1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the primary stateless implementation of the 10 // Alias Analysis interface that implements identities (two different 11 // globals cannot alias, etc), but does no stateful analysis. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/BasicAliasAnalysis.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/Analysis/CaptureTracking.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/PhiValues.h" 31 #include "llvm/IR/Argument.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/GetElementPtrTypeIterator.h" 40 #include "llvm/IR/GlobalAlias.h" 41 #include "llvm/IR/GlobalVariable.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/Operator.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/User.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Compiler.h" 56 #include "llvm/Support/KnownBits.h" 57 #include <cassert> 58 #include <cstdint> 59 #include <cstdlib> 60 #include <utility> 61 62 #define DEBUG_TYPE "basicaa" 63 64 using namespace llvm; 65 66 /// Enable analysis of recursive PHI nodes. 67 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden, 68 cl::init(false)); 69 70 /// By default, even on 32-bit architectures we use 64-bit integers for 71 /// calculations. This will allow us to more-aggressively decompose indexing 72 /// expressions calculated using i64 values (e.g., long long in C) which is 73 /// common enough to worry about. 74 static cl::opt<bool> ForceAtLeast64Bits("basicaa-force-at-least-64b", 75 cl::Hidden, cl::init(true)); 76 static cl::opt<bool> DoubleCalcBits("basicaa-double-calc-bits", 77 cl::Hidden, cl::init(false)); 78 79 /// SearchLimitReached / SearchTimes shows how often the limit of 80 /// to decompose GEPs is reached. It will affect the precision 81 /// of basic alias analysis. 82 STATISTIC(SearchLimitReached, "Number of times the limit to " 83 "decompose GEPs is reached"); 84 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 85 86 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 87 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be 88 /// careful with value equivalence. We use reachability to make sure a value 89 /// cannot be involved in a cycle. 90 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 91 92 // The max limit of the search depth in DecomposeGEPExpression() and 93 // GetUnderlyingObject(), both functions need to use the same search 94 // depth otherwise the algorithm in aliasGEP will assert. 95 static const unsigned MaxLookupSearchDepth = 6; 96 97 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA, 98 FunctionAnalysisManager::Invalidator &Inv) { 99 // We don't care if this analysis itself is preserved, it has no state. But 100 // we need to check that the analyses it depends on have been. Note that we 101 // may be created without handles to some analyses and in that case don't 102 // depend on them. 103 if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) || 104 (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) || 105 (LI && Inv.invalidate<LoopAnalysis>(Fn, PA)) || 106 (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA))) 107 return true; 108 109 // Otherwise this analysis result remains valid. 110 return false; 111 } 112 113 //===----------------------------------------------------------------------===// 114 // Useful predicates 115 //===----------------------------------------------------------------------===// 116 117 /// Returns true if the pointer is to a function-local object that never 118 /// escapes from the function. 119 static bool isNonEscapingLocalObject( 120 const Value *V, 121 SmallDenseMap<const Value *, bool, 8> *IsCapturedCache = nullptr) { 122 SmallDenseMap<const Value *, bool, 8>::iterator CacheIt; 123 if (IsCapturedCache) { 124 bool Inserted; 125 std::tie(CacheIt, Inserted) = IsCapturedCache->insert({V, false}); 126 if (!Inserted) 127 // Found cached result, return it! 128 return CacheIt->second; 129 } 130 131 // If this is a local allocation, check to see if it escapes. 132 if (isa<AllocaInst>(V) || isNoAliasCall(V)) { 133 // Set StoreCaptures to True so that we can assume in our callers that the 134 // pointer is not the result of a load instruction. Currently 135 // PointerMayBeCaptured doesn't have any special analysis for the 136 // StoreCaptures=false case; if it did, our callers could be refined to be 137 // more precise. 138 auto Ret = !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 139 if (IsCapturedCache) 140 CacheIt->second = Ret; 141 return Ret; 142 } 143 144 // If this is an argument that corresponds to a byval or noalias argument, 145 // then it has not escaped before entering the function. Check if it escapes 146 // inside the function. 147 if (const Argument *A = dyn_cast<Argument>(V)) 148 if (A->hasByValAttr() || A->hasNoAliasAttr()) { 149 // Note even if the argument is marked nocapture, we still need to check 150 // for copies made inside the function. The nocapture attribute only 151 // specifies that there are no copies made that outlive the function. 152 auto Ret = !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 153 if (IsCapturedCache) 154 CacheIt->second = Ret; 155 return Ret; 156 } 157 158 return false; 159 } 160 161 /// Returns true if the pointer is one which would have been considered an 162 /// escape by isNonEscapingLocalObject. 163 static bool isEscapeSource(const Value *V) { 164 if (isa<CallBase>(V)) 165 return true; 166 167 if (isa<Argument>(V)) 168 return true; 169 170 // The load case works because isNonEscapingLocalObject considers all 171 // stores to be escapes (it passes true for the StoreCaptures argument 172 // to PointerMayBeCaptured). 173 if (isa<LoadInst>(V)) 174 return true; 175 176 return false; 177 } 178 179 /// Returns the size of the object specified by V or UnknownSize if unknown. 180 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 181 const TargetLibraryInfo &TLI, 182 bool NullIsValidLoc, 183 bool RoundToAlign = false) { 184 uint64_t Size; 185 ObjectSizeOpts Opts; 186 Opts.RoundToAlign = RoundToAlign; 187 Opts.NullIsUnknownSize = NullIsValidLoc; 188 if (getObjectSize(V, Size, DL, &TLI, Opts)) 189 return Size; 190 return MemoryLocation::UnknownSize; 191 } 192 193 /// Returns true if we can prove that the object specified by V is smaller than 194 /// Size. 195 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 196 const DataLayout &DL, 197 const TargetLibraryInfo &TLI, 198 bool NullIsValidLoc) { 199 // Note that the meanings of the "object" are slightly different in the 200 // following contexts: 201 // c1: llvm::getObjectSize() 202 // c2: llvm.objectsize() intrinsic 203 // c3: isObjectSmallerThan() 204 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 205 // refers to the "entire object". 206 // 207 // Consider this example: 208 // char *p = (char*)malloc(100) 209 // char *q = p+80; 210 // 211 // In the context of c1 and c2, the "object" pointed by q refers to the 212 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 213 // 214 // However, in the context of c3, the "object" refers to the chunk of memory 215 // being allocated. So, the "object" has 100 bytes, and q points to the middle 216 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 217 // parameter, before the llvm::getObjectSize() is called to get the size of 218 // entire object, we should: 219 // - either rewind the pointer q to the base-address of the object in 220 // question (in this case rewind to p), or 221 // - just give up. It is up to caller to make sure the pointer is pointing 222 // to the base address the object. 223 // 224 // We go for 2nd option for simplicity. 225 if (!isIdentifiedObject(V)) 226 return false; 227 228 // This function needs to use the aligned object size because we allow 229 // reads a bit past the end given sufficient alignment. 230 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc, 231 /*RoundToAlign*/ true); 232 233 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; 234 } 235 236 /// Returns true if we can prove that the object specified by V has size Size. 237 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, 238 const TargetLibraryInfo &TLI, bool NullIsValidLoc) { 239 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc); 240 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; 241 } 242 243 //===----------------------------------------------------------------------===// 244 // GetElementPtr Instruction Decomposition and Analysis 245 //===----------------------------------------------------------------------===// 246 247 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 248 /// B are constant integers. 249 /// 250 /// Returns the scale and offset values as APInts and return V as a Value*, and 251 /// return whether we looked through any sign or zero extends. The incoming 252 /// Value is known to have IntegerType, and it may already be sign or zero 253 /// extended. 254 /// 255 /// Note that this looks through extends, so the high bits may not be 256 /// represented in the result. 257 /*static*/ const Value *BasicAAResult::GetLinearExpression( 258 const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits, 259 unsigned &SExtBits, const DataLayout &DL, unsigned Depth, 260 AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) { 261 assert(V->getType()->isIntegerTy() && "Not an integer value"); 262 263 // Limit our recursion depth. 264 if (Depth == 6) { 265 Scale = 1; 266 Offset = 0; 267 return V; 268 } 269 270 if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) { 271 // If it's a constant, just convert it to an offset and remove the variable. 272 // If we've been called recursively, the Offset bit width will be greater 273 // than the constant's (the Offset's always as wide as the outermost call), 274 // so we'll zext here and process any extension in the isa<SExtInst> & 275 // isa<ZExtInst> cases below. 276 Offset += Const->getValue().zextOrSelf(Offset.getBitWidth()); 277 assert(Scale == 0 && "Constant values don't have a scale"); 278 return V; 279 } 280 281 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 282 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 283 // If we've been called recursively, then Offset and Scale will be wider 284 // than the BOp operands. We'll always zext it here as we'll process sign 285 // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases). 