasicAliasAnalysisPass() { 591 return new BasicAliasAnalysis(); 592 } 593 594 /// pointsToConstantMemory - Returns whether the given pointer value 595 /// points to memory that is local to the function, with global constants being 596 /// considered local to all functions. 597 bool BasicAliasAnalysis::pointsToConstantMemory(const MemoryLocation &Loc, 598 bool OrLocal) { 599 assert(Visited.empty() && "Visited must be cleared after use!"); 600 601 unsigned MaxLookup = 8; 602 SmallVector<const Value *, 16> Worklist; 603 Worklist.push_back(Loc.Ptr); 604 do { 605 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), *DL); 606 if (!Visited.insert(V).second) { 607 Visited.clear(); 608 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 609 } 610 611 // An alloca instruction defines local memory. 612 if (OrLocal && isa<AllocaInst>(V)) 613 continue; 614 615 // A global constant counts as local memory for our purposes. 616 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 617 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 618 // global to be marked constant in some modules and non-constant in 619 // others. GV may even be a declaration, not a definition. 620 if (!GV->isConstant()) { 621 Visited.clear(); 622 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 623 } 624 continue; 625 } 626 627 // If both select values point to local memory, then so does the select. 628 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 629 Worklist.push_back(SI->getTrueValue()); 630 Worklist.push_back(SI->getFalseValue()); 631 continue; 632 } 633 634 // If all values incoming to a phi node point to local memory, then so does 635 // the phi. 636 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 637 // Don't bother inspecting phi nodes with many operands. 638 if (PN->getNumIncomingValues() > MaxLookup) { 639 Visited.clear(); 640 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 641 } 642 for (Value *IncValue : PN->incoming_values()) 643 Worklist.push_back(IncValue); 644 continue; 645 } 646 647 // Otherwise be conservative. 648 Visited.clear(); 649 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 650 651 } while (!Worklist.empty() && --MaxLookup); 652 653 Visited.clear(); 654 return Worklist.empty(); 655 } 656 657 // FIXME: This code is duplicated with MemoryLocation and should be hoisted to 658 // some common utility location. 659 static bool isMemsetPattern16(const Function *MS, 660 const TargetLibraryInfo &TLI) { 661 if (TLI.has(LibFunc::memset_pattern16) && 662 MS->getName() == "memset_pattern16") { 663 FunctionType *MemsetType = MS->getFunctionType(); 664 if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 && 665 isa<PointerType>(MemsetType->getParamType(0)) && 666 isa<PointerType>(MemsetType->getParamType(1)) && 667 isa<IntegerType>(MemsetType->getParamType(2))) 668 return true; 669 } 670 671 return false; 672 } 673 674 /// getModRefBehavior - Return the behavior when calling the given call site. 675 AliasAnalysis::ModRefBehavior 676 BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) { 677 if (CS.doesNotAccessMemory()) 678 // Can't do better than this. 679 return DoesNotAccessMemory; 680 681 ModRefBehavior Min = UnknownModRefBehavior; 682 683 // If the callsite knows it only reads memory, don't return worse 684 // than that. 685 if (CS.onlyReadsMemory()) 686 Min = OnlyReadsMemory; 687 688 if (CS.onlyAccessesArgMemory()) 689 Min = ModRefBehavior(Min & OnlyAccessesArgumentPointees); 690 691 // The AliasAnalysis base class has some smarts, lets use them. 692 return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min); 693 } 694 695 /// getModRefBehavior - Return the behavior when calling the given function. 696 /// For use when the call site is not known. 697 AliasAnalysis::ModRefBehavior 698 BasicAliasAnalysis::getModRefBehavior(const Function *F) { 699 // If the function declares it doesn't access memory, we can't do better. 700 if (F->doesNotAccessMemory()) 701 return DoesNotAccessMemory; 702 703 // For intrinsics, we can check the table. 704 if (Intrinsic::ID iid = F->getIntrinsicID()) { 705 #define GET_INTRINSIC_MODREF_BEHAVIOR 706 #include "llvm/IR/Intrinsics.gen" 707 #undef GET_INTRINSIC_MODREF_BEHAVIOR 708 } 709 710 ModRefBehavior Min = UnknownModRefBehavior; 711 712 // If the function declares it only reads memory, go with that. 713 if (F->onlyReadsMemory()) 714 Min = OnlyReadsMemory; 715 716 if (F->onlyAccessesArgMemory()) 717 Min = ModRefBehavior(Min & OnlyAccessesArgumentPointees); 718 719 const TargetLibraryInfo &TLI = 720 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 721 if (isMemsetPattern16(F, TLI)) 722 Min = OnlyAccessesArgumentPointees; 723 724 // Otherwise be conservative. 