1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the primary stateless implementation of the 11 // Alias Analysis interface that implements identities (two different 12 // globals cannot alias, etc), but does no stateful analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/BasicAliasAnalysis.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/CFG.h" 21 #include "llvm/Analysis/CaptureTracking.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include <algorithm> 40 41 #define DEBUG_TYPE "basicaa" 42 43 using namespace llvm; 44 45 /// Enable analysis of recursive PHI nodes. 46 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden, 47 cl::init(false)); 48 /// SearchLimitReached / SearchTimes shows how often the limit of 49 /// to decompose GEPs is reached. It will affect the precision 50 /// of basic alias analysis. 51 STATISTIC(SearchLimitReached, "Number of times the limit to " 52 "decompose GEPs is reached"); 53 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 54 55 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 56 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be 57 /// careful with value equivalence. We use reachability to make sure a value 58 /// cannot be involved in a cycle. 59 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 60 61 // The max limit of the search depth in DecomposeGEPExpression() and 62 // GetUnderlyingObject(), both functions need to use the same search 63 // depth otherwise the algorithm in aliasGEP will assert. 64 static const unsigned MaxLookupSearchDepth = 6; 65 66 //===----------------------------------------------------------------------===// 67 // Useful predicates 68 //===----------------------------------------------------------------------===// 69 70 /// Returns true if the pointer is to a function-local object that never 71 /// escapes from the function. 72 static bool isNonEscapingLocalObject(const Value *V) { 73 // If this is a local allocation, check to see if it escapes. 74 if (isa<AllocaInst>(V) || isNoAliasCall(V)) 75 // Set StoreCaptures to True so that we can assume in our callers that the 76 // pointer is not the result of a load instruction. Currently 77 // PointerMayBeCaptured doesn't have any special analysis for the 78 // StoreCaptures=false case; if it did, our callers could be refined to be 79 // more precise. 80 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 81 82 // If this is an argument that corresponds to a byval or noalias argument, 83 // then it has not escaped before entering the function. Check if it escapes 84 // inside the function. 85 if (const Argument *A = dyn_cast<Argument>(V)) 86 if (A->hasByValAttr() || A->hasNoAliasAttr()) 87 // Note even if the argument is marked nocapture, we still need to check 88 // for copies made inside the function. The nocapture attribute only 89 // specifies that there are no copies made that outlive the function. 90 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 91 92 return false; 93 } 94 95 /// Returns true if the pointer is one which would have been considered an 96 /// escape by isNonEscapingLocalObject. 97 static bool isEscapeSource(const Value *V) { 98 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V)) 99 return true; 100 101 // The load case works because isNonEscapingLocalObject considers all 102 // stores to be escapes (it passes true for the StoreCaptures argument 103 // to PointerMayBeCaptured). 104 if (isa<LoadInst>(V)) 105 return true; 106 107 return false; 108 } 109 110 /// Returns the size of the object specified by V or UnknownSize if unknown. 111 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 112 const TargetLibraryInfo &TLI, 113 bool RoundToAlign = false) { 114 uint64_t Size; 115 if (getObjectSize(V, Size, DL, &TLI, RoundToAlign)) 116 return Size; 117 return MemoryLocation::UnknownSize; 118 } 119 120 /// Returns true if we can prove that the object specified by V is smaller than 121 /// Size. 122 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 123 const DataLayout &DL, 124 const TargetLibraryInfo &TLI) { 125 // Note that the meanings of the "object" are slightly different in the 126 // following contexts: 127 // c1: llvm::getObjectSize() 128 // c2: llvm.objectsize() intrinsic 129 // c3: isObjectSmallerThan() 130 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 131 // refers to the "entire object". 132 // 133 // Consider this example: 134 // char *p = (char*)malloc(100) 135 // char *q = p+80; 136 // 137 // In the context of c1 and c2, the "object" pointed by q refers to the 138 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 139 // 140 // However, in the context of c3, the "object" refers to the chunk of memory 141 // being allocated. So, the "object" has 100 bytes, and q points to the middle 142 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 143 // parameter, before the llvm::getObjectSize() is called to get the size of 144 // entire object, we should: 145 // - either rewind the pointer q to the base-address of the object in 146 // question (in this case rewind to p), or 147 // - just give up. It is up to caller to make sure the pointer is pointing 148 // to the base address the object. 149 // 150 // We go for 2nd option for simplicity. 151 if (!isIdentifiedObject(V)) 152 return false; 153 154 // This function needs to use the aligned object size because we allow 155 // reads a bit past the end given sufficient alignment. 156 uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/ true); 157 158 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; 159 } 160 161 /// Returns true if we can prove that the object specified by V has size Size. 162 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, 163 const TargetLibraryInfo &TLI) { 164 uint64_t ObjectSize = getObjectSize(V, DL, TLI); 165 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; 166 } 167 168 //===----------------------------------------------------------------------===// 169 // GetElementPtr Instruction Decomposition and Analysis 170 //===----------------------------------------------------------------------===// 171 172 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 173 /// B are constant integers. 174 /// 175 /// Returns the scale and offset values as APInts and return V as a Value*, and 176 /// return whether we looked through any sign or zero extends. The incoming 177 /// Value is known to have IntegerType, and it may already be sign or zero 178 /// extended. 179 /// 180 /// Note that this looks through extends, so the high bits may not be 181 /// represented in the result. 182 /*static*/ const Value *BasicAAResult::GetLinearExpression( 183 const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits, 184 unsigned &SExtBits, const DataLayout &DL, unsigned Depth, 185 AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) { 186 assert(V->getType()->isIntegerTy() && "Not an integer value"); 187 188 // Limit our recursion depth. 189 if (Depth == 6) { 190 Scale = 1; 191 Offset = 0; 192 return V; 193 } 194 195 if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) { 196 // If it's a constant, just convert it to an offset and remove the variable. 197 // If we've been called recursively, the Offset bit width will be greater 198 // than the constant's (the Offset's always as wide as the outermost call), 199 // so we'll zext here and process any extension in the isa<SExtInst> & 200 // isa<ZExtInst> cases below. 201 Offset += Const->getValue().zextOrSelf(Offset.getBitWidth()); 202 assert(Scale == 0 && "Constant values don't have a scale"); 203 return V; 204 } 205 206 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 207 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 208 209 // If we've been called recursively, then Offset and Scale will be wider 210 // than the BOp operands. We'll always zext it here as we'll process sign 211 // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases). 212 APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth()); 213 214 switch (BOp->getOpcode()) { 215 default: 216 // We don't understand this instruction, so we can't decompose it any 217 // further. 