286 APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth()); 287 288 switch (BOp->getOpcode()) { 289 default: 290 // We don't understand this instruction, so we can't decompose it any 291 // further. 292 Scale = 1; 293 Offset = 0; 294 return V; 295 case Instruction::Or: 296 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 297 // analyze it. 298 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, 299 BOp, DT)) { 300 Scale = 1; 301 Offset = 0; 302 return V; 303 } 304 LLVM_FALLTHROUGH; 305 case Instruction::Add: 306 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 307 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 308 Offset += RHS; 309 break; 310 case Instruction::Sub: 311 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 312 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 313 Offset -= RHS; 314 break; 315 case Instruction::Mul: 316 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 317 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 318 Offset *= RHS; 319 Scale *= RHS; 320 break; 321 case Instruction::Shl: 322 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 323 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 324 325 // We're trying to linearize an expression of the kind: 326 // shl i8 -128, 36 327 // where the shift count exceeds the bitwidth of the type. 328 // We can't decompose this further (the expression would return 329 // a poison value). 330 if (Offset.getBitWidth() < RHS.getLimitedValue() || 331 Scale.getBitWidth() < RHS.getLimitedValue()) { 332 Scale = 1; 333 Offset = 0; 334 return V; 335 } 336 337 Offset <<= RHS.getLimitedValue(); 338 Scale <<= RHS.getLimitedValue(); 339 // the semantics of nsw and nuw for left shifts don't match those of 340 // multiplications, so we won't propagate them. 341 NSW = NUW = false; 342 return V; 343 } 344 345 if (isa<OverflowingBinaryOperator>(BOp)) { 346 NUW &= BOp->hasNoUnsignedWrap(); 347 NSW &= BOp->hasNoSignedWrap(); 348 } 349 return V; 350 } 351 } 352 353 // Since GEP indices are sign extended anyway, we don't care about the high 354 // bits of a sign or zero extended value - just scales and offsets. The 355 // extensions have to be consistent though. 356 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) { 357 Value *CastOp = cast<CastInst>(V)->getOperand(0); 358 unsigned NewWidth = V->getType()->getPrimitiveSizeInBits(); 359 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 360 unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits; 361 const Value *Result = 362 GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL, 363 Depth + 1, AC, DT, NSW, NUW); 364 365 // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this 366 // by just incrementing the number of bits we've extended by. 367 unsigned ExtendedBy = NewWidth - SmallWidth; 368 369 if (isa<SExtInst>(V) && ZExtBits == 0) { 370 // sext(sext(%x, a), b) == sext(%x, a + b) 371 372 if (NSW) { 373 // We haven't sign-wrapped, so it's valid to decompose sext(%x + c) 374 // into sext(%x) + sext(c). We'll sext the Offset ourselves: 375 unsigned OldWidth = Offset.getBitWidth(); 376 Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth); 377 } else { 378 // We may have signed-wrapped, so don't decompose sext(%x + c) into 379 // sext(%x) + sext(c) 380 Scale = 1; 381 Offset = 0; 382 Result = CastOp; 383 ZExtBits = OldZExtBits; 384 SExtBits = OldSExtBits; 385 } 386 SExtBits += ExtendedBy; 387 } else { 388 // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b) 389 390 if (!NUW) { 391 // We may have unsigned-wrapped, so don't decompose zext(%x + c) into 392 // zext(%x) + zext(c) 393 Scale = 1; 394 Offset = 0; 395 Result = CastOp; 396 ZExtBits = OldZExtBits; 397 SExtBits = OldSExtBits; 398 } 399 ZExtBits += ExtendedBy; 400 } 401 402 return Result; 403 } 404 405 Scale = 1; 406 Offset = 0; 407 return V; 408 } 409 410 /// To ensure a pointer offset fits in an integer of size PointerSize 411 /// (in bits) when that size is smaller than the maximum pointer size. This is 412 /// an issue, for example, in particular for 32b pointers with negative indices 413 /// that rely on two's complement wrap-arounds for precise alias information 414 /// where the maximum pointer size is 64b. 415 static APInt adjustToPointerSize(APInt Offset, unsigned PointerSize) { 416 assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!"); 417 unsigned ShiftBits = Offset.getBitWidth() - PointerSize; 418 return (Offset << ShiftBits).ashr(ShiftBits); 419 } 420 421 static unsigned getMaxPointerSize(const DataLayout &DL) { 422 unsigned MaxPointerSize = DL.getMaxPointerSizeInBits(); 423 if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64; 424 if (DoubleCalcBits) MaxPointerSize *= 2; 425 426 return MaxPointerSize; 427 } 428 429 /// If V is a symbolic pointer expression, decompose it into a base pointer 430 /// with a constant offset and a number of scaled symbolic offsets. 431 /// 432 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 433 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 434 /// specified amount, but which may have other unrepresented high bits. As 435 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 436 /// 437 /// When DataLayout is around, this function is capable of analyzing everything 438 /// that GetUnderlyingObject can look through. To be able to do that 439 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search 440 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks 441 /// through pointer casts. 442 bool BasicAAResult::DecomposeGEPExpression(const Value *V, 443 DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC, 444 DominatorTree *DT) { 445 // Limit recursion depth to limit compile time in crazy cases. 446 unsigned MaxLookup = MaxLookupSearchDepth; 447 SearchTimes++; 448 449 unsigned MaxPointerSize = getMaxPointerSize(DL); 450 Decomposed.VarIndices.clear(); 451 do { 452 // See if this is a bitcast or GEP. 453 const Operator *Op = dyn_cast<Operator>(V); 454 if (!Op) { 455 // The only non-operator case we can handle are GlobalAliases. 456 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 457 if (!GA->isInterposable()) { 458 V = GA->getAliasee(); 459 continue; 460 } 461 } 462 Decomposed.Base = V; 463 return false; 464 } 465 466 if (Op->getOpcode() == Instruction::BitCast || 467 Op->getOpcode() == Instruction::AddrSpaceCast) { 468 V = Op->getOperand(0); 469 continue; 470 } 471 472 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 473 if (!GEPOp) { 474 if (const auto *Call = dyn_cast<CallBase>(V)) { 475 // CaptureTracking can know about special capturing properties of some 476 // intrinsics like launder.invariant.group, that can't be expressed with 477 // the attributes, but have properties like returning aliasing pointer. 478 // Because some analysis may assume that nocaptured pointer is not 479 // returned from some special intrinsic (because function would have to 480 // be marked with returns attribute), it is crucial to use this function 481 // because it should be in sync with CaptureTracking. Not using it may 482 // cause weird miscompilations where 2 aliasing pointers are assumed to 483 // noalias. 484 if (auto *RP = getArgumentAliasingToReturnedPointer(Call)) { 485 V = RP; 486 continue; 487 } 488 } 489 490 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 491 // can come up with something. This matches what GetUnderlyingObject does. 492 if (const Instruction *I = dyn_cast<Instruction>(V)) 493 // TODO: Get a DominatorTree and AssumptionCache and use them here 494 // (these are both now available in this function, but this should be 495 // updated when GetUnderlyingObject is updated). TLI should be 496 // provided also. 497 if (const Value *Simplified = 498 SimplifyInstruction(const_cast<Instruction *>(I), DL)) { 499 V = Simplified; 500 continue; 501 } 502 503 Decomposed.Base = V; 504 return false; 505 } 506 507 // Don't attempt to analyze GEPs over unsized objects. 508 if (!GEPOp->getSourceElementType()->isSized()) { 509 Decomposed.Base = V; 510 return false; 511 } 512 513 unsigned AS = GEPOp->getPointerAddressSpace(); 514 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 515 gep_type_iterator GTI = gep_type_begin(GEPOp); 516 unsigned PointerSize = DL.getPointerSizeInBits(AS); 517 // Assume all GEP operands are constants until proven otherwise. 518 bool GepHasConstantOffset = true; 519 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 520 I != E; ++I, ++GTI) { 521 const Value *Index = *I; 522 // Compute the (potentially symbolic) offset in bytes for this index. 523 if (StructType *STy = GTI.getStructTypeOrNull()) { 524 // For a struct, add the member offset. 525 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 526 if (FieldNo == 0) 527 continue; 528 529 Decomposed.StructOffset += 530 DL.getStructLayout(STy)->getElementOffset(FieldNo); 531 continue; 532 } 533 534 // For an array/pointer, add the element offset, explicitly scaled. 535 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 536 if (CIdx->isZero()) 537 continue; 538 Decomposed.OtherOffset += 539 (DL.getTypeAllocSize(GTI.getIndexedType()) * 540 CIdx->getValue().sextOrSelf(MaxPointerSize)) 541 .sextOrTrunc(MaxPointerSize); 542 continue; 543 } 544 545 GepHasConstantOffset = false; 546 547 APInt Scale(MaxPointerSize, DL.getTypeAllocSize(GTI.getIndexedType())); 548 unsigned ZExtBits = 0, SExtBits = 0; 549 550 // If the integer type is smaller than the pointer size, it is implicitly 551 // sign extended to pointer size. 552 unsigned Width = Index->getType()->getIntegerBitWidth(); 553 if (PointerSize > Width) 554 SExtBits += PointerSize - Width; 555 556 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 557 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 558 bool NSW = true, NUW = true; 559 const Value *OrigIndex = Index; 560 Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits, 561 SExtBits, DL, 0, AC, DT, NSW, NUW); 562 563 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 564 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 565 566 // It can be the case that, even through C1*V+C2 does not overflow for 567 // relevant values of V, (C2*Scale) can overflow. In that case, we cannot 568 // decompose the expression in this way. 569 // 570 // FIXME: C1*Scale and the other operations in the decomposed 571 // (C1*Scale)*V+C2*Scale can also overflow. We should check for this 572 // possibility. 