1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the primary stateless implementation of the 11 // Alias Analysis interface that implements identities (two different 12 // globals cannot alias, etc), but does no stateful analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/BasicAliasAnalysis.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/CFG.h" 21 #include "llvm/Analysis/CaptureTracking.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include <algorithm> 40 41 #define DEBUG_TYPE "basicaa" 42 43 using namespace llvm; 44 45 /// Enable analysis of recursive PHI nodes. 46 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden, 47 cl::init(false)); 48 /// SearchLimitReached / SearchTimes shows how often the limit of 49 /// to decompose GEPs is reached. It will affect the precision 50 /// of basic alias analysis. 51 STATISTIC(SearchLimitReached, "Number of times the limit to " 52 "decompose GEPs is reached"); 53 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 54 55 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 56 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be 57 /// careful with value equivalence. We use reachability to make sure a value 58 /// cannot be involved in a cycle. 59 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 60 61 // The max limit of the search depth in DecomposeGEPExpression() and 62 // GetUnderlyingObject(), both functions need to use the same search 63 // depth otherwise the algorithm in aliasGEP will assert. 64 static const unsigned MaxLookupSearchDepth = 6; 65 66 //===----------------------------------------------------------------------===// 67 // Useful predicates 68 //===----------------------------------------------------------------------===// 69 70 /// Returns true if the pointer is to a function-local object that never 71 /// escapes from the function. 72 static bool isNonEscapingLocalObject(const Value *V) { 73 // If this is a local allocation, check to see if it escapes. 74 if (isa<AllocaInst>(V) || isNoAliasCall(V)) 75 // Set StoreCaptures to True so that we can assume in our callers that the 76 // pointer is not the result of a load instruction. Currently 77 // PointerMayBeCaptured doesn't have any special analysis for the 78 // StoreCaptures=false case; if it did, our callers could be refined to be 79 // more precise. 80 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 81 82 // If this is an argument that corresponds to a byval or noalias argument, 83 // then it has not escaped before entering the function. Check if it escapes 84 // inside the function. 85 if (const Argument *A = dyn_cast<Argument>(V)) 86 if (A->hasByValAttr() || A->hasNoAliasAttr()) 87 // Note even if the argument is marked nocapture, we still need to check 88 // for copies made inside the function. The nocapture attribute only 89 // specifies that there are no copies made that outlive the function. 90 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 91 92 return false; 93 } 94 95 /// Returns true if the pointer is one which would have been considered an 96 /// escape by isNonEscapingLocalObject. 97 static bool isEscapeSource(const Value *V) { 98 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V)) 99 return true; 100 101 // The load case works because isNonEscapingLocalObject considers all 102 // stores to be escapes (it passes true for the StoreCaptures argument 103 // to PointerMayBeCaptured). 104 if (isa<LoadInst>(V)) 105 return true; 106 107 return false; 108 } 109 110 /// Returns the size of the object specified by V or UnknownSize if unknown. 111 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 112 const TargetLibraryInfo &TLI, 113 bool RoundToAlign = false) { 114 uint64_t Size; 115 if (getObjectSize(V, Size, DL, &TLI, RoundToAlign)) 116 return Size; 117 return MemoryLocation::UnknownSize; 118 } 119 120 /// Returns true if we can prove that the object specified by V is smaller than 121 /// Size. 122 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 123 const DataLayout &DL, 124 const TargetLibraryInfo &TLI) { 125 // Note that the meanings of the "object" are slightly different in the 126 // following contexts: 127 // c1: llvm::getObjectSize() 128 // c2: llvm.objectsize() intrinsic 129 // c3: isObjectSmallerThan() 130 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 131 // refers to the "entire object". 132 // 133 // Consider this example: 134 // char *p = (char*)malloc(100) 135 // char *q = p+80; 136 // 137 // In the context of c1 and c2, the "object" pointed by q refers to the 138 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 139 // 140 // However, in the context of c3, the "object" refers to the chunk of memory 141 // being allocated. So, the "object" has 100 bytes, and q points to the middle 142 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 143 // parameter, before the llvm::getObjectSize() is called to get the size of 144 // entire object, we should: 145 // - either rewind the pointer q to the base-address of the object in 146 // question (in this case rewind to p), or 147 // - just give up. It is up to caller to make sure the pointer is pointing 148 // to the base address the object. 149 // 150 // We go for 2nd option for simplicity. 151 if (!isIdentifiedObject(V)) 152 return false; 153 154 // This function needs to use the aligned object size because we allow 155 // reads a bit past the end given sufficient alignment. 156 uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/ true); 157 158 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; 159 } 160 161 /// Returns true if we can prove that the object specified by V has size Size. 162 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, 163 const TargetLibraryInfo &TLI) { 164 uint64_t ObjectSize = getObjectSize(V, DL, TLI); 165 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; 166 } 167 168 //===----------------------------------------------------------------------===// 169 // GetElementPtr Instruction Decomposition and Analysis 170 //===----------------------------------------------------------------------===// 171 172 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 173 /// B are constant integers. 174 /// 175 /// Returns the scale and offset values as APInts and return V as a Value*, and 176 /// return whether we looked through any sign or zero extends. The incoming 177 /// Value is known to have IntegerType, and it may already be sign or zero 178 /// extended. 179 /// 180 /// Note that this looks through extends, so the high bits may not be 181 /// represented in the result. 182 /*static*/ const Value *BasicAAResult::GetLinearExpression( 183 const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits, 184 unsigned &SExtBits, const DataLayout &DL, unsigned Depth, 185 AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) { 186 assert(V->getType()->isIntegerTy() && "Not an integer value"); 187 188 // Limit our recursion depth. 189 if (Depth == 6) { 190 Scale = 1; 191 Offset = 0; 192 return V; 193 } 194 195 if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) { 196 // If it's a constant, just convert it to an offset and remove the variable. 197 // If we've been called recursively, the Offset bit width will be greater 198 // than the constant's (the Offset's always as wide as the outermost call), 199 // so we'll zext here and process any extension in the isa<SExtInst> & 200 // isa<ZExtInst> cases below. 201 Offset += Const->getValue().zextOrSelf(Offset.getBitWidth()); 202 assert(Scale == 0 && "Constant values don't have a scale"); 203 return V; 204 } 205 206 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 207 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 208 209 // If we've been called recursively, then Offset and Scale will be wider 210 // than the BOp operands. We'll always zext it here as we'll process sign 211 // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases). 212 APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth()); 213 214 switch (BOp->getOpcode()) { 215 default: 216 // We don't understand this instruction, so we can't decompose it any 217 // further. 218 Scale = 1; 219 Offset = 0; 220 return V; 221 case Instruction::Or: 222 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 223 // analyze it. 224 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, 225 BOp, DT)) { 226 Scale = 1; 227 Offset = 0; 228 return V; 229 } 230 // FALL THROUGH. 