1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the primary stateless implementation of the
10 // Alias Analysis interface that implements identities (two different
11 // globals cannot alias, etc), but does no stateful analysis.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/BasicAliasAnalysis.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/Analysis/CaptureTracking.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/PhiValues.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GetElementPtrTypeIterator.h"
40 #include "llvm/IR/GlobalAlias.h"
41 #include "llvm/IR/GlobalVariable.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/Operator.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/KnownBits.h"
57 #include <cassert>
58 #include <cstdint>
59 #include <cstdlib>
60 #include <utility>
61 
62 #define DEBUG_TYPE "basicaa"
63 
64 using namespace llvm;
65 
66 /// Enable analysis of recursive PHI nodes.
67 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden,
68                                           cl::init(false));
69 
70 /// By default, even on 32-bit architectures we use 64-bit integers for
71 /// calculations. This will allow us to more-aggressively decompose indexing
72 /// expressions calculated using i64 values (e.g., long long in C) which is
73 /// common enough to worry about.
74 static cl::opt<bool> ForceAtLeast64Bits("basicaa-force-at-least-64b",
75                                         cl::Hidden, cl::init(true));
76 static cl::opt<bool> DoubleCalcBits("basicaa-double-calc-bits",
77                                     cl::Hidden, cl::init(false));
78 
79 /// SearchLimitReached / SearchTimes shows how often the limit of
80 /// to decompose GEPs is reached. It will affect the precision
81 /// of basic alias analysis.
82 STATISTIC(SearchLimitReached, "Number of times the limit to "
83                               "decompose GEPs is reached");
84 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
85 
86 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
87 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
88 /// careful with value equivalence. We use reachability to make sure a value
89 /// cannot be involved in a cycle.
90 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
91 
92 // The max limit of the search depth in DecomposeGEPExpression() and
93 // GetUnderlyingObject(), both functions need to use the same search
94 // depth otherwise the algorithm in aliasGEP will assert.
95 static const unsigned MaxLookupSearchDepth = 6;
96 
97 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
98                                FunctionAnalysisManager::Invalidator &Inv) {
99   // We don't care if this analysis itself is preserved, it has no state. But
100   // we need to check that the analyses it depends on have been. Note that we
101   // may be created without handles to some analyses and in that case don't
102   // depend on them.
103   if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
104       (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) ||
105       (LI && Inv.invalidate<LoopAnalysis>(Fn, PA)) ||
106       (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA)))
107     return true;
108 
109   // Otherwise this analysis result remains valid.
110   return false;
111 }
112 
113 //===----------------------------------------------------------------------===//
114 // Useful predicates
115 //===----------------------------------------------------------------------===//
116 
117 /// Returns true if the pointer is to a function-local object that never
118 /// escapes from the function.
119 static bool isNonEscapingLocalObject(
120     const Value *V,
121     SmallDenseMap<const Value *, bool, 8> *IsCapturedCache = nullptr) {
122   SmallDenseMap<const Value *, bool, 8>::iterator CacheIt;
123   if (IsCapturedCache) {
124     bool Inserted;
125     std::tie(CacheIt, Inserted) = IsCapturedCache->insert({V, false});
126     if (!Inserted)
127       // Found cached result, return it!
128       return CacheIt->second;
129   }
130 
131   // If this is a local allocation, check to see if it escapes.
132   if (isa<AllocaInst>(V) || isNoAliasCall(V)) {
133     // Set StoreCaptures to True so that we can assume in our callers that the
134     // pointer is not the result of a load instruction. Currently
135     // PointerMayBeCaptured doesn't have any special analysis for the
136     // StoreCaptures=false case; if it did, our callers could be refined to be
137     // more precise.
138     auto Ret = !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
139     if (IsCapturedCache)
140       CacheIt->second = Ret;
141     return Ret;
142   }
143 
144   // If this is an argument that corresponds to a byval or noalias argument,
145   // then it has not escaped before entering the function.  Check if it escapes
146   // inside the function.
147   if (const Argument *A = dyn_cast<Argument>(V))
148     if (A->hasByValAttr() || A->hasNoAliasAttr()) {
149       // Note even if the argument is marked nocapture, we still need to check
150       // for copies made inside the function. The nocapture attribute only
151       // specifies that there are no copies made that outlive the function.
152       auto Ret = !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
153       if (IsCapturedCache)
154         CacheIt->second = Ret;
155       return Ret;
156     }
157 
158   return false;
159 }
160 
161 /// Returns true if the pointer is one which would have been considered an
162 /// escape by isNonEscapingLocalObject.
163 static bool isEscapeSource(const Value *V) {
164   if (isa<CallBase>(V))
165     return true;
166 
167   if (isa<Argument>(V))
168     return true;
169 
170   // The load case works because isNonEscapingLocalObject considers all
171   // stores to be escapes (it passes true for the StoreCaptures argument
172   // to PointerMayBeCaptured).
173   if (isa<LoadInst>(V))
174     return true;
175 
176   return false;
177 }
178 
179 /// Returns the size of the object specified by V or UnknownSize if unknown.
180 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
181                               const TargetLibraryInfo &TLI,
182                               bool NullIsValidLoc,
183                               bool RoundToAlign = false) {
184   uint64_t Size;
185   ObjectSizeOpts Opts;
186   Opts.RoundToAlign = RoundToAlign;
187   Opts.NullIsUnknownSize = NullIsValidLoc;
188   if (getObjectSize(V, Size, DL, &TLI, Opts))
189     return Size;
190   return MemoryLocation::UnknownSize;
191 }
192 
193 /// Returns true if we can prove that the object specified by V is smaller than
194 /// Size.
195 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
196                                 const DataLayout &DL,
197                                 const TargetLibraryInfo &TLI,
198                                 bool NullIsValidLoc) {
199   // Note that the meanings of the "object" are slightly different in the
200   // following contexts:
201   //    c1: llvm::getObjectSize()
202   //    c2: llvm.objectsize() intrinsic
203   //    c3: isObjectSmallerThan()
204   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
205   // refers to the "entire object".
206   //
207   //  Consider this example:
208   //     char *p = (char*)malloc(100)
209   //     char *q = p+80;
210   //
211   //  In the context of c1 and c2, the "object" pointed by q refers to the
212   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
213   //
214   //  However, in the context of c3, the "object" refers to the chunk of memory
215   // being allocated. So, the "object" has 100 bytes, and q points to the middle
216   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
217   // parameter, before the llvm::getObjectSize() is called to get the size of
218   // entire object, we should:
219   //    - either rewind the pointer q to the base-address of the object in
220   //      question (in this case rewind to p), or
221   //    - just give up. It is up to caller to make sure the pointer is pointing
222   //      to the base address the object.
223   //
224   // We go for 2nd option for simplicity.
225   if (!isIdentifiedObject(V))
226     return false;
227 
228   // This function needs to use the aligned object size because we allow
229   // reads a bit past the end given sufficient alignment.
230   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
231                                       /*RoundToAlign*/ true);
232 
233   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
234 }
235 
236 /// Returns true if we can prove that the object specified by V has size Size.
237 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
238                          const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
239   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc);
240   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
241 }
242 
243 //===----------------------------------------------------------------------===//
244 // GetElementPtr Instruction Decomposition and Analysis
245 //===----------------------------------------------------------------------===//
246 
247 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
248 /// B are constant integers.
249 ///
250 /// Returns the scale and offset values as APInts and return V as a Value*, and
251 /// return whether we looked through any sign or zero extends.  The incoming
252 /// Value is known to have IntegerType, and it may already be sign or zero
253 /// extended.
254 ///
255 /// Note that this looks through extends, so the high bits may not be
256 /// represented in the result.
257 /*static*/ const Value *BasicAAResult::GetLinearExpression(
258     const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
259     unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
260     AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
261   assert(V->getType()->isIntegerTy() && "Not an integer value");
262 
263   // Limit our recursion depth.
264   if (Depth == 6) {
265     Scale = 1;
266     Offset = 0;
267     return V;
268   }
269 
270   if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
271     // If it's a constant, just convert it to an offset and remove the variable.
272     // If we've been called recursively, the Offset bit width will be greater
273     // than the constant's (the Offset's always as wide as the outermost call),
274     // so we'll zext here and process any extension in the isa<SExtInst> &
275     // isa<ZExtInst> cases below.
276     Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
277     assert(Scale == 0 && "Constant values don't have a scale");
278     return V;
279   }
280 
281   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
282     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
283       // If we've been called recursively, then Offset and Scale will be wider
284       // than the BOp operands. We'll always zext it here as we'll process sign
285       // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
286       APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
287 
288       switch (BOp->getOpcode()) {
289       default:
290         // We don't understand this instruction, so we can't decompose it any
291         // further.
292         Scale = 1;
293         Offset = 0;
294         return V;
295       case Instruction::Or:
296         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
297         // analyze it.
298         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
299                                BOp, DT)) {
300           Scale = 1;
301           Offset = 0;
302           return V;
303         }
304         LLVM_FALLTHROUGH;
305       case Instruction::Add:
306         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
307                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
308         Offset += RHS;
309         break;
310       case Instruction::Sub:
311         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
312                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
313         Offset -= RHS;
314         break;
315       case Instruction::Mul:
316         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
317                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
318         Offset *= RHS;
319         Scale *= RHS;
320         break;
321       case Instruction::Shl:
322         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
323                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
324 
325         // We're trying to linearize an expression of the kind:
326         //   shl i8 -128, 36
327         // where the shift count exceeds the bitwidth of the type.