573 APInt WideScaledOffset = IndexOffset.sextOrTrunc(MaxPointerSize*2) * 574 Scale.sext(MaxPointerSize*2); 575 if (WideScaledOffset.getMinSignedBits() > MaxPointerSize) { 576 Index = OrigIndex; 577 IndexScale = 1; 578 IndexOffset = 0; 579 580 ZExtBits = SExtBits = 0; 581 if (PointerSize > Width) 582 SExtBits += PointerSize - Width; 583 } else { 584 Decomposed.OtherOffset += IndexOffset.sextOrTrunc(MaxPointerSize) * Scale; 585 Scale *= IndexScale.sextOrTrunc(MaxPointerSize); 586 } 587 588 // If we already had an occurrence of this index variable, merge this 589 // scale into it. For example, we want to handle: 590 // A[x][x] -> x*16 + x*4 -> x*20 591 // This also ensures that 'x' only appears in the index list once. 592 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { 593 if (Decomposed.VarIndices[i].V == Index && 594 Decomposed.VarIndices[i].ZExtBits == ZExtBits && 595 Decomposed.VarIndices[i].SExtBits == SExtBits) { 596 Scale += Decomposed.VarIndices[i].Scale; 597 Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i); 598 break; 599 } 600 } 601 602 // Make sure that we have a scale that makes sense for this target's 603 // pointer size. 604 Scale = adjustToPointerSize(Scale, PointerSize); 605 606 if (!!Scale) { 607 VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, Scale}; 608 Decomposed.VarIndices.push_back(Entry); 609 } 610 } 611 612 // Take care of wrap-arounds 613 if (GepHasConstantOffset) { 614 Decomposed.StructOffset = 615 adjustToPointerSize(Decomposed.StructOffset, PointerSize); 616 Decomposed.OtherOffset = 617 adjustToPointerSize(Decomposed.OtherOffset, PointerSize); 618 } 619 620 // Analyze the base pointer next. 621 V = GEPOp->getOperand(0); 622 } while (--MaxLookup); 623 624 // If the chain of expressions is too deep, just return early. 625 Decomposed.Base = V; 626 SearchLimitReached++; 627 return true; 628 } 629 630 /// Returns whether the given pointer value points to memory that is local to 631 /// the function, with global constants being considered local to all 632 /// functions. 633 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc, 634 bool OrLocal) { 635 assert(Visited.empty() && "Visited must be cleared after use!"); 636 637 unsigned MaxLookup = 8; 638 SmallVector<const Value *, 16> Worklist; 639 Worklist.push_back(Loc.Ptr); 640 do { 641 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL); 642 if (!Visited.insert(V).second) { 643 Visited.clear(); 644 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 645 } 646 647 // An alloca instruction defines local memory. 648 if (OrLocal && isa<AllocaInst>(V)) 649 continue; 650 651 // A global constant counts as local memory for our purposes. 652 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 653 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 654 // global to be marked constant in some modules and non-constant in 655 // others. GV may even be a declaration, not a definition. 656 if (!GV->isConstant()) { 657 Visited.clear(); 658 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 659 } 660 continue; 661 } 662 663 // If both select values point to local memory, then so does the select. 664 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 665 Worklist.push_back(SI->getTrueValue()); 666 Worklist.push_back(SI->getFalseValue()); 667 continue; 668 } 669 670 // If all values incoming to a phi node point to local memory, then so does 671 // the phi. 672 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 673 // Don't bother inspecting phi nodes with many operands. 674 if (PN->getNumIncomingValues() > MaxLookup) { 675 Visited.clear(); 676 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 677 } 678 for (Value *IncValue : PN->incoming_values()) 679 Worklist.push_back(IncValue); 680 continue; 681 } 682 683 // Otherwise be conservative. 684 Visited.clear(); 685 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 686 } while (!Worklist.empty() && --MaxLookup); 687 688 Visited.clear(); 689 return Worklist.empty(); 690 } 691 692 /// Returns the behavior when calling the given call site. 693 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) { 694 if (Call->doesNotAccessMemory()) 695 // Can't do better than this. 696 return FMRB_DoesNotAccessMemory; 697 698 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 699 700 // If the callsite knows it only reads memory, don't return worse 701 // than that. 702 if (Call->onlyReadsMemory()) 703 Min = FMRB_OnlyReadsMemory; 704 else if (Call->doesNotReadMemory()) 705 Min = FMRB_DoesNotReadMemory; 706 707 if (Call->onlyAccessesArgMemory()) 708 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 709 else if (Call->onlyAccessesInaccessibleMemory()) 710 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 711 else if (Call->onlyAccessesInaccessibleMemOrArgMem()) 712 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 713 714 // If the call has operand bundles then aliasing attributes from the function 715 // it calls do not directly apply to the call. This can be made more precise 716 // in the future. 717 if (!Call->hasOperandBundles()) 718 if (const Function *F = Call->getCalledFunction()) 719 Min = 720 FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F)); 721 722 return Min; 723 } 724 725 /// Returns the behavior when calling the given function. For use when the call 726 /// site is not known. 727 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) { 728 // If the function declares it doesn't access memory, we can't do better. 729 if (F->doesNotAccessMemory()) 730 return FMRB_DoesNotAccessMemory; 731 732 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 733 734 // If the function declares it only reads memory, go with that. 735 if (F->onlyReadsMemory()) 736 Min = FMRB_OnlyReadsMemory; 737 else if (F->doesNotReadMemory()) 738 Min = FMRB_DoesNotReadMemory; 739 740 if (F->onlyAccessesArgMemory()) 741 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 742 else if (F->onlyAccessesInaccessibleMemory()) 743 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 744 else if (F->onlyAccessesInaccessibleMemOrArgMem()) 745 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 746 747 return Min; 748 } 749 750 /// Returns true if this is a writeonly (i.e Mod only) parameter. 751 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx, 752 const TargetLibraryInfo &TLI) { 753 if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly)) 754 return true; 755 756 // We can bound the aliasing properties of memset_pattern16 just as we can 757 // for memcpy/memset. This is particularly important because the 758 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 759 // whenever possible. 760 // FIXME Consider handling this in InferFunctionAttr.cpp together with other 761 // attributes. 762 LibFunc F; 763 if (Call->getCalledFunction() && 764 TLI.getLibFunc(*Call->getCalledFunction(), F) && 765 F == LibFunc_memset_pattern16 && TLI.has(F)) 766 if (ArgIdx == 0) 767 return true; 768 769 // TODO: memset_pattern4, memset_pattern8 770 // TODO: _chk variants 771 // TODO: strcmp, strcpy 772 773 return false; 774 } 775 776 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call, 777 unsigned ArgIdx) { 778 // Checking for known builtin intrinsics and target library functions. 779 if (isWriteOnlyParam(Call, ArgIdx, TLI)) 780 return ModRefInfo::Mod; 781 782 if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly)) 783 return ModRefInfo::Ref; 784 785 if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone)) 786 return ModRefInfo::NoModRef; 787 788 return AAResultBase::getArgModRefInfo(Call, ArgIdx); 789 } 790 791 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) { 792 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call); 793 return II && II->getIntrinsicID() == IID; 794 } 795 796 #ifndef NDEBUG 797 static const Function *getParent(const Value *V) { 798 if (const Instruction *inst = dyn_cast<Instruction>(V)) { 799 if (!inst->getParent()) 800 return nullptr; 801 return inst->getParent()->getParent(); 802 } 803 804 if (const Argument *arg = dyn_cast<Argument>(V)) 805 return arg->getParent(); 806 807 return nullptr; 808 } 809 810 static bool notDifferentParent(const Value *O1, const Value *O2) { 811 812 const Function *F1 = getParent(O1); 813 const Function *F2 = getParent(O2); 814 815 return !F1 || !F2 || F1 == F2; 816 } 817 #endif 818 819 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 820 const MemoryLocation &LocB) { 821 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 822 "BasicAliasAnalysis doesn't support interprocedural queries."); 823 824 // If we have a directly cached entry for these locations, we have recursed 825 // through this once, so just return the cached results. Notably, when this 826 // happens, we don't clear the cache. 827 auto CacheIt = AliasCache.find(LocPair(LocA, LocB)); 828 if (CacheIt != AliasCache.end()) 829 return CacheIt->second; 830 831 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr, 832 LocB.Size, LocB.AATags); 833 // AliasCache rarely has more than 1 or 2 elements, always use 834 // shrink_and_clear so it quickly returns to the inline capacity of the 835 // SmallDenseMap if it ever grows larger. 836 // FIXME: This should really be shrink_to_inline_capacity_and_clear(). 837 AliasCache.shrink_and_clear(); 838 IsCapturedCache.shrink_and_clear(); 839 VisitedPhiBBs.clear(); 840 return Alias; 841 } 842 843 /// Checks to see if the specified callsite can clobber the specified memory 844 /// object. 845 /// 846 /// Since we only look at local properties of this function, we really can't 847 /// say much about this query. We do, however, use simple "address taken" 848 /// analysis on local objects. 