218 Scale = 1; 219 Offset = 0; 220 return V; 221 case Instruction::Or: 222 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 223 // analyze it. 224 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, 225 BOp, DT)) { 226 Scale = 1; 227 Offset = 0; 228 return V; 229 } 230 // FALL THROUGH. 231 case Instruction::Add: 232 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 233 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 234 Offset += RHS; 235 break; 236 case Instruction::Sub: 237 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 238 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 239 Offset -= RHS; 240 break; 241 case Instruction::Mul: 242 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 243 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 244 Offset *= RHS; 245 Scale *= RHS; 246 break; 247 case Instruction::Shl: 248 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 249 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 250 Offset <<= RHS.getLimitedValue(); 251 Scale <<= RHS.getLimitedValue(); 252 // the semantics of nsw and nuw for left shifts don't match those of 253 // multiplications, so we won't propagate them. 254 NSW = NUW = false; 255 return V; 256 } 257 258 if (isa<OverflowingBinaryOperator>(BOp)) { 259 NUW &= BOp->hasNoUnsignedWrap(); 260 NSW &= BOp->hasNoSignedWrap(); 261 } 262 return V; 263 } 264 } 265 266 // Since GEP indices are sign extended anyway, we don't care about the high 267 // bits of a sign or zero extended value - just scales and offsets. The 268 // extensions have to be consistent though. 269 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) { 270 Value *CastOp = cast<CastInst>(V)->getOperand(0); 271 unsigned NewWidth = V->getType()->getPrimitiveSizeInBits(); 272 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 273 unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits; 274 const Value *Result = 275 GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL, 276 Depth + 1, AC, DT, NSW, NUW); 277 278 // zext(zext(%x)) == zext(%x), and similiarly for sext; we'll handle this 279 // by just incrementing the number of bits we've extended by. 280 unsigned ExtendedBy = NewWidth - SmallWidth; 281 282 if (isa<SExtInst>(V) && ZExtBits == 0) { 283 // sext(sext(%x, a), b) == sext(%x, a + b) 284 285 if (NSW) { 286 // We haven't sign-wrapped, so it's valid to decompose sext(%x + c) 287 // into sext(%x) + sext(c). We'll sext the Offset ourselves: 288 unsigned OldWidth = Offset.getBitWidth(); 289 Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth); 290 } else { 291 // We may have signed-wrapped, so don't decompose sext(%x + c) into 292 // sext(%x) + sext(c) 293 Scale = 1; 294 Offset = 0; 295 Result = CastOp; 296 ZExtBits = OldZExtBits; 297 SExtBits = OldSExtBits; 298 } 299 SExtBits += ExtendedBy; 300 } else { 301 // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b) 302 303 if (!NUW) { 304 // We may have unsigned-wrapped, so don't decompose zext(%x + c) into 305 // zext(%x) + zext(c) 306 Scale = 1; 307 Offset = 0; 308 Result = CastOp; 309 ZExtBits = OldZExtBits; 310 SExtBits = OldSExtBits; 311 } 312 ZExtBits += ExtendedBy; 313 } 314 315 return Result; 316 } 317 318 Scale = 1; 319 Offset = 0; 320 return V; 321 } 322 323 /// To ensure a pointer offset fits in an integer of size PointerSize 324 /// (in bits) when that size is smaller than 64. This is an issue in 325 /// particular for 32b programs with negative indices that rely on two's 326 /// complement wrap-arounds for precise alias information. 327 static int64_t adjustToPointerSize(int64_t Offset, unsigned PointerSize) { 328 assert(PointerSize <= 64 && "Invalid PointerSize!"); 329 unsigned ShiftBits = 64 - PointerSize; 330 return (int64_t)((uint64_t)Offset << ShiftBits) >> ShiftBits; 331 } 332 333 /// If V is a symbolic pointer expression, decompose it into a base pointer 334 /// with a constant offset and a number of scaled symbolic offsets. 335 /// 336 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 337 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 338 /// specified amount, but which may have other unrepresented high bits. As 339 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 340 /// 341 /// When DataLayout is around, this function is capable of analyzing everything 342 /// that GetUnderlyingObject can look through. To be able to do that 343 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search 344 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks 345 /// through pointer casts. 346 /*static*/ const Value *BasicAAResult::DecomposeGEPExpression( 347 const Value *V, int64_t &BaseOffs, 348 SmallVectorImpl<VariableGEPIndex> &VarIndices, bool &MaxLookupReached, 349 const DataLayout &DL, AssumptionCache *AC, DominatorTree *DT) { 350 // Limit recursion depth to limit compile time in crazy cases. 351 unsigned MaxLookup = MaxLookupSearchDepth; 352 MaxLookupReached = false; 353 SearchTimes++; 354 355 BaseOffs = 0; 356 do { 357 // See if this is a bitcast or GEP. 358 const Operator *Op = dyn_cast<Operator>(V); 359 if (!Op) { 360 // The only non-operator case we can handle are GlobalAliases. 361 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 362 if (!GA->isInterposable()) { 363 V = GA->getAliasee(); 364 continue; 365 } 366 } 367 return V; 368 } 369 370 if (Op->getOpcode() == Instruction::BitCast || 371 Op->getOpcode() == Instruction::AddrSpaceCast) { 372 V = Op->getOperand(0); 373 continue; 374 } 375 376 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 377 if (!GEPOp) { 378 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 379 // can come up with something. This matches what GetUnderlyingObject does. 380 if (const Instruction *I = dyn_cast<Instruction>(V)) 381 // TODO: Get a DominatorTree and AssumptionCache and use them here 382 // (these are both now available in this function, but this should be 383 // updated when GetUnderlyingObject is updated). TLI should be 384 // provided also. 385 if (const Value *Simplified = 386 SimplifyInstruction(const_cast<Instruction *>(I), DL)) { 387 V = Simplified; 388 continue; 389 } 390 391 return V; 392 } 393 394 // Don't attempt to analyze GEPs over unsized objects. 395 if (!GEPOp->getSourceElementType()->isSized()) 396 return V; 397 398 unsigned AS = GEPOp->getPointerAddressSpace(); 399 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 400 gep_type_iterator GTI = gep_type_begin(GEPOp); 401 unsigned PointerSize = DL.getPointerSizeInBits(AS); 402 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 403 I != E; ++I) { 404 const Value *Index = *I; 405 // Compute the (potentially symbolic) offset in bytes for this index. 406 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 407 // For a struct, add the member offset. 408 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 409 if (FieldNo == 0) 410 continue; 411 412 BaseOffs += DL.getStructLayout(STy)->getElementOffset(FieldNo); 413 continue; 414 } 415 416 // For an array/pointer, add the element offset, explicitly scaled. 