328         // We can't decompose this further (the expression would return
329         // a poison value).
330         if (Offset.getBitWidth() < RHS.getLimitedValue() ||
331             Scale.getBitWidth() < RHS.getLimitedValue()) {
332           Scale = 1;
333           Offset = 0;
334           return V;
335         }
336 
337         Offset <<= RHS.getLimitedValue();
338         Scale <<= RHS.getLimitedValue();
339         // the semantics of nsw and nuw for left shifts don't match those of
340         // multiplications, so we won't propagate them.
341         NSW = NUW = false;
342         return V;
343       }
344 
345       if (isa<OverflowingBinaryOperator>(BOp)) {
346         NUW &= BOp->hasNoUnsignedWrap();
347         NSW &= BOp->hasNoSignedWrap();
348       }
349       return V;
350     }
351   }
352 
353   // Since GEP indices are sign extended anyway, we don't care about the high
354   // bits of a sign or zero extended value - just scales and offsets.  The
355   // extensions have to be consistent though.
356   if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
357     Value *CastOp = cast<CastInst>(V)->getOperand(0);
358     unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
359     unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
360     unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
361     const Value *Result =
362         GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
363                             Depth + 1, AC, DT, NSW, NUW);
364 
365     // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this
366     // by just incrementing the number of bits we've extended by.
367     unsigned ExtendedBy = NewWidth - SmallWidth;
368 
369     if (isa<SExtInst>(V) && ZExtBits == 0) {
370       // sext(sext(%x, a), b) == sext(%x, a + b)
371 
372       if (NSW) {
373         // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
374         // into sext(%x) + sext(c). We'll sext the Offset ourselves:
375         unsigned OldWidth = Offset.getBitWidth();
376         Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
377       } else {
378         // We may have signed-wrapped, so don't decompose sext(%x + c) into
379         // sext(%x) + sext(c)
380         Scale = 1;
381         Offset = 0;
382         Result = CastOp;
383         ZExtBits = OldZExtBits;
384         SExtBits = OldSExtBits;
385       }
386       SExtBits += ExtendedBy;
387     } else {
388       // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
389 
390       if (!NUW) {
391         // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
392         // zext(%x) + zext(c)
393         Scale = 1;
394         Offset = 0;
395         Result = CastOp;
396         ZExtBits = OldZExtBits;
397         SExtBits = OldSExtBits;
398       }
399       ZExtBits += ExtendedBy;
400     }
401 
402     return Result;
403   }
404 
405   Scale = 1;
406   Offset = 0;
407   return V;
408 }
409 
410 /// To ensure a pointer offset fits in an integer of size PointerSize
411 /// (in bits) when that size is smaller than the maximum pointer size. This is
412 /// an issue, for example, in particular for 32b pointers with negative indices
413 /// that rely on two's complement wrap-arounds for precise alias information
414 /// where the maximum pointer size is 64b.
415 static APInt adjustToPointerSize(APInt Offset, unsigned PointerSize) {
416   assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!");
417   unsigned ShiftBits = Offset.getBitWidth() - PointerSize;
418   return (Offset << ShiftBits).ashr(ShiftBits);
419 }
420 
421 static unsigned getMaxPointerSize(const DataLayout &DL) {
422   unsigned MaxPointerSize = DL.getMaxPointerSizeInBits();
423   if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64;
424   if (DoubleCalcBits) MaxPointerSize *= 2;
425 
426   return MaxPointerSize;
427 }
428 
429 /// If V is a symbolic pointer expression, decompose it into a base pointer
430 /// with a constant offset and a number of scaled symbolic offsets.
431 ///
432 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
433 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
434 /// specified amount, but which may have other unrepresented high bits. As
435 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
436 ///
437 /// When DataLayout is around, this function is capable of analyzing everything
438 /// that GetUnderlyingObject can look through. To be able to do that
439 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search
440 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks
441 /// through pointer casts.
442 bool BasicAAResult::DecomposeGEPExpression(const Value *V,
443        DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC,
444        DominatorTree *DT) {
445   // Limit recursion depth to limit compile time in crazy cases.
446   unsigned MaxLookup = MaxLookupSearchDepth;
447   SearchTimes++;
448 
449   unsigned MaxPointerSize = getMaxPointerSize(DL);
450   Decomposed.VarIndices.clear();
451   do {
452     // See if this is a bitcast or GEP.
453     const Operator *Op = dyn_cast<Operator>(V);
454     if (!Op) {
455       // The only non-operator case we can handle are GlobalAliases.
456       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
457         if (!GA->isInterposable()) {
458           V = GA->getAliasee();
459           continue;
460         }
461       }
462       Decomposed.Base = V;
463       return false;
464     }
465 
466     if (Op->getOpcode() == Instruction::BitCast ||
467         Op->getOpcode() == Instruction::AddrSpaceCast) {
468       V = Op->getOperand(0);
469       continue;
470     }
471 
472     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
473     if (!GEPOp) {
474       if (const auto *Call = dyn_cast<CallBase>(V)) {
475         // CaptureTracking can know about special capturing properties of some
476         // intrinsics like launder.invariant.group, that can't be expressed with
477         // the attributes, but have properties like returning aliasing pointer.
478         // Because some analysis may assume that nocaptured pointer is not
479         // returned from some special intrinsic (because function would have to
480         // be marked with returns attribute), it is crucial to use this function
481         // because it should be in sync with CaptureTracking. Not using it may
482         // cause weird miscompilations where 2 aliasing pointers are assumed to
483         // noalias.
484         if (auto *RP = getArgumentAliasingToReturnedPointer(Call)) {
485           V = RP;
486           continue;
487         }
488       }
489 
490       // If it's not a GEP, hand it off to SimplifyInstruction to see if it
491       // can come up with something. This matches what GetUnderlyingObject does.
492       if (const Instruction *I = dyn_cast<Instruction>(V))
493         // TODO: Get a DominatorTree and AssumptionCache and use them here
494         // (these are both now available in this function, but this should be
495         // updated when GetUnderlyingObject is updated). TLI should be
496         // provided also.
497         if (const Value *Simplified =
498                 SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
499           V = Simplified;
500           continue;
501         }
502 
503       Decomposed.Base = V;
504       return false;
505     }
506 
507     // Don't attempt to analyze GEPs over unsized objects.
508     if (!GEPOp->getSourceElementType()->isSized()) {
509       Decomposed.Base = V;
510       return false;
511     }
512 
513     unsigned AS = GEPOp->getPointerAddressSpace();
514     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
515     gep_type_iterator GTI = gep_type_begin(GEPOp);
516     unsigned PointerSize = DL.getPointerSizeInBits(AS);
517     // Assume all GEP operands are constants until proven otherwise.
518     bool GepHasConstantOffset = true;
519     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
520          I != E; ++I, ++GTI) {
521       const Value *Index = *I;
522       // Compute the (potentially symbolic) offset in bytes for this index.
523       if (StructType *STy = GTI.getStructTypeOrNull()) {
524         // For a struct, add the member offset.
525         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
526         if (FieldNo == 0)
527           continue;
528 
529         Decomposed.StructOffset +=
530           DL.getStructLayout(STy)->getElementOffset(FieldNo);
531         continue;
532       }
533 
534       // For an array/pointer, add the element offset, explicitly scaled.
535       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
536         if (CIdx->isZero())
537           continue;
538         Decomposed.OtherOffset +=
539           (DL.getTypeAllocSize(GTI.getIndexedType()) *
540             CIdx->getValue().sextOrSelf(MaxPointerSize))
541               .sextOrTrunc(MaxPointerSize);
542         continue;
543       }
544 
545       GepHasConstantOffset = false;
546 
547       APInt Scale(MaxPointerSize, DL.getTypeAllocSize(GTI.getIndexedType()));
548       unsigned ZExtBits = 0, SExtBits = 0;
549 
550       // If the integer type is smaller than the pointer size, it is implicitly
551       // sign extended to pointer size.
552       unsigned Width = Index->getType()->getIntegerBitWidth();
553       if (PointerSize > Width)
554         SExtBits += PointerSize - Width;
555 
556       // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
557       APInt IndexScale(Width, 0), IndexOffset(Width, 0);
558       bool NSW = true, NUW = true;
559       const Value *OrigIndex = Index;
560       Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
561                                   SExtBits, DL, 0, AC, DT, NSW, NUW);
562 
563       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
564       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
565 
566       // It can be the case that, even through C1*V+C2 does not overflow for
567       // relevant values of V, (C2*Scale) can overflow. In that case, we cannot
568       // decompose the expression in this way.
569       //
570       // FIXME: C1*Scale and the other operations in the decomposed
571       // (C1*Scale)*V+C2*Scale can also overflow. We should check for this
572       // possibility.
573       APInt WideScaledOffset = IndexOffset.sextOrTrunc(MaxPointerSize*2) *
574                                  Scale.sext(MaxPointerSize*2);
575       if (WideScaledOffset.getMinSignedBits() > MaxPointerSize) {
576         Index = OrigIndex;
577         IndexScale = 1;
578         IndexOffset = 0;
579 
580         ZExtBits = SExtBits = 0;
581         if (PointerSize > Width)
582           SExtBits += PointerSize - Width;
583       } else {
584         Decomposed.OtherOffset += IndexOffset.sextOrTrunc(MaxPointerSize) * Scale;
585         Scale *= IndexScale.sextOrTrunc(MaxPointerSize);
586       }
587 
588       // If we already had an occurrence of this index variable, merge this
589       // scale into it.  For example, we want to handle:
590       //   A[x][x] -> x*16 + x*4 -> x*20
591       // This also ensures that 'x' only appears in the index list once.
