1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the primary stateless implementation of the
10 // Alias Analysis interface that implements identities (two different
11 // globals cannot alias, etc), but does no stateful analysis.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/BasicAliasAnalysis.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/PhiValues.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GetElementPtrTypeIterator.h"
40 #include "llvm/IR/GlobalAlias.h"
41 #include "llvm/IR/GlobalVariable.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/Operator.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/KnownBits.h"
58 #include <cassert>
59 #include <cstdint>
60 #include <cstdlib>
61 #include <utility>
62 
63 #define DEBUG_TYPE "basicaa"
64 
65 using namespace llvm;
66 
67 /// Enable analysis of recursive PHI nodes.
68 static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden,
69                                           cl::init(true));
70 
71 /// By default, even on 32-bit architectures we use 64-bit integers for
72 /// calculations. This will allow us to more-aggressively decompose indexing
73 /// expressions calculated using i64 values (e.g., long long in C) which is
74 /// common enough to worry about.
75 static cl::opt<bool> ForceAtLeast64Bits("basic-aa-force-at-least-64b",
76                                         cl::Hidden, cl::init(true));
77 static cl::opt<bool> DoubleCalcBits("basic-aa-double-calc-bits",
78                                     cl::Hidden, cl::init(false));
79 
80 /// SearchLimitReached / SearchTimes shows how often the limit of
81 /// to decompose GEPs is reached. It will affect the precision
82 /// of basic alias analysis.
83 STATISTIC(SearchLimitReached, "Number of times the limit to "
84                               "decompose GEPs is reached");
85 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
86 
87 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
88 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
89 /// careful with value equivalence. We use reachability to make sure a value
90 /// cannot be involved in a cycle.
91 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
92 
93 // The max limit of the search depth in DecomposeGEPExpression() and
94 // getUnderlyingObject(), both functions need to use the same search
95 // depth otherwise the algorithm in aliasGEP will assert.
96 static const unsigned MaxLookupSearchDepth = 6;
97 
98 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
99                                FunctionAnalysisManager::Invalidator &Inv) {
100   // We don't care if this analysis itself is preserved, it has no state. But
101   // we need to check that the analyses it depends on have been. Note that we
102   // may be created without handles to some analyses and in that case don't
103   // depend on them.
104   if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
105       (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) ||
106       (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA)))
107     return true;
108 
109   // Otherwise this analysis result remains valid.
110   return false;
111 }
112 
113 //===----------------------------------------------------------------------===//
114 // Useful predicates
115 //===----------------------------------------------------------------------===//
116 
117 /// Returns true if the pointer is one which would have been considered an
118 /// escape by isNonEscapingLocalObject.
119 static bool isEscapeSource(const Value *V) {
120   if (isa<CallBase>(V))
121     return true;
122 
123   if (isa<Argument>(V))
124     return true;
125 
126   // The load case works because isNonEscapingLocalObject considers all
127   // stores to be escapes (it passes true for the StoreCaptures argument
128   // to PointerMayBeCaptured).
129   if (isa<LoadInst>(V))
130     return true;
131 
132   return false;
133 }
134 
135 /// Returns the size of the object specified by V or UnknownSize if unknown.
136 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
137                               const TargetLibraryInfo &TLI,
138                               bool NullIsValidLoc,
139                               bool RoundToAlign = false) {
140   uint64_t Size;
141   ObjectSizeOpts Opts;
142   Opts.RoundToAlign = RoundToAlign;
143   Opts.NullIsUnknownSize = NullIsValidLoc;
144   if (getObjectSize(V, Size, DL, &TLI, Opts))
145     return Size;
146   return MemoryLocation::UnknownSize;
147 }
148 
149 /// Returns true if we can prove that the object specified by V is smaller than
150 /// Size.
151 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
152                                 const DataLayout &DL,
153                                 const TargetLibraryInfo &TLI,
154                                 bool NullIsValidLoc) {
155   // Note that the meanings of the "object" are slightly different in the
156   // following contexts:
157   //    c1: llvm::getObjectSize()
158   //    c2: llvm.objectsize() intrinsic
159   //    c3: isObjectSmallerThan()
160   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
161   // refers to the "entire object".