417 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 418 if (CIdx->isZero()) 419 continue; 420 BaseOffs += DL.getTypeAllocSize(*GTI) * CIdx->getSExtValue(); 421 continue; 422 } 423 424 uint64_t Scale = DL.getTypeAllocSize(*GTI); 425 unsigned ZExtBits = 0, SExtBits = 0; 426 427 // If the integer type is smaller than the pointer size, it is implicitly 428 // sign extended to pointer size. 429 unsigned Width = Index->getType()->getIntegerBitWidth(); 430 if (PointerSize > Width) 431 SExtBits += PointerSize - Width; 432 433 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 434 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 435 bool NSW = true, NUW = true; 436 Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits, 437 SExtBits, DL, 0, AC, DT, NSW, NUW); 438 439 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 440 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 441 BaseOffs += IndexOffset.getSExtValue() * Scale; 442 Scale *= IndexScale.getSExtValue(); 443 444 // If we already had an occurrence of this index variable, merge this 445 // scale into it. For example, we want to handle: 446 // A[x][x] -> x*16 + x*4 -> x*20 447 // This also ensures that 'x' only appears in the index list once. 448 for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) { 449 if (VarIndices[i].V == Index && VarIndices[i].ZExtBits == ZExtBits && 450 VarIndices[i].SExtBits == SExtBits) { 451 Scale += VarIndices[i].Scale; 452 VarIndices.erase(VarIndices.begin() + i); 453 break; 454 } 455 } 456 457 // Make sure that we have a scale that makes sense for this target's 458 // pointer size. 459 Scale = adjustToPointerSize(Scale, PointerSize); 460 461 if (Scale) { 462 VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, 463 static_cast<int64_t>(Scale)}; 464 VarIndices.push_back(Entry); 465 } 466 } 467 468 // Take care of wrap-arounds 469 BaseOffs = adjustToPointerSize(BaseOffs, PointerSize); 470 471 // Analyze the base pointer next. 472 V = GEPOp->getOperand(0); 473 } while (--MaxLookup); 474 475 // If the chain of expressions is too deep, just return early. 476 MaxLookupReached = true; 477 SearchLimitReached++; 478 return V; 479 } 480 481 /// Returns whether the given pointer value points to memory that is local to 482 /// the function, with global constants being considered local to all 483 /// functions. 484 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc, 485 bool OrLocal) { 486 assert(Visited.empty() && "Visited must be cleared after use!"); 487 488 unsigned MaxLookup = 8; 489 SmallVector<const Value *, 16> Worklist; 490 Worklist.push_back(Loc.Ptr); 491 do { 492 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL); 493 if (!Visited.insert(V).second) { 494 Visited.clear(); 495 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 496 } 497 498 // An alloca instruction defines local memory. 499 if (OrLocal && isa<AllocaInst>(V)) 500 continue; 501 502 // A global constant counts as local memory for our purposes. 503 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 504 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 505 // global to be marked constant in some modules and non-constant in 506 // others. GV may even be a declaration, not a definition. 507 if (!GV->isConstant()) { 508 Visited.clear(); 509 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 510 } 511 continue; 512 } 513 514 // If both select values point to local memory, then so does the select. 515 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 516 Worklist.push_back(SI->getTrueValue()); 517 Worklist.push_back(SI->getFalseValue()); 518 continue; 519 } 520 521 // If all values incoming to a phi node point to local memory, then so does 522 // the phi. 523 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 524 // Don't bother inspecting phi nodes with many operands. 525 if (PN->getNumIncomingValues() > MaxLookup) { 526 Visited.clear(); 527 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 528 } 529 for (Value *IncValue : PN->incoming_values()) 530 Worklist.push_back(IncValue); 531 continue; 532 } 533 534 // Otherwise be conservative. 535 Visited.clear(); 536 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 537 538 } while (!Worklist.empty() && --MaxLookup); 539 540 Visited.clear(); 541 return Worklist.empty(); 542 } 543 544 /// Returns the behavior when calling the given call site. 545 FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) { 546 if (CS.doesNotAccessMemory()) 547 // Can't do better than this. 548 return FMRB_DoesNotAccessMemory; 549 550 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 551 552 // If the callsite knows it only reads memory, don't return worse 553 // than that. 554 if (CS.onlyReadsMemory()) 555 Min = FMRB_OnlyReadsMemory; 556 557 if (CS.onlyAccessesArgMemory()) 558 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 559 560 // If CS has operand bundles then aliasing attributes from the function it 561 // calls do not directly apply to the CallSite. This can be made more 562 // precise in the future. 563 if (!CS.hasOperandBundles()) 564 if (const Function *F = CS.getCalledFunction()) 565 Min = 566 FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F)); 567 568 return Min; 569 } 570 571 /// Returns the behavior when calling the given function. For use when the call 572 /// site is not known. 573 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) { 574 // If the function declares it doesn't access memory, we can't do better. 575 if (F->doesNotAccessMemory()) 576 return FMRB_DoesNotAccessMemory; 577 578 // While the assume intrinsic is marked as arbitrarily writing so that 579 // proper control dependencies will be maintained, it never aliases any 580 // particular memory location. 581 if (F->getIntrinsicID() == Intrinsic::assume) 582 return FMRB_DoesNotAccessMemory; 583 584 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 585 586 // If the function declares it only reads memory, go with that. 587 if (F->onlyReadsMemory()) 588 Min = FMRB_OnlyReadsMemory; 589 590 if (F->onlyAccessesArgMemory()) 591 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 592 593 return Min; 594 } 595 596 /// Returns true if this is a writeonly (i.e Mod only) parameter. Currently, 597 /// we don't have a writeonly attribute, so this only knows about builtin 598 /// intrinsics and target library functions. We could consider adding a 599 /// writeonly attribute in the future and moving all of these facts to either 600 /// Intrinsics.td or InferFunctionAttr.cpp 601 static bool isWriteOnlyParam(ImmutableCallSite CS, unsigned ArgIdx, 602 const TargetLibraryInfo &TLI) { 603 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) 604 switch (II->getIntrinsicID()) { 605 default: 606 break; 607 case Intrinsic::memset: 608 case Intrinsic::memcpy: 609 case Intrinsic::memmove: 610 // We don't currently have a writeonly attribute. All other properties 611 // of these intrinsics are nicely described via attributes in 612 // Intrinsics.td and handled generically. 613 if (ArgIdx == 0) 614 return true; 615 } 616 617 // We can bound the aliasing properties of memset_pattern16 just as we can 618 // for memcpy/memset. This is particularly important because the 619 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 620 // whenever possible. Note that all but the missing writeonly attribute are 621 // handled via InferFunctionAttr. 622 LibFunc::Func F; 623 if (CS.getCalledFunction() && TLI.getLibFunc(*CS.getCalledFunction(), F) && 624 F == LibFunc::memset_pattern16 && TLI.has(F)) 625 if (ArgIdx == 0) 626 return true; 627 628 // TODO: memset_pattern4, memset_pattern8 629 // TODO: _chk variants 630 // TODO: strcmp, strcpy 631 632 return false; 633 } 634 635 ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS, 636 unsigned ArgIdx) { 637 638 // Emulate the missing writeonly attribute by checking for known builtin 639 // intrinsics and target library functions. 640 if (isWriteOnlyParam(CS, ArgIdx, TLI)) 641 return MRI_Mod; 642 643 if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadOnly)) 644 return MRI_Ref; 645 646 if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadNone)) 647 return MRI_NoModRef; 648 649 return AAResultBase::getArgModRefInfo(CS, ArgIdx); 650 } 651 652 static bool isAssumeIntrinsic(ImmutableCallSite CS) { 653 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 654 return II && II->getIntrinsicID() == Intrinsic::assume; 655 } 656 657 #ifndef NDEBUG 658 static const Function *getParent(const Value *V) { 659 if (const Instruction *inst = dyn_cast<Instruction>(V)) 660 return inst->getParent()->getParent(); 661 662 if (const Argument *arg = dyn_cast<Argument>(V)) 663 return arg->getParent(); 664 665 return nullptr; 666 } 667 668 static bool notDifferentParent(const Value *O1, const Value *O2) { 669 670 const Function *F1 = getParent(O1); 671 const Function *F2 = getParent(O2); 672 673 return !F1 || !F2 || F1 == F2; 674 } 675 #endif 676 677 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 678 const MemoryLocation &LocB) { 679 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 680 "BasicAliasAnalysis doesn't support interprocedural queries."); 681 682 // If we have a directly cached entry for these locations, we have recursed 683 // through this once, so just return the cached results. Notably, when this 684 // happens, we don't clear the cache. 