1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the primary stateless implementation of the
11 // Alias Analysis interface that implements identities (two different
12 // globals cannot alias, etc), but does no stateful analysis.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Analysis/BasicAliasAnalysis.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/CFG.h"
21 #include "llvm/Analysis/CaptureTracking.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include <algorithm>
40 
41 #define DEBUG_TYPE "basicaa"
42 
43 using namespace llvm;
44 
45 /// Enable analysis of recursive PHI nodes.
46 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden,
47                                           cl::init(false));
48 /// SearchLimitReached / SearchTimes shows how often the limit of
49 /// to decompose GEPs is reached. It will affect the precision
50 /// of basic alias analysis.
51 STATISTIC(SearchLimitReached, "Number of times the limit to "
52                               "decompose GEPs is reached");
53 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
54 
55 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
56 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
57 /// careful with value equivalence. We use reachability to make sure a value
58 /// cannot be involved in a cycle.
59 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
60 
61 // The max limit of the search depth in DecomposeGEPExpression() and
62 // GetUnderlyingObject(), both functions need to use the same search
63 // depth otherwise the algorithm in aliasGEP will assert.
64 static const unsigned MaxLookupSearchDepth = 6;
65 
66 //===----------------------------------------------------------------------===//
67 // Useful predicates
68 //===----------------------------------------------------------------------===//
69 
70 /// Returns true if the pointer is to a function-local object that never
71 /// escapes from the function.
72 static bool isNonEscapingLocalObject(const Value *V) {
73   // If this is a local allocation, check to see if it escapes.
74   if (isa<AllocaInst>(V) || isNoAliasCall(V))
75     // Set StoreCaptures to True so that we can assume in our callers that the
76     // pointer is not the result of a load instruction. Currently
77     // PointerMayBeCaptured doesn't have any special analysis for the
78     // StoreCaptures=false case; if it did, our callers could be refined to be
79     // more precise.
80     return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
81 
82   // If this is an argument that corresponds to a byval or noalias argument,
83   // then it has not escaped before entering the function.  Check if it escapes
84   // inside the function.
85   if (const Argument *A = dyn_cast<Argument>(V))
86     if (A->hasByValAttr() || A->hasNoAliasAttr())
87       // Note even if the argument is marked nocapture, we still need to check
88       // for copies made inside the function. The nocapture attribute only
89       // specifies that there are no copies made that outlive the function.
90       return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
91 
92   return false;
93 }
94 
95 /// Returns true if the pointer is one which would have been considered an
96 /// escape by isNonEscapingLocalObject.
97 static bool isEscapeSource(const Value *V) {
98   if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
99     return true;
100 
101   // The load case works because isNonEscapingLocalObject considers all
102   // stores to be escapes (it passes true for the StoreCaptures argument
103   // to PointerMayBeCaptured).
104   if (isa<LoadInst>(V))
105     return true;
106 
107   return false;
108 }
109 
110 /// Returns the size of the object specified by V or UnknownSize if unknown.
111 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
112                               const TargetLibraryInfo &TLI,
113                               bool RoundToAlign = false) {
114   uint64_t Size;
115   if (getObjectSize(V, Size, DL, &TLI, RoundToAlign))
116     return Size;
117   return MemoryLocation::UnknownSize;
118 }
119 
120 /// Returns true if we can prove that the object specified by V is smaller than
121 /// Size.
122 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
123                                 const DataLayout &DL,
124                                 const TargetLibraryInfo &TLI) {
125   // Note that the meanings of the "object" are slightly different in the
126   // following contexts:
127   //    c1: llvm::getObjectSize()
128   //    c2: llvm.objectsize() intrinsic
129   //    c3: isObjectSmallerThan()
130   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
131   // refers to the "entire object".
132   //
133   //  Consider this example:
134   //     char *p = (char*)malloc(100)
135   //     char *q = p+80;
136   //
137   //  In the context of c1 and c2, the "object" pointed by q refers to the
138   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
139   //
140   //  However, in the context of c3, the "object" refers to the chunk of memory
141   // being allocated. So, the "object" has 100 bytes, and q points to the middle
142   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
143   // parameter, before the llvm::getObjectSize() is called to get the size of
144   // entire object, we should:
145   //    - either rewind the pointer q to the base-address of the object in
146   //      question (in this case rewind to p), or
147   //    - just give up. It is up to caller to make sure the pointer is pointing
148   //      to the base address the object.
149   //
150   // We go for 2nd option for simplicity.
151   if (!isIdentifiedObject(V))
152     return false;
153 
154   // This function needs to use the aligned object size because we allow
155   // reads a bit past the end given sufficient alignment.
156   uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/ true);
157 
158   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
159 }
160 
161 /// Returns true if we can prove that the object specified by V has size Size.
162 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
163                          const TargetLibraryInfo &TLI) {
164   uint64_t ObjectSize = getObjectSize(V, DL, TLI);
165   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
166 }
167 
168 //===----------------------------------------------------------------------===//
169 // GetElementPtr Instruction Decomposition and Analysis
170 //===----------------------------------------------------------------------===//
171 
172 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
173 /// B are constant integers.
174 ///
175 /// Returns the scale and offset values as APInts and return V as a Value*, and
176 /// return whether we looked through any sign or zero extends.  The incoming
177 /// Value is known to have IntegerType, and it may already be sign or zero
178 /// extended.
179 ///
180 /// Note that this looks through extends, so the high bits may not be
181 /// represented in the result.
182 /*static*/ const Value *BasicAAResult::GetLinearExpression(
183     const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
184     unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
185     AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
186   assert(V->getType()->isIntegerTy() && "Not an integer value");
187 
188   // Limit our recursion depth.
189   if (Depth == 6) {
190     Scale = 1;
191     Offset = 0;
192     return V;
193   }
194 
195   if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
196     // If it's a constant, just convert it to an offset and remove the variable.
197     // If we've been called recursively, the Offset bit width will be greater
198     // than the constant's (the Offset's always as wide as the outermost call),
199     // so we'll zext here and process any extension in the isa<SExtInst> &
200     // isa<ZExtInst> cases below.
201     Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
202     assert(Scale == 0 && "Constant values don't have a scale");
203     return V;
204   }
205 
206   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
207     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
208 
209       // If we've been called recursively, then Offset and Scale will be wider
210       // than the BOp operands. We'll always zext it here as we'll process sign
211       // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
212       APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
213 
214       switch (BOp->getOpcode()) {
215       default:
216         // We don't understand this instruction, so we can't decompose it any
217         // further.
218         Scale = 1;
219         Offset = 0;
220         return V;
221       case Instruction::Or:
222         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
223         // analyze it.
224         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
225                                BOp, DT)) {
226           Scale = 1;
227           Offset = 0;
228           return V;
229         }
230       // FALL THROUGH.
231       case Instruction::Add:
232         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
233                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
234         Offset += RHS;
235         break;
236       case Instruction::Sub:
237         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
238                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
239         Offset -= RHS;
240         break;
241       case Instruction::Mul:
242         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
243                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
244         Offset *= RHS;
245         Scale *= RHS;
246         break;
247       case Instruction::Shl:
248         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
249                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
250         Offset <<= RHS.getLimitedValue();
251         Scale <<= RHS.getLimitedValue();
252         // the semantics of nsw and nuw for left shifts don't match those of
253         // multiplications, so we won't propagate them.