231 case Instruction::Add: 232 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 233 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 234 Offset += RHS; 235 break; 236 case Instruction::Sub: 237 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 238 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 239 Offset -= RHS; 240 break; 241 case Instruction::Mul: 242 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 243 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 244 Offset *= RHS; 245 Scale *= RHS; 246 break; 247 case Instruction::Shl: 248 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 249 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 250 Offset <<= RHS.getLimitedValue(); 251 Scale <<= RHS.getLimitedValue(); 252 // the semantics of nsw and nuw for left shifts don't match those of 253 // multiplications, so we won't propagate them. 254 NSW = NUW = false; 255 return V; 256 } 257 258 if (isa<OverflowingBinaryOperator>(BOp)) { 259 NUW &= BOp->hasNoUnsignedWrap(); 260 NSW &= BOp->hasNoSignedWrap(); 261 } 262 return V; 263 } 264 } 265 266 // Since GEP indices are sign extended anyway, we don't care about the high 267 // bits of a sign or zero extended value - just scales and offsets. The 268 // extensions have to be consistent though. 269 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) { 270 Value *CastOp = cast<CastInst>(V)->getOperand(0); 271 unsigned NewWidth = V->getType()->getPrimitiveSizeInBits(); 272 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 273 unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits; 274 const Value *Result = 275 GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL, 276 Depth + 1, AC, DT, NSW, NUW); 277 278 // zext(zext(%x)) == zext(%x), and similiarly for sext; we'll handle this 279 // by just incrementing the number of bits we've extended by. 280 unsigned ExtendedBy = NewWidth - SmallWidth; 281 282 if (isa<SExtInst>(V) && ZExtBits == 0) { 283 // sext(sext(%x, a), b) == sext(%x, a + b) 284 285 if (NSW) { 286 // We haven't sign-wrapped, so it's valid to decompose sext(%x + c) 287 // into sext(%x) + sext(c). We'll sext the Offset ourselves: 288 unsigned OldWidth = Offset.getBitWidth(); 289 Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth); 290 } else { 291 // We may have signed-wrapped, so don't decompose sext(%x + c) into 292 // sext(%x) + sext(c) 293 Scale = 1; 294 Offset = 0; 295 Result = CastOp; 296 ZExtBits = OldZExtBits; 297 SExtBits = OldSExtBits; 298 } 299 SExtBits += ExtendedBy; 300 } else { 301 // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b) 302 303 if (!NUW) { 304 // We may have unsigned-wrapped, so don't decompose zext(%x + c) into 305 // zext(%x) + zext(c) 306 Scale = 1; 307 Offset = 0; 308 Result = CastOp; 309 ZExtBits = OldZExtBits; 310 SExtBits = OldSExtBits; 311 } 312 ZExtBits += ExtendedBy; 313 } 314 315 return Result; 316 } 317 318 Scale = 1; 319 Offset = 0; 320 return V; 321 } 322 323 /// To ensure a pointer offset fits in an integer of size PointerSize 324 /// (in bits) when that size is smaller than 64. This is an issue in 325 /// particular for 32b programs with negative indices that rely on two's 326 /// complement wrap-arounds for precise alias information. 327 static int64_t adjustToPointerSize(int64_t Offset, unsigned PointerSize) { 328 assert(PointerSize <= 64 && "Invalid PointerSize!"); 329 unsigned ShiftBits = 64 - PointerSize; 330 return (int64_t)((uint64_t)Offset << ShiftBits) >> ShiftBits; 331 } 332 333 /// If V is a symbolic pointer expression, decompose it into a base pointer 334 /// with a constant offset and a number of scaled symbolic offsets. 335 /// 336 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 337 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 338 /// specified amount, but which may have other unrepresented high bits. As 339 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 340 /// 341 /// When DataLayout is around, this function is capable of analyzing everything 342 /// that GetUnderlyingObject can look through. To be able to do that 343 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search 344 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks 345 /// through pointer casts. 346 bool BasicAAResult::DecomposeGEPExpression(const Value *V, 347 DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC, 348 DominatorTree *DT) { 349 // Limit recursion depth to limit compile time in crazy cases. 350 unsigned MaxLookup = MaxLookupSearchDepth; 351 SearchTimes++; 352 353 Decomposed.StructOffset = 0; 354 Decomposed.OtherOffset = 0; 355 Decomposed.VarIndices.clear(); 356 do { 357 // See if this is a bitcast or GEP. 358 const Operator *Op = dyn_cast<Operator>(V); 359 if (!Op) { 360 // The only non-operator case we can handle are GlobalAliases. 361 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 362 if (!GA->isInterposable()) { 363 V = GA->getAliasee(); 364 continue; 365 } 366 } 367 Decomposed.Base = V; 368 return false; 369 } 370 371 if (Op->getOpcode() == Instruction::BitCast || 372 Op->getOpcode() == Instruction::AddrSpaceCast) { 373 V = Op->getOperand(0); 374 continue; 375 } 376 377 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 378 if (!GEPOp) { 379 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 380 // can come up with something. This matches what GetUnderlyingObject does. 381 if (const Instruction *I = dyn_cast<Instruction>(V)) 382 // TODO: Get a DominatorTree and AssumptionCache and use them here 383 // (these are both now available in this function, but this should be 384 // updated when GetUnderlyingObject is updated). TLI should be 385 // provided also. 386 if (const Value *Simplified = 387 SimplifyInstruction(const_cast<Instruction *>(I), DL)) { 388 V = Simplified; 389 continue; 390 } 391 392 Decomposed.Base = V; 393 return false; 394 } 395 396 // Don't attempt to analyze GEPs over unsized objects. 397 if (!GEPOp->getSourceElementType()->isSized()) { 398 Decomposed.Base = V; 399 return false; 400 } 401 402 unsigned AS = GEPOp->getPointerAddressSpace(); 403 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 404 gep_type_iterator GTI = gep_type_begin(GEPOp); 405 unsigned PointerSize = DL.getPointerSizeInBits(AS); 406 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 407 I != E; ++I) { 408 const Value *Index = *I; 409 // Compute the (potentially symbolic) offset in bytes for this index. 410 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 411 // For a struct, add the member offset. 412 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 413 if (FieldNo == 0) 414 continue; 415 416 Decomposed.StructOffset += 417 DL.getStructLayout(STy)->getElementOffset(FieldNo); 418 continue; 419 } 420 421 // For an array/pointer, add the element offset, explicitly scaled. 422 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 423 if (CIdx->isZero()) 424 continue; 425 Decomposed.OtherOffset += 426 DL.getTypeAllocSize(*GTI) * CIdx->getSExtValue(); 427 continue; 428 } 429 430 uint64_t Scale = DL.getTypeAllocSize(*GTI); 431 unsigned ZExtBits = 0, SExtBits = 0; 432 433 // If the integer type is smaller than the pointer size, it is implicitly 434 // sign extended to pointer size. 435 unsigned Width = Index->getType()->getIntegerBitWidth(); 436 if (PointerSize > Width) 437 SExtBits += PointerSize - Width; 438 439 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 440 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 441 bool NSW = true, NUW = true; 442 Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits, 443 SExtBits, DL, 0, AC, DT, NSW, NUW); 444 445 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 446 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 447 Decomposed.OtherOffset += IndexOffset.getSExtValue() * Scale; 448 Scale *= IndexScale.getSExtValue(); 449 450 // If we already had an occurrence of this index variable, merge this 451 // scale into it. For example, we want to handle: 452 // A[x][x] -> x*16 + x*4 -> x*20 453 // This also ensures that 'x' only appears in the index list once. 454 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { 455 if (Decomposed.VarIndices[i].V == Index && 456 Decomposed.VarIndices[i].ZExtBits == ZExtBits && 457 Decomposed.VarIndices[i].SExtBits == SExtBits) { 458 Scale += Decomposed.VarIndices[i].Scale; 459 Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i); 460 break; 461 } 462 } 463 464 // Make sure that we have a scale that makes sense for this target's 465 // pointer size. 466 Scale = adjustToPointerSize(Scale, PointerSize); 467 468 if (Scale) { 469 VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, 470 static_cast<int64_t>(Scale)}; 471 Decomposed.VarIndices.push_back(Entry); 472 } 473 } 474 475 // Take care of wrap-arounds 476 Decomposed.StructOffset = 477 adjustToPointerSize(Decomposed.StructOffset, PointerSize); 478 Decomposed.OtherOffset = 479 adjustToPointerSize(Decomposed.OtherOffset, PointerSize); 480 481 // Analyze the base pointer next. 482 V = GEPOp->getOperand(0); 483 } while (--MaxLookup); 484 485 // If the chain of expressions is too deep, just return early. 