685 auto CacheIt = AliasCache.find(LocPair(LocA, LocB)); 686 if (CacheIt != AliasCache.end()) 687 return CacheIt->second; 688 689 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr, 690 LocB.Size, LocB.AATags); 691 // AliasCache rarely has more than 1 or 2 elements, always use 692 // shrink_and_clear so it quickly returns to the inline capacity of the 693 // SmallDenseMap if it ever grows larger. 694 // FIXME: This should really be shrink_to_inline_capacity_and_clear(). 695 AliasCache.shrink_and_clear(); 696 VisitedPhiBBs.clear(); 697 return Alias; 698 } 699 700 /// Checks to see if the specified callsite can clobber the specified memory 701 /// object. 702 /// 703 /// Since we only look at local properties of this function, we really can't 704 /// say much about this query. We do, however, use simple "address taken" 705 /// analysis on local objects. 706 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS, 707 const MemoryLocation &Loc) { 708 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && 709 "AliasAnalysis query involving multiple functions!"); 710 711 const Value *Object = GetUnderlyingObject(Loc.Ptr, DL); 712 713 // If this is a tail call and Loc.Ptr points to a stack location, we know that 714 // the tail call cannot access or modify the local stack. 715 // We cannot exclude byval arguments here; these belong to the caller of 716 // the current function not to the current function, and a tail callee 717 // may reference them. 718 if (isa<AllocaInst>(Object)) 719 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) 720 if (CI->isTailCall()) 721 return MRI_NoModRef; 722 723 // If the pointer is to a locally allocated object that does not escape, 724 // then the call can not mod/ref the pointer unless the call takes the pointer 725 // as an argument, and itself doesn't capture it. 726 if (!isa<Constant>(Object) && CS.getInstruction() != Object && 727 isNonEscapingLocalObject(Object)) { 728 bool PassedAsArg = false; 729 unsigned OperandNo = 0; 730 for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end(); 731 CI != CE; ++CI, ++OperandNo) { 732 // Only look at the no-capture or byval pointer arguments. If this 733 // pointer were passed to arguments that were neither of these, then it 734 // couldn't be no-capture. 735 if (!(*CI)->getType()->isPointerTy() || 736 (!CS.doesNotCapture(OperandNo) && !CS.isByValArgument(OperandNo))) 737 continue; 738 739 // If this is a no-capture pointer argument, see if we can tell that it 740 // is impossible to alias the pointer we're checking. If not, we have to 741 // assume that the call could touch the pointer, even though it doesn't 742 // escape. 743 AliasResult AR = 744 getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object)); 745 if (AR) { 746 PassedAsArg = true; 747 break; 748 } 749 } 750 751 if (!PassedAsArg) 752 return MRI_NoModRef; 753 } 754 755 // If the CallSite is to malloc or calloc, we can assume that it doesn't 756 // modify any IR visible value. This is only valid because we assume these 757 // routines do not read values visible in the IR. TODO: Consider special 758 // casing realloc and strdup routines which access only their arguments as 759 // well. Or alternatively, replace all of this with inaccessiblememonly once 760 // that's implemented fully. 761 auto *Inst = CS.getInstruction(); 762 if (isMallocLikeFn(Inst, &TLI) || isCallocLikeFn(Inst, &TLI)) { 763 // Be conservative if the accessed pointer may alias the allocation - 764 // fallback to the generic handling below. 765 if (getBestAAResults().alias(MemoryLocation(Inst), Loc) == NoAlias) 766 return MRI_NoModRef; 767 } 768 769 // While the assume intrinsic is marked as arbitrarily writing so that 770 // proper control dependencies will be maintained, it never aliases any 771 // particular memory location. 772 if (isAssumeIntrinsic(CS)) 773 return MRI_NoModRef; 774 775 // The AAResultBase base class has some smarts, lets use them. 776 return AAResultBase::getModRefInfo(CS, Loc); 777 } 778 779 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1, 780 ImmutableCallSite CS2) { 781 // While the assume intrinsic is marked as arbitrarily writing so that 782 // proper control dependencies will be maintained, it never aliases any 783 // particular memory location. 784 if (isAssumeIntrinsic(CS1) || isAssumeIntrinsic(CS2)) 785 return MRI_NoModRef; 786 787 // The AAResultBase base class has some smarts, lets use them. 788 return AAResultBase::getModRefInfo(CS1, CS2); 789 } 790 791 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators, 792 /// both having the exact same pointer operand. 793 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1, 794 uint64_t V1Size, 795 const GEPOperator *GEP2, 796 uint64_t V2Size, 797 const DataLayout &DL) { 798 799 assert(GEP1->getPointerOperand() == GEP2->getPointerOperand() && 800 "Expected GEPs with the same pointer operand"); 801 802 // Try to determine whether GEP1 and GEP2 index through arrays, into structs, 803 // such that the struct field accesses provably cannot alias. 804 // We also need at least two indices (the pointer, and the struct field). 805 if (GEP1->getNumIndices() != GEP2->getNumIndices() || 806 GEP1->getNumIndices() < 2) 807 return MayAlias; 808 809 // If we don't know the size of the accesses through both GEPs, we can't 810 // determine whether the struct fields accessed can't alias. 811 if (V1Size == MemoryLocation::UnknownSize || 812 V2Size == MemoryLocation::UnknownSize) 813 return MayAlias; 814 815 ConstantInt *C1 = 816 dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1)); 817 ConstantInt *C2 = 818 dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1)); 819 820 // If the last (struct) indices are constants and are equal, the other indices 821 // might be also be dynamically equal, so the GEPs can alias. 822 if (C1 && C2 && C1 == C2) 823 return MayAlias; 824 825 // Find the last-indexed type of the GEP, i.e., the type you'd get if 826 // you stripped the last index. 827 // On the way, look at each indexed type. If there's something other 828 // than an array, different indices can lead to different final types. 829 SmallVector<Value *, 8> IntermediateIndices; 830 831 // Insert the first index; we don't need to check the type indexed 832 // through it as it only drops the pointer indirection. 833 assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine"); 834 IntermediateIndices.push_back(GEP1->getOperand(1)); 835 836 // Insert all the remaining indices but the last one. 837 // Also, check that they all index through arrays. 838 for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) { 839 if (!isa<ArrayType>(GetElementPtrInst::getIndexedType( 840 GEP1->getSourceElementType(), IntermediateIndices))) 841 return MayAlias; 842 IntermediateIndices.push_back(GEP1->getOperand(i + 1)); 843 } 844 845 auto *Ty = GetElementPtrInst::getIndexedType( 846 GEP1->getSourceElementType(), IntermediateIndices); 847 StructType *LastIndexedStruct = dyn_cast<StructType>(Ty); 848 849 if (isa<SequentialType>(Ty)) { 850 // We know that: 851 // - both GEPs begin indexing from the exact same pointer; 852 // - the last indices in both GEPs are constants, indexing into a sequential 853 // type (array or pointer); 854 // - both GEPs only index through arrays prior to that. 855 // 856 // Because array indices greater than the number of elements are valid in 857 // GEPs, unless we know the intermediate indices are identical between 858 // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't 859 // partially overlap. We also need to check that the loaded size matches 860 // the element size, otherwise we could still have overlap. 