162   //
163   //  Consider this example:
164   //     char *p = (char*)malloc(100)
165   //     char *q = p+80;
166   //
167   //  In the context of c1 and c2, the "object" pointed by q refers to the
168   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
169   //
170   //  However, in the context of c3, the "object" refers to the chunk of memory
171   // being allocated. So, the "object" has 100 bytes, and q points to the middle
172   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
173   // parameter, before the llvm::getObjectSize() is called to get the size of
174   // entire object, we should:
175   //    - either rewind the pointer q to the base-address of the object in
176   //      question (in this case rewind to p), or
177   //    - just give up. It is up to caller to make sure the pointer is pointing
178   //      to the base address the object.
179   //
180   // We go for 2nd option for simplicity.
181   if (!isIdentifiedObject(V))
182     return false;
183 
184   // This function needs to use the aligned object size because we allow
185   // reads a bit past the end given sufficient alignment.
186   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
187                                       /*RoundToAlign*/ true);
188 
189   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
190 }
191 
192 /// Return the minimal extent from \p V to the end of the underlying object,
193 /// assuming the result is used in an aliasing query. E.g., we do use the query
194 /// location size and the fact that null pointers cannot alias here.
195 static uint64_t getMinimalExtentFrom(const Value &V,
196                                      const LocationSize &LocSize,
197                                      const DataLayout &DL,
198                                      bool NullIsValidLoc) {
199   // If we have dereferenceability information we know a lower bound for the
200   // extent as accesses for a lower offset would be valid. We need to exclude
201   // the "or null" part if null is a valid pointer.
202   bool CanBeNull, CanBeFreed;
203   uint64_t DerefBytes =
204     V.getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
205   DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes;
206   DerefBytes = CanBeFreed ? 0 : DerefBytes;
207   // If queried with a precise location size, we assume that location size to be
208   // accessed, thus valid.
209   if (LocSize.isPrecise())
210     DerefBytes = std::max(DerefBytes, LocSize.getValue());
211   return DerefBytes;
212 }
213 
214 /// Returns true if we can prove that the object specified by V has size Size.
215 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
216                          const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
217   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc);
218   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
219 }
220 
221 //===----------------------------------------------------------------------===//
222 // GetElementPtr Instruction Decomposition and Analysis
223 //===----------------------------------------------------------------------===//
224 
225 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
226 /// B are constant integers.
227 ///
228 /// Returns the scale and offset values as APInts and return V as a Value*, and
229 /// return whether we looked through any sign or zero extends.  The incoming
230 /// Value is known to have IntegerType, and it may already be sign or zero
231 /// extended.
232 ///
233 /// Note that this looks through extends, so the high bits may not be
234 /// represented in the result.
235 /*static*/ const Value *BasicAAResult::GetLinearExpression(
236     const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
237     unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
238     AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
239   assert(V->getType()->isIntegerTy() && "Not an integer value");
240 
241   // Limit our recursion depth.
242   if (Depth == 6) {
243     Scale = 1;
244     Offset = 0;
245     return V;
246   }
247 
248   if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
249     // If it's a constant, just convert it to an offset and remove the variable.
250     // If we've been called recursively, the Offset bit width will be greater
251     // than the constant's (the Offset's always as wide as the outermost call),
252     // so we'll zext here and process any extension in the isa<SExtInst> &
253     // isa<ZExtInst> cases below.
254     Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
255     assert(Scale == 0 && "Constant values don't have a scale");
256     return V;
257   }
258 
259   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
260     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
261       // If we've been called recursively, then Offset and Scale will be wider
262       // than the BOp operands. We'll always zext it here as we'll process sign
263       // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
264       APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
265 
266       switch (BOp->getOpcode()) {
267       default:
268         // We don't understand this instruction, so we can't decompose it any
269         // further.
270         Scale = 1;
271         Offset = 0;
272         return V;
273       case Instruction::Or:
274         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
275         // analyze it.