849 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call, 850 const MemoryLocation &Loc) { 851 assert(notDifferentParent(Call, Loc.Ptr) && 852 "AliasAnalysis query involving multiple functions!"); 853 854 const Value *Object = GetUnderlyingObject(Loc.Ptr, DL); 855 856 // Calls marked 'tail' cannot read or write allocas from the current frame 857 // because the current frame might be destroyed by the time they run. However, 858 // a tail call may use an alloca with byval. Calling with byval copies the 859 // contents of the alloca into argument registers or stack slots, so there is 860 // no lifetime issue. 861 if (isa<AllocaInst>(Object)) 862 if (const CallInst *CI = dyn_cast<CallInst>(Call)) 863 if (CI->isTailCall() && 864 !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal)) 865 return ModRefInfo::NoModRef; 866 867 // Stack restore is able to modify unescaped dynamic allocas. Assume it may 868 // modify them even though the alloca is not escaped. 869 if (auto *AI = dyn_cast<AllocaInst>(Object)) 870 if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore)) 871 return ModRefInfo::Mod; 872 873 // If the pointer is to a locally allocated object that does not escape, 874 // then the call can not mod/ref the pointer unless the call takes the pointer 875 // as an argument, and itself doesn't capture it. 876 if (!isa<Constant>(Object) && Call != Object && 877 isNonEscapingLocalObject(Object)) { 878 879 // Optimistically assume that call doesn't touch Object and check this 880 // assumption in the following loop. 881 ModRefInfo Result = ModRefInfo::NoModRef; 882 bool IsMustAlias = true; 883 884 unsigned OperandNo = 0; 885 for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end(); 886 CI != CE; ++CI, ++OperandNo) { 887 // Only look at the no-capture or byval pointer arguments. If this 888 // pointer were passed to arguments that were neither of these, then it 889 // couldn't be no-capture. 890 if (!(*CI)->getType()->isPointerTy() || 891 (!Call->doesNotCapture(OperandNo) && 892 OperandNo < Call->getNumArgOperands() && 893 !Call->isByValArgument(OperandNo))) 894 continue; 895 896 // Call doesn't access memory through this operand, so we don't care 897 // if it aliases with Object. 898 if (Call->doesNotAccessMemory(OperandNo)) 899 continue; 900 901 // If this is a no-capture pointer argument, see if we can tell that it 902 // is impossible to alias the pointer we're checking. 903 AliasResult AR = 904 getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object)); 905 if (AR != MustAlias) 906 IsMustAlias = false; 907 // Operand doesn't alias 'Object', continue looking for other aliases 908 if (AR == NoAlias) 909 continue; 910 // Operand aliases 'Object', but call doesn't modify it. Strengthen 911 // initial assumption and keep looking in case if there are more aliases. 912 if (Call->onlyReadsMemory(OperandNo)) { 913 Result = setRef(Result); 914 continue; 915 } 916 // Operand aliases 'Object' but call only writes into it. 917 if (Call->doesNotReadMemory(OperandNo)) { 918 Result = setMod(Result); 919 continue; 920 } 921 // This operand aliases 'Object' and call reads and writes into it. 922 // Setting ModRef will not yield an early return below, MustAlias is not 923 // used further. 924 Result = ModRefInfo::ModRef; 925 break; 926 } 927 928 // No operand aliases, reset Must bit. Add below if at least one aliases 929 // and all aliases found are MustAlias. 930 if (isNoModRef(Result)) 931 IsMustAlias = false; 932 933 // Early return if we improved mod ref information 934 if (!isModAndRefSet(Result)) { 935 if (isNoModRef(Result)) 936 return ModRefInfo::NoModRef; 937 return IsMustAlias ? setMust(Result) : clearMust(Result); 938 } 939 } 940 941 // If the call is to malloc or calloc, we can assume that it doesn't 942 // modify any IR visible value. This is only valid because we assume these 943 // routines do not read values visible in the IR. TODO: Consider special 944 // casing realloc and strdup routines which access only their arguments as 945 // well. Or alternatively, replace all of this with inaccessiblememonly once 946 // that's implemented fully. 947 if (isMallocOrCallocLikeFn(Call, &TLI)) { 948 // Be conservative if the accessed pointer may alias the allocation - 949 // fallback to the generic handling below. 950 if (getBestAAResults().alias(MemoryLocation(Call), Loc) == NoAlias) 951 return ModRefInfo::NoModRef; 952 } 953 954 // The semantics of memcpy intrinsics forbid overlap between their respective 955 // operands, i.e., source and destination of any given memcpy must no-alias. 956 // If Loc must-aliases either one of these two locations, then it necessarily 957 // no-aliases the other. 958 if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) { 959 AliasResult SrcAA, DestAA; 960 961 if ((SrcAA = getBestAAResults().alias(MemoryLocation::getForSource(Inst), 962 Loc)) == MustAlias) 963 // Loc is exactly the memcpy source thus disjoint from memcpy dest. 964 return ModRefInfo::Ref; 965 if ((DestAA = getBestAAResults().alias(MemoryLocation::getForDest(Inst), 966 Loc)) == MustAlias) 967 // The converse case. 968 return ModRefInfo::Mod; 969 970 // It's also possible for Loc to alias both src and dest, or neither. 971 ModRefInfo rv = ModRefInfo::NoModRef; 972 if (SrcAA != NoAlias) 973 rv = setRef(rv); 974 if (DestAA != NoAlias) 975 rv = setMod(rv); 976 return rv; 977 } 978 979 // While the assume intrinsic is marked as arbitrarily writing so that 980 // proper control dependencies will be maintained, it never aliases any 981 // particular memory location. 982 if (isIntrinsicCall(Call, Intrinsic::assume)) 983 return ModRefInfo::NoModRef; 984 985 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 986 // that proper control dependencies are maintained but they never mods any 987 // particular memory location. 988 // 989 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 990 // heap state at the point the guard is issued needs to be consistent in case 991 // the guard invokes the "deopt" continuation. 992 if (isIntrinsicCall(Call, Intrinsic::experimental_guard)) 993 return ModRefInfo::Ref; 994 995 // Like assumes, invariant.start intrinsics were also marked as arbitrarily 996 // writing so that proper control dependencies are maintained but they never 997 // mod any particular memory location visible to the IR. 998 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start 999 // intrinsic is now modeled as reading memory. This prevents hoisting the 1000 // invariant.start intrinsic over stores. Consider: 1001 // *ptr = 40; 1002 // *ptr = 50; 1003 // invariant_start(ptr) 1004 // int val = *ptr; 1005 // print(val); 1006 // 1007 // This cannot be transformed to: 1008 // 1009 // *ptr = 40; 1010 // invariant_start(ptr) 1011 // *ptr = 50; 1012 // int val = *ptr; 1013 // print(val); 1014 // 1015 // The transformation will cause the second store to be ignored (based on 1016 // rules of invariant.start) and print 40, while the first program always 1017 // prints 50. 1018 if (isIntrinsicCall(Call, Intrinsic::invariant_start)) 1019 return ModRefInfo::Ref; 1020 1021 // The AAResultBase base class has some smarts, lets use them. 1022 return AAResultBase::getModRefInfo(Call, Loc); 1023 } 1024 1025 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1, 1026 const CallBase *Call2) { 1027 // While the assume intrinsic is marked as arbitrarily writing so that 1028 // proper control dependencies will be maintained, it never aliases any 1029 // particular memory location. 1030 if (isIntrinsicCall(Call1, Intrinsic::assume) || 1031 isIntrinsicCall(Call2, Intrinsic::assume)) 1032 return ModRefInfo::NoModRef; 1033 1034 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 1035 // that proper control dependencies are maintained but they never mod any 1036 // particular memory location. 1037 // 1038 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 1039 // heap state at the point the guard is issued needs to be consistent in case 1040 // the guard invokes the "deopt" continuation. 1041 1042 // NB! This function is *not* commutative, so we special case two 1043 // possibilities for guard intrinsics. 1044 1045 if (isIntrinsicCall(Call1, Intrinsic::experimental_guard)) 1046 return isModSet(createModRefInfo(getModRefBehavior(Call2))) 1047 ? ModRefInfo::Ref 1048 : ModRefInfo::NoModRef; 1049 1050 if (isIntrinsicCall(Call2, Intrinsic::experimental_guard)) 1051 return isModSet(createModRefInfo(getModRefBehavior(Call1))) 1052 ? ModRefInfo::Mod 1053 : ModRefInfo::NoModRef; 1054 1055 // The AAResultBase base class has some smarts, lets use them. 1056 return AAResultBase::getModRefInfo(Call1, Call2); 1057 } 1058 1059 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators, 1060 /// both having the exact same pointer operand. 1061 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1, 1062 LocationSize MaybeV1Size, 1063 const GEPOperator *GEP2, 1064 LocationSize MaybeV2Size, 1065 const DataLayout &DL) { 1066 assert(GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() == 1067 GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() && 1068 GEP1->getPointerOperandType() == GEP2->getPointerOperandType() && 1069 "Expected GEPs with the same pointer operand"); 1070 1071 // Try to determine whether GEP1 and GEP2 index through arrays, into structs, 1072 // such that the struct field accesses provably cannot alias. 1073 // We also need at least two indices (the pointer, and the struct field). 1074 if (GEP1->getNumIndices() != GEP2->getNumIndices() || 1075 GEP1->getNumIndices() < 2) 1076 return MayAlias; 1077 1078 // If we don't know the size of the accesses through both GEPs, we can't 1079 // determine whether the struct fields accessed can't alias. 1080 if (MaybeV1Size == LocationSize::unknown() || 1081 MaybeV2Size == LocationSize::unknown()) 1082 return MayAlias; 1083 1084 const uint64_t V1Size = MaybeV1Size.getValue(); 1085 const uint64_t V2Size = MaybeV2Size.getValue(); 1086 1087 ConstantInt *C1 = 1088 dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1)); 1089 ConstantInt *C2 = 1090 dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1)); 1091 1092 // If the last (struct) indices are constants and are equal, the other indices 1093 // might be also be dynamically equal, so the GEPs can alias. 