725 return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min); 726 } 727 728 AliasAnalysis::ModRefResult 729 BasicAliasAnalysis::getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) { 730 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) 731 switch (II->getIntrinsicID()) { 732 default: 733 break; 734 case Intrinsic::memset: 735 case Intrinsic::memcpy: 736 case Intrinsic::memmove: 737 assert((ArgIdx == 0 || ArgIdx == 1) && 738 "Invalid argument index for memory intrinsic"); 739 return ArgIdx ? Ref : Mod; 740 } 741 742 // We can bound the aliasing properties of memset_pattern16 just as we can 743 // for memcpy/memset. This is particularly important because the 744 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 745 // whenever possible. 746 if (CS.getCalledFunction() && 747 isMemsetPattern16(CS.getCalledFunction(), *TLI)) { 748 assert((ArgIdx == 0 || ArgIdx == 1) && 749 "Invalid argument index for memset_pattern16"); 750 return ArgIdx ? Ref : Mod; 751 } 752 // FIXME: Handle memset_pattern4 and memset_pattern8 also. 753 754 return AliasAnalysis::getArgModRefInfo(CS, ArgIdx); 755 } 756 757 static bool isAssumeIntrinsic(ImmutableCallSite CS) { 758 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 759 if (II && II->getIntrinsicID() == Intrinsic::assume) 760 return true; 761 762 return false; 763 } 764 765 bool BasicAliasAnalysis::doInitialization(Module &M) { 766 InitializeAliasAnalysis(this, &M.getDataLayout()); 767 return true; 768 } 769 770 /// getModRefInfo - Check to see if the specified callsite can clobber the 771 /// specified memory object. Since we only look at local properties of this 772 /// function, we really can't say much about this query. We do, however, use 773 /// simple "address taken" analysis on local objects. 774 AliasAnalysis::ModRefResult 775 BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS, 776 const MemoryLocation &Loc) { 777 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && 778 "AliasAnalysis query involving multiple functions!"); 779 780 const Value *Object = GetUnderlyingObject(Loc.Ptr, *DL); 781 782 // If this is a tail call and Loc.Ptr points to a stack location, we know that 783 // the tail call cannot access or modify the local stack. 784 // We cannot exclude byval arguments here; these belong to the caller of 785 // the current function not to the current function, and a tail callee 786 // may reference them. 787 if (isa<AllocaInst>(Object)) 788 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) 789 if (CI->isTailCall()) 790 return NoModRef; 791 792 // If the pointer is to a locally allocated object that does not escape, 793 // then the call can not mod/ref the pointer unless the call takes the pointer 794 // as an argument, and itself doesn't capture it. 795 if (!isa<Constant>(Object) && CS.getInstruction() != Object && 796 isNonEscapingLocalObject(Object)) { 797 bool PassedAsArg = false; 798 unsigned ArgNo = 0; 799 for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end(); 800 CI != CE; ++CI, ++ArgNo) { 801 // Only look at the no-capture or byval pointer arguments. If this 802 // pointer were passed to arguments that were neither of these, then it 803 // couldn't be no-capture. 804 if (!(*CI)->getType()->isPointerTy() || 805 (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo))) 806 continue; 807 808 // If this is a no-capture pointer argument, see if we can tell that it 809 // is impossible to alias the pointer we're checking. If not, we have to 810 // assume that the call could touch the pointer, even though it doesn't 811 // escape. 812 if (!isNoAlias(MemoryLocation(*CI), MemoryLocation(Object))) { 813 PassedAsArg = true; 814 break; 815 } 816 } 817 818 if (!PassedAsArg) 819 return NoModRef; 820 } 821 822 // While the assume intrinsic is marked as arbitrarily writing so that 823 // proper control dependencies will be maintained, it never aliases any 824 // particular memory location. 825 if (isAssumeIntrinsic(CS)) 826 return NoModRef; 827 828 // The AliasAnalysis base class has some smarts, lets use them. 829 return AliasAnalysis::getModRefInfo(CS, Loc); 830 } 831 832 AliasAnalysis::ModRefResult 833 BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS1, 834 ImmutableCallSite CS2) { 835 // While the assume intrinsic is marked as arbitrarily writing so that 836 // proper control dependencies will be maintained, it never aliases any 837 // particular memory location. 838 if (isAssumeIntrinsic(CS1) || isAssumeIntrinsic(CS2)) 839 return NoModRef; 840 841 // The AliasAnalysis base class has some smarts, lets use them. 842 return AliasAnalysis::getModRefInfo(CS1, CS2); 843 } 844 845 /// \brief Provide ad-hoc rules to disambiguate accesses through two GEP 846 /// operators, both having the exact same pointer operand. 