254         NSW = NUW = false;
255         return V;
256       }
257 
258       if (isa<OverflowingBinaryOperator>(BOp)) {
259         NUW &= BOp->hasNoUnsignedWrap();
260         NSW &= BOp->hasNoSignedWrap();
261       }
262       return V;
263     }
264   }
265 
266   // Since GEP indices are sign extended anyway, we don't care about the high
267   // bits of a sign or zero extended value - just scales and offsets.  The
268   // extensions have to be consistent though.
269   if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
270     Value *CastOp = cast<CastInst>(V)->getOperand(0);
271     unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
272     unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
273     unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
274     const Value *Result =
275         GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
276                             Depth + 1, AC, DT, NSW, NUW);
277 
278     // zext(zext(%x)) == zext(%x), and similiarly for sext; we'll handle this
279     // by just incrementing the number of bits we've extended by.
280     unsigned ExtendedBy = NewWidth - SmallWidth;
281 
282     if (isa<SExtInst>(V) && ZExtBits == 0) {
283       // sext(sext(%x, a), b) == sext(%x, a + b)
284 
285       if (NSW) {
286         // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
287         // into sext(%x) + sext(c). We'll sext the Offset ourselves:
288         unsigned OldWidth = Offset.getBitWidth();
289         Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
290       } else {
291         // We may have signed-wrapped, so don't decompose sext(%x + c) into
292         // sext(%x) + sext(c)
293         Scale = 1;
294         Offset = 0;
295         Result = CastOp;
296         ZExtBits = OldZExtBits;
297         SExtBits = OldSExtBits;
298       }
299       SExtBits += ExtendedBy;
300     } else {
301       // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
302 
303       if (!NUW) {
304         // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
305         // zext(%x) + zext(c)
306         Scale = 1;
307         Offset = 0;
308         Result = CastOp;
309         ZExtBits = OldZExtBits;
310         SExtBits = OldSExtBits;
311       }
312       ZExtBits += ExtendedBy;
313     }
314 
315     return Result;
316   }
317 
318   Scale = 1;
319   Offset = 0;
320   return V;
321 }
322 
323 /// To ensure a pointer offset fits in an integer of size PointerSize
324 /// (in bits) when that size is smaller than 64. This is an issue in
325 /// particular for 32b programs with negative indices that rely on two's
326 /// complement wrap-arounds for precise alias information.
327 static int64_t adjustToPointerSize(int64_t Offset, unsigned PointerSize) {
328   assert(PointerSize <= 64 && "Invalid PointerSize!");
329   unsigned ShiftBits = 64 - PointerSize;
330   return (int64_t)((uint64_t)Offset << ShiftBits) >> ShiftBits;
331 }
332 
333 /// If V is a symbolic pointer expression, decompose it into a base pointer
334 /// with a constant offset and a number of scaled symbolic offsets.
335 ///
336 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
337 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
338 /// specified amount, but which may have other unrepresented high bits. As
339 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
340 ///
341 /// When DataLayout is around, this function is capable of analyzing everything
342 /// that GetUnderlyingObject can look through. To be able to do that
343 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search
344 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks
345 /// through pointer casts.
346 /*static*/ const Value *BasicAAResult::DecomposeGEPExpression(
347     const Value *V, int64_t &BaseOffs,
348     SmallVectorImpl<VariableGEPIndex> &VarIndices, bool &MaxLookupReached,
349     const DataLayout &DL, AssumptionCache *AC, DominatorTree *DT) {
350   // Limit recursion depth to limit compile time in crazy cases.
351   unsigned MaxLookup = MaxLookupSearchDepth;
352   MaxLookupReached = false;
353   SearchTimes++;
354 
355   BaseOffs = 0;
356   do {
357     // See if this is a bitcast or GEP.
358     const Operator *Op = dyn_cast<Operator>(V);
359     if (!Op) {
360       // The only non-operator case we can handle are GlobalAliases.
361       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
362         if (!GA->isInterposable()) {
363           V = GA->getAliasee();
364           continue;
365         }
366       }
367       return V;
368     }
369 
370     if (Op->getOpcode() == Instruction::BitCast ||
371         Op->getOpcode() == Instruction::AddrSpaceCast) {
372       V = Op->getOperand(0);
373       continue;
374     }
375 
376     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
377     if (!GEPOp) {
378       // If it's not a GEP, hand it off to SimplifyInstruction to see if it
379       // can come up with something. This matches what GetUnderlyingObject does.
380       if (const Instruction *I = dyn_cast<Instruction>(V))
381         // TODO: Get a DominatorTree and AssumptionCache and use them here
382         // (these are both now available in this function, but this should be
383         // updated when GetUnderlyingObject is updated). TLI should be
384         // provided also.
385         if (const Value *Simplified =
386                 SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
387           V = Simplified;
388           continue;
389         }
390 
391       return V;
392     }
393 
394     // Don't attempt to analyze GEPs over unsized objects.
395     if (!GEPOp->getSourceElementType()->isSized())
396       return V;
397 
398     unsigned AS = GEPOp->getPointerAddressSpace();
399     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
400     gep_type_iterator GTI = gep_type_begin(GEPOp);
401     unsigned PointerSize = DL.getPointerSizeInBits(AS);
402     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
403          I != E; ++I) {
404       const Value *Index = *I;
405       // Compute the (potentially symbolic) offset in bytes for this index.
406       if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
407         // For a struct, add the member offset.
408         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
409         if (FieldNo == 0)
410           continue;
411 
412         BaseOffs += DL.getStructLayout(STy)->getElementOffset(FieldNo);
413         continue;
414       }
415 
416       // For an array/pointer, add the element offset, explicitly scaled.
417       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
418         if (CIdx->isZero())
419           continue;
420         BaseOffs += DL.getTypeAllocSize(*GTI) * CIdx->getSExtValue();
421         continue;
422       }
423 
424       uint64_t Scale = DL.getTypeAllocSize(*GTI);
425       unsigned ZExtBits = 0, SExtBits = 0;
426 
427       // If the integer type is smaller than the pointer size, it is implicitly
428       // sign extended to pointer size.
429       unsigned Width = Index->getType()->getIntegerBitWidth();
430       if (PointerSize > Width)
431         SExtBits += PointerSize - Width;
432 
433       // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
434       APInt IndexScale(Width, 0), IndexOffset(Width, 0);
435       bool NSW = true, NUW = true;
436       Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
437                                   SExtBits, DL, 0, AC, DT, NSW, NUW);
438 
439       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
440       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
441       BaseOffs += IndexOffset.getSExtValue() * Scale;
442       Scale *= IndexScale.getSExtValue();
443 
444       // If we already had an occurrence of this index variable, merge this
445       // scale into it.  For example, we want to handle:
446       //   A[x][x] -> x*16 + x*4 -> x*20
447       // This also ensures that 'x' only appears in the index list once.
448       for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
449         if (VarIndices[i].V == Index && VarIndices[i].ZExtBits == ZExtBits &&
450             VarIndices[i].SExtBits == SExtBits) {
451           Scale += VarIndices[i].Scale;
452           VarIndices.erase(VarIndices.begin() + i);
453           break;
454         }
455       }
456 
457       // Make sure that we have a scale that makes sense for this target's
458       // pointer size.