592       for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
593         if (Decomposed.VarIndices[i].V == Index &&
594             Decomposed.VarIndices[i].ZExtBits == ZExtBits &&
595             Decomposed.VarIndices[i].SExtBits == SExtBits) {
596           Scale += Decomposed.VarIndices[i].Scale;
597           Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
598           break;
599         }
600       }
601 
602       // Make sure that we have a scale that makes sense for this target's
603       // pointer size.
604       Scale = adjustToPointerSize(Scale, PointerSize);
605 
606       if (!!Scale) {
607         VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, Scale};
608         Decomposed.VarIndices.push_back(Entry);
609       }
610     }
611 
612     // Take care of wrap-arounds
613     if (GepHasConstantOffset) {
614       Decomposed.StructOffset =
615           adjustToPointerSize(Decomposed.StructOffset, PointerSize);
616       Decomposed.OtherOffset =
617           adjustToPointerSize(Decomposed.OtherOffset, PointerSize);
618     }
619 
620     // Analyze the base pointer next.
621     V = GEPOp->getOperand(0);
622   } while (--MaxLookup);
623 
624   // If the chain of expressions is too deep, just return early.
625   Decomposed.Base = V;
626   SearchLimitReached++;
627   return true;
628 }
629 
630 /// Returns whether the given pointer value points to memory that is local to
631 /// the function, with global constants being considered local to all
632 /// functions.
633 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
634                                            bool OrLocal) {
635   assert(Visited.empty() && "Visited must be cleared after use!");
636 
637   unsigned MaxLookup = 8;
638   SmallVector<const Value *, 16> Worklist;
639   Worklist.push_back(Loc.Ptr);
640   do {
641     const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
642     if (!Visited.insert(V).second) {
643       Visited.clear();
644       return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
645     }
646 
647     // An alloca instruction defines local memory.
648     if (OrLocal && isa<AllocaInst>(V))
649       continue;
650 
651     // A global constant counts as local memory for our purposes.
652     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
653       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
654       // global to be marked constant in some modules and non-constant in
655       // others.  GV may even be a declaration, not a definition.
656       if (!GV->isConstant()) {
657         Visited.clear();
658         return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
659       }
660       continue;
661     }
662 
663     // If both select values point to local memory, then so does the select.
664     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
665       Worklist.push_back(SI->getTrueValue());
666       Worklist.push_back(SI->getFalseValue());
667       continue;
668     }
669 
670     // If all values incoming to a phi node point to local memory, then so does
671     // the phi.
672     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
673       // Don't bother inspecting phi nodes with many operands.
674       if (PN->getNumIncomingValues() > MaxLookup) {
675         Visited.clear();
676         return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
677       }
678       for (Value *IncValue : PN->incoming_values())
679         Worklist.push_back(IncValue);
680       continue;
681     }
682 
683     // Otherwise be conservative.
684     Visited.clear();
685     return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
686   } while (!Worklist.empty() && --MaxLookup);
687 
688   Visited.clear();
689   return Worklist.empty();
690 }
691 
692 /// Returns the behavior when calling the given call site.
693 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) {
694   if (Call->doesNotAccessMemory())
695     // Can't do better than this.
696     return FMRB_DoesNotAccessMemory;
697 
698   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
699 
700   // If the callsite knows it only reads memory, don't return worse
701   // than that.
702   if (Call->onlyReadsMemory())
703     Min = FMRB_OnlyReadsMemory;
704   else if (Call->doesNotReadMemory())
705     Min = FMRB_DoesNotReadMemory;
706 
707   if (Call->onlyAccessesArgMemory())
708     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
709   else if (Call->onlyAccessesInaccessibleMemory())
710     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
711   else if (Call->onlyAccessesInaccessibleMemOrArgMem())
712     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
713 
714   // If the call has operand bundles then aliasing attributes from the function
715   // it calls do not directly apply to the call.  This can be made more precise
716   // in the future.
717   if (!Call->hasOperandBundles())
718     if (const Function *F = Call->getCalledFunction())
719       Min =
720           FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
721 
722   return Min;
723 }
724 
725 /// Returns the behavior when calling the given function. For use when the call
726 /// site is not known.
727 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
728   // If the function declares it doesn't access memory, we can't do better.
729   if (F->doesNotAccessMemory())
730     return FMRB_DoesNotAccessMemory;
731 
732   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
733 
734   // If the function declares it only reads memory, go with that.
735   if (F->onlyReadsMemory())
736     Min = FMRB_OnlyReadsMemory;
737   else if (F->doesNotReadMemory())
738     Min = FMRB_DoesNotReadMemory;
739 
740   if (F->onlyAccessesArgMemory())
741     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
742   else if (F->onlyAccessesInaccessibleMemory())
743     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
744   else if (F->onlyAccessesInaccessibleMemOrArgMem())
745     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
746 
747   return Min;
748 }
749 
750 /// Returns true if this is a writeonly (i.e Mod only) parameter.
751 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx,
752                              const TargetLibraryInfo &TLI) {
753   if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly))
754     return true;
755 
756   // We can bound the aliasing properties of memset_pattern16 just as we can
757   // for memcpy/memset.  This is particularly important because the
758   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
759   // whenever possible.
760   // FIXME Consider handling this in InferFunctionAttr.cpp together with other
761   // attributes.
762   LibFunc F;
763   if (Call->getCalledFunction() &&
764       TLI.getLibFunc(*Call->getCalledFunction(), F) &&
765       F == LibFunc_memset_pattern16 && TLI.has(F))
766     if (ArgIdx == 0)
767       return true;
768 
769   // TODO: memset_pattern4, memset_pattern8
770   // TODO: _chk variants
771   // TODO: strcmp, strcpy
772 
773   return false;
774 }
775 
776 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
777                                            unsigned ArgIdx) {
778   // Checking for known builtin intrinsics and target library functions.
779   if (isWriteOnlyParam(Call, ArgIdx, TLI))
780     return ModRefInfo::Mod;
781 
782   if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly))
783     return ModRefInfo::Ref;
784 
785   if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone))
786     return ModRefInfo::NoModRef;
787 
788   return AAResultBase::getArgModRefInfo(Call, ArgIdx);
789 }
790 
791 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
792   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
793   return II && II->getIntrinsicID() == IID;
794 }
795 
796 #ifndef NDEBUG
797 static const Function *getParent(const Value *V) {
798   if (const Instruction *inst = dyn_cast<Instruction>(V)) {
799     if (!inst->getParent())
800       return nullptr;
801     return inst->getParent()->getParent();
802   }
803 
804   if (const Argument *arg = dyn_cast<Argument>(V))
805     return arg->getParent();
806 
807   return nullptr;
808 }
809 
810 static bool notDifferentParent(const Value *O1, const Value *O2) {
811 
812   const Function *F1 = getParent(O1);
813   const Function *F2 = getParent(O2);
814 
815   return !F1 || !F2 || F1 == F2;
816 }
817 #endif
818 
819 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
820                                  const MemoryLocation &LocB) {
821   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
822          "BasicAliasAnalysis doesn't support interprocedural queries.");
823 
824   // If we have a directly cached entry for these locations, we have recursed
825   // through this once, so just return the cached results. Notably, when this
826   // happens, we don't clear the cache.
827   auto CacheIt = AliasCache.find(LocPair(LocA, LocB));
828   if (CacheIt != AliasCache.end())
829     return CacheIt->second;
830 
831   AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
832                                  LocB.Size, LocB.AATags);
833   // AliasCache rarely has more than 1 or 2 elements, always use
834   // shrink_and_clear so it quickly returns to the inline capacity of the
835   // SmallDenseMap if it ever grows larger.
836   // FIXME: This should really be shrink_to_inline_capacity_and_clear().
837   AliasCache.shrink_and_clear();
838   IsCapturedCache.shrink_and_clear();
839   VisitedPhiBBs.clear();
840   return Alias;
841 }
842 
843 /// Checks to see if the specified callsite can clobber the specified memory
844 /// object.
845 ///
846 /// Since we only look at local properties of this function, we really can't
847 /// say much about this query.  We do, however, use simple "address taken"
848 /// analysis on local objects.
849 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
850                                         const MemoryLocation &Loc) {
851   assert(notDifferentParent(Call, Loc.Ptr) &&
852          "AliasAnalysis query involving multiple functions!");
853 
854   const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);
855 
856   // Calls marked 'tail' cannot read or write allocas from the current frame
857   // because the current frame might be destroyed by the time they run. However,
858   // a tail call may use an alloca with byval. Calling with byval copies the
859   // contents of the alloca into argument registers or stack slots, so there is
860   // no lifetime issue.
861   if (isa<AllocaInst>(Object))
862     if (const CallInst *CI = dyn_cast<CallInst>(Call))
863       if (CI->isTailCall() &&
864           !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal))
865         return ModRefInfo::NoModRef;
866 
867   // Stack restore is able to modify unescaped dynamic allocas. Assume it may
868   // modify them even though the alloca is not escaped.
869   if (auto *AI = dyn_cast<AllocaInst>(Object))
870     if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore))
871       return ModRefInfo::Mod;
872 
873   // If the pointer is to a locally allocated object that does not escape,
874   // then the call can not mod/ref the pointer unless the call takes the pointer
875   // as an argument, and itself doesn't capture it.