847 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1, 848 uint64_t V1Size, 849 const GEPOperator *GEP2, 850 uint64_t V2Size, 851 const DataLayout &DL) { 852 853 assert(GEP1->getPointerOperand() == GEP2->getPointerOperand() && 854 "Expected GEPs with the same pointer operand"); 855 856 // Try to determine whether GEP1 and GEP2 index through arrays, into structs, 857 // such that the struct field accesses provably cannot alias. 858 // We also need at least two indices (the pointer, and the struct field). 859 if (GEP1->getNumIndices() != GEP2->getNumIndices() || 860 GEP1->getNumIndices() < 2) 861 return MayAlias; 862 863 // If we don't know the size of the accesses through both GEPs, we can't 864 // determine whether the struct fields accessed can't alias. 865 if (V1Size == MemoryLocation::UnknownSize || 866 V2Size == MemoryLocation::UnknownSize) 867 return MayAlias; 868 869 ConstantInt *C1 = 870 dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1)); 871 ConstantInt *C2 = 872 dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1)); 873 874 // If the last (struct) indices aren't constants, we can't say anything. 875 // If they're identical, the other indices might be also be dynamically 876 // equal, so the GEPs can alias. 877 if (!C1 || !C2 || C1 == C2) 878 return MayAlias; 879 880 // Find the last-indexed type of the GEP, i.e., the type you'd get if 881 // you stripped the last index. 882 // On the way, look at each indexed type. If there's something other 883 // than an array, different indices can lead to different final types. 884 SmallVector<Value *, 8> IntermediateIndices; 885 886 // Insert the first index; we don't need to check the type indexed 887 // through it as it only drops the pointer indirection. 888 assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine"); 889 IntermediateIndices.push_back(GEP1->getOperand(1)); 890 891 // Insert all the remaining indices but the last one. 892 // Also, check that they all index through arrays. 893 for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) { 894 if (!isa<ArrayType>(GetElementPtrInst::getIndexedType( 895 GEP1->getSourceElementType(), IntermediateIndices))) 896 return MayAlias; 897 IntermediateIndices.push_back(GEP1->getOperand(i + 1)); 898 } 899 900 StructType *LastIndexedStruct = 901 dyn_cast<StructType>(GetElementPtrInst::getIndexedType( 902 GEP1->getSourceElementType(), IntermediateIndices)); 903 904 if (!LastIndexedStruct) 905 return MayAlias; 906 907 // We know that: 908 // - both GEPs begin indexing from the exact same pointer; 909 // - the last indices in both GEPs are constants, indexing into a struct; 910 // - said indices are different, hence, the pointed-to fields are different; 911 // - both GEPs only index through arrays prior to that. 912 // 913 // This lets us determine that the struct that GEP1 indexes into and the 914 // struct that GEP2 indexes into must either precisely overlap or be 915 // completely disjoint. Because they cannot partially overlap, indexing into 916 // different non-overlapping fields of the struct will never alias. 917 918 // Therefore, the only remaining thing needed to show that both GEPs can't 919 // alias is that the fields are not overlapping. 920 const StructLayout *SL = DL.getStructLayout(LastIndexedStruct); 921 const uint64_t StructSize = SL->getSizeInBytes(); 922 const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue()); 923 const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue()); 924 925 auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size, 926 uint64_t V2Off, uint64_t V2Size) { 927 return V1Off < V2Off && V1Off + V1Size <= V2Off && 928 ((V2Off + V2Size <= StructSize) || 929 (V2Off + V2Size - StructSize <= V1Off)); 930 }; 931 932 if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) || 933 EltsDontOverlap(V2Off, V2Size, V1Off, V1Size)) 934 return NoAlias; 935 936 return MayAlias; 937 } 938 939 /// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction 940 /// against another pointer. We know that V1 is a GEP, but we don't know 941 /// anything about V2. UnderlyingV1 is GetUnderlyingObject(GEP1, DL), 942 /// UnderlyingV2 is the same for V2. 943 /// 944 AliasResult BasicAliasAnalysis::aliasGEP( 945 const GEPOperator *GEP1, uint64_t V1Size, const AAMDNodes &V1AAInfo, 946 const Value *V2, uint64_t V2Size, const AAMDNodes &V2AAInfo, 947 const Value *UnderlyingV1, const Value *UnderlyingV2) { 948 int64_t GEP1BaseOffset; 949 bool GEP1MaxLookupReached; 950 SmallVector<VariableGEPIndex, 4> GEP1VariableIndices; 951 952 // We have to get two AssumptionCaches here because GEP1 and V2 may be from 953 // different functions. 954 // FIXME: This really doesn't make any sense. We get a dominator tree below 955 // that can only refer to a single function. But this function (aliasGEP) is 956 // a method on an immutable pass that can be called when there *isn't* 957 // a single function. The old pass management layer makes this "work", but 958 // this isn't really a clean solution. 