459       Scale = adjustToPointerSize(Scale, PointerSize);
460 
461       if (Scale) {
462         VariableGEPIndex Entry = {Index, ZExtBits, SExtBits,
463                                   static_cast<int64_t>(Scale)};
464         VarIndices.push_back(Entry);
465       }
466     }
467 
468     // Take care of wrap-arounds
469     BaseOffs = adjustToPointerSize(BaseOffs, PointerSize);
470 
471     // Analyze the base pointer next.
472     V = GEPOp->getOperand(0);
473   } while (--MaxLookup);
474 
475   // If the chain of expressions is too deep, just return early.
476   MaxLookupReached = true;
477   SearchLimitReached++;
478   return V;
479 }
480 
481 /// Returns whether the given pointer value points to memory that is local to
482 /// the function, with global constants being considered local to all
483 /// functions.
484 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
485                                            bool OrLocal) {
486   assert(Visited.empty() && "Visited must be cleared after use!");
487 
488   unsigned MaxLookup = 8;
489   SmallVector<const Value *, 16> Worklist;
490   Worklist.push_back(Loc.Ptr);
491   do {
492     const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
493     if (!Visited.insert(V).second) {
494       Visited.clear();
495       return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
496     }
497 
498     // An alloca instruction defines local memory.
499     if (OrLocal && isa<AllocaInst>(V))
500       continue;
501 
502     // A global constant counts as local memory for our purposes.
503     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
504       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
505       // global to be marked constant in some modules and non-constant in
506       // others.  GV may even be a declaration, not a definition.
507       if (!GV->isConstant()) {
508         Visited.clear();
509         return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
510       }
511       continue;
512     }
513 
514     // If both select values point to local memory, then so does the select.
515     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
516       Worklist.push_back(SI->getTrueValue());
517       Worklist.push_back(SI->getFalseValue());
518       continue;
519     }
520 
521     // If all values incoming to a phi node point to local memory, then so does
522     // the phi.
523     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
524       // Don't bother inspecting phi nodes with many operands.
525       if (PN->getNumIncomingValues() > MaxLookup) {
526         Visited.clear();
527         return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
528       }
529       for (Value *IncValue : PN->incoming_values())
530         Worklist.push_back(IncValue);
531       continue;
532     }
533 
534     // Otherwise be conservative.
535     Visited.clear();
536     return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
537 
538   } while (!Worklist.empty() && --MaxLookup);
539 
540   Visited.clear();
541   return Worklist.empty();
542 }
543 
544 /// Returns the behavior when calling the given call site.
545 FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) {
546   if (CS.doesNotAccessMemory())
547     // Can't do better than this.
548     return FMRB_DoesNotAccessMemory;
549 
550   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
551 
552   // If the callsite knows it only reads memory, don't return worse
553   // than that.
554   if (CS.onlyReadsMemory())
555     Min = FMRB_OnlyReadsMemory;
556 
557   if (CS.onlyAccessesArgMemory())
558     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
559 
560   // If CS has operand bundles then aliasing attributes from the function it
561   // calls do not directly apply to the CallSite.  This can be made more
562   // precise in the future.
563   if (!CS.hasOperandBundles())
564     if (const Function *F = CS.getCalledFunction())
565       Min =
566           FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
567 
568   return Min;
569 }
570 
571 /// Returns the behavior when calling the given function. For use when the call
572 /// site is not known.
573 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
574   // If the function declares it doesn't access memory, we can't do better.
575   if (F->doesNotAccessMemory())
576     return FMRB_DoesNotAccessMemory;
577 
578   // While the assume intrinsic is marked as arbitrarily writing so that
579   // proper control dependencies will be maintained, it never aliases any
580   // particular memory location.
581   if (F->getIntrinsicID() == Intrinsic::assume)
582     return FMRB_DoesNotAccessMemory;
583 
584   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
585 
586   // If the function declares it only reads memory, go with that.
587   if (F->onlyReadsMemory())
588     Min = FMRB_OnlyReadsMemory;
589 
590   if (F->onlyAccessesArgMemory())
591     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
592 
593   return Min;
594 }
595 
596 /// Returns true if this is a writeonly (i.e Mod only) parameter.  Currently,
597 /// we don't have a writeonly attribute, so this only knows about builtin
598 /// intrinsics and target library functions.  We could consider adding a
599 /// writeonly attribute in the future and moving all of these facts to either
600 /// Intrinsics.td or InferFunctionAttr.cpp
601 static bool isWriteOnlyParam(ImmutableCallSite CS, unsigned ArgIdx,
602                              const TargetLibraryInfo &TLI) {
603   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()))
604     switch (II->getIntrinsicID()) {
605     default:
606       break;
607     case Intrinsic::memset:
608     case Intrinsic::memcpy:
609     case Intrinsic::memmove:
610       // We don't currently have a writeonly attribute.  All other properties
611       // of these intrinsics are nicely described via attributes in
612       // Intrinsics.td and handled generically.
613       if (ArgIdx == 0)
614         return true;
615     }
616 
617   // We can bound the aliasing properties of memset_pattern16 just as we can
618   // for memcpy/memset.  This is particularly important because the
619   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
620   // whenever possible.  Note that all but the missing writeonly attribute are
621   // handled via InferFunctionAttr.
622   LibFunc::Func F;
623   if (CS.getCalledFunction() && TLI.getLibFunc(*CS.getCalledFunction(), F) &&
624       F == LibFunc::memset_pattern16 && TLI.has(F))
625     if (ArgIdx == 0)
626       return true;
627 
628   // TODO: memset_pattern4, memset_pattern8
629   // TODO: _chk variants
630   // TODO: strcmp, strcpy
631 
632   return false;
633 }
634 
635 ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS,
636                                            unsigned ArgIdx) {
637 
638   // Emulate the missing writeonly attribute by checking for known builtin
639   // intrinsics and target library functions.
640   if (isWriteOnlyParam(CS, ArgIdx, TLI))
641     return MRI_Mod;
642 
643   if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadOnly))
644     return MRI_Ref;
645 
646   if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadNone))
647     return MRI_NoModRef;
648 
649   return AAResultBase::getArgModRefInfo(CS, ArgIdx);
650 }
651 
652 static bool isAssumeIntrinsic(ImmutableCallSite CS) {
653   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
654   return II && II->getIntrinsicID() == Intrinsic::assume;
655 }
656 
657 #ifndef NDEBUG
658 static const Function *getParent(const Value *V) {
659   if (const Instruction *inst = dyn_cast<Instruction>(V))
660     return inst->getParent()->getParent();
661 
662   if (const Argument *arg = dyn_cast<Argument>(V))
663     return arg->getParent();
664 
665   return nullptr;
666 }
667 
668 static bool notDifferentParent(const Value *O1, const Value *O2) {
669 
670   const Function *F1 = getParent(O1);
671   const Function *F2 = getParent(O2);
672 
673   return !F1 || !F2 || F1 == F2;
674 }
675 #endif
676 
677 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
678                                  const MemoryLocation &LocB) {
679   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
680          "BasicAliasAnalysis doesn't support interprocedural queries.");
681 
682   // If we have a directly cached entry for these locations, we have recursed
683   // through this once, so just return the cached results. Notably, when this
684   // happens, we don't clear the cache.