486 Decomposed.Base = V; 487 SearchLimitReached++; 488 return true; 489 } 490 491 /// Returns whether the given pointer value points to memory that is local to 492 /// the function, with global constants being considered local to all 493 /// functions. 494 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc, 495 bool OrLocal) { 496 assert(Visited.empty() && "Visited must be cleared after use!"); 497 498 unsigned MaxLookup = 8; 499 SmallVector<const Value *, 16> Worklist; 500 Worklist.push_back(Loc.Ptr); 501 do { 502 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL); 503 if (!Visited.insert(V).second) { 504 Visited.clear(); 505 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 506 } 507 508 // An alloca instruction defines local memory. 509 if (OrLocal && isa<AllocaInst>(V)) 510 continue; 511 512 // A global constant counts as local memory for our purposes. 513 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 514 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 515 // global to be marked constant in some modules and non-constant in 516 // others. GV may even be a declaration, not a definition. 517 if (!GV->isConstant()) { 518 Visited.clear(); 519 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 520 } 521 continue; 522 } 523 524 // If both select values point to local memory, then so does the select. 525 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 526 Worklist.push_back(SI->getTrueValue()); 527 Worklist.push_back(SI->getFalseValue()); 528 continue; 529 } 530 531 // If all values incoming to a phi node point to local memory, then so does 532 // the phi. 533 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 534 // Don't bother inspecting phi nodes with many operands. 535 if (PN->getNumIncomingValues() > MaxLookup) { 536 Visited.clear(); 537 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 538 } 539 for (Value *IncValue : PN->incoming_values()) 540 Worklist.push_back(IncValue); 541 continue; 542 } 543 544 // Otherwise be conservative. 545 Visited.clear(); 546 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 547 548 } while (!Worklist.empty() && --MaxLookup); 549 550 Visited.clear(); 551 return Worklist.empty(); 552 } 553 554 /// Returns the behavior when calling the given call site. 555 FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) { 556 if (CS.doesNotAccessMemory()) 557 // Can't do better than this. 558 return FMRB_DoesNotAccessMemory; 559 560 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 561 562 // If the callsite knows it only reads memory, don't return worse 563 // than that. 564 if (CS.onlyReadsMemory()) 565 Min = FMRB_OnlyReadsMemory; 566 567 if (CS.onlyAccessesArgMemory()) 568 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 569 570 // If CS has operand bundles then aliasing attributes from the function it 571 // calls do not directly apply to the CallSite. This can be made more 572 // precise in the future. 573 if (!CS.hasOperandBundles()) 574 if (const Function *F = CS.getCalledFunction()) 575 Min = 576 FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F)); 577 578 return Min; 579 } 580 581 /// Returns the behavior when calling the given function. For use when the call 582 /// site is not known. 583 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) { 584 // If the function declares it doesn't access memory, we can't do better. 585 if (F->doesNotAccessMemory()) 586 return FMRB_DoesNotAccessMemory; 587 588 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 589 590 // If the function declares it only reads memory, go with that. 591 if (F->onlyReadsMemory()) 592 Min = FMRB_OnlyReadsMemory; 593 594 if (F->onlyAccessesArgMemory()) 595 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 596 597 return Min; 598 } 599 600 /// Returns true if this is a writeonly (i.e Mod only) parameter. Currently, 601 /// we don't have a writeonly attribute, so this only knows about builtin 602 /// intrinsics and target library functions. We could consider adding a 603 /// writeonly attribute in the future and moving all of these facts to either 604 /// Intrinsics.td or InferFunctionAttr.cpp 605 static bool isWriteOnlyParam(ImmutableCallSite CS, unsigned ArgIdx, 606 const TargetLibraryInfo &TLI) { 607 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) 608 switch (II->getIntrinsicID()) { 609 default: 610 break; 611 case Intrinsic::memset: 612 case Intrinsic::memcpy: 613 case Intrinsic::memmove: 614 // We don't currently have a writeonly attribute. All other properties 615 // of these intrinsics are nicely described via attributes in 616 // Intrinsics.td and handled generically. 617 if (ArgIdx == 0) 618 return true; 619 } 620 621 // We can bound the aliasing properties of memset_pattern16 just as we can 622 // for memcpy/memset. This is particularly important because the 623 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 624 // whenever possible. Note that all but the missing writeonly attribute are 625 // handled via InferFunctionAttr. 626 LibFunc::Func F; 627 if (CS.getCalledFunction() && TLI.getLibFunc(*CS.getCalledFunction(), F) && 628 F == LibFunc::memset_pattern16 && TLI.has(F)) 629 if (ArgIdx == 0) 630 return true; 631 632 // TODO: memset_pattern4, memset_pattern8 633 // TODO: _chk variants 634 // TODO: strcmp, strcpy 635 636 return false; 637 } 638 639 ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS, 640 unsigned ArgIdx) { 641 642 // Emulate the missing writeonly attribute by checking for known builtin 643 // intrinsics and target library functions. 644 if (isWriteOnlyParam(CS, ArgIdx, TLI)) 645 return MRI_Mod; 646 647 if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadOnly)) 648 return MRI_Ref; 649 650 if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadNone)) 651 return MRI_NoModRef; 652 653 return AAResultBase::getArgModRefInfo(CS, ArgIdx); 654 } 655 656 static bool isIntrinsicCall(ImmutableCallSite CS, Intrinsic::ID IID) { 657 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 658 return II && II->getIntrinsicID() == IID; 659 } 660 661 #ifndef NDEBUG 662 static const Function *getParent(const Value *V) { 663 if (const Instruction *inst = dyn_cast<Instruction>(V)) 664 return inst->getParent()->getParent(); 665 666 if (const Argument *arg = dyn_cast<Argument>(V)) 667 return arg->getParent(); 668 669 return nullptr; 670 } 671 672 static bool notDifferentParent(const Value *O1, const Value *O2) { 673 674 const Function *F1 = getParent(O1); 675 const Function *F2 = getParent(O2); 676 677 return !F1 || !F2 || F1 == F2; 678 } 679 #endif 680 681 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 682 const MemoryLocation &LocB) { 683 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 684 "BasicAliasAnalysis doesn't support interprocedural queries."); 685 686 // If we have a directly cached entry for these locations, we have recursed 687 // through this once, so just return the cached results. Notably, when this 688 // happens, we don't clear the cache. 689 auto CacheIt = AliasCache.find(LocPair(LocA, LocB)); 690 if (CacheIt != AliasCache.end()) 691 return CacheIt->second; 692 693 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr, 694 LocB.Size, LocB.AATags); 695 // AliasCache rarely has more than 1 or 2 elements, always use 696 // shrink_and_clear so it quickly returns to the inline capacity of the 697 // SmallDenseMap if it ever grows larger. 698 // FIXME: This should really be shrink_to_inline_capacity_and_clear(). 699 AliasCache.shrink_and_clear(); 700 VisitedPhiBBs.clear(); 701 return Alias; 702 } 703 704 /// Checks to see if the specified callsite can clobber the specified memory 705 /// object. 706 /// 707 /// Since we only look at local properties of this function, we really can't 708 /// say much about this query. We do, however, use simple "address taken" 709 /// analysis on local objects. 