959 AssumptionCacheTracker &ACT = getAnalysis<AssumptionCacheTracker>(); 960 AssumptionCache *AC1 = nullptr, *AC2 = nullptr; 961 if (auto *GEP1I = dyn_cast<Instruction>(GEP1)) 962 AC1 = &ACT.getAssumptionCache( 963 const_cast<Function &>(*GEP1I->getParent()->getParent())); 964 if (auto *I2 = dyn_cast<Instruction>(V2)) 965 AC2 = &ACT.getAssumptionCache( 966 const_cast<Function &>(*I2->getParent()->getParent())); 967 968 DominatorTreeWrapperPass *DTWP = 969 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 970 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 971 972 // If we have two gep instructions with must-alias or not-alias'ing base 973 // pointers, figure out if the indexes to the GEP tell us anything about the 974 // derived pointer. 975 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 976 // Do the base pointers alias? 977 AliasResult BaseAlias = 978 aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(), 979 UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes()); 980 981 // Check for geps of non-aliasing underlying pointers where the offsets are 982 // identical. 983 if ((BaseAlias == MayAlias) && V1Size == V2Size) { 984 // Do the base pointers alias assuming type and size. 985 AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, 986 V1AAInfo, UnderlyingV2, 987 V2Size, V2AAInfo); 988 if (PreciseBaseAlias == NoAlias) { 989 // See if the computed offset from the common pointer tells us about the 990 // relation of the resulting pointer. 991 int64_t GEP2BaseOffset; 992 bool GEP2MaxLookupReached; 993 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 994 const Value *GEP2BasePtr = 995 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, 996 GEP2MaxLookupReached, *DL, AC2, DT); 997 const Value *GEP1BasePtr = 998 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 999 GEP1MaxLookupReached, *DL, AC1, DT); 1000 // DecomposeGEPExpression and GetUnderlyingObject should return the 1001 // same result except when DecomposeGEPExpression has no DataLayout. 1002 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 1003 assert(!DL && 1004 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 1005 return MayAlias; 1006 } 1007 // If the max search depth is reached the result is undefined 1008 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1009 return MayAlias; 1010 1011 // Same offsets. 1012 if (GEP1BaseOffset == GEP2BaseOffset && 1013 GEP1VariableIndices == GEP2VariableIndices) 1014 return NoAlias; 1015 GEP1VariableIndices.clear(); 1016 } 1017 } 1018 1019 // If we get a No or May, then return it immediately, no amount of analysis 1020 // will improve this situation. 1021 if (BaseAlias != MustAlias) return BaseAlias; 1022 1023 // Otherwise, we have a MustAlias. Since the base pointers alias each other 1024 // exactly, see if the computed offset from the common pointer tells us 1025 // about the relation of the resulting pointer. 1026 const Value *GEP1BasePtr = 1027 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 1028 GEP1MaxLookupReached, *DL, AC1, DT); 1029 1030 int64_t GEP2BaseOffset; 1031 bool GEP2MaxLookupReached; 1032 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 1033 const Value *GEP2BasePtr = 1034 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, 1035 GEP2MaxLookupReached, *DL, AC2, DT); 1036 1037 // DecomposeGEPExpression and GetUnderlyingObject should return the 1038 // same result except when DecomposeGEPExpression has no DataLayout. 1039 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 1040 assert(!DL && 1041 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 1042 return MayAlias; 1043 } 1044 1045 // If we know the two GEPs are based off of the exact same pointer (and not 1046 // just the same underlying object), see if that tells us anything about 1047 // the resulting pointers. 1048 if (DL && GEP1->getPointerOperand() == GEP2->getPointerOperand()) { 1049 AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, *DL); 1050 // If we couldn't find anything interesting, don't abandon just yet. 1051 if (R != MayAlias) 1052 return R; 1053 } 1054 1055 // If the max search depth is reached the result is undefined 1056 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1057 return MayAlias; 1058 1059 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1060 // symbolic difference. 1061 GEP1BaseOffset -= GEP2BaseOffset; 1062 GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices); 1063 1064 } else { 1065 // Check to see if these two pointers are related by the getelementptr 1066 // instruction. If one pointer is a GEP with a non-zero index of the other 1067 // pointer, we know they cannot alias. 