685   auto CacheIt = AliasCache.find(LocPair(LocA, LocB));
686   if (CacheIt != AliasCache.end())
687     return CacheIt->second;
688 
689   AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
690                                  LocB.Size, LocB.AATags);
691   // AliasCache rarely has more than 1 or 2 elements, always use
692   // shrink_and_clear so it quickly returns to the inline capacity of the
693   // SmallDenseMap if it ever grows larger.
694   // FIXME: This should really be shrink_to_inline_capacity_and_clear().
695   AliasCache.shrink_and_clear();
696   VisitedPhiBBs.clear();
697   return Alias;
698 }
699 
700 /// Checks to see if the specified callsite can clobber the specified memory
701 /// object.
702 ///
703 /// Since we only look at local properties of this function, we really can't
704 /// say much about this query.  We do, however, use simple "address taken"
705 /// analysis on local objects.
706 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS,
707                                         const MemoryLocation &Loc) {
708   assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
709          "AliasAnalysis query involving multiple functions!");
710 
711   const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);
712 
713   // If this is a tail call and Loc.Ptr points to a stack location, we know that
714   // the tail call cannot access or modify the local stack.
715   // We cannot exclude byval arguments here; these belong to the caller of
716   // the current function not to the current function, and a tail callee
717   // may reference them.
718   if (isa<AllocaInst>(Object))
719     if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
720       if (CI->isTailCall())
721         return MRI_NoModRef;
722 
723   // If the pointer is to a locally allocated object that does not escape,
724   // then the call can not mod/ref the pointer unless the call takes the pointer
725   // as an argument, and itself doesn't capture it.
726   if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
727       isNonEscapingLocalObject(Object)) {
728     bool PassedAsArg = false;
729     unsigned OperandNo = 0;
730     for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end();
731          CI != CE; ++CI, ++OperandNo) {
732       // Only look at the no-capture or byval pointer arguments.  If this
733       // pointer were passed to arguments that were neither of these, then it
734       // couldn't be no-capture.
735       if (!(*CI)->getType()->isPointerTy() ||
736           (!CS.doesNotCapture(OperandNo) && !CS.isByValArgument(OperandNo)))
737         continue;
738 
739       // If this is a no-capture pointer argument, see if we can tell that it
740       // is impossible to alias the pointer we're checking.  If not, we have to
741       // assume that the call could touch the pointer, even though it doesn't
742       // escape.
743       AliasResult AR =
744           getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object));
745       if (AR) {
746         PassedAsArg = true;
747         break;
748       }
749     }
750 
751     if (!PassedAsArg)
752       return MRI_NoModRef;
753   }
754 
755   // If the CallSite is to malloc or calloc, we can assume that it doesn't
756   // modify any IR visible value.  This is only valid because we assume these
757   // routines do not read values visible in the IR.  TODO: Consider special
758   // casing realloc and strdup routines which access only their arguments as
759   // well.  Or alternatively, replace all of this with inaccessiblememonly once
760   // that's implemented fully.
761   auto *Inst = CS.getInstruction();
762   if (isMallocLikeFn(Inst, &TLI) || isCallocLikeFn(Inst, &TLI)) {
763     // Be conservative if the accessed pointer may alias the allocation -
764     // fallback to the generic handling below.
765     if (getBestAAResults().alias(MemoryLocation(Inst), Loc) == NoAlias)
766       return MRI_NoModRef;
767   }
768 
769   // While the assume intrinsic is marked as arbitrarily writing so that
770   // proper control dependencies will be maintained, it never aliases any
771   // particular memory location.
772   if (isAssumeIntrinsic(CS))
773     return MRI_NoModRef;
774 
775   // The AAResultBase base class has some smarts, lets use them.
776   return AAResultBase::getModRefInfo(CS, Loc);
777 }
778 
779 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1,
780                                         ImmutableCallSite CS2) {
781   // While the assume intrinsic is marked as arbitrarily writing so that
782   // proper control dependencies will be maintained, it never aliases any
783   // particular memory location.
784   if (isAssumeIntrinsic(CS1) || isAssumeIntrinsic(CS2))
785     return MRI_NoModRef;
786 
787   // The AAResultBase base class has some smarts, lets use them.
788   return AAResultBase::getModRefInfo(CS1, CS2);
789 }
790 
791 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
792 /// both having the exact same pointer operand.
793 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
794                                             uint64_t V1Size,
795                                             const GEPOperator *GEP2,
796                                             uint64_t V2Size,
797                                             const DataLayout &DL) {
798 
799   assert(GEP1->getPointerOperand() == GEP2->getPointerOperand() &&
800          "Expected GEPs with the same pointer operand");
801 
802   // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
803   // such that the struct field accesses provably cannot alias.
804   // We also need at least two indices (the pointer, and the struct field).
805   if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
806       GEP1->getNumIndices() < 2)
807     return MayAlias;
808 
809   // If we don't know the size of the accesses through both GEPs, we can't
810   // determine whether the struct fields accessed can't alias.
811   if (V1Size == MemoryLocation::UnknownSize ||
812       V2Size == MemoryLocation::UnknownSize)
813     return MayAlias;
814 
815   ConstantInt *C1 =
816       dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
817   ConstantInt *C2 =
818       dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
819 
820   // If the last (struct) indices are constants and are equal, the other indices
821   // might be also be dynamically equal, so the GEPs can alias.
822   if (C1 && C2 && C1 == C2)
823     return MayAlias;
824 
825   // Find the last-indexed type of the GEP, i.e., the type you'd get if
826   // you stripped the last index.
827   // On the way, look at each indexed type.  If there's something other
828   // than an array, different indices can lead to different final types.
829   SmallVector<Value *, 8> IntermediateIndices;
830 
831   // Insert the first index; we don't need to check the type indexed
832   // through it as it only drops the pointer indirection.
833   assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
834   IntermediateIndices.push_back(GEP1->getOperand(1));
835 
836   // Insert all the remaining indices but the last one.
837   // Also, check that they all index through arrays.
838   for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
839     if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
840             GEP1->getSourceElementType(), IntermediateIndices)))
841       return MayAlias;
842     IntermediateIndices.push_back(GEP1->getOperand(i + 1));
843   }
844 
845   auto *Ty = GetElementPtrInst::getIndexedType(
846     GEP1->getSourceElementType(), IntermediateIndices);
847   StructType *LastIndexedStruct = dyn_cast<StructType>(Ty);
848 
849   if (isa<SequentialType>(Ty)) {
850     // We know that:
851     // - both GEPs begin indexing from the exact same pointer;
852     // - the last indices in both GEPs are constants, indexing into a sequential
853     //   type (array or pointer);
854     // - both GEPs only index through arrays prior to that.
855     //
856     // Because array indices greater than the number of elements are valid in
857     // GEPs, unless we know the intermediate indices are identical between
858     // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
859     // partially overlap. We also need to check that the loaded size matches
860     // the element size, otherwise we could still have overlap.