710 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS, 711 const MemoryLocation &Loc) { 712 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && 713 "AliasAnalysis query involving multiple functions!"); 714 715 const Value *Object = GetUnderlyingObject(Loc.Ptr, DL); 716 717 // If this is a tail call and Loc.Ptr points to a stack location, we know that 718 // the tail call cannot access or modify the local stack. 719 // We cannot exclude byval arguments here; these belong to the caller of 720 // the current function not to the current function, and a tail callee 721 // may reference them. 722 if (isa<AllocaInst>(Object)) 723 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) 724 if (CI->isTailCall()) 725 return MRI_NoModRef; 726 727 // If the pointer is to a locally allocated object that does not escape, 728 // then the call can not mod/ref the pointer unless the call takes the pointer 729 // as an argument, and itself doesn't capture it. 730 if (!isa<Constant>(Object) && CS.getInstruction() != Object && 731 isNonEscapingLocalObject(Object)) { 732 bool PassedAsArg = false; 733 unsigned OperandNo = 0; 734 for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end(); 735 CI != CE; ++CI, ++OperandNo) { 736 // Only look at the no-capture or byval pointer arguments. If this 737 // pointer were passed to arguments that were neither of these, then it 738 // couldn't be no-capture. 739 if (!(*CI)->getType()->isPointerTy() || 740 (!CS.doesNotCapture(OperandNo) && !CS.isByValArgument(OperandNo))) 741 continue; 742 743 // If this is a no-capture pointer argument, see if we can tell that it 744 // is impossible to alias the pointer we're checking. If not, we have to 745 // assume that the call could touch the pointer, even though it doesn't 746 // escape. 747 AliasResult AR = 748 getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object)); 749 if (AR) { 750 PassedAsArg = true; 751 break; 752 } 753 } 754 755 if (!PassedAsArg) 756 return MRI_NoModRef; 757 } 758 759 // If the CallSite is to malloc or calloc, we can assume that it doesn't 760 // modify any IR visible value. This is only valid because we assume these 761 // routines do not read values visible in the IR. TODO: Consider special 762 // casing realloc and strdup routines which access only their arguments as 763 // well. Or alternatively, replace all of this with inaccessiblememonly once 764 // that's implemented fully. 765 auto *Inst = CS.getInstruction(); 766 if (isMallocLikeFn(Inst, &TLI) || isCallocLikeFn(Inst, &TLI)) { 767 // Be conservative if the accessed pointer may alias the allocation - 768 // fallback to the generic handling below. 769 if (getBestAAResults().alias(MemoryLocation(Inst), Loc) == NoAlias) 770 return MRI_NoModRef; 771 } 772 773 // While the assume intrinsic is marked as arbitrarily writing so that 774 // proper control dependencies will be maintained, it never aliases any 775 // particular memory location. 776 if (isIntrinsicCall(CS, Intrinsic::assume)) 777 return MRI_NoModRef; 778 779 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 780 // that proper control dependencies are maintained but they never mods any 781 // particular memory location. 782 // 783 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 784 // heap state at the point the guard is issued needs to be consistent in case 785 // the guard invokes the "deopt" continuation. 786 if (isIntrinsicCall(CS, Intrinsic::experimental_guard)) 787 return MRI_Ref; 788 789 // The AAResultBase base class has some smarts, lets use them. 790 return AAResultBase::getModRefInfo(CS, Loc); 791 } 792 793 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1, 794 ImmutableCallSite CS2) { 795 // While the assume intrinsic is marked as arbitrarily writing so that 796 // proper control dependencies will be maintained, it never aliases any 797 // particular memory location. 798 if (isIntrinsicCall(CS1, Intrinsic::assume) || 799 isIntrinsicCall(CS2, Intrinsic::assume)) 800 return MRI_NoModRef; 801 802 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 803 // that proper control dependencies are maintained but they never mod any 804 // particular memory location. 805 // 806 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 807 // heap state at the point the guard is issued needs to be consistent in case 808 // the guard invokes the "deopt" continuation. 809 810 // NB! This function is *not* commutative, so we specical case two 811 // possibilities for guard intrinsics. 812 813 if (isIntrinsicCall(CS1, Intrinsic::experimental_guard)) 814 return getModRefBehavior(CS2) & MRI_Mod ? MRI_Ref : MRI_NoModRef; 815 816 if (isIntrinsicCall(CS2, Intrinsic::experimental_guard)) 817 return getModRefBehavior(CS1) & MRI_Mod ? MRI_Mod : MRI_NoModRef; 818 819 // The AAResultBase base class has some smarts, lets use them. 820 return AAResultBase::getModRefInfo(CS1, CS2); 821 } 822 823 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators, 824 /// both having the exact same pointer operand. 825 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1, 826 uint64_t V1Size, 827 const GEPOperator *GEP2, 828 uint64_t V2Size, 829 const DataLayout &DL) { 830 831 assert(GEP1->getPointerOperand() == GEP2->getPointerOperand() && 832 "Expected GEPs with the same pointer operand"); 833 834 // Try to determine whether GEP1 and GEP2 index through arrays, into structs, 835 // such that the struct field accesses provably cannot alias. 836 // We also need at least two indices (the pointer, and the struct field). 837 if (GEP1->getNumIndices() != GEP2->getNumIndices() || 838 GEP1->getNumIndices() < 2) 839 return MayAlias; 840 841 // If we don't know the size of the accesses through both GEPs, we can't 842 // determine whether the struct fields accessed can't alias. 843 if (V1Size == MemoryLocation::UnknownSize || 844 V2Size == MemoryLocation::UnknownSize) 845 return MayAlias; 846 847 ConstantInt *C1 = 848 dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1)); 849 ConstantInt *C2 = 850 dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1)); 851 852 // If the last (struct) indices are constants and are equal, the other indices 853 // might be also be dynamically equal, so the GEPs can alias. 854 if (C1 && C2 && C1->getSExtValue() == C2->getSExtValue()) 855 return MayAlias; 856 857 // Find the last-indexed type of the GEP, i.e., the type you'd get if 858 // you stripped the last index. 859 // On the way, look at each indexed type. If there's something other 860 // than an array, different indices can lead to different final types. 861 SmallVector<Value *, 8> IntermediateIndices; 862 863 // Insert the first index; we don't need to check the type indexed 864 // through it as it only drops the pointer indirection. 865 assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine"); 866 IntermediateIndices.push_back(GEP1->getOperand(1)); 867 868 // Insert all the remaining indices but the last one. 869 // Also, check that they all index through arrays. 870 for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) { 871 if (!isa<ArrayType>(GetElementPtrInst::getIndexedType( 872 GEP1->getSourceElementType(), IntermediateIndices))) 873 return MayAlias; 874 IntermediateIndices.push_back(GEP1->getOperand(i + 1)); 875 } 876 877 auto *Ty = GetElementPtrInst::getIndexedType( 878 GEP1->getSourceElementType(), IntermediateIndices); 879 StructType *LastIndexedStruct = dyn_cast<StructType>(Ty); 880 881 if (isa<SequentialType>(Ty)) { 882 // We know that: 883 // - both GEPs begin indexing from the exact same pointer; 884 // - the last indices in both GEPs are constants, indexing into a sequential 885 // type (array or pointer); 886 // - both GEPs only index through arrays prior to that. 887 // 888 // Because array indices greater than the number of elements are valid in 889 // GEPs, unless we know the intermediate indices are identical between 890 // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't 891 // partially overlap. We also need to check that the loaded size matches 892 // the element size, otherwise we could still have overlap. 893 const uint64_t ElementSize = 894 DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType()); 895 if (V1Size != ElementSize || V2Size != ElementSize) 896 return MayAlias; 897 898 for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i) 899 if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1)) 900 return MayAlias; 901 902 // Now we know that the array/pointer that GEP1 indexes into and that 903 // that GEP2 indexes into must either precisely overlap or be disjoint. 