1068 1069 // If both accesses are unknown size, we can't do anything useful here. 1070 if (V1Size == MemoryLocation::UnknownSize && 1071 V2Size == MemoryLocation::UnknownSize) 1072 return MayAlias; 1073 1074 AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, 1075 AAMDNodes(), V2, V2Size, V2AAInfo); 1076 if (R != MustAlias) 1077 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 1078 // If V2 is known not to alias GEP base pointer, then the two values 1079 // cannot alias per GEP semantics: "A pointer value formed from a 1080 // getelementptr instruction is associated with the addresses associated 1081 // with the first operand of the getelementptr". 1082 return R; 1083 1084 const Value *GEP1BasePtr = 1085 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 1086 GEP1MaxLookupReached, *DL, AC1, DT); 1087 1088 // DecomposeGEPExpression and GetUnderlyingObject should return the 1089 // same result except when DecomposeGEPExpression has no DataLayout. 1090 if (GEP1BasePtr != UnderlyingV1) { 1091 assert(!DL && 1092 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 1093 return MayAlias; 1094 } 1095 // If the max search depth is reached the result is undefined 1096 if (GEP1MaxLookupReached) 1097 return MayAlias; 1098 } 1099 1100 // In the two GEP Case, if there is no difference in the offsets of the 1101 // computed pointers, the resultant pointers are a must alias. This 1102 // hapens when we have two lexically identical GEP's (for example). 1103 // 1104 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 1105 // must aliases the GEP, the end result is a must alias also. 1106 if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty()) 1107 return MustAlias; 1108 1109 // If there is a constant difference between the pointers, but the difference 1110 // is less than the size of the associated memory object, then we know 1111 // that the objects are partially overlapping. If the difference is 1112 // greater, we know they do not overlap. 1113 if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) { 1114 if (GEP1BaseOffset >= 0) { 1115 if (V2Size != MemoryLocation::UnknownSize) { 1116 if ((uint64_t)GEP1BaseOffset < V2Size) 1117 return PartialAlias; 1118 return NoAlias; 1119 } 1120 } else { 1121 // We have the situation where: 1122 // + + 1123 // | BaseOffset | 1124 // ---------------->| 1125 // |-->V1Size |-------> V2Size 1126 // GEP1 V2 1127 // We need to know that V2Size is not unknown, otherwise we might have 1128 // stripped a gep with negative index ('gep <ptr>, -1, ...). 1129 if (V1Size != MemoryLocation::UnknownSize && 1130 V2Size != MemoryLocation::UnknownSize) { 1131 if (-(uint64_t)GEP1BaseOffset < V1Size) 1132 return PartialAlias; 1133 return NoAlias; 1134 } 1135 } 1136 } 1137 1138 if (!GEP1VariableIndices.empty()) { 1139 uint64_t Modulo = 0; 1140 bool AllPositive = true; 1141 for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) { 1142 1143 // Try to distinguish something like &A[i][1] against &A[42][0]. 1144 // Grab the least significant bit set in any of the scales. We 1145 // don't need std::abs here (even if the scale's negative) as we'll 1146 // be ^'ing Modulo with itself later. 1147 Modulo |= (uint64_t) GEP1VariableIndices[i].Scale; 1148 1149 if (AllPositive) { 1150 // If the Value could change between cycles, then any reasoning about 1151 // the Value this cycle may not hold in the next cycle. We'll just 1152 // give up if we can't determine conditions that hold for every cycle: 1153 const Value *V = GEP1VariableIndices[i].V; 1154 1155 bool SignKnownZero, SignKnownOne; 1156 ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, *DL, 1157 0, AC1, nullptr, DT); 1158 1159 // Zero-extension widens the variable, and so forces the sign 1160 // bit to zero. 1161 bool IsZExt = GEP1VariableIndices[i].Extension == EK_ZeroExt; 1162 SignKnownZero |= IsZExt; 1163 SignKnownOne &= !IsZExt; 1164 1165 // If the variable begins with a zero then we know it's 1166 // positive, regardless of whether the value is signed or 1167 // unsigned. 1168 int64_t Scale = GEP1VariableIndices[i].Scale; 1169 AllPositive = 1170 (SignKnownZero && Scale >= 0) || 1171 (SignKnownOne && Scale < 0); 1172 } 1173 } 1174 1175 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1176 1177 // We can compute the difference between the two addresses 1178 // mod Modulo. Check whether that difference guarantees that the 1179 // two locations do not alias. 1180 uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1); 1181 if (V1Size != MemoryLocation::UnknownSize && 1182 V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size && 1183 V1Size <= Modulo - ModOffset) 1184 return NoAlias; 1185 1186 // If we know all the variables are positive, then GEP1 >= GEP1BasePtr. 