861     const uint64_t ElementSize =
862         DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType());
863     if (V1Size != ElementSize || V2Size != ElementSize)
864       return MayAlias;
865 
866     for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i)
867       if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1))
868         return MayAlias;
869 
870     // Now we know that the array/pointer that GEP1 indexes into and that
871     // that GEP2 indexes into must either precisely overlap or be disjoint.
872     // Because they cannot partially overlap and because fields in an array
873     // cannot overlap, if we can prove the final indices are different between
874     // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
875 
876     // If the last indices are constants, we've already checked they don't
877     // equal each other so we can exit early.
878     if (C1 && C2)
879       return NoAlias;
880     if (isKnownNonEqual(GEP1->getOperand(GEP1->getNumOperands() - 1),
881                         GEP2->getOperand(GEP2->getNumOperands() - 1),
882                         DL))
883       return NoAlias;
884     return MayAlias;
885   } else if (!LastIndexedStruct || !C1 || !C2) {
886     return MayAlias;
887   }
888 
889   // We know that:
890   // - both GEPs begin indexing from the exact same pointer;
891   // - the last indices in both GEPs are constants, indexing into a struct;
892   // - said indices are different, hence, the pointed-to fields are different;
893   // - both GEPs only index through arrays prior to that.
894   //
895   // This lets us determine that the struct that GEP1 indexes into and the
896   // struct that GEP2 indexes into must either precisely overlap or be
897   // completely disjoint.  Because they cannot partially overlap, indexing into
898   // different non-overlapping fields of the struct will never alias.
899 
900   // Therefore, the only remaining thing needed to show that both GEPs can't
901   // alias is that the fields are not overlapping.
902   const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
903   const uint64_t StructSize = SL->getSizeInBytes();
904   const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
905   const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
906 
907   auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
908                                       uint64_t V2Off, uint64_t V2Size) {
909     return V1Off < V2Off && V1Off + V1Size <= V2Off &&
910            ((V2Off + V2Size <= StructSize) ||
911             (V2Off + V2Size - StructSize <= V1Off));
912   };
913 
914   if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
915       EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
916     return NoAlias;
917 
918   return MayAlias;
919 }
920 
921 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
922 /// another pointer.
923 ///
924 /// We know that V1 is a GEP, but we don't know anything about V2.
925 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for
926 /// V2.
927 AliasResult BasicAAResult::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
928                                     const AAMDNodes &V1AAInfo, const Value *V2,
929                                     uint64_t V2Size, const AAMDNodes &V2AAInfo,
930                                     const Value *UnderlyingV1,
931                                     const Value *UnderlyingV2) {
932   int64_t GEP1BaseOffset;
933   bool GEP1MaxLookupReached;
934   SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
935 
936   // If we have two gep instructions with must-alias or not-alias'ing base
937   // pointers, figure out if the indexes to the GEP tell us anything about the
938   // derived pointer.
939   if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
940     // Do the base pointers alias?
941     AliasResult BaseAlias =
942         aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(),
943                    UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes());
944 
945     // Check for geps of non-aliasing underlying pointers where the offsets are
946     // identical.
947     if ((BaseAlias == MayAlias) && V1Size == V2Size) {
948       // Do the base pointers alias assuming type and size.
949       AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo,
950                                                 UnderlyingV2, V2Size, V2AAInfo);
951       if (PreciseBaseAlias == NoAlias) {
952         // See if the computed offset from the common pointer tells us about the
953         // relation of the resulting pointer.
954         int64_t GEP2BaseOffset;
955         bool GEP2MaxLookupReached;
956         SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
957         const Value *GEP2BasePtr =
958             DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
959                                    GEP2MaxLookupReached, DL, &AC, DT);
960         const Value *GEP1BasePtr =
961             DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
962                                    GEP1MaxLookupReached, DL, &AC, DT);
963         // DecomposeGEPExpression and GetUnderlyingObject should return the
964         // same result except when DecomposeGEPExpression has no DataLayout.
965         // FIXME: They always have a DataLayout, so this should become an
966         // assert.
967         if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
968           return MayAlias;
969         }
970         // If the max search depth is reached the result is undefined
971         if (GEP2MaxLookupReached || GEP1MaxLookupReached)
972           return MayAlias;
973 
974         // Same offsets.
975         if (GEP1BaseOffset == GEP2BaseOffset &&
976             GEP1VariableIndices == GEP2VariableIndices)
977           return NoAlias;
978         GEP1VariableIndices.clear();
979       }
980     }
981 
982     // If we get a No or May, then return it immediately, no amount of analysis
983     // will improve this situation.
984     if (BaseAlias != MustAlias)
985       return BaseAlias;
986 
987     // Otherwise, we have a MustAlias.  Since the base pointers alias each other
988     // exactly, see if the computed offset from the common pointer tells us
989     // about the relation of the resulting pointer.
990     const Value *GEP1BasePtr =
991         DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
992                                GEP1MaxLookupReached, DL, &AC, DT);
993 
994     int64_t GEP2BaseOffset;
995     bool GEP2MaxLookupReached;
996     SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
997     const Value *GEP2BasePtr =
998         DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
999                                GEP2MaxLookupReached, DL, &AC, DT);
1000 
1001     // DecomposeGEPExpression and GetUnderlyingObject should return the
1002     // same result except when DecomposeGEPExpression has no DataLayout.
1003     // FIXME: They always have a DataLayout, so this should become an assert.
1004     if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
1005       return MayAlias;
1006     }
1007 
1008     // If we know the two GEPs are based off of the exact same pointer (and not
1009     // just the same underlying object), see if that tells us anything about
1010     // the resulting pointers.
1011     if (GEP1->getPointerOperand() == GEP2->getPointerOperand()) {
1012       AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL);
1013       // If we couldn't find anything interesting, don't abandon just yet.
1014       if (R != MayAlias)
1015         return R;
1016     }
1017 
1018     // If the max search depth is reached, the result is undefined
1019     if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1020       return MayAlias;
1021 
1022     // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1023     // symbolic difference.
1024     GEP1BaseOffset -= GEP2BaseOffset;
1025     GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);
1026 
1027   } else {
1028     // Check to see if these two pointers are related by the getelementptr
1029     // instruction.  If one pointer is a GEP with a non-zero index of the other
1030     // pointer, we know they cannot alias.
1031 
1032     // If both accesses are unknown size, we can't do anything useful here.
1033     if (V1Size == MemoryLocation::UnknownSize &&
1034         V2Size == MemoryLocation::UnknownSize)
1035       return MayAlias;
1036 
1037     AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize,
1038                                AAMDNodes(), V2, V2Size, V2AAInfo);
1039     if (R != MustAlias)
1040       // If V2 may alias GEP base pointer, conservatively returns MayAlias.
1041       // If V2 is known not to alias GEP base pointer, then the two values
1042       // cannot alias per GEP semantics: "A pointer value formed from a
1043       // getelementptr instruction is associated with the addresses associated
1044       // with the first operand of the getelementptr".
1045       return R;
1046 
1047     const Value *GEP1BasePtr =
1048         DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
1049                                GEP1MaxLookupReached, DL, &AC, DT);
1050 
1051     // DecomposeGEPExpression and GetUnderlyingObject should return the
1052     // same result except when DecomposeGEPExpression has no DataLayout.
1053     // FIXME: They always have a DataLayout, so this should become an assert.