861 const uint64_t ElementSize = 862 DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType()); 863 if (V1Size != ElementSize || V2Size != ElementSize) 864 return MayAlias; 865 866 for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i) 867 if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1)) 868 return MayAlias; 869 870 // Now we know that the array/pointer that GEP1 indexes into and that 871 // that GEP2 indexes into must either precisely overlap or be disjoint. 872 // Because they cannot partially overlap and because fields in an array 873 // cannot overlap, if we can prove the final indices are different between 874 // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias. 875 876 // If the last indices are constants, we've already checked they don't 877 // equal each other so we can exit early. 878 if (C1 && C2) 879 return NoAlias; 880 if (isKnownNonEqual(GEP1->getOperand(GEP1->getNumOperands() - 1), 881 GEP2->getOperand(GEP2->getNumOperands() - 1), 882 DL)) 883 return NoAlias; 884 return MayAlias; 885 } else if (!LastIndexedStruct || !C1 || !C2) { 886 return MayAlias; 887 } 888 889 // We know that: 890 // - both GEPs begin indexing from the exact same pointer; 891 // - the last indices in both GEPs are constants, indexing into a struct; 892 // - said indices are different, hence, the pointed-to fields are different; 893 // - both GEPs only index through arrays prior to that. 894 // 895 // This lets us determine that the struct that GEP1 indexes into and the 896 // struct that GEP2 indexes into must either precisely overlap or be 897 // completely disjoint. Because they cannot partially overlap, indexing into 898 // different non-overlapping fields of the struct will never alias. 899 900 // Therefore, the only remaining thing needed to show that both GEPs can't 901 // alias is that the fields are not overlapping. 902 const StructLayout *SL = DL.getStructLayout(LastIndexedStruct); 903 const uint64_t StructSize = SL->getSizeInBytes(); 904 const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue()); 905 const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue()); 906 907 auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size, 908 uint64_t V2Off, uint64_t V2Size) { 909 return V1Off < V2Off && V1Off + V1Size <= V2Off && 910 ((V2Off + V2Size <= StructSize) || 911 (V2Off + V2Size - StructSize <= V1Off)); 912 }; 913 914 if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) || 915 EltsDontOverlap(V2Off, V2Size, V1Off, V1Size)) 916 return NoAlias; 917 918 return MayAlias; 919 } 920 921 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 922 /// another pointer. 923 /// 924 /// We know that V1 is a GEP, but we don't know anything about V2. 925 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for 926 /// V2. 927 AliasResult BasicAAResult::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, 928 const AAMDNodes &V1AAInfo, const Value *V2, 929 uint64_t V2Size, const AAMDNodes &V2AAInfo, 930 const Value *UnderlyingV1, 931 const Value *UnderlyingV2) { 932 int64_t GEP1BaseOffset; 933 bool GEP1MaxLookupReached; 934 SmallVector<VariableGEPIndex, 4> GEP1VariableIndices; 935 936 // If we have two gep instructions with must-alias or not-alias'ing base 937 // pointers, figure out if the indexes to the GEP tell us anything about the 938 // derived pointer. 939 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 940 // Do the base pointers alias? 941 AliasResult BaseAlias = 942 aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(), 943 UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes()); 944 945 // Check for geps of non-aliasing underlying pointers where the offsets are 946 // identical. 947 if ((BaseAlias == MayAlias) && V1Size == V2Size) { 948 // Do the base pointers alias assuming type and size. 949 AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo, 950 UnderlyingV2, V2Size, V2AAInfo); 951 if (PreciseBaseAlias == NoAlias) { 952 // See if the computed offset from the common pointer tells us about the 953 // relation of the resulting pointer. 954 int64_t GEP2BaseOffset; 955 bool GEP2MaxLookupReached; 956 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 957 const Value *GEP2BasePtr = 958 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, 959 GEP2MaxLookupReached, DL, &AC, DT); 960 const Value *GEP1BasePtr = 961 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 962 GEP1MaxLookupReached, DL, &AC, DT); 963 // DecomposeGEPExpression and GetUnderlyingObject should return the 964 // same result except when DecomposeGEPExpression has no DataLayout. 965 // FIXME: They always have a DataLayout, so this should become an 966 // assert. 967 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 968 return MayAlias; 969 } 970 // If the max search depth is reached the result is undefined 971 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 972 return MayAlias; 973 974 // Same offsets. 975 if (GEP1BaseOffset == GEP2BaseOffset && 976 GEP1VariableIndices == GEP2VariableIndices) 977 return NoAlias; 978 GEP1VariableIndices.clear(); 979 } 980 } 981 982 // If we get a No or May, then return it immediately, no amount of analysis 983 // will improve this situation. 984 if (BaseAlias != MustAlias) 985 return BaseAlias; 986 987 // Otherwise, we have a MustAlias. Since the base pointers alias each other 988 // exactly, see if the computed offset from the common pointer tells us 989 // about the relation of the resulting pointer. 990 const Value *GEP1BasePtr = 991 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 992 GEP1MaxLookupReached, DL, &AC, DT); 993 994 int64_t GEP2BaseOffset; 995 bool GEP2MaxLookupReached; 996 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 997 const Value *GEP2BasePtr = 998 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, 999 GEP2MaxLookupReached, DL, &AC, DT); 1000 1001 // DecomposeGEPExpression and GetUnderlyingObject should return the 1002 // same result except when DecomposeGEPExpression has no DataLayout. 1003 // FIXME: They always have a DataLayout, so this should become an assert. 1004 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 1005 return MayAlias; 1006 } 1007 1008 // If we know the two GEPs are based off of the exact same pointer (and not 1009 // just the same underlying object), see if that tells us anything about 1010 // the resulting pointers. 1011 if (GEP1->getPointerOperand() == GEP2->getPointerOperand()) { 1012 AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL); 1013 // If we couldn't find anything interesting, don't abandon just yet. 1014 if (R != MayAlias) 1015 return R; 1016 } 1017 1018 // If the max search depth is reached, the result is undefined 1019 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1020 return MayAlias; 1021 1022 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1023 // symbolic difference. 1024 GEP1BaseOffset -= GEP2BaseOffset; 1025 GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices); 1026 1027 } else { 1028 // Check to see if these two pointers are related by the getelementptr 1029 // instruction. If one pointer is a GEP with a non-zero index of the other 1030 // pointer, we know they cannot alias. 1031 1032 // If both accesses are unknown size, we can't do anything useful here. 1033 if (V1Size == MemoryLocation::UnknownSize && 1034 V2Size == MemoryLocation::UnknownSize) 1035 return MayAlias; 1036 1037 AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, 1038 AAMDNodes(), V2, V2Size, V2AAInfo); 1039 if (R != MustAlias) 1040 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 1041 // If V2 is known not to alias GEP base pointer, then the two values 1042 // cannot alias per GEP semantics: "A pointer value formed from a 1043 // getelementptr instruction is associated with the addresses associated 1044 // with the first operand of the getelementptr". 