1187 // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers 1188 // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr. 1189 if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t) GEP1BaseOffset) 1190 return NoAlias; 1191 } 1192 1193 // Statically, we can see that the base objects are the same, but the 1194 // pointers have dynamic offsets which we can't resolve. And none of our 1195 // little tricks above worked. 1196 // 1197 // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the 1198 // practical effect of this is protecting TBAA in the case of dynamic 1199 // indices into arrays of unions or malloc'd memory. 1200 return PartialAlias; 1201 } 1202 1203 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1204 // If the results agree, take it. 1205 if (A == B) 1206 return A; 1207 // A mix of PartialAlias and MustAlias is PartialAlias. 1208 if ((A == PartialAlias && B == MustAlias) || 1209 (B == PartialAlias && A == MustAlias)) 1210 return PartialAlias; 1211 // Otherwise, we don't know anything. 1212 return MayAlias; 1213 } 1214 1215 /// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select 1216 /// instruction against another. 1217 AliasResult BasicAliasAnalysis::aliasSelect(const SelectInst *SI, 1218 uint64_t SISize, 1219 const AAMDNodes &SIAAInfo, 1220 const Value *V2, uint64_t V2Size, 1221 const AAMDNodes &V2AAInfo) { 1222 // If the values are Selects with the same condition, we can do a more precise 1223 // check: just check for aliases between the values on corresponding arms. 1224 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1225 if (SI->getCondition() == SI2->getCondition()) { 1226 AliasResult Alias = 1227 aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, 1228 SI2->getTrueValue(), V2Size, V2AAInfo); 1229 if (Alias == MayAlias) 1230 return MayAlias; 1231 AliasResult ThisAlias = 1232 aliasCheck(SI->getFalseValue(), SISize, SIAAInfo, 1233 SI2->getFalseValue(), V2Size, V2AAInfo); 1234 return MergeAliasResults(ThisAlias, Alias); 1235 } 1236 1237 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1238 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1239 AliasResult Alias = 1240 aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), SISize, SIAAInfo); 1241 if (Alias == MayAlias) 1242 return MayAlias; 1243 1244 AliasResult ThisAlias = 1245 aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo); 1246 return MergeAliasResults(ThisAlias, Alias); 1247 } 1248 1249 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction 1250 // against another. 1251 AliasResult BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize, 1252 const AAMDNodes &PNAAInfo, 1253 const Value *V2, uint64_t V2Size, 1254 const AAMDNodes &V2AAInfo) { 1255 // Track phi nodes we have visited. We use this information when we determine 1256 // value equivalence. 1257 VisitedPhiBBs.insert(PN->getParent()); 1258 1259 // If the values are PHIs in the same block, we can do a more precise 1260 // as well as efficient check: just check for aliases between the values 1261 // on corresponding edges. 1262 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1263 if (PN2->getParent() == PN->getParent()) { 1264 LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo), 1265 MemoryLocation(V2, V2Size, V2AAInfo)); 1266 if (PN > V2) 1267 std::swap(Locs.first, Locs.second); 1268 // Analyse the PHIs' inputs under the assumption that the PHIs are 1269 // NoAlias. 1270 // If the PHIs are May/MustAlias there must be (recursively) an input 1271 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1272 // there must be an operation on the PHIs within the PHIs' value cycle 1273 // that causes a MayAlias. 1274 // Pretend the phis do not alias. 1275 AliasResult Alias = NoAlias; 1276 assert(AliasCache.count(Locs) && 1277 "There must exist an entry for the phi node"); 1278 AliasResult OrigAliasResult = AliasCache[Locs]; 1279 AliasCache[Locs] = NoAlias; 1280 1281 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1282 AliasResult ThisAlias = 1283 aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo, 1284 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1285 V2Size, V2AAInfo); 1286 Alias = MergeAliasResults(ThisAlias, Alias); 1287 if (Alias == MayAlias) 1288 break; 1289 } 1290 1291 // Reset if speculation failed. 1292 if (Alias != NoAlias) 1293 AliasCache[Locs] = OrigAliasResult; 1294 1295 return Alias; 1296 } 1297 1298 SmallPtrSet<Value*, 4> UniqueSrc; 1299 SmallVector<Value*, 4> V1Srcs; 1300 for (Value *PV1 : PN->incoming_values()) { 1301 if (isa<PHINode>(PV1)) 1302 // If any of the source itself is a PHI, return MayAlias conservatively 1303 // to avoid compile time explosion. The worst possible case is if both 1304 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1305 // and 'n' are the number of PHI sources. 