276         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
277                                BOp, DT)) {
278           Scale = 1;
279           Offset = 0;
280           return V;
281         }
282         LLVM_FALLTHROUGH;
283       case Instruction::Add:
284         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
285                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
286         Offset += RHS;
287         break;
288       case Instruction::Sub:
289         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
290                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
291         Offset -= RHS;
292         break;
293       case Instruction::Mul:
294         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
295                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
296         Offset *= RHS;
297         Scale *= RHS;
298         break;
299       case Instruction::Shl:
300         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
301                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
302 
303         // We're trying to linearize an expression of the kind:
304         //   shl i8 -128, 36
305         // where the shift count exceeds the bitwidth of the type.
306         // We can't decompose this further (the expression would return
307         // a poison value).
308         if (Offset.getBitWidth() < RHS.getLimitedValue() ||
309             Scale.getBitWidth() < RHS.getLimitedValue()) {
310           Scale = 1;
311           Offset = 0;
312           return V;
313         }
314 
315         Offset <<= RHS.getLimitedValue();
316         Scale <<= RHS.getLimitedValue();
317         // the semantics of nsw and nuw for left shifts don't match those of
318         // multiplications, so we won't propagate them.
319         NSW = NUW = false;
320         return V;
321       }
322 
323       if (isa<OverflowingBinaryOperator>(BOp)) {
324         NUW &= BOp->hasNoUnsignedWrap();
325         NSW &= BOp->hasNoSignedWrap();
326       }
327       return V;
328     }
329   }
330 
331   // Since GEP indices are sign extended anyway, we don't care about the high
332   // bits of a sign or zero extended value - just scales and offsets.  The
333   // extensions have to be consistent though.
334   if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
335     Value *CastOp = cast<CastInst>(V)->getOperand(0);
336     unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
337     unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
338     unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
339     const Value *Result =
340         GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
341                             Depth + 1, AC, DT, NSW, NUW);
342 
343     // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this
344     // by just incrementing the number of bits we've extended by.
345     unsigned ExtendedBy = NewWidth - SmallWidth;
346 
347     if (isa<SExtInst>(V) && ZExtBits == 0) {
348       // sext(sext(%x, a), b) == sext(%x, a + b)
349 
350       if (NSW) {
351         // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
352         // into sext(%x) + sext(c). We'll sext the Offset ourselves:
353         unsigned OldWidth = Offset.getBitWidth();
354         Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
355       } else {
356         // We may have signed-wrapped, so don't decompose sext(%x + c) into
357         // sext(%x) + sext(c)
358         Scale = 1;
359         Offset = 0;
360         Result = CastOp;
361         ZExtBits = OldZExtBits;
362         SExtBits = OldSExtBits;
363       }
364       SExtBits += ExtendedBy;
365     } else {
366       // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
367 
368       if (!NUW) {
369         // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
370         // zext(%x) + zext(c)
371         Scale = 1;
372         Offset = 0;
373         Result = CastOp;
374         ZExtBits = OldZExtBits;
375         SExtBits = OldSExtBits;
376       }
377       ZExtBits += ExtendedBy;
378     }
379 
380     return Result;
381   }
382 
383   Scale = 1;
384   Offset = 0;
385   return V;
386 }
387 
388 /// To ensure a pointer offset fits in an integer of size PointerSize
389 /// (in bits) when that size is smaller than the maximum pointer size. This is
390 /// an issue, for example, in particular for 32b pointers with negative indices
391 /// that rely on two's complement wrap-arounds for precise alias information
392 /// where the maximum pointer size is 64b.
393 static APInt adjustToPointerSize(const APInt &Offset, unsigned PointerSize) {
394   assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!");
395   unsigned ShiftBits = Offset.getBitWidth() - PointerSize;
396   return (Offset << ShiftBits).ashr(ShiftBits);
397 }
398 
399 static unsigned getMaxPointerSize(const DataLayout &DL) {
400   unsigned MaxPointerSize = DL.getMaxPointerSizeInBits();
401   if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64;
402   if (DoubleCalcBits) MaxPointerSize *= 2;
403 
404   return MaxPointerSize;
405 }
406 
407 /// If V is a symbolic pointer expression, decompose it into a base pointer
408 /// with a constant offset and a number of scaled symbolic offsets.