876   if (!isa<Constant>(Object) && Call != Object &&
877       isNonEscapingLocalObject(Object)) {
878 
879     // Optimistically assume that call doesn't touch Object and check this
880     // assumption in the following loop.
881     ModRefInfo Result = ModRefInfo::NoModRef;
882     bool IsMustAlias = true;
883 
884     unsigned OperandNo = 0;
885     for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
886          CI != CE; ++CI, ++OperandNo) {
887       // Only look at the no-capture or byval pointer arguments.  If this
888       // pointer were passed to arguments that were neither of these, then it
889       // couldn't be no-capture.
890       if (!(*CI)->getType()->isPointerTy() ||
891           (!Call->doesNotCapture(OperandNo) &&
892            OperandNo < Call->getNumArgOperands() &&
893            !Call->isByValArgument(OperandNo)))
894         continue;
895 
896       // Call doesn't access memory through this operand, so we don't care
897       // if it aliases with Object.
898       if (Call->doesNotAccessMemory(OperandNo))
899         continue;
900 
901       // If this is a no-capture pointer argument, see if we can tell that it
902       // is impossible to alias the pointer we're checking.
903       AliasResult AR =
904           getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object));
905       if (AR != MustAlias)
906         IsMustAlias = false;
907       // Operand doesn't alias 'Object', continue looking for other aliases
908       if (AR == NoAlias)
909         continue;
910       // Operand aliases 'Object', but call doesn't modify it. Strengthen
911       // initial assumption and keep looking in case if there are more aliases.
912       if (Call->onlyReadsMemory(OperandNo)) {
913         Result = setRef(Result);
914         continue;
915       }
916       // Operand aliases 'Object' but call only writes into it.
917       if (Call->doesNotReadMemory(OperandNo)) {
918         Result = setMod(Result);
919         continue;
920       }
921       // This operand aliases 'Object' and call reads and writes into it.
922       // Setting ModRef will not yield an early return below, MustAlias is not
923       // used further.
924       Result = ModRefInfo::ModRef;
925       break;
926     }
927 
928     // No operand aliases, reset Must bit. Add below if at least one aliases
929     // and all aliases found are MustAlias.
930     if (isNoModRef(Result))
931       IsMustAlias = false;
932 
933     // Early return if we improved mod ref information
934     if (!isModAndRefSet(Result)) {
935       if (isNoModRef(Result))
936         return ModRefInfo::NoModRef;
937       return IsMustAlias ? setMust(Result) : clearMust(Result);
938     }
939   }
940 
941   // If the call is to malloc or calloc, we can assume that it doesn't
942   // modify any IR visible value.  This is only valid because we assume these
943   // routines do not read values visible in the IR.  TODO: Consider special
944   // casing realloc and strdup routines which access only their arguments as
945   // well.  Or alternatively, replace all of this with inaccessiblememonly once
946   // that's implemented fully.
947   if (isMallocOrCallocLikeFn(Call, &TLI)) {
948     // Be conservative if the accessed pointer may alias the allocation -
949     // fallback to the generic handling below.
950     if (getBestAAResults().alias(MemoryLocation(Call), Loc) == NoAlias)
951       return ModRefInfo::NoModRef;
952   }
953 
954   // The semantics of memcpy intrinsics forbid overlap between their respective
955   // operands, i.e., source and destination of any given memcpy must no-alias.
956   // If Loc must-aliases either one of these two locations, then it necessarily
957   // no-aliases the other.
958   if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) {
959     AliasResult SrcAA, DestAA;
960 
961     if ((SrcAA = getBestAAResults().alias(MemoryLocation::getForSource(Inst),
962                                           Loc)) == MustAlias)
963       // Loc is exactly the memcpy source thus disjoint from memcpy dest.
964       return ModRefInfo::Ref;
965     if ((DestAA = getBestAAResults().alias(MemoryLocation::getForDest(Inst),
966                                            Loc)) == MustAlias)
967       // The converse case.
968       return ModRefInfo::Mod;
969 
970     // It's also possible for Loc to alias both src and dest, or neither.
971     ModRefInfo rv = ModRefInfo::NoModRef;
972     if (SrcAA != NoAlias)
973       rv = setRef(rv);
974     if (DestAA != NoAlias)
975       rv = setMod(rv);
976     return rv;
977   }
978 
979   // While the assume intrinsic is marked as arbitrarily writing so that
980   // proper control dependencies will be maintained, it never aliases any
981   // particular memory location.
982   if (isIntrinsicCall(Call, Intrinsic::assume))
983     return ModRefInfo::NoModRef;
984 
985   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
986   // that proper control dependencies are maintained but they never mods any
987   // particular memory location.
988   //
989   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
990   // heap state at the point the guard is issued needs to be consistent in case
991   // the guard invokes the "deopt" continuation.
992   if (isIntrinsicCall(Call, Intrinsic::experimental_guard))
993     return ModRefInfo::Ref;
994 
995   // Like assumes, invariant.start intrinsics were also marked as arbitrarily
996   // writing so that proper control dependencies are maintained but they never
997   // mod any particular memory location visible to the IR.
998   // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
999   // intrinsic is now modeled as reading memory. This prevents hoisting the
1000   // invariant.start intrinsic over stores. Consider:
1001   // *ptr = 40;
1002   // *ptr = 50;
1003   // invariant_start(ptr)
1004   // int val = *ptr;
1005   // print(val);
1006   //
1007   // This cannot be transformed to:
1008   //
1009   // *ptr = 40;
1010   // invariant_start(ptr)
1011   // *ptr = 50;
1012   // int val = *ptr;
1013   // print(val);
1014   //
1015   // The transformation will cause the second store to be ignored (based on
1016   // rules of invariant.start)  and print 40, while the first program always
1017   // prints 50.
1018   if (isIntrinsicCall(Call, Intrinsic::invariant_start))
1019     return ModRefInfo::Ref;
1020 
1021   // The AAResultBase base class has some smarts, lets use them.
1022   return AAResultBase::getModRefInfo(Call, Loc);
1023 }
1024 
1025 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
1026                                         const CallBase *Call2) {
1027   // While the assume intrinsic is marked as arbitrarily writing so that
1028   // proper control dependencies will be maintained, it never aliases any
1029   // particular memory location.
1030   if (isIntrinsicCall(Call1, Intrinsic::assume) ||
1031       isIntrinsicCall(Call2, Intrinsic::assume))
1032     return ModRefInfo::NoModRef;
1033 
1034   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
1035   // that proper control dependencies are maintained but they never mod any
1036   // particular memory location.
1037   //
1038   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1039   // heap state at the point the guard is issued needs to be consistent in case
1040   // the guard invokes the "deopt" continuation.
1041 
1042   // NB! This function is *not* commutative, so we special case two
1043   // possibilities for guard intrinsics.
1044 
1045   if (isIntrinsicCall(Call1, Intrinsic::experimental_guard))
1046     return isModSet(createModRefInfo(getModRefBehavior(Call2)))
1047                ? ModRefInfo::Ref
1048                : ModRefInfo::NoModRef;
1049 
1050   if (isIntrinsicCall(Call2, Intrinsic::experimental_guard))
1051     return isModSet(createModRefInfo(getModRefBehavior(Call1)))
1052                ? ModRefInfo::Mod
1053                : ModRefInfo::NoModRef;
1054 
1055   // The AAResultBase base class has some smarts, lets use them.
1056   return AAResultBase::getModRefInfo(Call1, Call2);
1057 }
1058 
1059 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
1060 /// both having the exact same pointer operand.
1061 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
1062                                             LocationSize MaybeV1Size,
1063                                             const GEPOperator *GEP2,
1064                                             LocationSize MaybeV2Size,
1065                                             const DataLayout &DL) {
1066   assert(GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
1067              GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
1068          GEP1->getPointerOperandType() == GEP2->getPointerOperandType() &&
1069          "Expected GEPs with the same pointer operand");
1070 
1071   // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
1072   // such that the struct field accesses provably cannot alias.
1073   // We also need at least two indices (the pointer, and the struct field).
1074   if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
1075       GEP1->getNumIndices() < 2)
1076     return MayAlias;
1077 
1078   // If we don't know the size of the accesses through both GEPs, we can't
1079   // determine whether the struct fields accessed can't alias.
1080   if (MaybeV1Size == LocationSize::unknown() ||
1081       MaybeV2Size == LocationSize::unknown())
1082     return MayAlias;
1083 
1084   const uint64_t V1Size = MaybeV1Size.getValue();
1085   const uint64_t V2Size = MaybeV2Size.getValue();
1086 
1087   ConstantInt *C1 =
1088       dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
1089   ConstantInt *C2 =
1090       dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
1091 
1092   // If the last (struct) indices are constants and are equal, the other indices
1093   // might be also be dynamically equal, so the GEPs can alias.
1094   if (C1 && C2) {
1095     unsigned BitWidth = std::max(C1->getBitWidth(), C2->getBitWidth());
1096     if (C1->getValue().sextOrSelf(BitWidth) ==
1097         C2->getValue().sextOrSelf(BitWidth))
1098       return MayAlias;
1099   }
1100 
1101   // Find the last-indexed type of the GEP, i.e., the type you'd get if
1102   // you stripped the last index.
1103   // On the way, look at each indexed type.  If there's something other
1104   // than an array, different indices can lead to different final types.