1054     if (GEP1BasePtr != UnderlyingV1) {
1055       return MayAlias;
1056     }
1057     // If the max search depth is reached the result is undefined
1058     if (GEP1MaxLookupReached)
1059       return MayAlias;
1060   }
1061 
1062   // In the two GEP Case, if there is no difference in the offsets of the
1063   // computed pointers, the resultant pointers are a must alias.  This
1064   // happens when we have two lexically identical GEP's (for example).
1065   //
1066   // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
1067   // must aliases the GEP, the end result is a must alias also.
1068   if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
1069     return MustAlias;
1070 
1071   // If there is a constant difference between the pointers, but the difference
1072   // is less than the size of the associated memory object, then we know
1073   // that the objects are partially overlapping.  If the difference is
1074   // greater, we know they do not overlap.
1075   if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) {
1076     if (GEP1BaseOffset >= 0) {
1077       if (V2Size != MemoryLocation::UnknownSize) {
1078         if ((uint64_t)GEP1BaseOffset < V2Size)
1079           return PartialAlias;
1080         return NoAlias;
1081       }
1082     } else {
1083       // We have the situation where:
1084       // +                +
1085       // | BaseOffset     |
1086       // ---------------->|
1087       // |-->V1Size       |-------> V2Size
1088       // GEP1             V2
1089       // We need to know that V2Size is not unknown, otherwise we might have
1090       // stripped a gep with negative index ('gep <ptr>, -1, ...).
1091       if (V1Size != MemoryLocation::UnknownSize &&
1092           V2Size != MemoryLocation::UnknownSize) {
1093         if (-(uint64_t)GEP1BaseOffset < V1Size)
1094           return PartialAlias;
1095         return NoAlias;
1096       }
1097     }
1098   }
1099 
1100   if (!GEP1VariableIndices.empty()) {
1101     uint64_t Modulo = 0;
1102     bool AllPositive = true;
1103     for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) {
1104 
1105       // Try to distinguish something like &A[i][1] against &A[42][0].
1106       // Grab the least significant bit set in any of the scales. We
1107       // don't need std::abs here (even if the scale's negative) as we'll
1108       // be ^'ing Modulo with itself later.
1109       Modulo |= (uint64_t)GEP1VariableIndices[i].Scale;
1110 
1111       if (AllPositive) {
1112         // If the Value could change between cycles, then any reasoning about
1113         // the Value this cycle may not hold in the next cycle. We'll just
1114         // give up if we can't determine conditions that hold for every cycle:
1115         const Value *V = GEP1VariableIndices[i].V;
1116 
1117         bool SignKnownZero, SignKnownOne;
1118         ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, DL,
1119                        0, &AC, nullptr, DT);
1120 
1121         // Zero-extension widens the variable, and so forces the sign
1122         // bit to zero.
1123         bool IsZExt = GEP1VariableIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
1124         SignKnownZero |= IsZExt;
1125         SignKnownOne &= !IsZExt;
1126 
1127         // If the variable begins with a zero then we know it's
1128         // positive, regardless of whether the value is signed or
1129         // unsigned.
1130         int64_t Scale = GEP1VariableIndices[i].Scale;
1131         AllPositive =
1132             (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0);
1133       }
1134     }
1135 
1136     Modulo = Modulo ^ (Modulo & (Modulo - 1));
1137 
1138     // We can compute the difference between the two addresses
1139     // mod Modulo. Check whether that difference guarantees that the
1140     // two locations do not alias.
1141     uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
1142     if (V1Size != MemoryLocation::UnknownSize &&
1143         V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size &&
1144         V1Size <= Modulo - ModOffset)
1145       return NoAlias;
1146 
1147     // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
1148     // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
1149     // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
1150     if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset)
1151       return NoAlias;
1152 
1153     if (constantOffsetHeuristic(GEP1VariableIndices, V1Size, V2Size,
1154                                 GEP1BaseOffset, &AC, DT))
1155       return NoAlias;
1156   }
1157 
1158   // Statically, we can see that the base objects are the same, but the
1159   // pointers have dynamic offsets which we can't resolve. And none of our
1160   // little tricks above worked.
1161   //
1162   // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
1163   // practical effect of this is protecting TBAA in the case of dynamic
1164   // indices into arrays of unions or malloc'd memory.
1165   return PartialAlias;
1166 }
1167 
1168 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1169   // If the results agree, take it.
1170   if (A == B)
1171     return A;
1172   // A mix of PartialAlias and MustAlias is PartialAlias.
1173   if ((A == PartialAlias && B == MustAlias) ||
1174       (B == PartialAlias && A == MustAlias))
1175     return PartialAlias;
1176   // Otherwise, we don't know anything.
1177   return MayAlias;
1178 }
1179 
1180 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1181 /// against another.
1182 AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, uint64_t SISize,
1183                                        const AAMDNodes &SIAAInfo,
1184                                        const Value *V2, uint64_t V2Size,
1185                                        const AAMDNodes &V2AAInfo) {
1186   // If the values are Selects with the same condition, we can do a more precise
1187   // check: just check for aliases between the values on corresponding arms.
1188   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1189     if (SI->getCondition() == SI2->getCondition()) {
1190       AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo,
1191                                      SI2->getTrueValue(), V2Size, V2AAInfo);
1192       if (Alias == MayAlias)
1193         return MayAlias;
1194       AliasResult ThisAlias =
1195           aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
1196                      SI2->getFalseValue(), V2Size, V2AAInfo);
1197       return MergeAliasResults(ThisAlias, Alias);
1198     }
1199 
1200   // If both arms of the Select node NoAlias or MustAlias V2, then returns
1201   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1202   AliasResult Alias =
1203       aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), SISize, SIAAInfo);
1204   if (Alias == MayAlias)
1205     return MayAlias;
1206 
1207   AliasResult ThisAlias =
1208       aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo);
1209   return MergeAliasResults(ThisAlias, Alias);
1210 }
1211 
1212 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1213 /// another.
1214 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, uint64_t PNSize,
1215                                     const AAMDNodes &PNAAInfo, const Value *V2,
1216                                     uint64_t V2Size,
1217                                     const AAMDNodes &V2AAInfo) {
1218   // Track phi nodes we have visited. We use this information when we determine
1219   // value equivalence.
1220   VisitedPhiBBs.insert(PN->getParent());
1221 
1222   // If the values are PHIs in the same block, we can do a more precise
1223   // as well as efficient check: just check for aliases between the values
1224   // on corresponding edges.
1225   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1226     if (PN2->getParent() == PN->getParent()) {
1227       LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
1228                    MemoryLocation(V2, V2Size, V2AAInfo));
1229       if (PN > V2)
1230         std::swap(Locs.first, Locs.second);
1231       // Analyse the PHIs' inputs under the assumption that the PHIs are
1232       // NoAlias.
1233       // If the PHIs are May/MustAlias there must be (recursively) an input
1234       // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1235       // there must be an operation on the PHIs within the PHIs' value cycle
1236       // that causes a MayAlias.
1237       // Pretend the phis do not alias.