1094 if (C1 && C2) { 1095 unsigned BitWidth = std::max(C1->getBitWidth(), C2->getBitWidth()); 1096 if (C1->getValue().sextOrSelf(BitWidth) == 1097 C2->getValue().sextOrSelf(BitWidth)) 1098 return MayAlias; 1099 } 1100 1101 // Find the last-indexed type of the GEP, i.e., the type you'd get if 1102 // you stripped the last index. 1103 // On the way, look at each indexed type. If there's something other 1104 // than an array, different indices can lead to different final types. 1105 SmallVector<Value *, 8> IntermediateIndices; 1106 1107 // Insert the first index; we don't need to check the type indexed 1108 // through it as it only drops the pointer indirection. 1109 assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine"); 1110 IntermediateIndices.push_back(GEP1->getOperand(1)); 1111 1112 // Insert all the remaining indices but the last one. 1113 // Also, check that they all index through arrays. 1114 for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) { 1115 if (!isa<ArrayType>(GetElementPtrInst::getIndexedType( 1116 GEP1->getSourceElementType(), IntermediateIndices))) 1117 return MayAlias; 1118 IntermediateIndices.push_back(GEP1->getOperand(i + 1)); 1119 } 1120 1121 auto *Ty = GetElementPtrInst::getIndexedType( 1122 GEP1->getSourceElementType(), IntermediateIndices); 1123 StructType *LastIndexedStruct = dyn_cast<StructType>(Ty); 1124 1125 if (isa<SequentialType>(Ty)) { 1126 // We know that: 1127 // - both GEPs begin indexing from the exact same pointer; 1128 // - the last indices in both GEPs are constants, indexing into a sequential 1129 // type (array or pointer); 1130 // - both GEPs only index through arrays prior to that. 1131 // 1132 // Because array indices greater than the number of elements are valid in 1133 // GEPs, unless we know the intermediate indices are identical between 1134 // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't 1135 // partially overlap. We also need to check that the loaded size matches 1136 // the element size, otherwise we could still have overlap. 1137 const uint64_t ElementSize = 1138 DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType()); 1139 if (V1Size != ElementSize || V2Size != ElementSize) 1140 return MayAlias; 1141 1142 for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i) 1143 if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1)) 1144 return MayAlias; 1145 1146 // Now we know that the array/pointer that GEP1 indexes into and that 1147 // that GEP2 indexes into must either precisely overlap or be disjoint. 1148 // Because they cannot partially overlap and because fields in an array 1149 // cannot overlap, if we can prove the final indices are different between 1150 // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias. 1151 1152 // If the last indices are constants, we've already checked they don't 1153 // equal each other so we can exit early. 1154 if (C1 && C2) 1155 return NoAlias; 1156 { 1157 Value *GEP1LastIdx = GEP1->getOperand(GEP1->getNumOperands() - 1); 1158 Value *GEP2LastIdx = GEP2->getOperand(GEP2->getNumOperands() - 1); 1159 if (isa<PHINode>(GEP1LastIdx) || isa<PHINode>(GEP2LastIdx)) { 1160 // If one of the indices is a PHI node, be safe and only use 1161 // computeKnownBits so we don't make any assumptions about the 1162 // relationships between the two indices. This is important if we're 1163 // asking about values from different loop iterations. See PR32314. 1164 // TODO: We may be able to change the check so we only do this when 1165 // we definitely looked through a PHINode. 1166 if (GEP1LastIdx != GEP2LastIdx && 1167 GEP1LastIdx->getType() == GEP2LastIdx->getType()) { 1168 KnownBits Known1 = computeKnownBits(GEP1LastIdx, DL); 1169 KnownBits Known2 = computeKnownBits(GEP2LastIdx, DL); 1170 if (Known1.Zero.intersects(Known2.One) || 1171 Known1.One.intersects(Known2.Zero)) 1172 return NoAlias; 1173 } 1174 } else if (isKnownNonEqual(GEP1LastIdx, GEP2LastIdx, DL)) 1175 return NoAlias; 1176 } 1177 return MayAlias; 1178 } else if (!LastIndexedStruct || !C1 || !C2) { 1179 return MayAlias; 1180 } 1181 1182 if (C1->getValue().getActiveBits() > 64 || 1183 C2->getValue().getActiveBits() > 64) 1184 return MayAlias; 1185 1186 // We know that: 1187 // - both GEPs begin indexing from the exact same pointer; 1188 // - the last indices in both GEPs are constants, indexing into a struct; 1189 // - said indices are different, hence, the pointed-to fields are different; 1190 // - both GEPs only index through arrays prior to that. 1191 // 1192 // This lets us determine that the struct that GEP1 indexes into and the 1193 // struct that GEP2 indexes into must either precisely overlap or be 1194 // completely disjoint. Because they cannot partially overlap, indexing into 1195 // different non-overlapping fields of the struct will never alias. 1196 1197 // Therefore, the only remaining thing needed to show that both GEPs can't 1198 // alias is that the fields are not overlapping. 1199 const StructLayout *SL = DL.getStructLayout(LastIndexedStruct); 1200 const uint64_t StructSize = SL->getSizeInBytes(); 1201 const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue()); 1202 const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue()); 1203 1204 auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size, 1205 uint64_t V2Off, uint64_t V2Size) { 1206 return V1Off < V2Off && V1Off + V1Size <= V2Off && 1207 ((V2Off + V2Size <= StructSize) || 1208 (V2Off + V2Size - StructSize <= V1Off)); 1209 }; 1210 1211 if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) || 1212 EltsDontOverlap(V2Off, V2Size, V1Off, V1Size)) 1213 return NoAlias; 1214 1215 return MayAlias; 1216 } 1217 1218 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the 1219 // beginning of the object the GEP points would have a negative offset with 1220 // repsect to the alloca, that means the GEP can not alias pointer (b). 1221 // Note that the pointer based on the alloca may not be a GEP. For 1222 // example, it may be the alloca itself. 1223 // The same applies if (b) is based on a GlobalVariable. Note that just being 1224 // based on isIdentifiedObject() is not enough - we need an identified object 1225 // that does not permit access to negative offsets. For example, a negative 1226 // offset from a noalias argument or call can be inbounds w.r.t the actual 1227 // underlying object. 1228 // 1229 // For example, consider: 1230 // 1231 // struct { int f0, int f1, ...} foo; 1232 // foo alloca; 1233 // foo* random = bar(alloca); 1234 // int *f0 = &alloca.f0 1235 // int *f1 = &random->f1; 1236 // 1237 // Which is lowered, approximately, to: 1238 // 1239 // %alloca = alloca %struct.foo 1240 // %random = call %struct.foo* @random(%struct.foo* %alloca) 1241 // %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0 1242 // %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1 1243 // 1244 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated 1245 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also 1246 // point into the same object. But since %f0 points to the beginning of %alloca, 1247 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher 1248 // than (%alloca - 1), and so is not inbounds, a contradiction. 1249 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp, 1250 const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject, 1251 LocationSize MaybeObjectAccessSize) { 1252 // If the object access size is unknown, or the GEP isn't inbounds, bail. 1253 if (MaybeObjectAccessSize == LocationSize::unknown() || !GEPOp->isInBounds()) 1254 return false; 1255 1256 const uint64_t ObjectAccessSize = MaybeObjectAccessSize.getValue(); 1257 1258 // We need the object to be an alloca or a globalvariable, and want to know 1259 // the offset of the pointer from the object precisely, so no variable 1260 // indices are allowed. 1261 if (!(isa<AllocaInst>(DecompObject.Base) || 1262 isa<GlobalVariable>(DecompObject.Base)) || 1263 !DecompObject.VarIndices.empty()) 1264 return false; 1265 1266 APInt ObjectBaseOffset = DecompObject.StructOffset + 1267 DecompObject.OtherOffset; 1268 1269 // If the GEP has no variable indices, we know the precise offset 1270 // from the base, then use it. If the GEP has variable indices, 1271 // we can't get exact GEP offset to identify pointer alias. So return 1272 // false in that case. 1273 if (!DecompGEP.VarIndices.empty()) 1274 return false; 1275 1276 APInt GEPBaseOffset = DecompGEP.StructOffset; 1277 GEPBaseOffset += DecompGEP.OtherOffset; 1278 1279 return GEPBaseOffset.sge(ObjectBaseOffset + (int64_t)ObjectAccessSize); 1280 } 1281 1282 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 1283 /// another pointer. 1284 /// 1285 /// We know that V1 is a GEP, but we don't know anything about V2. 1286 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for 1287 /// V2. 1288 AliasResult 1289 BasicAAResult::aliasGEP(const GEPOperator *GEP1, LocationSize V1Size, 1290 const AAMDNodes &V1AAInfo, const Value *V2, 1291 LocationSize V2Size, const AAMDNodes &V2AAInfo, 1292 const Value *UnderlyingV1, const Value *UnderlyingV2) { 1293 DecomposedGEP DecompGEP1, DecompGEP2; 1294 unsigned MaxPointerSize = getMaxPointerSize(DL); 1295 DecompGEP1.StructOffset = DecompGEP1.OtherOffset = APInt(MaxPointerSize, 0); 1296 DecompGEP2.StructOffset = DecompGEP2.OtherOffset = APInt(MaxPointerSize, 0); 1297 1298 bool GEP1MaxLookupReached = 1299 DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT); 1300 bool GEP2MaxLookupReached = 1301 DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT); 1302 1303 APInt GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset; 1304 APInt GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset; 1305 1306 assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 && 1307 "DecomposeGEPExpression returned a result different from " 1308 "GetUnderlyingObject"); 1309 1310 // If the GEP's offset relative to its base is such that the base would 1311 // fall below the start of the object underlying V2, then the GEP and V2 1312 // cannot alias. 