1105   SmallVector<Value *, 8> IntermediateIndices;
1106 
1107   // Insert the first index; we don't need to check the type indexed
1108   // through it as it only drops the pointer indirection.
1109   assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
1110   IntermediateIndices.push_back(GEP1->getOperand(1));
1111 
1112   // Insert all the remaining indices but the last one.
1113   // Also, check that they all index through arrays.
1114   for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
1115     if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
1116             GEP1->getSourceElementType(), IntermediateIndices)))
1117       return MayAlias;
1118     IntermediateIndices.push_back(GEP1->getOperand(i + 1));
1119   }
1120 
1121   auto *Ty = GetElementPtrInst::getIndexedType(
1122     GEP1->getSourceElementType(), IntermediateIndices);
1123   StructType *LastIndexedStruct = dyn_cast<StructType>(Ty);
1124 
1125   if (isa<SequentialType>(Ty)) {
1126     // We know that:
1127     // - both GEPs begin indexing from the exact same pointer;
1128     // - the last indices in both GEPs are constants, indexing into a sequential
1129     //   type (array or pointer);
1130     // - both GEPs only index through arrays prior to that.
1131     //
1132     // Because array indices greater than the number of elements are valid in
1133     // GEPs, unless we know the intermediate indices are identical between
1134     // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
1135     // partially overlap. We also need to check that the loaded size matches
1136     // the element size, otherwise we could still have overlap.
1137     const uint64_t ElementSize =
1138         DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType());
1139     if (V1Size != ElementSize || V2Size != ElementSize)
1140       return MayAlias;
1141 
1142     for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i)
1143       if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1))
1144         return MayAlias;
1145 
1146     // Now we know that the array/pointer that GEP1 indexes into and that
1147     // that GEP2 indexes into must either precisely overlap or be disjoint.
1148     // Because they cannot partially overlap and because fields in an array
1149     // cannot overlap, if we can prove the final indices are different between
1150     // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
1151 
1152     // If the last indices are constants, we've already checked they don't
1153     // equal each other so we can exit early.
1154     if (C1 && C2)
1155       return NoAlias;
1156     {
1157       Value *GEP1LastIdx = GEP1->getOperand(GEP1->getNumOperands() - 1);
1158       Value *GEP2LastIdx = GEP2->getOperand(GEP2->getNumOperands() - 1);
1159       if (isa<PHINode>(GEP1LastIdx) || isa<PHINode>(GEP2LastIdx)) {
1160         // If one of the indices is a PHI node, be safe and only use
1161         // computeKnownBits so we don't make any assumptions about the
1162         // relationships between the two indices. This is important if we're
1163         // asking about values from different loop iterations. See PR32314.
1164         // TODO: We may be able to change the check so we only do this when
1165         // we definitely looked through a PHINode.
1166         if (GEP1LastIdx != GEP2LastIdx &&
1167             GEP1LastIdx->getType() == GEP2LastIdx->getType()) {
1168           KnownBits Known1 = computeKnownBits(GEP1LastIdx, DL);
1169           KnownBits Known2 = computeKnownBits(GEP2LastIdx, DL);
1170           if (Known1.Zero.intersects(Known2.One) ||
1171               Known1.One.intersects(Known2.Zero))
1172             return NoAlias;
1173         }
1174       } else if (isKnownNonEqual(GEP1LastIdx, GEP2LastIdx, DL))
1175         return NoAlias;
1176     }
1177     return MayAlias;
1178   } else if (!LastIndexedStruct || !C1 || !C2) {
1179     return MayAlias;
1180   }
1181 
1182   if (C1->getValue().getActiveBits() > 64 ||
1183       C2->getValue().getActiveBits() > 64)
1184     return MayAlias;
1185 
1186   // We know that:
1187   // - both GEPs begin indexing from the exact same pointer;
1188   // - the last indices in both GEPs are constants, indexing into a struct;
1189   // - said indices are different, hence, the pointed-to fields are different;
1190   // - both GEPs only index through arrays prior to that.
1191   //
1192   // This lets us determine that the struct that GEP1 indexes into and the
1193   // struct that GEP2 indexes into must either precisely overlap or be
1194   // completely disjoint.  Because they cannot partially overlap, indexing into
1195   // different non-overlapping fields of the struct will never alias.
1196 
1197   // Therefore, the only remaining thing needed to show that both GEPs can't
1198   // alias is that the fields are not overlapping.
1199   const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
1200   const uint64_t StructSize = SL->getSizeInBytes();
1201   const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
1202   const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
1203 
1204   auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
1205                                       uint64_t V2Off, uint64_t V2Size) {
1206     return V1Off < V2Off && V1Off + V1Size <= V2Off &&
1207            ((V2Off + V2Size <= StructSize) ||
1208             (V2Off + V2Size - StructSize <= V1Off));
1209   };
1210 
1211   if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
1212       EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
1213     return NoAlias;
1214 
1215   return MayAlias;
1216 }
1217 
1218 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the
1219 // beginning of the object the GEP points would have a negative offset with
1220 // repsect to the alloca, that means the GEP can not alias pointer (b).
1221 // Note that the pointer based on the alloca may not be a GEP. For
1222 // example, it may be the alloca itself.
1223 // The same applies if (b) is based on a GlobalVariable. Note that just being
1224 // based on isIdentifiedObject() is not enough - we need an identified object
1225 // that does not permit access to negative offsets. For example, a negative
1226 // offset from a noalias argument or call can be inbounds w.r.t the actual
1227 // underlying object.
1228 //
1229 // For example, consider:
1230 //
1231 //   struct { int f0, int f1, ...} foo;
1232 //   foo alloca;
1233 //   foo* random = bar(alloca);
1234 //   int *f0 = &alloca.f0
1235 //   int *f1 = &random->f1;
1236 //
1237 // Which is lowered, approximately, to:
1238 //
1239 //  %alloca = alloca %struct.foo
1240 //  %random = call %struct.foo* @random(%struct.foo* %alloca)
1241 //  %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0
1242 //  %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1
1243 //
1244 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated
1245 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also
1246 // point into the same object. But since %f0 points to the beginning of %alloca,
1247 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher
1248 // than (%alloca - 1), and so is not inbounds, a contradiction.
1249 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp,
1250       const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject,
1251       LocationSize MaybeObjectAccessSize) {
1252   // If the object access size is unknown, or the GEP isn't inbounds, bail.
1253   if (MaybeObjectAccessSize == LocationSize::unknown() || !GEPOp->isInBounds())
1254     return false;
1255 
1256   const uint64_t ObjectAccessSize = MaybeObjectAccessSize.getValue();
1257 
1258   // We need the object to be an alloca or a globalvariable, and want to know
1259   // the offset of the pointer from the object precisely, so no variable
1260   // indices are allowed.
1261   if (!(isa<AllocaInst>(DecompObject.Base) ||
1262         isa<GlobalVariable>(DecompObject.Base)) ||
1263       !DecompObject.VarIndices.empty())
1264     return false;
1265 
1266   APInt ObjectBaseOffset = DecompObject.StructOffset +
1267                            DecompObject.OtherOffset;
1268 
1269   // If the GEP has no variable indices, we know the precise offset
1270   // from the base, then use it. If the GEP has variable indices,
1271   // we can't get exact GEP offset to identify pointer alias. So return
1272   // false in that case.
1273   if (!DecompGEP.VarIndices.empty())
1274     return false;
1275 
1276   APInt GEPBaseOffset = DecompGEP.StructOffset;
1277   GEPBaseOffset += DecompGEP.OtherOffset;
1278 
1279   return GEPBaseOffset.sge(ObjectBaseOffset + (int64_t)ObjectAccessSize);
1280 }
1281 
1282 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1283 /// another pointer.
1284 ///
1285 /// We know that V1 is a GEP, but we don't know anything about V2.
1286 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for
1287 /// V2.
1288 AliasResult
1289 BasicAAResult::aliasGEP(const GEPOperator *GEP1, LocationSize V1Size,
1290                         const AAMDNodes &V1AAInfo, const Value *V2,
1291                         LocationSize V2Size, const AAMDNodes &V2AAInfo,
1292                         const Value *UnderlyingV1, const Value *UnderlyingV2) {
1293   DecomposedGEP DecompGEP1, DecompGEP2;
1294   unsigned MaxPointerSize = getMaxPointerSize(DL);
1295   DecompGEP1.StructOffset = DecompGEP1.OtherOffset = APInt(MaxPointerSize, 0);
1296   DecompGEP2.StructOffset = DecompGEP2.OtherOffset = APInt(MaxPointerSize, 0);
1297 
1298   bool GEP1MaxLookupReached =
1299     DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT);
1300   bool GEP2MaxLookupReached =
1301     DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT);
1302 
1303   APInt GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset;
1304   APInt GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset;
1305 
1306   assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
1307          "DecomposeGEPExpression returned a result different from "
1308          "GetUnderlyingObject");
1309 
1310   // If the GEP's offset relative to its base is such that the base would
1311   // fall below the start of the object underlying V2, then the GEP and V2
1312   // cannot alias.
1313   if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1314       isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size))
1315     return NoAlias;
1316   // If we have two gep instructions with must-alias or not-alias'ing base
1317   // pointers, figure out if the indexes to the GEP tell us anything about the
1318   // derived pointer.
1319   if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
1320     // Check for the GEP base being at a negative offset, this time in the other
1321     // direction.
1322     if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1323         isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size))
1324       return NoAlias;
1325     // Do the base pointers alias?