1238       AliasResult Alias = NoAlias;
1239       assert(AliasCache.count(Locs) &&
1240              "There must exist an entry for the phi node");
1241       AliasResult OrigAliasResult = AliasCache[Locs];
1242       AliasCache[Locs] = NoAlias;
1243 
1244       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1245         AliasResult ThisAlias =
1246             aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
1247                        PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1248                        V2Size, V2AAInfo);
1249         Alias = MergeAliasResults(ThisAlias, Alias);
1250         if (Alias == MayAlias)
1251           break;
1252       }
1253 
1254       // Reset if speculation failed.
1255       if (Alias != NoAlias)
1256         AliasCache[Locs] = OrigAliasResult;
1257 
1258       return Alias;
1259     }
1260 
1261   SmallPtrSet<Value *, 4> UniqueSrc;
1262   SmallVector<Value *, 4> V1Srcs;
1263   bool isRecursive = false;
1264   for (Value *PV1 : PN->incoming_values()) {
1265     if (isa<PHINode>(PV1))
1266       // If any of the source itself is a PHI, return MayAlias conservatively
1267       // to avoid compile time explosion. The worst possible case is if both
1268       // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1269       // and 'n' are the number of PHI sources.
1270       return MayAlias;
1271 
1272     if (EnableRecPhiAnalysis)
1273       if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
1274         // Check whether the incoming value is a GEP that advances the pointer
1275         // result of this PHI node (e.g. in a loop). If this is the case, we
1276         // would recurse and always get a MayAlias. Handle this case specially
1277         // below.
1278         if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
1279             isa<ConstantInt>(PV1GEP->idx_begin())) {
1280           isRecursive = true;
1281           continue;
1282         }
1283       }
1284 
1285     if (UniqueSrc.insert(PV1).second)
1286       V1Srcs.push_back(PV1);
1287   }
1288 
1289   // If this PHI node is recursive, set the size of the accessed memory to
1290   // unknown to represent all the possible values the GEP could advance the
1291   // pointer to.
1292   if (isRecursive)
1293     PNSize = MemoryLocation::UnknownSize;
1294 
1295   AliasResult Alias =
1296       aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize, PNAAInfo);
1297 
1298   // Early exit if the check of the first PHI source against V2 is MayAlias.
1299   // Other results are not possible.
1300   if (Alias == MayAlias)
1301     return MayAlias;
1302 
1303   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1304   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1305   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1306     Value *V = V1Srcs[i];
1307 
1308     AliasResult ThisAlias =
1309         aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo);
1310     Alias = MergeAliasResults(ThisAlias, Alias);
1311     if (Alias == MayAlias)
1312       break;
1313   }
1314 
1315   return Alias;
1316 }
1317 
1318 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1319 /// array references.
1320 AliasResult BasicAAResult::aliasCheck(const Value *V1, uint64_t V1Size,
1321                                       AAMDNodes V1AAInfo, const Value *V2,
1322                                       uint64_t V2Size, AAMDNodes V2AAInfo) {
1323   // If either of the memory references is empty, it doesn't matter what the
1324   // pointer values are.
1325   if (V1Size == 0 || V2Size == 0)
1326     return NoAlias;
1327 
1328   // Strip off any casts if they exist.
1329   V1 = V1->stripPointerCasts();
1330   V2 = V2->stripPointerCasts();
1331 
1332   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1333   // value for undef that aliases nothing in the program.
1334   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1335     return NoAlias;
1336 
1337   // Are we checking for alias of the same value?
1338   // Because we look 'through' phi nodes, we could look at "Value" pointers from
1339   // different iterations. We must therefore make sure that this is not the
1340   // case. The function isValueEqualInPotentialCycles ensures that this cannot
1341   // happen by looking at the visited phi nodes and making sure they cannot
1342   // reach the value.
1343   if (isValueEqualInPotentialCycles(V1, V2))
1344     return MustAlias;
1345 
1346   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1347     return NoAlias; // Scalars cannot alias each other
1348 
1349   // Figure out what objects these things are pointing to if we can.
1350   const Value *O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
1351   const Value *O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);
1352 
1353   // Null values in the default address space don't point to any object, so they
1354   // don't alias any other pointer.
1355   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1356     if (CPN->getType()->getAddressSpace() == 0)
1357       return NoAlias;
1358   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1359     if (CPN->getType()->getAddressSpace() == 0)
1360       return NoAlias;
1361 
1362   if (O1 != O2) {
1363     // If V1/V2 point to two different objects, we know that we have no alias.
1364     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1365       return NoAlias;
1366 
1367     // Constant pointers can't alias with non-const isIdentifiedObject objects.
1368     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1369         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1370       return NoAlias;
1371 
1372     // Function arguments can't alias with things that are known to be
1373     // unambigously identified at the function level.
1374     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1375         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1376       return NoAlias;
1377 
1378     // Most objects can't alias null.
1379     if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
1380         (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
1381       return NoAlias;
1382 
1383     // If one pointer is the result of a call/invoke or load and the other is a
1384     // non-escaping local object within the same function, then we know the
1385     // object couldn't escape to a point where the call could return it.
1386     //
1387     // Note that if the pointers are in different functions, there are a
1388     // variety of complications. A call with a nocapture argument may still
1389     // temporary store the nocapture argument's value in a temporary memory
1390     // location if that memory location doesn't escape. Or it may pass a
1391     // nocapture value to other functions as long as they don't capture it.
1392     if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
1393       return NoAlias;
1394     if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
1395       return NoAlias;
1396   }
1397 
1398   // If the size of one access is larger than the entire object on the other
1399   // side, then we know such behavior is undefined and can assume no alias.
1400   if ((V1Size != MemoryLocation::UnknownSize &&
1401        isObjectSmallerThan(O2, V1Size, DL, TLI)) ||
1402       (V2Size != MemoryLocation::UnknownSize &&
1403        isObjectSmallerThan(O1, V2Size, DL, TLI)))
1404     return NoAlias;
1405 
1406   // Check the cache before climbing up use-def chains. This also terminates
1407   // otherwise infinitely recursive queries.
1408   LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
1409                MemoryLocation(V2, V2Size, V2AAInfo));
1410   if (V1 > V2)
1411     std::swap(Locs.first, Locs.second);
1412   std::pair<AliasCacheTy::iterator, bool> Pair =
1413       AliasCache.insert(std::make_pair(Locs, MayAlias));
1414   if (!Pair.second)
1415     return Pair.first->second;
1416 
1417   // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1418   // GEP can't simplify, we don't even look at the PHI cases.
1419   if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1420     std::swap(V1, V2);
1421     std::swap(V1Size, V2Size);
1422     std::swap(O1, O2);
1423     std::swap(V1AAInfo, V2AAInfo);
1424   }
1425   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1426     AliasResult Result =
1427         aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2);
1428     if (Result != MayAlias)
1429       return AliasCache[Locs] = Result;
1430   }
1431 
1432   if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1433     std::swap(V1, V2);
1434     std::swap(V1Size, V2Size);
1435     std::swap(V1AAInfo, V2AAInfo);
1436   }
1437   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1438     AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo);
1439     if (Result != MayAlias)
1440       return AliasCache[Locs] = Result;
1441   }
1442 
1443   if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1444     std::swap(V1, V2);
1445     std::swap(V1Size, V2Size);
1446     std::swap(V1AAInfo, V2AAInfo);
1447   }
1448   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1449     AliasResult Result =
1450         aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo);
1451     if (Result != MayAlias)
1452       return AliasCache[Locs] = Result;
1453   }
1454 
1455   // If both pointers are pointing into the same object and one of them
1456   // accesses the entire object, then the accesses must overlap in some way.