1313 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1314 isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size)) 1315 return NoAlias; 1316 // If we have two gep instructions with must-alias or not-alias'ing base 1317 // pointers, figure out if the indexes to the GEP tell us anything about the 1318 // derived pointer. 1319 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 1320 // Check for the GEP base being at a negative offset, this time in the other 1321 // direction. 1322 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1323 isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size)) 1324 return NoAlias; 1325 // Do the base pointers alias? 1326 AliasResult BaseAlias = 1327 aliasCheck(UnderlyingV1, LocationSize::unknown(), AAMDNodes(), 1328 UnderlyingV2, LocationSize::unknown(), AAMDNodes()); 1329 1330 // Check for geps of non-aliasing underlying pointers where the offsets are 1331 // identical. 1332 if ((BaseAlias == MayAlias) && V1Size == V2Size) { 1333 // Do the base pointers alias assuming type and size. 1334 AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo, 1335 UnderlyingV2, V2Size, V2AAInfo); 1336 if (PreciseBaseAlias == NoAlias) { 1337 // See if the computed offset from the common pointer tells us about the 1338 // relation of the resulting pointer. 1339 // If the max search depth is reached the result is undefined 1340 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1341 return MayAlias; 1342 1343 // Same offsets. 1344 if (GEP1BaseOffset == GEP2BaseOffset && 1345 DecompGEP1.VarIndices == DecompGEP2.VarIndices) 1346 return NoAlias; 1347 } 1348 } 1349 1350 // If we get a No or May, then return it immediately, no amount of analysis 1351 // will improve this situation. 1352 if (BaseAlias != MustAlias) { 1353 assert(BaseAlias == NoAlias || BaseAlias == MayAlias); 1354 return BaseAlias; 1355 } 1356 1357 // Otherwise, we have a MustAlias. Since the base pointers alias each other 1358 // exactly, see if the computed offset from the common pointer tells us 1359 // about the relation of the resulting pointer. 1360 // If we know the two GEPs are based off of the exact same pointer (and not 1361 // just the same underlying object), see if that tells us anything about 1362 // the resulting pointers. 1363 if (GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() == 1364 GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() && 1365 GEP1->getPointerOperandType() == GEP2->getPointerOperandType()) { 1366 AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL); 1367 // If we couldn't find anything interesting, don't abandon just yet. 1368 if (R != MayAlias) 1369 return R; 1370 } 1371 1372 // If the max search depth is reached, the result is undefined 1373 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1374 return MayAlias; 1375 1376 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1377 // symbolic difference. 1378 GEP1BaseOffset -= GEP2BaseOffset; 1379 GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices); 1380 1381 } else { 1382 // Check to see if these two pointers are related by the getelementptr 1383 // instruction. If one pointer is a GEP with a non-zero index of the other 1384 // pointer, we know they cannot alias. 1385 1386 // If both accesses are unknown size, we can't do anything useful here. 1387 if (V1Size == LocationSize::unknown() && V2Size == LocationSize::unknown()) 1388 return MayAlias; 1389 1390 AliasResult R = 1391 aliasCheck(UnderlyingV1, LocationSize::unknown(), AAMDNodes(), V2, 1392 LocationSize::unknown(), V2AAInfo, nullptr, UnderlyingV2); 1393 if (R != MustAlias) { 1394 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 1395 // If V2 is known not to alias GEP base pointer, then the two values 1396 // cannot alias per GEP semantics: "Any memory access must be done through 1397 // a pointer value associated with an address range of the memory access, 1398 // otherwise the behavior is undefined.". 1399 assert(R == NoAlias || R == MayAlias); 1400 return R; 1401 } 1402 1403 // If the max search depth is reached the result is undefined 1404 if (GEP1MaxLookupReached) 1405 return MayAlias; 1406 } 1407 1408 // In the two GEP Case, if there is no difference in the offsets of the 1409 // computed pointers, the resultant pointers are a must alias. This 1410 // happens when we have two lexically identical GEP's (for example). 1411 // 1412 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 1413 // must aliases the GEP, the end result is a must alias also. 1414 if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty()) 1415 return MustAlias; 1416 1417 // If there is a constant difference between the pointers, but the difference 1418 // is less than the size of the associated memory object, then we know 1419 // that the objects are partially overlapping. If the difference is 1420 // greater, we know they do not overlap. 1421 if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) { 1422 if (GEP1BaseOffset.sge(0)) { 1423 if (V2Size != LocationSize::unknown()) { 1424 if (GEP1BaseOffset.ult(V2Size.getValue())) 1425 return PartialAlias; 1426 return NoAlias; 1427 } 1428 } else { 1429 // We have the situation where: 1430 // + + 1431 // | BaseOffset | 1432 // ---------------->| 1433 // |-->V1Size |-------> V2Size 1434 // GEP1 V2 1435 // We need to know that V2Size is not unknown, otherwise we might have 1436 // stripped a gep with negative index ('gep <ptr>, -1, ...). 1437 if (V1Size != LocationSize::unknown() && 1438 V2Size != LocationSize::unknown()) { 1439 if ((-GEP1BaseOffset).ult(V1Size.getValue())) 1440 return PartialAlias; 1441 return NoAlias; 1442 } 1443 } 1444 } 1445 1446 if (!DecompGEP1.VarIndices.empty()) { 1447 APInt Modulo(MaxPointerSize, 0); 1448 bool AllPositive = true; 1449 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { 1450 1451 // Try to distinguish something like &A[i][1] against &A[42][0]. 1452 // Grab the least significant bit set in any of the scales. We 1453 // don't need std::abs here (even if the scale's negative) as we'll 1454 // be ^'ing Modulo with itself later. 1455 Modulo |= DecompGEP1.VarIndices[i].Scale; 1456 1457 if (AllPositive) { 1458 // If the Value could change between cycles, then any reasoning about 1459 // the Value this cycle may not hold in the next cycle. We'll just 1460 // give up if we can't determine conditions that hold for every cycle: 1461 const Value *V = DecompGEP1.VarIndices[i].V; 1462 1463 KnownBits Known = computeKnownBits(V, DL, 0, &AC, nullptr, DT); 1464 bool SignKnownZero = Known.isNonNegative(); 1465 bool SignKnownOne = Known.isNegative(); 1466 1467 // Zero-extension widens the variable, and so forces the sign 1468 // bit to zero. 1469 bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V); 1470 SignKnownZero |= IsZExt; 1471 SignKnownOne &= !IsZExt; 1472 1473 // If the variable begins with a zero then we know it's 1474 // positive, regardless of whether the value is signed or 1475 // unsigned. 1476 APInt Scale = DecompGEP1.VarIndices[i].Scale; 1477 AllPositive = 1478 (SignKnownZero && Scale.sge(0)) || (SignKnownOne && Scale.slt(0)); 1479 } 1480 } 1481 1482 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1483 1484 // We can compute the difference between the two addresses 1485 // mod Modulo. Check whether that difference guarantees that the 1486 // two locations do not alias. 1487 APInt ModOffset = GEP1BaseOffset & (Modulo - 1); 1488 if (V1Size != LocationSize::unknown() && 1489 V2Size != LocationSize::unknown() && ModOffset.uge(V2Size.getValue()) && 1490 (Modulo - ModOffset).uge(V1Size.getValue())) 1491 return NoAlias; 1492 1493 // If we know all the variables are positive, then GEP1 >= GEP1BasePtr. 1494 // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers 1495 // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr. 1496 if (AllPositive && GEP1BaseOffset.sgt(0) && 1497 V2Size != LocationSize::unknown() && 1498 GEP1BaseOffset.uge(V2Size.getValue())) 1499 return NoAlias; 1500 1501 if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size, 1502 GEP1BaseOffset, &AC, DT)) 1503 return NoAlias; 1504 } 1505 1506 // Statically, we can see that the base objects are the same, but the 1507 // pointers have dynamic offsets which we can't resolve. And none of our 1508 // little tricks above worked. 1509 return MayAlias; 1510 } 1511 1512 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1513 // If the results agree, take it. 1514 if (A == B) 1515 return A; 1516 // A mix of PartialAlias and MustAlias is PartialAlias. 1517 if ((A == PartialAlias && B == MustAlias) || 1518 (B == PartialAlias && A == MustAlias)) 1519 return PartialAlias; 1520 // Otherwise, we don't know anything. 1521 return MayAlias; 1522 } 1523 1524 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1525 /// against another. 1526 AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, 1527 LocationSize SISize, 1528 const AAMDNodes &SIAAInfo, 1529 const Value *V2, LocationSize V2Size, 1530 const AAMDNodes &V2AAInfo, 1531 const Value *UnderV2) { 1532 // If the values are Selects with the same condition, we can do a more precise 1533 // check: just check for aliases between the values on corresponding arms. 1534 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1535 if (SI->getCondition() == SI2->getCondition()) { 1536 AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, 1537 SI2->getTrueValue(), V2Size, V2AAInfo); 1538 if (Alias == MayAlias) 1539 return MayAlias; 1540 AliasResult ThisAlias = 1541 aliasCheck(SI->getFalseValue(), SISize, SIAAInfo, 1542 SI2->getFalseValue(), V2Size, V2AAInfo); 1543 return MergeAliasResults(ThisAlias, Alias); 1544 } 1545 1546 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1547 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1548 AliasResult Alias = 1549 aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), 1550 SISize, SIAAInfo, UnderV2); 1551 if (Alias == MayAlias) 1552 return MayAlias; 1553 1554 AliasResult ThisAlias = 1555 aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo, 1556 UnderV2); 1557 return MergeAliasResults(ThisAlias, Alias); 1558 } 1559 1560 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1561 /// another. 