1326     AliasResult BaseAlias =
1327         aliasCheck(UnderlyingV1, LocationSize::unknown(), AAMDNodes(),
1328                    UnderlyingV2, LocationSize::unknown(), AAMDNodes());
1329 
1330     // Check for geps of non-aliasing underlying pointers where the offsets are
1331     // identical.
1332     if ((BaseAlias == MayAlias) && V1Size == V2Size) {
1333       // Do the base pointers alias assuming type and size.
1334       AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo,
1335                                                 UnderlyingV2, V2Size, V2AAInfo);
1336       if (PreciseBaseAlias == NoAlias) {
1337         // See if the computed offset from the common pointer tells us about the
1338         // relation of the resulting pointer.
1339         // If the max search depth is reached the result is undefined
1340         if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1341           return MayAlias;
1342 
1343         // Same offsets.
1344         if (GEP1BaseOffset == GEP2BaseOffset &&
1345             DecompGEP1.VarIndices == DecompGEP2.VarIndices)
1346           return NoAlias;
1347       }
1348     }
1349 
1350     // If we get a No or May, then return it immediately, no amount of analysis
1351     // will improve this situation.
1352     if (BaseAlias != MustAlias) {
1353       assert(BaseAlias == NoAlias || BaseAlias == MayAlias);
1354       return BaseAlias;
1355     }
1356 
1357     // Otherwise, we have a MustAlias.  Since the base pointers alias each other
1358     // exactly, see if the computed offset from the common pointer tells us
1359     // about the relation of the resulting pointer.
1360     // If we know the two GEPs are based off of the exact same pointer (and not
1361     // just the same underlying object), see if that tells us anything about
1362     // the resulting pointers.
1363     if (GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
1364             GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
1365         GEP1->getPointerOperandType() == GEP2->getPointerOperandType()) {
1366       AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL);
1367       // If we couldn't find anything interesting, don't abandon just yet.
1368       if (R != MayAlias)
1369         return R;
1370     }
1371 
1372     // If the max search depth is reached, the result is undefined
1373     if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1374       return MayAlias;
1375 
1376     // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1377     // symbolic difference.
1378     GEP1BaseOffset -= GEP2BaseOffset;
1379     GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);
1380 
1381   } else {
1382     // Check to see if these two pointers are related by the getelementptr
1383     // instruction.  If one pointer is a GEP with a non-zero index of the other
1384     // pointer, we know they cannot alias.
1385 
1386     // If both accesses are unknown size, we can't do anything useful here.
1387     if (V1Size == LocationSize::unknown() && V2Size == LocationSize::unknown())
1388       return MayAlias;
1389 
1390     AliasResult R =
1391         aliasCheck(UnderlyingV1, LocationSize::unknown(), AAMDNodes(), V2,
1392                    LocationSize::unknown(), V2AAInfo, nullptr, UnderlyingV2);
1393     if (R != MustAlias) {
1394       // If V2 may alias GEP base pointer, conservatively returns MayAlias.
1395       // If V2 is known not to alias GEP base pointer, then the two values
1396       // cannot alias per GEP semantics: "Any memory access must be done through
1397       // a pointer value associated with an address range of the memory access,
1398       // otherwise the behavior is undefined.".
1399       assert(R == NoAlias || R == MayAlias);
1400       return R;
1401     }
1402 
1403     // If the max search depth is reached the result is undefined
1404     if (GEP1MaxLookupReached)
1405       return MayAlias;
1406   }
1407 
1408   // In the two GEP Case, if there is no difference in the offsets of the
1409   // computed pointers, the resultant pointers are a must alias.  This
1410   // happens when we have two lexically identical GEP's (for example).
1411   //
1412   // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
1413   // must aliases the GEP, the end result is a must alias also.
1414   if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty())
1415     return MustAlias;
1416 
1417   // If there is a constant difference between the pointers, but the difference
1418   // is less than the size of the associated memory object, then we know
1419   // that the objects are partially overlapping.  If the difference is
1420   // greater, we know they do not overlap.
1421   if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) {
1422     if (GEP1BaseOffset.sge(0)) {
1423       if (V2Size != LocationSize::unknown()) {
1424         if (GEP1BaseOffset.ult(V2Size.getValue()))
1425           return PartialAlias;
1426         return NoAlias;
1427       }
1428     } else {
1429       // We have the situation where:
1430       // +                +
1431       // | BaseOffset     |
1432       // ---------------->|
1433       // |-->V1Size       |-------> V2Size
1434       // GEP1             V2
1435       // We need to know that V2Size is not unknown, otherwise we might have
1436       // stripped a gep with negative index ('gep <ptr>, -1, ...).
1437       if (V1Size != LocationSize::unknown() &&
1438           V2Size != LocationSize::unknown()) {
1439         if ((-GEP1BaseOffset).ult(V1Size.getValue()))
1440           return PartialAlias;
1441         return NoAlias;
1442       }
1443     }
1444   }
1445 
1446   if (!DecompGEP1.VarIndices.empty()) {
1447     APInt Modulo(MaxPointerSize, 0);
1448     bool AllPositive = true;
1449     for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1450 
1451       // Try to distinguish something like &A[i][1] against &A[42][0].
1452       // Grab the least significant bit set in any of the scales. We
1453       // don't need std::abs here (even if the scale's negative) as we'll
1454       // be ^'ing Modulo with itself later.
1455       Modulo |= DecompGEP1.VarIndices[i].Scale;
1456 
1457       if (AllPositive) {
1458         // If the Value could change between cycles, then any reasoning about
1459         // the Value this cycle may not hold in the next cycle. We'll just
1460         // give up if we can't determine conditions that hold for every cycle:
1461         const Value *V = DecompGEP1.VarIndices[i].V;
1462 
1463         KnownBits Known = computeKnownBits(V, DL, 0, &AC, nullptr, DT);
1464         bool SignKnownZero = Known.isNonNegative();
1465         bool SignKnownOne = Known.isNegative();
1466 
1467         // Zero-extension widens the variable, and so forces the sign
1468         // bit to zero.
1469         bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
1470         SignKnownZero |= IsZExt;
1471         SignKnownOne &= !IsZExt;
1472 
1473         // If the variable begins with a zero then we know it's
1474         // positive, regardless of whether the value is signed or
1475         // unsigned.
1476         APInt Scale = DecompGEP1.VarIndices[i].Scale;
1477         AllPositive =
1478             (SignKnownZero && Scale.sge(0)) || (SignKnownOne && Scale.slt(0));
1479       }
1480     }
1481 
1482     Modulo = Modulo ^ (Modulo & (Modulo - 1));
1483 
1484     // We can compute the difference between the two addresses
1485     // mod Modulo. Check whether that difference guarantees that the
1486     // two locations do not alias.
1487     APInt ModOffset = GEP1BaseOffset & (Modulo - 1);
1488     if (V1Size != LocationSize::unknown() &&
1489         V2Size != LocationSize::unknown() && ModOffset.uge(V2Size.getValue()) &&
1490         (Modulo - ModOffset).uge(V1Size.getValue()))
1491       return NoAlias;
1492 
1493     // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
1494     // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
1495     // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
1496     if (AllPositive && GEP1BaseOffset.sgt(0) &&
1497         V2Size != LocationSize::unknown() &&
1498         GEP1BaseOffset.uge(V2Size.getValue()))
1499       return NoAlias;
1500 
1501     if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
1502                                 GEP1BaseOffset, &AC, DT))
1503       return NoAlias;
1504   }
1505 
1506   // Statically, we can see that the base objects are the same, but the
1507   // pointers have dynamic offsets which we can't resolve. And none of our
1508   // little tricks above worked.
1509   return MayAlias;
1510 }
1511 
1512 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1513   // If the results agree, take it.
1514   if (A == B)
1515     return A;
1516   // A mix of PartialAlias and MustAlias is PartialAlias.
1517   if ((A == PartialAlias && B == MustAlias) ||
1518       (B == PartialAlias && A == MustAlias))
1519     return PartialAlias;
1520   // Otherwise, we don't know anything.
1521   return MayAlias;
1522 }
1523 
1524 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1525 /// against another.
1526 AliasResult BasicAAResult::aliasSelect(const SelectInst *SI,
1527                                        LocationSize SISize,
1528                                        const AAMDNodes &SIAAInfo,
1529                                        const Value *V2, LocationSize V2Size,
1530                                        const AAMDNodes &V2AAInfo,
1531                                        const Value *UnderV2) {
1532   // If the values are Selects with the same condition, we can do a more precise
1533   // check: just check for aliases between the values on corresponding arms.
1534   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1535     if (SI->getCondition() == SI2->getCondition()) {
1536       AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo,
1537                                      SI2->getTrueValue(), V2Size, V2AAInfo);
1538       if (Alias == MayAlias)
1539         return MayAlias;
1540       AliasResult ThisAlias =
1541           aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
1542                      SI2->getFalseValue(), V2Size, V2AAInfo);
1543       return MergeAliasResults(ThisAlias, Alias);
1544     }
1545 
1546   // If both arms of the Select node NoAlias or MustAlias V2, then returns
1547   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1548   AliasResult Alias =
1549       aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(),
1550                  SISize, SIAAInfo, UnderV2);
1551   if (Alias == MayAlias)
1552     return MayAlias;
1553 
1554   AliasResult ThisAlias =
1555       aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo,
1556                  UnderV2);
1557   return MergeAliasResults(ThisAlias, Alias);
1558 }
1559 
1560 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1561 /// another.