904 // Because they cannot partially overlap and because fields in an array 905 // cannot overlap, if we can prove the final indices are different between 906 // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias. 907 908 // If the last indices are constants, we've already checked they don't 909 // equal each other so we can exit early. 910 if (C1 && C2) 911 return NoAlias; 912 if (isKnownNonEqual(GEP1->getOperand(GEP1->getNumOperands() - 1), 913 GEP2->getOperand(GEP2->getNumOperands() - 1), 914 DL)) 915 return NoAlias; 916 return MayAlias; 917 } else if (!LastIndexedStruct || !C1 || !C2) { 918 return MayAlias; 919 } 920 921 // We know that: 922 // - both GEPs begin indexing from the exact same pointer; 923 // - the last indices in both GEPs are constants, indexing into a struct; 924 // - said indices are different, hence, the pointed-to fields are different; 925 // - both GEPs only index through arrays prior to that. 926 // 927 // This lets us determine that the struct that GEP1 indexes into and the 928 // struct that GEP2 indexes into must either precisely overlap or be 929 // completely disjoint. Because they cannot partially overlap, indexing into 930 // different non-overlapping fields of the struct will never alias. 931 932 // Therefore, the only remaining thing needed to show that both GEPs can't 933 // alias is that the fields are not overlapping. 934 const StructLayout *SL = DL.getStructLayout(LastIndexedStruct); 935 const uint64_t StructSize = SL->getSizeInBytes(); 936 const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue()); 937 const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue()); 938 939 auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size, 940 uint64_t V2Off, uint64_t V2Size) { 941 return V1Off < V2Off && V1Off + V1Size <= V2Off && 942 ((V2Off + V2Size <= StructSize) || 943 (V2Off + V2Size - StructSize <= V1Off)); 944 }; 945 946 if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) || 947 EltsDontOverlap(V2Off, V2Size, V1Off, V1Size)) 948 return NoAlias; 949 950 return MayAlias; 951 } 952 953 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the 954 // beginning of the object the GEP points would have a negative offset with 955 // repsect to the alloca, that means the GEP can not alias pointer (b). 956 // Note that the pointer based on the alloca may not be a GEP. For 957 // example, it may be the alloca itself. 958 // The same applies if (b) is based on a GlobalVariable. Note that just being 959 // based on isIdentifiedObject() is not enough - we need an identified object 960 // that does not permit access to negative offsets. For example, a negative 961 // offset from a noalias argument or call can be inbounds w.r.t the actual 962 // underlying object. 963 // 964 // For example, consider: 965 // 966 // struct { int f0, int f1, ...} foo; 967 // foo alloca; 968 // foo* random = bar(alloca); 969 // int *f0 = &alloca.f0 970 // int *f1 = &random->f1; 971 // 972 // Which is lowered, approximately, to: 973 // 974 // %alloca = alloca %struct.foo 975 // %random = call %struct.foo* @random(%struct.foo* %alloca) 976 // %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0 977 // %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1 978 // 979 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated 980 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also 981 // point into the same object. But since %f0 points to the beginning of %alloca, 982 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher 983 // than (%alloca - 1), and so is not inbounds, a contradiction. 984 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp, 985 const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject, 986 uint64_t ObjectAccessSize) { 987 // If the object access size is unknown, or the GEP isn't inbounds, bail. 988 if (ObjectAccessSize == MemoryLocation::UnknownSize || !GEPOp->isInBounds()) 989 return false; 990 991 // We need the object to be an alloca or a globalvariable, and want to know 992 // the offset of the pointer from the object precisely, so no variable 993 // indices are allowed. 994 if (!(isa<AllocaInst>(DecompObject.Base) || 995 isa<GlobalVariable>(DecompObject.Base)) || 996 !DecompObject.VarIndices.empty()) 997 return false; 998 999 int64_t ObjectBaseOffset = DecompObject.StructOffset + 1000 DecompObject.OtherOffset; 1001 1002 // If the GEP has no variable indices, we know the precise offset 1003 // from the base, then use it. If the GEP has variable indices, we're in 1004 // a bit more trouble: we can't count on the constant offsets that come 1005 // from non-struct sources, since these can be "rewound" by a negative 1006 // variable offset. So use only offsets that came from structs. 1007 int64_t GEPBaseOffset = DecompGEP.StructOffset; 1008 if (DecompGEP.VarIndices.empty()) 1009 GEPBaseOffset += DecompGEP.OtherOffset; 1010 1011 return (GEPBaseOffset >= ObjectBaseOffset + (int64_t)ObjectAccessSize); 1012 } 1013 1014 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 1015 /// another pointer. 1016 /// 1017 /// We know that V1 is a GEP, but we don't know anything about V2. 1018 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for 1019 /// V2. 1020 AliasResult BasicAAResult::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, 1021 const AAMDNodes &V1AAInfo, const Value *V2, 1022 uint64_t V2Size, const AAMDNodes &V2AAInfo, 1023 const Value *UnderlyingV1, 1024 const Value *UnderlyingV2) { 1025 DecomposedGEP DecompGEP1, DecompGEP2; 1026 bool GEP1MaxLookupReached = 1027 DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT); 1028 bool GEP2MaxLookupReached = 1029 DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT); 1030 1031 int64_t GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset; 1032 int64_t GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset; 1033 1034 assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 && 1035 "DecomposeGEPExpression returned a result different from " 1036 "GetUnderlyingObject"); 1037 1038 // If the GEP's offset relative to its base is such that the base would 1039 // fall below the start of the object underlying V2, then the GEP and V2 1040 // cannot alias. 1041 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1042 isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size)) 1043 return NoAlias; 1044 // If we have two gep instructions with must-alias or not-alias'ing base 1045 // pointers, figure out if the indexes to the GEP tell us anything about the 1046 // derived pointer. 1047 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 1048 // Check for the GEP base being at a negative offset, this time in the other 1049 // direction. 1050 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1051 isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size)) 1052 return NoAlias; 1053 // Do the base pointers alias? 1054 AliasResult BaseAlias = 1055 aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(), 1056 UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes()); 1057 1058 // Check for geps of non-aliasing underlying pointers where the offsets are 1059 // identical. 1060 if ((BaseAlias == MayAlias) && V1Size == V2Size) { 1061 // Do the base pointers alias assuming type and size. 1062 AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo, 1063 UnderlyingV2, V2Size, V2AAInfo); 1064 if (PreciseBaseAlias == NoAlias) { 1065 // See if the computed offset from the common pointer tells us about the 1066 // relation of the resulting pointer. 1067 // If the max search depth is reached the result is undefined 1068 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1069 return MayAlias; 1070 1071 // Same offsets. 1072 if (GEP1BaseOffset == GEP2BaseOffset && 1073 DecompGEP1.VarIndices == DecompGEP2.VarIndices) 1074 return NoAlias; 1075 } 1076 } 1077 1078 // If we get a No or May, then return it immediately, no amount of analysis 1079 // will improve this situation. 1080 if (BaseAlias != MustAlias) 1081 return BaseAlias; 1082 1083 // Otherwise, we have a MustAlias. Since the base pointers alias each other 1084 // exactly, see if the computed offset from the common pointer tells us 1085 // about the relation of the resulting pointer. 1086 // If we know the two GEPs are based off of the exact same pointer (and not 1087 // just the same underlying object), see if that tells us anything about 1088 // the resulting pointers. 