1562 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize, 1563 const AAMDNodes &PNAAInfo, const Value *V2, 1564 LocationSize V2Size, 1565 const AAMDNodes &V2AAInfo, 1566 const Value *UnderV2) { 1567 // Track phi nodes we have visited. We use this information when we determine 1568 // value equivalence. 1569 VisitedPhiBBs.insert(PN->getParent()); 1570 1571 // If the values are PHIs in the same block, we can do a more precise 1572 // as well as efficient check: just check for aliases between the values 1573 // on corresponding edges. 1574 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1575 if (PN2->getParent() == PN->getParent()) { 1576 LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo), 1577 MemoryLocation(V2, V2Size, V2AAInfo)); 1578 if (PN > V2) 1579 std::swap(Locs.first, Locs.second); 1580 // Analyse the PHIs' inputs under the assumption that the PHIs are 1581 // NoAlias. 1582 // If the PHIs are May/MustAlias there must be (recursively) an input 1583 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1584 // there must be an operation on the PHIs within the PHIs' value cycle 1585 // that causes a MayAlias. 1586 // Pretend the phis do not alias. 1587 AliasResult Alias = NoAlias; 1588 AliasResult OrigAliasResult; 1589 { 1590 // Limited lifetime iterator invalidated by the aliasCheck call below. 1591 auto CacheIt = AliasCache.find(Locs); 1592 assert((CacheIt != AliasCache.end()) && 1593 "There must exist an entry for the phi node"); 1594 OrigAliasResult = CacheIt->second; 1595 CacheIt->second = NoAlias; 1596 } 1597 1598 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1599 AliasResult ThisAlias = 1600 aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo, 1601 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1602 V2Size, V2AAInfo); 1603 Alias = MergeAliasResults(ThisAlias, Alias); 1604 if (Alias == MayAlias) 1605 break; 1606 } 1607 1608 // Reset if speculation failed. 1609 if (Alias != NoAlias) { 1610 auto Pair = AliasCache.insert(std::make_pair(Locs, OrigAliasResult)); 1611 assert(!Pair.second && "Entry must have existed"); 1612 Pair.first->second = OrigAliasResult; 1613 } 1614 return Alias; 1615 } 1616 1617 SmallVector<Value *, 4> V1Srcs; 1618 bool isRecursive = false; 1619 if (PV) { 1620 // If we have PhiValues then use it to get the underlying phi values. 1621 const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN); 1622 // If we have more phi values than the search depth then return MayAlias 1623 // conservatively to avoid compile time explosion. The worst possible case 1624 // is if both sides are PHI nodes. In which case, this is O(m x n) time 1625 // where 'm' and 'n' are the number of PHI sources. 1626 if (PhiValueSet.size() > MaxLookupSearchDepth) 1627 return MayAlias; 1628 // Add the values to V1Srcs 1629 for (Value *PV1 : PhiValueSet) { 1630 if (EnableRecPhiAnalysis) { 1631 if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) { 1632 // Check whether the incoming value is a GEP that advances the pointer 1633 // result of this PHI node (e.g. in a loop). If this is the case, we 1634 // would recurse and always get a MayAlias. Handle this case specially 1635 // below. 1636 if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 && 1637 isa<ConstantInt>(PV1GEP->idx_begin())) { 1638 isRecursive = true; 1639 continue; 1640 } 1641 } 1642 } 1643 V1Srcs.push_back(PV1); 1644 } 1645 } else { 1646 // If we don't have PhiInfo then just look at the operands of the phi itself 1647 // FIXME: Remove this once we can guarantee that we have PhiInfo always 1648 SmallPtrSet<Value *, 4> UniqueSrc; 1649 for (Value *PV1 : PN->incoming_values()) { 1650 if (isa<PHINode>(PV1)) 1651 // If any of the source itself is a PHI, return MayAlias conservatively 1652 // to avoid compile time explosion. The worst possible case is if both 1653 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1654 // and 'n' are the number of PHI sources. 1655 return MayAlias; 1656 1657 if (EnableRecPhiAnalysis) 1658 if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) { 1659 // Check whether the incoming value is a GEP that advances the pointer 1660 // result of this PHI node (e.g. in a loop). If this is the case, we 1661 // would recurse and always get a MayAlias. Handle this case specially 1662 // below. 1663 if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 && 1664 isa<ConstantInt>(PV1GEP->idx_begin())) { 1665 isRecursive = true; 1666 continue; 1667 } 1668 } 1669 1670 if (UniqueSrc.insert(PV1).second) 1671 V1Srcs.push_back(PV1); 1672 } 1673 } 1674 1675 // If V1Srcs is empty then that means that the phi has no underlying non-phi 1676 // value. This should only be possible in blocks unreachable from the entry 1677 // block, but return MayAlias just in case. 1678 if (V1Srcs.empty()) 1679 return MayAlias; 1680 1681 // If this PHI node is recursive, set the size of the accessed memory to 1682 // unknown to represent all the possible values the GEP could advance the 1683 // pointer to. 1684 if (isRecursive) 1685 PNSize = LocationSize::unknown(); 1686 1687 AliasResult Alias = 1688 aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], 1689 PNSize, PNAAInfo, UnderV2); 1690 1691 // Early exit if the check of the first PHI source against V2 is MayAlias. 1692 // Other results are not possible. 1693 if (Alias == MayAlias) 1694 return MayAlias; 1695 1696 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1697 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1698 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1699 Value *V = V1Srcs[i]; 1700 1701 AliasResult ThisAlias = 1702 aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, UnderV2); 1703 Alias = MergeAliasResults(ThisAlias, Alias); 1704 if (Alias == MayAlias) 1705 break; 1706 } 1707 1708 return Alias; 1709 } 1710 1711 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1712 /// array references. 1713 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size, 1714 AAMDNodes V1AAInfo, const Value *V2, 1715 LocationSize V2Size, AAMDNodes V2AAInfo, 1716 const Value *O1, const Value *O2) { 1717 // If either of the memory references is empty, it doesn't matter what the 1718 // pointer values are. 1719 if (V1Size.isZero() || V2Size.isZero()) 1720 return NoAlias; 1721 1722 // Strip off any casts if they exist. 1723 V1 = V1->stripPointerCastsAndInvariantGroups(); 1724 V2 = V2->stripPointerCastsAndInvariantGroups(); 1725 1726 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1727 // value for undef that aliases nothing in the program. 1728 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1729 return NoAlias; 1730 1731 // Are we checking for alias of the same value? 1732 // Because we look 'through' phi nodes, we could look at "Value" pointers from 1733 // different iterations. We must therefore make sure that this is not the 1734 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1735 // happen by looking at the visited phi nodes and making sure they cannot 1736 // reach the value. 1737 if (isValueEqualInPotentialCycles(V1, V2)) 1738 return MustAlias; 1739 1740 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1741 return NoAlias; // Scalars cannot alias each other 1742 1743 // Figure out what objects these things are pointing to if we can. 1744 if (O1 == nullptr) 1745 O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth); 1746 1747 if (O2 == nullptr) 1748 O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth); 1749 1750 // Null values in the default address space don't point to any object, so they 1751 // don't alias any other pointer. 1752 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1753 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1754 return NoAlias; 1755 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1756 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1757 return NoAlias; 1758 1759 if (O1 != O2) { 1760 // If V1/V2 point to two different objects, we know that we have no alias. 1761 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1762 return NoAlias; 1763 1764 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1765 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1766 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1767 return NoAlias; 1768 1769 // Function arguments can't alias with things that are known to be 1770 // unambigously identified at the function level. 1771 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1772 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1773 return NoAlias; 1774 1775 // If one pointer is the result of a call/invoke or load and the other is a 1776 // non-escaping local object within the same function, then we know the 1777 // object couldn't escape to a point where the call could return it. 1778 // 1779 // Note that if the pointers are in different functions, there are a 1780 // variety of complications. A call with a nocapture argument may still 1781 // temporary store the nocapture argument's value in a temporary memory 1782 // location if that memory location doesn't escape. Or it may pass a 1783 // nocapture value to other functions as long as they don't capture it. 1784 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2, &IsCapturedCache)) 1785 return NoAlias; 1786 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1, &IsCapturedCache)) 1787 return NoAlias; 1788 } 1789 1790 // If the size of one access is larger than the entire object on the other 1791 // side, then we know such behavior is undefined and can assume no alias. 1792 bool NullIsValidLocation = NullPointerIsDefined(&F); 1793 if ((V1Size.isPrecise() && isObjectSmallerThan(O2, V1Size.getValue(), DL, TLI, 1794 NullIsValidLocation)) || 1795 (V2Size.isPrecise() && isObjectSmallerThan(O1, V2Size.getValue(), DL, TLI, 1796 NullIsValidLocation))) 1797 return NoAlias; 1798 1799 // Check the cache before climbing up use-def chains. This also terminates 1800 // otherwise infinitely recursive queries. 1801 LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo), 1802 MemoryLocation(V2, V2Size, V2AAInfo)); 1803 if (V1 > V2) 1804 std::swap(Locs.first, Locs.second); 1805 std::pair<AliasCacheTy::iterator, bool> Pair = 1806 AliasCache.try_emplace(Locs, MayAlias); 1807 if (!Pair.second) 1808 return Pair.first->second; 1809 1810 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1811 // GEP can't simplify, we don't even look at the PHI cases. 