1306 return MayAlias; 1307 if (UniqueSrc.insert(PV1).second) 1308 V1Srcs.push_back(PV1); 1309 } 1310 1311 AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, 1312 V1Srcs[0], PNSize, PNAAInfo); 1313 // Early exit if the check of the first PHI source against V2 is MayAlias. 1314 // Other results are not possible. 1315 if (Alias == MayAlias) 1316 return MayAlias; 1317 1318 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1319 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1320 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1321 Value *V = V1Srcs[i]; 1322 1323 AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo, 1324 V, PNSize, PNAAInfo); 1325 Alias = MergeAliasResults(ThisAlias, Alias); 1326 if (Alias == MayAlias) 1327 break; 1328 } 1329 1330 return Alias; 1331 } 1332 1333 // aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases, 1334 // such as array references. 1335 // 1336 AliasResult BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size, 1337 AAMDNodes V1AAInfo, const Value *V2, 1338 uint64_t V2Size, 1339 AAMDNodes V2AAInfo) { 1340 // If either of the memory references is empty, it doesn't matter what the 1341 // pointer values are. 1342 if (V1Size == 0 || V2Size == 0) 1343 return NoAlias; 1344 1345 // Strip off any casts if they exist. 1346 V1 = V1->stripPointerCasts(); 1347 V2 = V2->stripPointerCasts(); 1348 1349 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1350 // value for undef that aliases nothing in the program. 1351 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1352 return NoAlias; 1353 1354 // Are we checking for alias of the same value? 1355 // Because we look 'through' phi nodes we could look at "Value" pointers from 1356 // different iterations. We must therefore make sure that this is not the 1357 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1358 // happen by looking at the visited phi nodes and making sure they cannot 1359 // reach the value. 1360 if (isValueEqualInPotentialCycles(V1, V2)) 1361 return MustAlias; 1362 1363 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1364 return NoAlias; // Scalars cannot alias each other 1365 1366 // Figure out what objects these things are pointing to if we can. 1367 const Value *O1 = GetUnderlyingObject(V1, *DL, MaxLookupSearchDepth); 1368 const Value *O2 = GetUnderlyingObject(V2, *DL, MaxLookupSearchDepth); 1369 1370 // Null values in the default address space don't point to any object, so they 1371 // don't alias any other pointer. 1372 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1373 if (CPN->getType()->getAddressSpace() == 0) 1374 return NoAlias; 1375 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1376 if (CPN->getType()->getAddressSpace() == 0) 1377 return NoAlias; 1378 1379 if (O1 != O2) { 1380 // If V1/V2 point to two different objects we know that we have no alias. 1381 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1382 return NoAlias; 1383 1384 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1385 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1386 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1387 return NoAlias; 1388 1389 // Function arguments can't alias with things that are known to be 1390 // unambigously identified at the function level. 1391 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1392 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1393 return NoAlias; 1394 1395 // Most objects can't alias null. 1396 if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) || 1397 (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2))) 1398 return NoAlias; 1399 1400 // If one pointer is the result of a call/invoke or load and the other is a 1401 // non-escaping local object within the same function, then we know the 1402 // object couldn't escape to a point where the call could return it. 1403 // 1404 // Note that if the pointers are in different functions, there are a 1405 // variety of complications. A call with a nocapture argument may still 1406 // temporary store the nocapture argument's value in a temporary memory 1407 // location if that memory location doesn't escape. Or it may pass a 1408 // nocapture value to other functions as long as they don't capture it. 1409 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) 1410 return NoAlias; 1411 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) 1412 return NoAlias; 1413 } 1414 1415 // If the size of one access is larger than the entire object on the other 1416 // side, then we know such behavior is undefined and can assume no alias. 1417 if (DL) 1418 if ((V1Size != MemoryLocation::UnknownSize && 1419 isObjectSmallerThan(O2, V1Size, *DL, *TLI)) || 1420 (V2Size != MemoryLocation::UnknownSize && 1421 isObjectSmallerThan(O1, V2Size, *DL, *TLI))) 1422 return NoAlias; 1423 1424 // Check the cache before climbing up use-def chains. This also terminates 1425 // otherwise infinitely recursive queries. 