1045 return R; 1046 1047 const Value *GEP1BasePtr = 1048 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 1049 GEP1MaxLookupReached, DL, &AC, DT); 1050 1051 // DecomposeGEPExpression and GetUnderlyingObject should return the 1052 // same result except when DecomposeGEPExpression has no DataLayout. 1053 // FIXME: They always have a DataLayout, so this should become an assert. 1054 if (GEP1BasePtr != UnderlyingV1) { 1055 return MayAlias; 1056 } 1057 // If the max search depth is reached the result is undefined 1058 if (GEP1MaxLookupReached) 1059 return MayAlias; 1060 } 1061 1062 // In the two GEP Case, if there is no difference in the offsets of the 1063 // computed pointers, the resultant pointers are a must alias. This 1064 // happens when we have two lexically identical GEP's (for example). 1065 // 1066 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 1067 // must aliases the GEP, the end result is a must alias also. 1068 if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty()) 1069 return MustAlias; 1070 1071 // If there is a constant difference between the pointers, but the difference 1072 // is less than the size of the associated memory object, then we know 1073 // that the objects are partially overlapping. If the difference is 1074 // greater, we know they do not overlap. 1075 if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) { 1076 if (GEP1BaseOffset >= 0) { 1077 if (V2Size != MemoryLocation::UnknownSize) { 1078 if ((uint64_t)GEP1BaseOffset < V2Size) 1079 return PartialAlias; 1080 return NoAlias; 1081 } 1082 } else { 1083 // We have the situation where: 1084 // + + 1085 // | BaseOffset | 1086 // ---------------->| 1087 // |-->V1Size |-------> V2Size 1088 // GEP1 V2 1089 // We need to know that V2Size is not unknown, otherwise we might have 1090 // stripped a gep with negative index ('gep <ptr>, -1, ...). 1091 if (V1Size != MemoryLocation::UnknownSize && 1092 V2Size != MemoryLocation::UnknownSize) { 1093 if (-(uint64_t)GEP1BaseOffset < V1Size) 1094 return PartialAlias; 1095 return NoAlias; 1096 } 1097 } 1098 } 1099 1100 if (!GEP1VariableIndices.empty()) { 1101 uint64_t Modulo = 0; 1102 bool AllPositive = true; 1103 for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) { 1104 1105 // Try to distinguish something like &A[i][1] against &A[42][0]. 1106 // Grab the least significant bit set in any of the scales. We 1107 // don't need std::abs here (even if the scale's negative) as we'll 1108 // be ^'ing Modulo with itself later. 1109 Modulo |= (uint64_t)GEP1VariableIndices[i].Scale; 1110 1111 if (AllPositive) { 1112 // If the Value could change between cycles, then any reasoning about 1113 // the Value this cycle may not hold in the next cycle. We'll just 1114 // give up if we can't determine conditions that hold for every cycle: 1115 const Value *V = GEP1VariableIndices[i].V; 1116 1117 bool SignKnownZero, SignKnownOne; 1118 ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, DL, 1119 0, &AC, nullptr, DT); 1120 1121 // Zero-extension widens the variable, and so forces the sign 1122 // bit to zero. 1123 bool IsZExt = GEP1VariableIndices[i].ZExtBits > 0 || isa<ZExtInst>(V); 1124 SignKnownZero |= IsZExt; 1125 SignKnownOne &= !IsZExt; 1126 1127 // If the variable begins with a zero then we know it's 1128 // positive, regardless of whether the value is signed or 1129 // unsigned. 1130 int64_t Scale = GEP1VariableIndices[i].Scale; 1131 AllPositive = 1132 (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0); 1133 } 1134 } 1135 1136 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1137 1138 // We can compute the difference between the two addresses 1139 // mod Modulo. Check whether that difference guarantees that the 1140 // two locations do not alias. 1141 uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1); 1142 if (V1Size != MemoryLocation::UnknownSize && 1143 V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size && 1144 V1Size <= Modulo - ModOffset) 1145 return NoAlias; 1146 1147 // If we know all the variables are positive, then GEP1 >= GEP1BasePtr. 1148 // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers 1149 // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr. 1150 if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset) 1151 return NoAlias; 1152 1153 if (constantOffsetHeuristic(GEP1VariableIndices, V1Size, V2Size, 1154 GEP1BaseOffset, &AC, DT)) 1155 return NoAlias; 1156 } 1157 1158 // Statically, we can see that the base objects are the same, but the 1159 // pointers have dynamic offsets which we can't resolve. And none of our 1160 // little tricks above worked. 1161 // 1162 // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the 1163 // practical effect of this is protecting TBAA in the case of dynamic 1164 // indices into arrays of unions or malloc'd memory. 1165 return PartialAlias; 1166 } 1167 1168 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1169 // If the results agree, take it. 1170 if (A == B) 1171 return A; 1172 // A mix of PartialAlias and MustAlias is PartialAlias. 1173 if ((A == PartialAlias && B == MustAlias) || 1174 (B == PartialAlias && A == MustAlias)) 1175 return PartialAlias; 1176 // Otherwise, we don't know anything. 1177 return MayAlias; 1178 } 1179 1180 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1181 /// against another. 1182 AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, uint64_t SISize, 1183 const AAMDNodes &SIAAInfo, 1184 const Value *V2, uint64_t V2Size, 1185 const AAMDNodes &V2AAInfo) { 1186 // If the values are Selects with the same condition, we can do a more precise 1187 // check: just check for aliases between the values on corresponding arms. 1188 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1189 if (SI->getCondition() == SI2->getCondition()) { 1190 AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, 1191 SI2->getTrueValue(), V2Size, V2AAInfo); 1192 if (Alias == MayAlias) 1193 return MayAlias; 1194 AliasResult ThisAlias = 1195 aliasCheck(SI->getFalseValue(), SISize, SIAAInfo, 1196 SI2->getFalseValue(), V2Size, V2AAInfo); 1197 return MergeAliasResults(ThisAlias, Alias); 1198 } 1199 1200 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1201 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1202 AliasResult Alias = 1203 aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), SISize, SIAAInfo); 1204 if (Alias == MayAlias) 1205 return MayAlias; 1206 1207 AliasResult ThisAlias = 1208 aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo); 1209 return MergeAliasResults(ThisAlias, Alias); 1210 } 1211 1212 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1213 /// another. 1214 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, uint64_t PNSize, 1215 const AAMDNodes &PNAAInfo, const Value *V2, 1216 uint64_t V2Size, 1217 const AAMDNodes &V2AAInfo) { 1218 // Track phi nodes we have visited. We use this information when we determine 1219 // value equivalence. 1220 VisitedPhiBBs.insert(PN->getParent()); 1221 1222 // If the values are PHIs in the same block, we can do a more precise 1223 // as well as efficient check: just check for aliases between the values 1224 // on corresponding edges. 1225 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1226 if (PN2->getParent() == PN->getParent()) { 1227 LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo), 1228 MemoryLocation(V2, V2Size, V2AAInfo)); 1229 if (PN > V2) 1230 std::swap(Locs.first, Locs.second); 1231 // Analyse the PHIs' inputs under the assumption that the PHIs are 1232 // NoAlias. 1233 // If the PHIs are May/MustAlias there must be (recursively) an input 1234 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1235 // there must be an operation on the PHIs within the PHIs' value cycle 1236 // that causes a MayAlias. 1237 // Pretend the phis do not alias. 1238 AliasResult Alias = NoAlias; 1239 assert(AliasCache.count(Locs) && 1240 "There must exist an entry for the phi node"); 1241 AliasResult OrigAliasResult = AliasCache[Locs]; 1242 AliasCache[Locs] = NoAlias; 1243 1244 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1245 AliasResult ThisAlias = 1246 aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo, 1247 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1248 V2Size, V2AAInfo); 1249 Alias = MergeAliasResults(ThisAlias, Alias); 1250 if (Alias == MayAlias) 1251 break; 1252 } 1253 1254 // Reset if speculation failed. 