1562 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
1563                                     const AAMDNodes &PNAAInfo, const Value *V2,
1564                                     LocationSize V2Size,
1565                                     const AAMDNodes &V2AAInfo,
1566                                     const Value *UnderV2) {
1567   // Track phi nodes we have visited. We use this information when we determine
1568   // value equivalence.
1569   VisitedPhiBBs.insert(PN->getParent());
1570 
1571   // If the values are PHIs in the same block, we can do a more precise
1572   // as well as efficient check: just check for aliases between the values
1573   // on corresponding edges.
1574   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1575     if (PN2->getParent() == PN->getParent()) {
1576       LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
1577                    MemoryLocation(V2, V2Size, V2AAInfo));
1578       if (PN > V2)
1579         std::swap(Locs.first, Locs.second);
1580       // Analyse the PHIs' inputs under the assumption that the PHIs are
1581       // NoAlias.
1582       // If the PHIs are May/MustAlias there must be (recursively) an input
1583       // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1584       // there must be an operation on the PHIs within the PHIs' value cycle
1585       // that causes a MayAlias.
1586       // Pretend the phis do not alias.
1587       AliasResult Alias = NoAlias;
1588       AliasResult OrigAliasResult;
1589       {
1590         // Limited lifetime iterator invalidated by the aliasCheck call below.
1591         auto CacheIt = AliasCache.find(Locs);
1592         assert((CacheIt != AliasCache.end()) &&
1593                "There must exist an entry for the phi node");
1594         OrigAliasResult = CacheIt->second;
1595         CacheIt->second = NoAlias;
1596       }
1597 
1598       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1599         AliasResult ThisAlias =
1600             aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
1601                        PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1602                        V2Size, V2AAInfo);
1603         Alias = MergeAliasResults(ThisAlias, Alias);
1604         if (Alias == MayAlias)
1605           break;
1606       }
1607 
1608       // Reset if speculation failed.
1609       if (Alias != NoAlias) {
1610         auto Pair = AliasCache.insert(std::make_pair(Locs, OrigAliasResult));
1611         assert(!Pair.second && "Entry must have existed");
1612         Pair.first->second = OrigAliasResult;
1613       }
1614       return Alias;
1615     }
1616 
1617   SmallVector<Value *, 4> V1Srcs;
1618   bool isRecursive = false;
1619   if (PV)  {
1620     // If we have PhiValues then use it to get the underlying phi values.
1621     const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN);
1622     // If we have more phi values than the search depth then return MayAlias
1623     // conservatively to avoid compile time explosion. The worst possible case
1624     // is if both sides are PHI nodes. In which case, this is O(m x n) time
1625     // where 'm' and 'n' are the number of PHI sources.
1626     if (PhiValueSet.size() > MaxLookupSearchDepth)
1627       return MayAlias;
1628     // Add the values to V1Srcs
1629     for (Value *PV1 : PhiValueSet) {
1630       if (EnableRecPhiAnalysis) {
1631         if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
1632           // Check whether the incoming value is a GEP that advances the pointer
1633           // result of this PHI node (e.g. in a loop). If this is the case, we
1634           // would recurse and always get a MayAlias. Handle this case specially
1635           // below.
1636           if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
1637               isa<ConstantInt>(PV1GEP->idx_begin())) {
1638             isRecursive = true;
1639             continue;
1640           }
1641         }
1642       }
1643       V1Srcs.push_back(PV1);
1644     }
1645   } else {
1646     // If we don't have PhiInfo then just look at the operands of the phi itself
1647     // FIXME: Remove this once we can guarantee that we have PhiInfo always
1648     SmallPtrSet<Value *, 4> UniqueSrc;
1649     for (Value *PV1 : PN->incoming_values()) {
1650       if (isa<PHINode>(PV1))
1651         // If any of the source itself is a PHI, return MayAlias conservatively
1652         // to avoid compile time explosion. The worst possible case is if both
1653         // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1654         // and 'n' are the number of PHI sources.
1655         return MayAlias;
1656 
1657       if (EnableRecPhiAnalysis)
1658         if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
1659           // Check whether the incoming value is a GEP that advances the pointer
1660           // result of this PHI node (e.g. in a loop). If this is the case, we
1661           // would recurse and always get a MayAlias. Handle this case specially
1662           // below.
1663           if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
1664               isa<ConstantInt>(PV1GEP->idx_begin())) {
1665             isRecursive = true;
1666             continue;
1667           }
1668         }
1669 
1670       if (UniqueSrc.insert(PV1).second)
1671         V1Srcs.push_back(PV1);
1672     }
1673   }
1674 
1675   // If V1Srcs is empty then that means that the phi has no underlying non-phi
1676   // value. This should only be possible in blocks unreachable from the entry
1677   // block, but return MayAlias just in case.
1678   if (V1Srcs.empty())
1679     return MayAlias;
1680 
1681   // If this PHI node is recursive, set the size of the accessed memory to
1682   // unknown to represent all the possible values the GEP could advance the
1683   // pointer to.
1684   if (isRecursive)
1685     PNSize = LocationSize::unknown();
1686 
1687   AliasResult Alias =
1688       aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0],
1689                  PNSize, PNAAInfo, UnderV2);
1690 
1691   // Early exit if the check of the first PHI source against V2 is MayAlias.
1692   // Other results are not possible.
1693   if (Alias == MayAlias)
1694     return MayAlias;
1695 
1696   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1697   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1698   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1699     Value *V = V1Srcs[i];
1700 
1701     AliasResult ThisAlias =
1702         aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, UnderV2);
1703     Alias = MergeAliasResults(ThisAlias, Alias);
1704     if (Alias == MayAlias)
1705       break;
1706   }
1707 
1708   return Alias;
1709 }
1710 
1711 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1712 /// array references.
1713 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
1714                                       AAMDNodes V1AAInfo, const Value *V2,
1715                                       LocationSize V2Size, AAMDNodes V2AAInfo,
1716                                       const Value *O1, const Value *O2) {
1717   // If either of the memory references is empty, it doesn't matter what the
1718   // pointer values are.
1719   if (V1Size.isZero() || V2Size.isZero())
1720     return NoAlias;
1721 
1722   // Strip off any casts if they exist.
1723   V1 = V1->stripPointerCastsAndInvariantGroups();
1724   V2 = V2->stripPointerCastsAndInvariantGroups();
1725 
1726   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1727   // value for undef that aliases nothing in the program.
1728   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1729     return NoAlias;
1730 
1731   // Are we checking for alias of the same value?
1732   // Because we look 'through' phi nodes, we could look at "Value" pointers from
1733   // different iterations. We must therefore make sure that this is not the
1734   // case. The function isValueEqualInPotentialCycles ensures that this cannot
1735   // happen by looking at the visited phi nodes and making sure they cannot
1736   // reach the value.
1737   if (isValueEqualInPotentialCycles(V1, V2))
1738     return MustAlias;
1739 
1740   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1741     return NoAlias; // Scalars cannot alias each other
1742 
1743   // Figure out what objects these things are pointing to if we can.
1744   if (O1 == nullptr)
1745     O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
1746 
1747   if (O2 == nullptr)
1748     O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);
1749 
1750   // Null values in the default address space don't point to any object, so they
1751   // don't alias any other pointer.
1752   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1753     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1754       return NoAlias;
1755   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1756     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1757       return NoAlias;
1758 
1759   if (O1 != O2) {
1760     // If V1/V2 point to two different objects, we know that we have no alias.
1761     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1762       return NoAlias;
1763 
1764     // Constant pointers can't alias with non-const isIdentifiedObject objects.
1765     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1766         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1767       return NoAlias;
1768 
1769     // Function arguments can't alias with things that are known to be
1770     // unambigously identified at the function level.
1771     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1772         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1773       return NoAlias;
1774 
1775     // If one pointer is the result of a call/invoke or load and the other is a
1776     // non-escaping local object within the same function, then we know the
1777     // object couldn't escape to a point where the call could return it.
1778     //
1779     // Note that if the pointers are in different functions, there are a
1780     // variety of complications. A call with a nocapture argument may still
1781     // temporary store the nocapture argument's value in a temporary memory
1782     // location if that memory location doesn't escape. Or it may pass a
1783     // nocapture value to other functions as long as they don't capture it.
1784     if (isEscapeSource(O1) && isNonEscapingLocalObject(O2, &IsCapturedCache))
1785       return NoAlias;
1786     if (isEscapeSource(O2) && isNonEscapingLocalObject(O1, &IsCapturedCache))
1787       return NoAlias;
1788   }
1789 
1790   // If the size of one access is larger than the entire object on the other
1791   // side, then we know such behavior is undefined and can assume no alias.
1792   bool NullIsValidLocation = NullPointerIsDefined(&F);
1793   if ((V1Size.isPrecise() && isObjectSmallerThan(O2, V1Size.getValue(), DL, TLI,
1794                                                  NullIsValidLocation)) ||
1795       (V2Size.isPrecise() && isObjectSmallerThan(O1, V2Size.getValue(), DL, TLI,
1796                                                  NullIsValidLocation)))
1797     return NoAlias;
1798 
1799   // Check the cache before climbing up use-def chains. This also terminates
1800   // otherwise infinitely recursive queries.