1426 LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo), 1427 MemoryLocation(V2, V2Size, V2AAInfo)); 1428 if (V1 > V2) 1429 std::swap(Locs.first, Locs.second); 1430 std::pair<AliasCacheTy::iterator, bool> Pair = 1431 AliasCache.insert(std::make_pair(Locs, MayAlias)); 1432 if (!Pair.second) 1433 return Pair.first->second; 1434 1435 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1436 // GEP can't simplify, we don't even look at the PHI cases. 1437 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1438 std::swap(V1, V2); 1439 std::swap(V1Size, V2Size); 1440 std::swap(O1, O2); 1441 std::swap(V1AAInfo, V2AAInfo); 1442 } 1443 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1444 AliasResult Result = aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2); 1445 if (Result != MayAlias) return AliasCache[Locs] = Result; 1446 } 1447 1448 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1449 std::swap(V1, V2); 1450 std::swap(V1Size, V2Size); 1451 std::swap(V1AAInfo, V2AAInfo); 1452 } 1453 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1454 AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, 1455 V2, V2Size, V2AAInfo); 1456 if (Result != MayAlias) return AliasCache[Locs] = Result; 1457 } 1458 1459 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1460 std::swap(V1, V2); 1461 std::swap(V1Size, V2Size); 1462 std::swap(V1AAInfo, V2AAInfo); 1463 } 1464 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1465 AliasResult Result = aliasSelect(S1, V1Size, V1AAInfo, 1466 V2, V2Size, V2AAInfo); 1467 if (Result != MayAlias) return AliasCache[Locs] = Result; 1468 } 1469 1470 // If both pointers are pointing into the same object and one of them 1471 // accesses is accessing the entire object, then the accesses must 1472 // overlap in some way. 1473 if (DL && O1 == O2) 1474 if ((V1Size != MemoryLocation::UnknownSize && 1475 isObjectSize(O1, V1Size, *DL, *TLI)) || 1476 (V2Size != MemoryLocation::UnknownSize && 1477 isObjectSize(O2, V2Size, *DL, *TLI))) 1478 return AliasCache[Locs] = PartialAlias; 1479 1480 AliasResult Result = 1481 AliasAnalysis::alias(MemoryLocation(V1, V1Size, V1AAInfo), 1482 MemoryLocation(V2, V2Size, V2AAInfo)); 1483 return AliasCache[Locs] = Result; 1484 } 1485 1486 bool BasicAliasAnalysis::isValueEqualInPotentialCycles(const Value *V, 1487 const Value *V2) { 1488 if (V != V2) 1489 return false; 1490 1491 const Instruction *Inst = dyn_cast<Instruction>(V); 1492 if (!Inst) 1493 return true; 1494 1495 if (VisitedPhiBBs.empty()) 1496 return true; 1497 1498 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1499 return false; 1500 1501 // Use dominance or loop info if available. 1502 DominatorTreeWrapperPass *DTWP = 1503 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1504 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 1505 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 1506 LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 1507 1508 // Make sure that the visited phis cannot reach the Value. This ensures that 1509 // the Values cannot come from different iterations of a potential cycle the 1510 // phi nodes could be involved in. 1511 for (auto *P : VisitedPhiBBs) 1512 if (isPotentiallyReachable(P->begin(), Inst, DT, LI)) 1513 return false; 1514 1515 return true; 1516 } 1517 1518 /// GetIndexDifference - Dest and Src are the variable indices from two 1519 /// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base 1520 /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic 1521 /// difference between the two pointers. 1522 void BasicAliasAnalysis::GetIndexDifference( 1523 SmallVectorImpl<VariableGEPIndex> &Dest, 1524 const SmallVectorImpl<VariableGEPIndex> &Src) { 1525 if (Src.empty()) 1526 return; 1527 1528 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1529 const Value *V = Src[i].V; 1530 ExtensionKind Extension = Src[i].Extension; 1531 int64_t Scale = Src[i].Scale; 1532 1533 // Find V in Dest. This is N^2, but pointer indices almost never have more 1534 // than a few variable indexes. 1535 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1536 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1537 Dest[j].Extension != Extension) 1538 continue; 1539 1540 // If we found it, subtract off Scale V's from the entry in Dest. If it 1541 // goes to zero, remove the entry. 1542 if (Dest[j].Scale != Scale) 1543 Dest[j].Scale -= Scale; 1544 else 1545 Dest.erase(Dest.begin() + j); 1546 Scale = 0; 1547 break; 1548 } 1549 1550 // If we didn't consume this entry, add it to the end of the Dest list. 1551 if (Scale) { 1552 VariableGEPIndex Entry = { V, Extension, -Scale }; 1553 Dest.push_back(Entry); 1554 } 1555 } 1556 } 1557