1812 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1813 std::swap(V1, V2); 1814 std::swap(V1Size, V2Size); 1815 std::swap(O1, O2); 1816 std::swap(V1AAInfo, V2AAInfo); 1817 } 1818 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1819 AliasResult Result = 1820 aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2); 1821 if (Result != MayAlias) 1822 return AliasCache[Locs] = Result; 1823 } 1824 1825 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1826 std::swap(V1, V2); 1827 std::swap(O1, O2); 1828 std::swap(V1Size, V2Size); 1829 std::swap(V1AAInfo, V2AAInfo); 1830 } 1831 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1832 AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, 1833 V2, V2Size, V2AAInfo, O2); 1834 if (Result != MayAlias) { 1835 Pair = AliasCache.try_emplace(Locs, Result); 1836 assert(!Pair.second && "Entry must have existed"); 1837 return Pair.first->second = Result; 1838 } 1839 } 1840 1841 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1842 std::swap(V1, V2); 1843 std::swap(O1, O2); 1844 std::swap(V1Size, V2Size); 1845 std::swap(V1AAInfo, V2AAInfo); 1846 } 1847 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1848 AliasResult Result = 1849 aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2); 1850 if (Result != MayAlias) { 1851 Pair = AliasCache.try_emplace(Locs, Result); 1852 assert(!Pair.second && "Entry must have existed"); 1853 return Pair.first->second = Result; 1854 } 1855 } 1856 1857 // If both pointers are pointing into the same object and one of them 1858 // accesses the entire object, then the accesses must overlap in some way. 1859 if (O1 == O2) 1860 if (V1Size.isPrecise() && V2Size.isPrecise() && 1861 (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) || 1862 isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation))) { 1863 Pair = AliasCache.try_emplace(Locs, PartialAlias); 1864 assert(!Pair.second && "Entry must have existed"); 1865 return Pair.first->second = PartialAlias; 1866 } 1867 1868 // Recurse back into the best AA results we have, potentially with refined 1869 // memory locations. We have already ensured that BasicAA has a MayAlias 1870 // cache result for these, so any recursion back into BasicAA won't loop. 1871 AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second); 1872 Pair = AliasCache.try_emplace(Locs, Result); 1873 assert(!Pair.second && "Entry must have existed"); 1874 return Pair.first->second = Result; 1875 } 1876 1877 /// Check whether two Values can be considered equivalent. 1878 /// 1879 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether 1880 /// they can not be part of a cycle in the value graph by looking at all 1881 /// visited phi nodes an making sure that the phis cannot reach the value. We 1882 /// have to do this because we are looking through phi nodes (That is we say 1883 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1884 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1885 const Value *V2) { 1886 if (V != V2) 1887 return false; 1888 1889 const Instruction *Inst = dyn_cast<Instruction>(V); 1890 if (!Inst) 1891 return true; 1892 1893 if (VisitedPhiBBs.empty()) 1894 return true; 1895 1896 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1897 return false; 1898 1899 // Make sure that the visited phis cannot reach the Value. This ensures that 1900 // the Values cannot come from different iterations of a potential cycle the 1901 // phi nodes could be involved in. 1902 for (auto *P : VisitedPhiBBs) 1903 if (isPotentiallyReachable(&P->front(), Inst, DT, LI)) 1904 return false; 1905 1906 return true; 1907 } 1908 1909 /// Computes the symbolic difference between two de-composed GEPs. 1910 /// 1911 /// Dest and Src are the variable indices from two decomposed GetElementPtr 1912 /// instructions GEP1 and GEP2 which have common base pointers. 1913 void BasicAAResult::GetIndexDifference( 1914 SmallVectorImpl<VariableGEPIndex> &Dest, 1915 const SmallVectorImpl<VariableGEPIndex> &Src) { 1916 if (Src.empty()) 1917 return; 1918 1919 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1920 const Value *V = Src[i].V; 1921 unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits; 1922 APInt Scale = Src[i].Scale; 1923 1924 // Find V in Dest. This is N^2, but pointer indices almost never have more 1925 // than a few variable indexes. 1926 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1927 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1928 Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits) 1929 continue; 1930 1931 // If we found it, subtract off Scale V's from the entry in Dest. If it 1932 // goes to zero, remove the entry. 1933 if (Dest[j].Scale != Scale) 1934 Dest[j].Scale -= Scale; 1935 else 1936 Dest.erase(Dest.begin() + j); 1937 Scale = 0; 1938 break; 1939 } 1940 1941 // If we didn't consume this entry, add it to the end of the Dest list. 1942 if (!!Scale) { 1943 VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale}; 1944 Dest.push_back(Entry); 1945 } 1946 } 1947 } 1948 1949 bool BasicAAResult::constantOffsetHeuristic( 1950 const SmallVectorImpl<VariableGEPIndex> &VarIndices, 1951 LocationSize MaybeV1Size, LocationSize MaybeV2Size, APInt BaseOffset, 1952 AssumptionCache *AC, DominatorTree *DT) { 1953 if (VarIndices.size() != 2 || MaybeV1Size == LocationSize::unknown() || 1954 MaybeV2Size == LocationSize::unknown()) 1955 return false; 1956 1957 const uint64_t V1Size = MaybeV1Size.getValue(); 1958 const uint64_t V2Size = MaybeV2Size.getValue(); 1959 1960 const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1]; 1961 1962 if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits || 1963 Var0.Scale != -Var1.Scale) 1964 return false; 1965 1966 unsigned Width = Var1.V->getType()->getIntegerBitWidth(); 1967 1968 // We'll strip off the Extensions of Var0 and Var1 and do another round 1969 // of GetLinearExpression decomposition. In the example above, if Var0 1970 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 1971 1972 APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0), 1973 V1Offset(Width, 0); 1974 bool NSW = true, NUW = true; 1975 unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0; 1976 const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits, 1977 V0SExtBits, DL, 0, AC, DT, NSW, NUW); 1978 NSW = true; 1979 NUW = true; 1980 const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits, 1981 V1SExtBits, DL, 0, AC, DT, NSW, NUW); 1982 1983 if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits || 1984 V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1)) 1985 return false; 1986 1987 // We have a hit - Var0 and Var1 only differ by a constant offset! 1988 1989 // If we've been sext'ed then zext'd the maximum difference between Var0 and 1990 // Var1 is possible to calculate, but we're just interested in the absolute 1991 // minimum difference between the two. The minimum distance may occur due to 1992 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 1993 // the minimum distance between %i and %i + 5 is 3. 1994 APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff; 1995 MinDiff = APIntOps::umin(MinDiff, Wrapped); 1996 APInt MinDiffBytes = 1997 MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs(); 1998 1999 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 2000 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 2001 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 2002 // V2Size can fit in the MinDiffBytes gap. 2003 return MinDiffBytes.uge(V1Size + BaseOffset.abs()) && 2004 MinDiffBytes.uge(V2Size + BaseOffset.abs()); 2005 } 2006 2007 //===----------------------------------------------------------------------===// 2008 // BasicAliasAnalysis Pass 2009 //===----------------------------------------------------------------------===// 2010 2011 AnalysisKey BasicAA::Key; 2012 2013 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) { 2014 return BasicAAResult(F.getParent()->getDataLayout(), 2015 F, 2016 AM.getResult<TargetLibraryAnalysis>(F), 2017 AM.getResult<AssumptionAnalysis>(F), 2018 &AM.getResult<DominatorTreeAnalysis>(F), 2019 AM.getCachedResult<LoopAnalysis>(F), 2020 AM.getCachedResult<PhiValuesAnalysis>(F)); 2021 } 2022 2023 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 2024 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 2025 } 2026 2027 char BasicAAWrapperPass::ID = 0; 2028 2029 void BasicAAWrapperPass::anchor() {} 2030 2031 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa", 2032 "Basic Alias Analysis (stateless AA impl)", false, true) 2033 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 2034 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 2035 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 2036 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa", 2037 "Basic Alias Analysis (stateless AA impl)", false, true) 2038 2039 FunctionPass *llvm::createBasicAAWrapperPass() { 2040 return new BasicAAWrapperPass(); 2041 } 2042 2043 bool BasicAAWrapperPass::runOnFunction(Function &F) { 2044 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 2045 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 2046 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); 2047 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 2048 auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>(); 2049 2050 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F, TLIWP.getTLI(), 2051 ACT.getAssumptionCache(F), &DTWP.getDomTree(), 2052 LIWP ? &LIWP->getLoopInfo() : nullptr, 2053 PVWP ? &PVWP->getResult() : nullptr)); 2054 2055 return false; 2056 } 2057 2058 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 2059 AU.setPreservesAll(); 2060 AU.addRequired<AssumptionCacheTracker>(); 2061 AU.addRequired<DominatorTreeWrapperPass>(); 2062 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2063 AU.addUsedIfAvailable<PhiValuesWrapperPass>(); 2064 } 2065 2066 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { 2067 return BasicAAResult( 2068 F.getParent()->getDataLayout(), 2069 F, 2070 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 2071 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 2072 } 2073