1255 if (Alias != NoAlias) 1256 AliasCache[Locs] = OrigAliasResult; 1257 1258 return Alias; 1259 } 1260 1261 SmallPtrSet<Value *, 4> UniqueSrc; 1262 SmallVector<Value *, 4> V1Srcs; 1263 bool isRecursive = false; 1264 for (Value *PV1 : PN->incoming_values()) { 1265 if (isa<PHINode>(PV1)) 1266 // If any of the source itself is a PHI, return MayAlias conservatively 1267 // to avoid compile time explosion. The worst possible case is if both 1268 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1269 // and 'n' are the number of PHI sources. 1270 return MayAlias; 1271 1272 if (EnableRecPhiAnalysis) 1273 if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) { 1274 // Check whether the incoming value is a GEP that advances the pointer 1275 // result of this PHI node (e.g. in a loop). If this is the case, we 1276 // would recurse and always get a MayAlias. Handle this case specially 1277 // below. 1278 if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 && 1279 isa<ConstantInt>(PV1GEP->idx_begin())) { 1280 isRecursive = true; 1281 continue; 1282 } 1283 } 1284 1285 if (UniqueSrc.insert(PV1).second) 1286 V1Srcs.push_back(PV1); 1287 } 1288 1289 // If this PHI node is recursive, set the size of the accessed memory to 1290 // unknown to represent all the possible values the GEP could advance the 1291 // pointer to. 1292 if (isRecursive) 1293 PNSize = MemoryLocation::UnknownSize; 1294 1295 AliasResult Alias = 1296 aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize, PNAAInfo); 1297 1298 // Early exit if the check of the first PHI source against V2 is MayAlias. 1299 // Other results are not possible. 1300 if (Alias == MayAlias) 1301 return MayAlias; 1302 1303 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1304 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1305 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1306 Value *V = V1Srcs[i]; 1307 1308 AliasResult ThisAlias = 1309 aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo); 1310 Alias = MergeAliasResults(ThisAlias, Alias); 1311 if (Alias == MayAlias) 1312 break; 1313 } 1314 1315 return Alias; 1316 } 1317 1318 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1319 /// array references. 1320 AliasResult BasicAAResult::aliasCheck(const Value *V1, uint64_t V1Size, 1321 AAMDNodes V1AAInfo, const Value *V2, 1322 uint64_t V2Size, AAMDNodes V2AAInfo) { 1323 // If either of the memory references is empty, it doesn't matter what the 1324 // pointer values are. 1325 if (V1Size == 0 || V2Size == 0) 1326 return NoAlias; 1327 1328 // Strip off any casts if they exist. 1329 V1 = V1->stripPointerCasts(); 1330 V2 = V2->stripPointerCasts(); 1331 1332 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1333 // value for undef that aliases nothing in the program. 1334 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1335 return NoAlias; 1336 1337 // Are we checking for alias of the same value? 1338 // Because we look 'through' phi nodes, we could look at "Value" pointers from 1339 // different iterations. We must therefore make sure that this is not the 1340 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1341 // happen by looking at the visited phi nodes and making sure they cannot 1342 // reach the value. 1343 if (isValueEqualInPotentialCycles(V1, V2)) 1344 return MustAlias; 1345 1346 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1347 return NoAlias; // Scalars cannot alias each other 1348 1349 // Figure out what objects these things are pointing to if we can. 1350 const Value *O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth); 1351 const Value *O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth); 1352 1353 // Null values in the default address space don't point to any object, so they 1354 // don't alias any other pointer. 1355 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1356 if (CPN->getType()->getAddressSpace() == 0) 1357 return NoAlias; 1358 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1359 if (CPN->getType()->getAddressSpace() == 0) 1360 return NoAlias; 1361 1362 if (O1 != O2) { 1363 // If V1/V2 point to two different objects, we know that we have no alias. 1364 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1365 return NoAlias; 1366 1367 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1368 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1369 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1370 return NoAlias; 1371 1372 // Function arguments can't alias with things that are known to be 1373 // unambigously identified at the function level. 1374 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1375 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1376 return NoAlias; 1377 1378 // Most objects can't alias null. 1379 if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) || 1380 (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2))) 1381 return NoAlias; 1382 1383 // If one pointer is the result of a call/invoke or load and the other is a 1384 // non-escaping local object within the same function, then we know the 1385 // object couldn't escape to a point where the call could return it. 1386 // 1387 // Note that if the pointers are in different functions, there are a 1388 // variety of complications. A call with a nocapture argument may still 1389 // temporary store the nocapture argument's value in a temporary memory 1390 // location if that memory location doesn't escape. Or it may pass a 1391 // nocapture value to other functions as long as they don't capture it. 1392 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) 1393 return NoAlias; 1394 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) 1395 return NoAlias; 1396 } 1397 1398 // If the size of one access is larger than the entire object on the other 1399 // side, then we know such behavior is undefined and can assume no alias. 1400 if ((V1Size != MemoryLocation::UnknownSize && 1401 isObjectSmallerThan(O2, V1Size, DL, TLI)) || 1402 (V2Size != MemoryLocation::UnknownSize && 1403 isObjectSmallerThan(O1, V2Size, DL, TLI))) 1404 return NoAlias; 1405 1406 // Check the cache before climbing up use-def chains. This also terminates 1407 // otherwise infinitely recursive queries. 1408 LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo), 1409 MemoryLocation(V2, V2Size, V2AAInfo)); 1410 if (V1 > V2) 1411 std::swap(Locs.first, Locs.second); 1412 std::pair<AliasCacheTy::iterator, bool> Pair = 1413 AliasCache.insert(std::make_pair(Locs, MayAlias)); 1414 if (!Pair.second) 1415 return Pair.first->second; 1416 1417 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1418 // GEP can't simplify, we don't even look at the PHI cases. 1419 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1420 std::swap(V1, V2); 1421 std::swap(V1Size, V2Size); 1422 std::swap(O1, O2); 1423 std::swap(V1AAInfo, V2AAInfo); 1424 } 1425 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1426 AliasResult Result = 1427 aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2); 1428 if (Result != MayAlias) 1429 return AliasCache[Locs] = Result; 1430 } 1431 1432 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1433 std::swap(V1, V2); 1434 std::swap(V1Size, V2Size); 1435 std::swap(V1AAInfo, V2AAInfo); 1436 } 1437 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1438 AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo); 1439 if (Result != MayAlias) 1440 return AliasCache[Locs] = Result; 1441 } 1442 1443 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1444 std::swap(V1, V2); 1445 std::swap(V1Size, V2Size); 1446 std::swap(V1AAInfo, V2AAInfo); 1447 } 1448 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1449 AliasResult Result = 1450 aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo); 1451 if (Result != MayAlias) 1452 return AliasCache[Locs] = Result; 1453 } 1454 1455 // If both pointers are pointing into the same object and one of them 1456 // accesses the entire object, then the accesses must overlap in some way. 1457 if (O1 == O2) 1458 if ((V1Size != MemoryLocation::UnknownSize && 1459 isObjectSize(O1, V1Size, DL, TLI)) || 1460 (V2Size != MemoryLocation::UnknownSize && 1461 isObjectSize(O2, V2Size, DL, TLI))) 1462 return AliasCache[Locs] = PartialAlias; 1463 1464 // Recurse back into the best AA results we have, potentially with refined 1465 // memory locations. We have already ensured that BasicAA has a MayAlias 1466 // cache result for these, so any recursion back into BasicAA won't loop. 1467 AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second); 1468 return AliasCache[Locs] = Result; 1469 } 1470 1471 /// Check whether two Values can be considered equivalent. 