1089 if (GEP1->getPointerOperand() == GEP2->getPointerOperand()) { 1090 AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL); 1091 // If we couldn't find anything interesting, don't abandon just yet. 1092 if (R != MayAlias) 1093 return R; 1094 } 1095 1096 // If the max search depth is reached, the result is undefined 1097 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1098 return MayAlias; 1099 1100 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1101 // symbolic difference. 1102 GEP1BaseOffset -= GEP2BaseOffset; 1103 GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices); 1104 1105 } else { 1106 // Check to see if these two pointers are related by the getelementptr 1107 // instruction. If one pointer is a GEP with a non-zero index of the other 1108 // pointer, we know they cannot alias. 1109 1110 // If both accesses are unknown size, we can't do anything useful here. 1111 if (V1Size == MemoryLocation::UnknownSize && 1112 V2Size == MemoryLocation::UnknownSize) 1113 return MayAlias; 1114 1115 AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, 1116 AAMDNodes(), V2, V2Size, V2AAInfo); 1117 if (R != MustAlias) 1118 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 1119 // If V2 is known not to alias GEP base pointer, then the two values 1120 // cannot alias per GEP semantics: "A pointer value formed from a 1121 // getelementptr instruction is associated with the addresses associated 1122 // with the first operand of the getelementptr". 1123 return R; 1124 1125 // If the max search depth is reached the result is undefined 1126 if (GEP1MaxLookupReached) 1127 return MayAlias; 1128 } 1129 1130 // In the two GEP Case, if there is no difference in the offsets of the 1131 // computed pointers, the resultant pointers are a must alias. This 1132 // happens when we have two lexically identical GEP's (for example). 1133 // 1134 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 1135 // must aliases the GEP, the end result is a must alias also. 1136 if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty()) 1137 return MustAlias; 1138 1139 // If there is a constant difference between the pointers, but the difference 1140 // is less than the size of the associated memory object, then we know 1141 // that the objects are partially overlapping. If the difference is 1142 // greater, we know they do not overlap. 1143 if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) { 1144 if (GEP1BaseOffset >= 0) { 1145 if (V2Size != MemoryLocation::UnknownSize) { 1146 if ((uint64_t)GEP1BaseOffset < V2Size) 1147 return PartialAlias; 1148 return NoAlias; 1149 } 1150 } else { 1151 // We have the situation where: 1152 // + + 1153 // | BaseOffset | 1154 // ---------------->| 1155 // |-->V1Size |-------> V2Size 1156 // GEP1 V2 1157 // We need to know that V2Size is not unknown, otherwise we might have 1158 // stripped a gep with negative index ('gep <ptr>, -1, ...). 1159 if (V1Size != MemoryLocation::UnknownSize && 1160 V2Size != MemoryLocation::UnknownSize) { 1161 if (-(uint64_t)GEP1BaseOffset < V1Size) 1162 return PartialAlias; 1163 return NoAlias; 1164 } 1165 } 1166 } 1167 1168 if (!DecompGEP1.VarIndices.empty()) { 1169 uint64_t Modulo = 0; 1170 bool AllPositive = true; 1171 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { 1172 1173 // Try to distinguish something like &A[i][1] against &A[42][0]. 1174 // Grab the least significant bit set in any of the scales. We 1175 // don't need std::abs here (even if the scale's negative) as we'll 1176 // be ^'ing Modulo with itself later. 1177 Modulo |= (uint64_t)DecompGEP1.VarIndices[i].Scale; 1178 1179 if (AllPositive) { 1180 // If the Value could change between cycles, then any reasoning about 1181 // the Value this cycle may not hold in the next cycle. We'll just 1182 // give up if we can't determine conditions that hold for every cycle: 1183 const Value *V = DecompGEP1.VarIndices[i].V; 1184 1185 bool SignKnownZero, SignKnownOne; 1186 ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, DL, 1187 0, &AC, nullptr, DT); 1188 1189 // Zero-extension widens the variable, and so forces the sign 1190 // bit to zero. 1191 bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V); 1192 SignKnownZero |= IsZExt; 1193 SignKnownOne &= !IsZExt; 1194 1195 // If the variable begins with a zero then we know it's 1196 // positive, regardless of whether the value is signed or 1197 // unsigned. 1198 int64_t Scale = DecompGEP1.VarIndices[i].Scale; 1199 AllPositive = 1200 (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0); 1201 } 1202 } 1203 1204 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1205 1206 // We can compute the difference between the two addresses 1207 // mod Modulo. Check whether that difference guarantees that the 1208 // two locations do not alias. 1209 uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1); 1210 if (V1Size != MemoryLocation::UnknownSize && 1211 V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size && 1212 V1Size <= Modulo - ModOffset) 1213 return NoAlias; 1214 1215 // If we know all the variables are positive, then GEP1 >= GEP1BasePtr. 1216 // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers 1217 // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr. 1218 if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset) 1219 return NoAlias; 1220 1221 if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size, 1222 GEP1BaseOffset, &AC, DT)) 1223 return NoAlias; 1224 } 1225 1226 // Statically, we can see that the base objects are the same, but the 1227 // pointers have dynamic offsets which we can't resolve. And none of our 1228 // little tricks above worked. 1229 // 1230 // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the 1231 // practical effect of this is protecting TBAA in the case of dynamic 1232 // indices into arrays of unions or malloc'd memory. 1233 return PartialAlias; 1234 } 1235 1236 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1237 // If the results agree, take it. 1238 if (A == B) 1239 return A; 1240 // A mix of PartialAlias and MustAlias is PartialAlias. 1241 if ((A == PartialAlias && B == MustAlias) || 1242 (B == PartialAlias && A == MustAlias)) 1243 return PartialAlias; 1244 // Otherwise, we don't know anything. 1245 return MayAlias; 1246 } 1247 1248 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1249 /// against another. 1250 AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, uint64_t SISize, 1251 const AAMDNodes &SIAAInfo, 1252 const Value *V2, uint64_t V2Size, 1253 const AAMDNodes &V2AAInfo) { 1254 // If the values are Selects with the same condition, we can do a more precise 1255 // check: just check for aliases between the values on corresponding arms. 1256 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1257 if (SI->getCondition() == SI2->getCondition()) { 1258 AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, 1259 SI2->getTrueValue(), V2Size, V2AAInfo); 1260 if (Alias == MayAlias) 1261 return MayAlias; 1262 AliasResult ThisAlias = 1263 aliasCheck(SI->getFalseValue(), SISize, SIAAInfo, 1264 SI2->getFalseValue(), V2Size, V2AAInfo); 1265 return MergeAliasResults(ThisAlias, Alias); 1266 } 1267 1268 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1269 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1270 AliasResult Alias = 1271 aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), SISize, SIAAInfo); 1272 if (Alias == MayAlias) 1273 return MayAlias; 1274 1275 AliasResult ThisAlias = 1276 aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo); 1277 return MergeAliasResults(ThisAlias, Alias); 1278 } 1279 1280 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1281 /// another. 1282 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, uint64_t PNSize, 1283 const AAMDNodes &PNAAInfo, const Value *V2, 1284 uint64_t V2Size, 1285 const AAMDNodes &V2AAInfo) { 1286 // Track phi nodes we have visited. We use this information when we determine 1287 // value equivalence. 1288 VisitedPhiBBs.insert(PN->getParent()); 1289 1290 // If the values are PHIs in the same block, we can do a more precise 1291 // as well as efficient check: just check for aliases between the values 1292 // on corresponding edges. 