1457   if (O1 == O2)
1458     if ((V1Size != MemoryLocation::UnknownSize &&
1459          isObjectSize(O1, V1Size, DL, TLI)) ||
1460         (V2Size != MemoryLocation::UnknownSize &&
1461          isObjectSize(O2, V2Size, DL, TLI)))
1462       return AliasCache[Locs] = PartialAlias;
1463 
1464   // Recurse back into the best AA results we have, potentially with refined
1465   // memory locations. We have already ensured that BasicAA has a MayAlias
1466   // cache result for these, so any recursion back into BasicAA won't loop.
1467   AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second);
1468   return AliasCache[Locs] = Result;
1469 }
1470 
1471 /// Check whether two Values can be considered equivalent.
1472 ///
1473 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1474 /// they can not be part of a cycle in the value graph by looking at all
1475 /// visited phi nodes an making sure that the phis cannot reach the value. We
1476 /// have to do this because we are looking through phi nodes (That is we say
1477 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1478 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1479                                                   const Value *V2) {
1480   if (V != V2)
1481     return false;
1482 
1483   const Instruction *Inst = dyn_cast<Instruction>(V);
1484   if (!Inst)
1485     return true;
1486 
1487   if (VisitedPhiBBs.empty())
1488     return true;
1489 
1490   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1491     return false;
1492 
1493   // Make sure that the visited phis cannot reach the Value. This ensures that
1494   // the Values cannot come from different iterations of a potential cycle the
1495   // phi nodes could be involved in.
1496   for (auto *P : VisitedPhiBBs)
1497     if (isPotentiallyReachable(&P->front(), Inst, DT, LI))
1498       return false;
1499 
1500   return true;
1501 }
1502 
1503 /// Computes the symbolic difference between two de-composed GEPs.
1504 ///
1505 /// Dest and Src are the variable indices from two decomposed GetElementPtr
1506 /// instructions GEP1 and GEP2 which have common base pointers.
1507 void BasicAAResult::GetIndexDifference(
1508     SmallVectorImpl<VariableGEPIndex> &Dest,
1509     const SmallVectorImpl<VariableGEPIndex> &Src) {
1510   if (Src.empty())
1511     return;
1512 
1513   for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1514     const Value *V = Src[i].V;
1515     unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
1516     int64_t Scale = Src[i].Scale;
1517 
1518     // Find V in Dest.  This is N^2, but pointer indices almost never have more
1519     // than a few variable indexes.
1520     for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1521       if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1522           Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
1523         continue;
1524 
1525       // If we found it, subtract off Scale V's from the entry in Dest.  If it
1526       // goes to zero, remove the entry.
1527       if (Dest[j].Scale != Scale)
1528         Dest[j].Scale -= Scale;
1529       else
1530         Dest.erase(Dest.begin() + j);
1531       Scale = 0;
1532       break;
1533     }
1534 
1535     // If we didn't consume this entry, add it to the end of the Dest list.
1536     if (Scale) {
1537       VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale};
1538       Dest.push_back(Entry);
1539     }
1540   }
1541 }
1542 
1543 bool BasicAAResult::constantOffsetHeuristic(
1544     const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size,
1545     uint64_t V2Size, int64_t BaseOffset, AssumptionCache *AC,
1546     DominatorTree *DT) {
1547   if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize ||
1548       V2Size == MemoryLocation::UnknownSize)
1549     return false;
1550 
1551   const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
1552 
1553   if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
1554       Var0.Scale != -Var1.Scale)
1555     return false;
1556 
1557   unsigned Width = Var1.V->getType()->getIntegerBitWidth();
1558 
1559   // We'll strip off the Extensions of Var0 and Var1 and do another round
1560   // of GetLinearExpression decomposition. In the example above, if Var0
1561   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1562 
1563   APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
1564       V1Offset(Width, 0);
1565   bool NSW = true, NUW = true;
1566   unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
1567   const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
1568                                         V0SExtBits, DL, 0, AC, DT, NSW, NUW);
1569   NSW = true;
1570   NUW = true;
1571   const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
1572                                         V1SExtBits, DL, 0, AC, DT, NSW, NUW);
1573 
1574   if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
1575       V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
1576     return false;
1577 
1578   // We have a hit - Var0 and Var1 only differ by a constant offset!
1579 
1580   // If we've been sext'ed then zext'd the maximum difference between Var0 and
1581   // Var1 is possible to calculate, but we're just interested in the absolute
1582   // minimum difference between the two. The minimum distance may occur due to
1583   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1584   // the minimum distance between %i and %i + 5 is 3.
1585   APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
1586   MinDiff = APIntOps::umin(MinDiff, Wrapped);
1587   uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale);
1588 
1589   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
1590   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
1591   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
1592   // V2Size can fit in the MinDiffBytes gap.
1593   return V1Size + std::abs(BaseOffset) <= MinDiffBytes &&
1594          V2Size + std::abs(BaseOffset) <= MinDiffBytes;
1595 }
1596 
1597 //===----------------------------------------------------------------------===//
1598 // BasicAliasAnalysis Pass
1599 //===----------------------------------------------------------------------===//
1600 
1601 char BasicAA::PassID;
1602 
1603 BasicAAResult BasicAA::run(Function &F, AnalysisManager<Function> &AM) {
1604   return BasicAAResult(F.getParent()->getDataLayout(),
1605                        AM.getResult<TargetLibraryAnalysis>(F),
1606                        AM.getResult<AssumptionAnalysis>(F),
1607                        &AM.getResult<DominatorTreeAnalysis>(F),
1608                        AM.getCachedResult<LoopAnalysis>(F));
1609 }
1610 
1611 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
1612     initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
1613 }
1614 
1615 char BasicAAWrapperPass::ID = 0;
1616 void BasicAAWrapperPass::anchor() {}
1617 
1618 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa",
1619                       "Basic Alias Analysis (stateless AA impl)", true, true)
1620 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1621 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1622 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1623 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa",
1624                     "Basic Alias Analysis (stateless AA impl)", true, true)
1625 
1626 FunctionPass *llvm::createBasicAAWrapperPass() {
1627   return new BasicAAWrapperPass();
1628 }
1629 
1630 bool BasicAAWrapperPass::runOnFunction(Function &F) {
1631   auto &ACT = getAnalysis<AssumptionCacheTracker>();
1632   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
1633   auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
1634   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
1635 
1636   Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), TLIWP.getTLI(),
1637                                  ACT.getAssumptionCache(F), &DTWP.getDomTree(),
1638                                  LIWP ? &LIWP->getLoopInfo() : nullptr));
1639 
1640   return false;
1641 }
1642 
1643 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1644   AU.setPreservesAll();
1645   AU.addRequired<AssumptionCacheTracker>();
1646   AU.addRequired<DominatorTreeWrapperPass>();
1647   AU.addRequired<TargetLibraryInfoWrapperPass>();
1648 }
1649 
1650 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
1651   return BasicAAResult(
1652       F.getParent()->getDataLayout(),
1653       P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
1654       P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
1655 }
1656