1472 /// 1473 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether 1474 /// they can not be part of a cycle in the value graph by looking at all 1475 /// visited phi nodes an making sure that the phis cannot reach the value. We 1476 /// have to do this because we are looking through phi nodes (That is we say 1477 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1478 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1479 const Value *V2) { 1480 if (V != V2) 1481 return false; 1482 1483 const Instruction *Inst = dyn_cast<Instruction>(V); 1484 if (!Inst) 1485 return true; 1486 1487 if (VisitedPhiBBs.empty()) 1488 return true; 1489 1490 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1491 return false; 1492 1493 // Make sure that the visited phis cannot reach the Value. This ensures that 1494 // the Values cannot come from different iterations of a potential cycle the 1495 // phi nodes could be involved in. 1496 for (auto *P : VisitedPhiBBs) 1497 if (isPotentiallyReachable(&P->front(), Inst, DT, LI)) 1498 return false; 1499 1500 return true; 1501 } 1502 1503 /// Computes the symbolic difference between two de-composed GEPs. 1504 /// 1505 /// Dest and Src are the variable indices from two decomposed GetElementPtr 1506 /// instructions GEP1 and GEP2 which have common base pointers. 1507 void BasicAAResult::GetIndexDifference( 1508 SmallVectorImpl<VariableGEPIndex> &Dest, 1509 const SmallVectorImpl<VariableGEPIndex> &Src) { 1510 if (Src.empty()) 1511 return; 1512 1513 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1514 const Value *V = Src[i].V; 1515 unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits; 1516 int64_t Scale = Src[i].Scale; 1517 1518 // Find V in Dest. This is N^2, but pointer indices almost never have more 1519 // than a few variable indexes. 1520 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1521 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1522 Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits) 1523 continue; 1524 1525 // If we found it, subtract off Scale V's from the entry in Dest. If it 1526 // goes to zero, remove the entry. 1527 if (Dest[j].Scale != Scale) 1528 Dest[j].Scale -= Scale; 1529 else 1530 Dest.erase(Dest.begin() + j); 1531 Scale = 0; 1532 break; 1533 } 1534 1535 // If we didn't consume this entry, add it to the end of the Dest list. 1536 if (Scale) { 1537 VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale}; 1538 Dest.push_back(Entry); 1539 } 1540 } 1541 } 1542 1543 bool BasicAAResult::constantOffsetHeuristic( 1544 const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size, 1545 uint64_t V2Size, int64_t BaseOffset, AssumptionCache *AC, 1546 DominatorTree *DT) { 1547 if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize || 1548 V2Size == MemoryLocation::UnknownSize) 1549 return false; 1550 1551 const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1]; 1552 1553 if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits || 1554 Var0.Scale != -Var1.Scale) 1555 return false; 1556 1557 unsigned Width = Var1.V->getType()->getIntegerBitWidth(); 1558 1559 // We'll strip off the Extensions of Var0 and Var1 and do another round 1560 // of GetLinearExpression decomposition. In the example above, if Var0 1561 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 1562 1563 APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0), 1564 V1Offset(Width, 0); 1565 bool NSW = true, NUW = true; 1566 unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0; 1567 const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits, 1568 V0SExtBits, DL, 0, AC, DT, NSW, NUW); 1569 NSW = true; 1570 NUW = true; 1571 const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits, 1572 V1SExtBits, DL, 0, AC, DT, NSW, NUW); 1573 1574 if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits || 1575 V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1)) 1576 return false; 1577 1578 // We have a hit - Var0 and Var1 only differ by a constant offset! 1579 1580 // If we've been sext'ed then zext'd the maximum difference between Var0 and 1581 // Var1 is possible to calculate, but we're just interested in the absolute 1582 // minimum difference between the two. The minimum distance may occur due to 1583 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 1584 // the minimum distance between %i and %i + 5 is 3. 1585 APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff; 1586 MinDiff = APIntOps::umin(MinDiff, Wrapped); 1587 uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale); 1588 1589 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 1590 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 1591 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 1592 // V2Size can fit in the MinDiffBytes gap. 1593 return V1Size + std::abs(BaseOffset) <= MinDiffBytes && 1594 V2Size + std::abs(BaseOffset) <= MinDiffBytes; 1595 } 1596 1597 //===----------------------------------------------------------------------===// 1598 // BasicAliasAnalysis Pass 1599 //===----------------------------------------------------------------------===// 1600 1601 char BasicAA::PassID; 1602 1603 BasicAAResult BasicAA::run(Function &F, AnalysisManager<Function> &AM) { 1604 return BasicAAResult(F.getParent()->getDataLayout(), 1605 AM.getResult<TargetLibraryAnalysis>(F), 1606 AM.getResult<AssumptionAnalysis>(F), 1607 &AM.getResult<DominatorTreeAnalysis>(F), 1608 AM.getCachedResult<LoopAnalysis>(F)); 1609 } 1610 1611 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 1612 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1613 } 1614 1615 char BasicAAWrapperPass::ID = 0; 1616 void BasicAAWrapperPass::anchor() {} 1617 1618 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa", 1619 "Basic Alias Analysis (stateless AA impl)", true, true) 1620 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1621 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1622 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1623 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa", 1624 "Basic Alias Analysis (stateless AA impl)", true, true) 1625 1626 FunctionPass *llvm::createBasicAAWrapperPass() { 1627 return new BasicAAWrapperPass(); 1628 } 1629 1630 bool BasicAAWrapperPass::runOnFunction(Function &F) { 1631 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 1632 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 1633 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); 1634 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 1635 1636 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), TLIWP.getTLI(), 1637 ACT.getAssumptionCache(F), &DTWP.getDomTree(), 1638 LIWP ? &LIWP->getLoopInfo() : nullptr)); 1639 1640 return false; 1641 } 1642 1643 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1644 AU.setPreservesAll(); 1645 AU.addRequired<AssumptionCacheTracker>(); 1646 AU.addRequired<DominatorTreeWrapperPass>(); 1647 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1648 } 1649 1650 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { 1651 return BasicAAResult( 1652 F.getParent()->getDataLayout(), 1653 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 1654 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 1655 } 1656