1293 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1294 if (PN2->getParent() == PN->getParent()) { 1295 LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo), 1296 MemoryLocation(V2, V2Size, V2AAInfo)); 1297 if (PN > V2) 1298 std::swap(Locs.first, Locs.second); 1299 // Analyse the PHIs' inputs under the assumption that the PHIs are 1300 // NoAlias. 1301 // If the PHIs are May/MustAlias there must be (recursively) an input 1302 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1303 // there must be an operation on the PHIs within the PHIs' value cycle 1304 // that causes a MayAlias. 1305 // Pretend the phis do not alias. 1306 AliasResult Alias = NoAlias; 1307 assert(AliasCache.count(Locs) && 1308 "There must exist an entry for the phi node"); 1309 AliasResult OrigAliasResult = AliasCache[Locs]; 1310 AliasCache[Locs] = NoAlias; 1311 1312 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1313 AliasResult ThisAlias = 1314 aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo, 1315 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1316 V2Size, V2AAInfo); 1317 Alias = MergeAliasResults(ThisAlias, Alias); 1318 if (Alias == MayAlias) 1319 break; 1320 } 1321 1322 // Reset if speculation failed. 1323 if (Alias != NoAlias) 1324 AliasCache[Locs] = OrigAliasResult; 1325 1326 return Alias; 1327 } 1328 1329 SmallPtrSet<Value *, 4> UniqueSrc; 1330 SmallVector<Value *, 4> V1Srcs; 1331 bool isRecursive = false; 1332 for (Value *PV1 : PN->incoming_values()) { 1333 if (isa<PHINode>(PV1)) 1334 // If any of the source itself is a PHI, return MayAlias conservatively 1335 // to avoid compile time explosion. The worst possible case is if both 1336 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1337 // and 'n' are the number of PHI sources. 1338 return MayAlias; 1339 1340 if (EnableRecPhiAnalysis) 1341 if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) { 1342 // Check whether the incoming value is a GEP that advances the pointer 1343 // result of this PHI node (e.g. in a loop). If this is the case, we 1344 // would recurse and always get a MayAlias. Handle this case specially 1345 // below. 1346 if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 && 1347 isa<ConstantInt>(PV1GEP->idx_begin())) { 1348 isRecursive = true; 1349 continue; 1350 } 1351 } 1352 1353 if (UniqueSrc.insert(PV1).second) 1354 V1Srcs.push_back(PV1); 1355 } 1356 1357 // If this PHI node is recursive, set the size of the accessed memory to 1358 // unknown to represent all the possible values the GEP could advance the 1359 // pointer to. 1360 if (isRecursive) 1361 PNSize = MemoryLocation::UnknownSize; 1362 1363 AliasResult Alias = 1364 aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize, PNAAInfo); 1365 1366 // Early exit if the check of the first PHI source against V2 is MayAlias. 1367 // Other results are not possible. 1368 if (Alias == MayAlias) 1369 return MayAlias; 1370 1371 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1372 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1373 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1374 Value *V = V1Srcs[i]; 1375 1376 AliasResult ThisAlias = 1377 aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo); 1378 Alias = MergeAliasResults(ThisAlias, Alias); 1379 if (Alias == MayAlias) 1380 break; 1381 } 1382 1383 return Alias; 1384 } 1385 1386 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1387 /// array references. 1388 AliasResult BasicAAResult::aliasCheck(const Value *V1, uint64_t V1Size, 1389 AAMDNodes V1AAInfo, const Value *V2, 1390 uint64_t V2Size, AAMDNodes V2AAInfo) { 1391 // If either of the memory references is empty, it doesn't matter what the 1392 // pointer values are. 1393 if (V1Size == 0 || V2Size == 0) 1394 return NoAlias; 1395 1396 // Strip off any casts if they exist. 1397 V1 = V1->stripPointerCasts(); 1398 V2 = V2->stripPointerCasts(); 1399 1400 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1401 // value for undef that aliases nothing in the program. 1402 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1403 return NoAlias; 1404 1405 // Are we checking for alias of the same value? 1406 // Because we look 'through' phi nodes, we could look at "Value" pointers from 1407 // different iterations. We must therefore make sure that this is not the 1408 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1409 // happen by looking at the visited phi nodes and making sure they cannot 1410 // reach the value. 1411 if (isValueEqualInPotentialCycles(V1, V2)) 1412 return MustAlias; 1413 1414 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1415 return NoAlias; // Scalars cannot alias each other 1416 1417 // Figure out what objects these things are pointing to if we can. 1418 const Value *O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth); 1419 const Value *O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth); 1420 1421 // Null values in the default address space don't point to any object, so they 1422 // don't alias any other pointer. 1423 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1424 if (CPN->getType()->getAddressSpace() == 0) 1425 return NoAlias; 1426 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1427 if (CPN->getType()->getAddressSpace() == 0) 1428 return NoAlias; 1429 1430 if (O1 != O2) { 1431 // If V1/V2 point to two different objects, we know that we have no alias. 1432 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1433 return NoAlias; 1434 1435 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1436 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1437 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1438 return NoAlias; 1439 1440 // Function arguments can't alias with things that are known to be 1441 // unambigously identified at the function level. 1442 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1443 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1444 return NoAlias; 1445 1446 // Most objects can't alias null. 1447 if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) || 1448 (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2))) 1449 return NoAlias; 1450 1451 // If one pointer is the result of a call/invoke or load and the other is a 1452 // non-escaping local object within the same function, then we know the 1453 // object couldn't escape to a point where the call could return it. 1454 // 1455 // Note that if the pointers are in different functions, there are a 1456 // variety of complications. A call with a nocapture argument may still 1457 // temporary store the nocapture argument's value in a temporary memory 1458 // location if that memory location doesn't escape. Or it may pass a 1459 // nocapture value to other functions as long as they don't capture it. 1460 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) 1461 return NoAlias; 1462 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) 1463 return NoAlias; 1464 } 1465 1466 // If the size of one access is larger than the entire object on the other 1467 // side, then we know such behavior is undefined and can assume no alias. 1468 if ((V1Size != MemoryLocation::UnknownSize && 1469 isObjectSmallerThan(O2, V1Size, DL, TLI)) || 1470 (V2Size != MemoryLocation::UnknownSize && 1471 isObjectSmallerThan(O1, V2Size, DL, TLI))) 1472 return NoAlias; 1473 1474 // Check the cache before climbing up use-def chains. This also terminates 1475 // otherwise infinitely recursive queries. 1476 LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo), 1477 MemoryLocation(V2, V2Size, V2AAInfo)); 1478 if (V1 > V2) 1479 std::swap(Locs.first, Locs.second); 1480 std::pair<AliasCacheTy::iterator, bool> Pair = 1481 AliasCache.insert(std::make_pair(Locs, MayAlias)); 1482 if (!Pair.second) 1483 return Pair.first->second; 1484 1485 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1486 // GEP can't simplify, we don't even look at the PHI cases. 