1801   LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
1802                MemoryLocation(V2, V2Size, V2AAInfo));
1803   if (V1 > V2)
1804     std::swap(Locs.first, Locs.second);
1805   std::pair<AliasCacheTy::iterator, bool> Pair =
1806       AliasCache.try_emplace(Locs, MayAlias);
1807   if (!Pair.second)
1808     return Pair.first->second;
1809 
1810   // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1811   // GEP can't simplify, we don't even look at the PHI cases.
1812   if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1813     std::swap(V1, V2);
1814     std::swap(V1Size, V2Size);
1815     std::swap(O1, O2);
1816     std::swap(V1AAInfo, V2AAInfo);
1817   }
1818   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1819     AliasResult Result =
1820         aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2);
1821     if (Result != MayAlias)
1822       return AliasCache[Locs] = Result;
1823   }
1824 
1825   if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1826     std::swap(V1, V2);
1827     std::swap(O1, O2);
1828     std::swap(V1Size, V2Size);
1829     std::swap(V1AAInfo, V2AAInfo);
1830   }
1831   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1832     AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo,
1833                                   V2, V2Size, V2AAInfo, O2);
1834     if (Result != MayAlias) {
1835       Pair = AliasCache.try_emplace(Locs, Result);
1836       assert(!Pair.second && "Entry must have existed");
1837       return Pair.first->second = Result;
1838     }
1839   }
1840 
1841   if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1842     std::swap(V1, V2);
1843     std::swap(O1, O2);
1844     std::swap(V1Size, V2Size);
1845     std::swap(V1AAInfo, V2AAInfo);
1846   }
1847   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1848     AliasResult Result =
1849         aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2);
1850     if (Result != MayAlias) {
1851       Pair = AliasCache.try_emplace(Locs, Result);
1852       assert(!Pair.second && "Entry must have existed");
1853       return Pair.first->second = Result;
1854     }
1855   }
1856 
1857   // If both pointers are pointing into the same object and one of them
1858   // accesses the entire object, then the accesses must overlap in some way.
1859   if (O1 == O2)
1860     if (V1Size.isPrecise() && V2Size.isPrecise() &&
1861         (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
1862          isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation))) {
1863       Pair = AliasCache.try_emplace(Locs, PartialAlias);
1864       assert(!Pair.second && "Entry must have existed");
1865       return Pair.first->second = PartialAlias;
1866     }
1867 
1868   // Recurse back into the best AA results we have, potentially with refined
1869   // memory locations. We have already ensured that BasicAA has a MayAlias
1870   // cache result for these, so any recursion back into BasicAA won't loop.
1871   AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second);
1872   Pair = AliasCache.try_emplace(Locs, Result);
1873   assert(!Pair.second && "Entry must have existed");
1874   return Pair.first->second = Result;
1875 }
1876 
1877 /// Check whether two Values can be considered equivalent.
1878 ///
1879 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1880 /// they can not be part of a cycle in the value graph by looking at all
1881 /// visited phi nodes an making sure that the phis cannot reach the value. We
1882 /// have to do this because we are looking through phi nodes (That is we say
1883 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1884 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1885                                                   const Value *V2) {
1886   if (V != V2)
1887     return false;
1888 
1889   const Instruction *Inst = dyn_cast<Instruction>(V);
1890   if (!Inst)
1891     return true;
1892 
1893   if (VisitedPhiBBs.empty())
1894     return true;
1895 
1896   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1897     return false;
1898 
1899   // Make sure that the visited phis cannot reach the Value. This ensures that
1900   // the Values cannot come from different iterations of a potential cycle the
1901   // phi nodes could be involved in.
1902   for (auto *P : VisitedPhiBBs)
1903     if (isPotentiallyReachable(&P->front(), Inst, DT, LI))
1904       return false;
1905 
1906   return true;
1907 }
1908 
1909 /// Computes the symbolic difference between two de-composed GEPs.
1910 ///
1911 /// Dest and Src are the variable indices from two decomposed GetElementPtr
1912 /// instructions GEP1 and GEP2 which have common base pointers.
1913 void BasicAAResult::GetIndexDifference(
1914     SmallVectorImpl<VariableGEPIndex> &Dest,
1915     const SmallVectorImpl<VariableGEPIndex> &Src) {
1916   if (Src.empty())
1917     return;
1918 
1919   for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1920     const Value *V = Src[i].V;
1921     unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
1922     APInt Scale = Src[i].Scale;
1923 
1924     // Find V in Dest.  This is N^2, but pointer indices almost never have more
1925     // than a few variable indexes.
1926     for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1927       if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1928           Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
1929         continue;
1930 
1931       // If we found it, subtract off Scale V's from the entry in Dest.  If it
1932       // goes to zero, remove the entry.
1933       if (Dest[j].Scale != Scale)
1934         Dest[j].Scale -= Scale;
1935       else
1936         Dest.erase(Dest.begin() + j);
1937       Scale = 0;
1938       break;
1939     }
1940 
1941     // If we didn't consume this entry, add it to the end of the Dest list.
1942     if (!!Scale) {
1943       VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale};
1944       Dest.push_back(Entry);
1945     }
1946   }
1947 }
1948 
1949 bool BasicAAResult::constantOffsetHeuristic(
1950     const SmallVectorImpl<VariableGEPIndex> &VarIndices,
1951     LocationSize MaybeV1Size, LocationSize MaybeV2Size, APInt BaseOffset,
1952     AssumptionCache *AC, DominatorTree *DT) {
1953   if (VarIndices.size() != 2 || MaybeV1Size == LocationSize::unknown() ||
1954       MaybeV2Size == LocationSize::unknown())
1955     return false;
1956 
1957   const uint64_t V1Size = MaybeV1Size.getValue();
1958   const uint64_t V2Size = MaybeV2Size.getValue();
1959 
1960   const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
1961 
1962   if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
1963       Var0.Scale != -Var1.Scale)
1964     return false;
1965 
1966   unsigned Width = Var1.V->getType()->getIntegerBitWidth();
1967 
1968   // We'll strip off the Extensions of Var0 and Var1 and do another round
1969   // of GetLinearExpression decomposition. In the example above, if Var0
1970   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1971 
1972   APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
1973       V1Offset(Width, 0);
1974   bool NSW = true, NUW = true;
1975   unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
1976   const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
1977                                         V0SExtBits, DL, 0, AC, DT, NSW, NUW);
1978   NSW = true;
1979   NUW = true;
1980   const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
1981                                         V1SExtBits, DL, 0, AC, DT, NSW, NUW);
1982 
1983   if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
1984       V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
1985     return false;
1986 
1987   // We have a hit - Var0 and Var1 only differ by a constant offset!
1988 
1989   // If we've been sext'ed then zext'd the maximum difference between Var0 and
1990   // Var1 is possible to calculate, but we're just interested in the absolute
1991   // minimum difference between the two. The minimum distance may occur due to
1992   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1993   // the minimum distance between %i and %i + 5 is 3.
1994   APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
1995   MinDiff = APIntOps::umin(MinDiff, Wrapped);
1996   APInt MinDiffBytes =
1997     MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs();
1998 
1999   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
2000   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
2001   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
2002   // V2Size can fit in the MinDiffBytes gap.
2003   return MinDiffBytes.uge(V1Size + BaseOffset.abs()) &&
2004          MinDiffBytes.uge(V2Size + BaseOffset.abs());
2005 }
2006 
2007 //===----------------------------------------------------------------------===//
2008 // BasicAliasAnalysis Pass
2009 //===----------------------------------------------------------------------===//
2010 
2011 AnalysisKey BasicAA::Key;
2012 
2013 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
2014   return BasicAAResult(F.getParent()->getDataLayout(),
2015                        F,
2016                        AM.getResult<TargetLibraryAnalysis>(F),
2017                        AM.getResult<AssumptionAnalysis>(F),
2018                        &AM.getResult<DominatorTreeAnalysis>(F),
2019                        AM.getCachedResult<LoopAnalysis>(F),
2020                        AM.getCachedResult<PhiValuesAnalysis>(F));
2021 }
2022 
2023 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
2024     initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
2025 }
2026 
2027 char BasicAAWrapperPass::ID = 0;
2028 
2029 void BasicAAWrapperPass::anchor() {}
2030 
2031 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa",
2032                       "Basic Alias Analysis (stateless AA impl)", false, true)
2033 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2034 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2035 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2036 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa",
2037                     "Basic Alias Analysis (stateless AA impl)", false, true)
2038 
2039 FunctionPass *llvm::createBasicAAWrapperPass() {
2040   return new BasicAAWrapperPass();
2041 }
2042 
2043 bool BasicAAWrapperPass::runOnFunction(Function &F) {
2044   auto &ACT = getAnalysis<AssumptionCacheTracker>();
2045   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
2046   auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
2047   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
2048   auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>();
2049 
2050   Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F, TLIWP.getTLI(),
2051                                  ACT.getAssumptionCache(F), &DTWP.getDomTree(),
2052                                  LIWP ? &LIWP->getLoopInfo() : nullptr,
2053                                  PVWP ? &PVWP->getResult() : nullptr));
2054 
2055   return false;
2056 }
2057 
2058 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
2059   AU.setPreservesAll();
2060   AU.addRequired<AssumptionCacheTracker>();
2061   AU.addRequired<DominatorTreeWrapperPass>();
2062   AU.addRequired<TargetLibraryInfoWrapperPass>();
2063   AU.addUsedIfAvailable<PhiValuesWrapperPass>();
2064 }
2065 
2066 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
2067   return BasicAAResult(
2068       F.getParent()->getDataLayout(),
2069       F,
2070       P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
2071       P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
2072 }
2073