1487 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1488 std::swap(V1, V2); 1489 std::swap(V1Size, V2Size); 1490 std::swap(O1, O2); 1491 std::swap(V1AAInfo, V2AAInfo); 1492 } 1493 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1494 AliasResult Result = 1495 aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2); 1496 if (Result != MayAlias) 1497 return AliasCache[Locs] = Result; 1498 } 1499 1500 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1501 std::swap(V1, V2); 1502 std::swap(V1Size, V2Size); 1503 std::swap(V1AAInfo, V2AAInfo); 1504 } 1505 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1506 AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo); 1507 if (Result != MayAlias) 1508 return AliasCache[Locs] = Result; 1509 } 1510 1511 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1512 std::swap(V1, V2); 1513 std::swap(V1Size, V2Size); 1514 std::swap(V1AAInfo, V2AAInfo); 1515 } 1516 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1517 AliasResult Result = 1518 aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo); 1519 if (Result != MayAlias) 1520 return AliasCache[Locs] = Result; 1521 } 1522 1523 // If both pointers are pointing into the same object and one of them 1524 // accesses the entire object, then the accesses must overlap in some way. 1525 if (O1 == O2) 1526 if ((V1Size != MemoryLocation::UnknownSize && 1527 isObjectSize(O1, V1Size, DL, TLI)) || 1528 (V2Size != MemoryLocation::UnknownSize && 1529 isObjectSize(O2, V2Size, DL, TLI))) 1530 return AliasCache[Locs] = PartialAlias; 1531 1532 // Recurse back into the best AA results we have, potentially with refined 1533 // memory locations. We have already ensured that BasicAA has a MayAlias 1534 // cache result for these, so any recursion back into BasicAA won't loop. 1535 AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second); 1536 return AliasCache[Locs] = Result; 1537 } 1538 1539 /// Check whether two Values can be considered equivalent. 1540 /// 1541 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether 1542 /// they can not be part of a cycle in the value graph by looking at all 1543 /// visited phi nodes an making sure that the phis cannot reach the value. We 1544 /// have to do this because we are looking through phi nodes (That is we say 1545 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1546 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1547 const Value *V2) { 1548 if (V != V2) 1549 return false; 1550 1551 const Instruction *Inst = dyn_cast<Instruction>(V); 1552 if (!Inst) 1553 return true; 1554 1555 if (VisitedPhiBBs.empty()) 1556 return true; 1557 1558 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1559 return false; 1560 1561 // Make sure that the visited phis cannot reach the Value. This ensures that 1562 // the Values cannot come from different iterations of a potential cycle the 1563 // phi nodes could be involved in. 1564 for (auto *P : VisitedPhiBBs) 1565 if (isPotentiallyReachable(&P->front(), Inst, DT, LI)) 1566 return false; 1567 1568 return true; 1569 } 1570 1571 /// Computes the symbolic difference between two de-composed GEPs. 1572 /// 1573 /// Dest and Src are the variable indices from two decomposed GetElementPtr 1574 /// instructions GEP1 and GEP2 which have common base pointers. 1575 void BasicAAResult::GetIndexDifference( 1576 SmallVectorImpl<VariableGEPIndex> &Dest, 1577 const SmallVectorImpl<VariableGEPIndex> &Src) { 1578 if (Src.empty()) 1579 return; 1580 1581 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1582 const Value *V = Src[i].V; 1583 unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits; 1584 int64_t Scale = Src[i].Scale; 1585 1586 // Find V in Dest. This is N^2, but pointer indices almost never have more 1587 // than a few variable indexes. 1588 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1589 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1590 Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits) 1591 continue; 1592 1593 // If we found it, subtract off Scale V's from the entry in Dest. If it 1594 // goes to zero, remove the entry. 1595 if (Dest[j].Scale != Scale) 1596 Dest[j].Scale -= Scale; 1597 else 1598 Dest.erase(Dest.begin() + j); 1599 Scale = 0; 1600 break; 1601 } 1602 1603 // If we didn't consume this entry, add it to the end of the Dest list. 1604 if (Scale) { 1605 VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale}; 1606 Dest.push_back(Entry); 1607 } 1608 } 1609 } 1610 1611 bool BasicAAResult::constantOffsetHeuristic( 1612 const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size, 1613 uint64_t V2Size, int64_t BaseOffset, AssumptionCache *AC, 1614 DominatorTree *DT) { 1615 if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize || 1616 V2Size == MemoryLocation::UnknownSize) 1617 return false; 1618 1619 const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1]; 1620 1621 if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits || 1622 Var0.Scale != -Var1.Scale) 1623 return false; 1624 1625 unsigned Width = Var1.V->getType()->getIntegerBitWidth(); 1626 1627 // We'll strip off the Extensions of Var0 and Var1 and do another round 1628 // of GetLinearExpression decomposition. In the example above, if Var0 1629 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 1630 1631 APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0), 1632 V1Offset(Width, 0); 1633 bool NSW = true, NUW = true; 1634 unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0; 1635 const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits, 1636 V0SExtBits, DL, 0, AC, DT, NSW, NUW); 1637 NSW = true; 1638 NUW = true; 1639 const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits, 1640 V1SExtBits, DL, 0, AC, DT, NSW, NUW); 1641 1642 if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits || 1643 V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1)) 1644 return false; 1645 1646 // We have a hit - Var0 and Var1 only differ by a constant offset! 1647 1648 // If we've been sext'ed then zext'd the maximum difference between Var0 and 1649 // Var1 is possible to calculate, but we're just interested in the absolute 1650 // minimum difference between the two. The minimum distance may occur due to 1651 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 1652 // the minimum distance between %i and %i + 5 is 3. 1653 APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff; 1654 MinDiff = APIntOps::umin(MinDiff, Wrapped); 1655 uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale); 1656 1657 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 1658 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 1659 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 1660 // V2Size can fit in the MinDiffBytes gap. 1661 return V1Size + std::abs(BaseOffset) <= MinDiffBytes && 1662 V2Size + std::abs(BaseOffset) <= MinDiffBytes; 1663 } 1664 1665 //===----------------------------------------------------------------------===// 1666 // BasicAliasAnalysis Pass 1667 //===----------------------------------------------------------------------===// 1668 1669 char BasicAA::PassID; 1670 1671 BasicAAResult BasicAA::run(Function &F, AnalysisManager<Function> &AM) { 1672 return BasicAAResult(F.getParent()->getDataLayout(), 1673 AM.getResult<TargetLibraryAnalysis>(F), 1674 AM.getResult<AssumptionAnalysis>(F), 1675 &AM.getResult<DominatorTreeAnalysis>(F), 1676 AM.getCachedResult<LoopAnalysis>(F)); 1677 } 1678 1679 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 1680 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1681 } 1682 1683 char BasicAAWrapperPass::ID = 0; 1684 void BasicAAWrapperPass::anchor() {} 1685 1686 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa", 1687 "Basic Alias Analysis (stateless AA impl)", true, true) 1688 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1689 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1690 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1691 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa", 1692 "Basic Alias Analysis (stateless AA impl)", true, true) 1693 1694 FunctionPass *llvm::createBasicAAWrapperPass() { 1695 return new BasicAAWrapperPass(); 1696 } 1697 1698 bool BasicAAWrapperPass::runOnFunction(Function &F) { 1699 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 1700 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 1701 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); 1702 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 1703 1704 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), TLIWP.getTLI(), 1705 ACT.getAssumptionCache(F), &DTWP.getDomTree(), 1706 LIWP ? &LIWP->getLoopInfo() : nullptr)); 1707 1708 return false; 1709 } 1710 1711 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1712 AU.setPreservesAll(); 1713 AU.addRequired<AssumptionCacheTracker>(); 1714 AU.addRequired<DominatorTreeWrapperPass>(); 1715 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1716 } 1717 1718 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { 1719 return BasicAAResult( 1720 F.getParent()->getDataLayout(), 1721 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 1722 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 1723 } 1724