409 ///
410 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
411 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
412 /// specified amount, but which may have other unrepresented high bits. As
413 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
414 ///
415 /// This function is capable of analyzing everything that getUnderlyingObject
416 /// can look through. To be able to do that getUnderlyingObject and
417 /// DecomposeGEPExpression must use the same search depth
418 /// (MaxLookupSearchDepth).
419 BasicAAResult::DecomposedGEP
420 BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL,
421                                       AssumptionCache *AC, DominatorTree *DT) {
422   // Limit recursion depth to limit compile time in crazy cases.
423   unsigned MaxLookup = MaxLookupSearchDepth;
424   SearchTimes++;
425   const Instruction *CxtI = dyn_cast<Instruction>(V);
426 
427   unsigned MaxPointerSize = getMaxPointerSize(DL);
428   DecomposedGEP Decomposed;
429   Decomposed.Offset = APInt(MaxPointerSize, 0);
430   Decomposed.HasCompileTimeConstantScale = true;
431   do {
432     // See if this is a bitcast or GEP.
433     const Operator *Op = dyn_cast<Operator>(V);
434     if (!Op) {
435       // The only non-operator case we can handle are GlobalAliases.
436       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
437         if (!GA->isInterposable()) {
438           V = GA->getAliasee();
439           continue;
440         }
441       }
442       Decomposed.Base = V;
443       return Decomposed;
444     }
445 
446     if (Op->getOpcode() == Instruction::BitCast ||
447         Op->getOpcode() == Instruction::AddrSpaceCast) {
448       V = Op->getOperand(0);
449       continue;
450     }
451 
452     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
453     if (!GEPOp) {
454       if (const auto *PHI = dyn_cast<PHINode>(V)) {
455         // Look through single-arg phi nodes created by LCSSA.
456         if (PHI->getNumIncomingValues() == 1) {
457           V = PHI->getIncomingValue(0);
458           continue;
459         }
460       } else if (const auto *Call = dyn_cast<CallBase>(V)) {
461         // CaptureTracking can know about special capturing properties of some
462         // intrinsics like launder.invariant.group, that can't be expressed with
463         // the attributes, but have properties like returning aliasing pointer.
464         // Because some analysis may assume that nocaptured pointer is not
465         // returned from some special intrinsic (because function would have to
466         // be marked with returns attribute), it is crucial to use this function
467         // because it should be in sync with CaptureTracking. Not using it may
468         // cause weird miscompilations where 2 aliasing pointers are assumed to
469         // noalias.
470         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
471           V = RP;
472           continue;
473         }
474       }
475 
476       Decomposed.Base = V;
477       return Decomposed;
478     }
479 
480     // Track whether we've seen at least one in bounds gep, and if so, whether
481     // all geps parsed were in bounds.
482     if (Decomposed.InBounds == None)
483       Decomposed.InBounds = GEPOp->isInBounds();
484     else if (!GEPOp->isInBounds())
485       Decomposed.InBounds = false;
486 
487     // Don't attempt to analyze GEPs over unsized objects.
488     if (!GEPOp->getSourceElementType()->isSized()) {
489       Decomposed.Base = V;
490       return Decomposed;
491     }
492 
493     // Don't attempt to analyze GEPs if index scale is not a compile-time
494     // constant.
495     if (isa<ScalableVectorType>(GEPOp->getSourceElementType())) {
496       Decomposed.Base = V;
497       Decomposed.HasCompileTimeConstantScale = false;
498       return Decomposed;
499     }
500 
501     unsigned AS = GEPOp->getPointerAddressSpace();
502     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
503     gep_type_iterator GTI = gep_type_begin(GEPOp);
504     unsigned PointerSize = DL.getPointerSizeInBits(AS);
505     // Assume all GEP operands are constants until proven otherwise.
506     bool GepHasConstantOffset = true;
507     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
508          I != E; ++I, ++GTI) {
509       const Value *Index = *I;
510       // Compute the (potentially symbolic) offset in bytes for this index.
511       if (StructType *STy = GTI.getStructTypeOrNull()) {
512         // For a struct, add the member offset.
513         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
514         if (FieldNo == 0)
515           continue;
516 
517         Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo);
518         continue;
519       }
520 
521       // For an array/pointer, add the element offset, explicitly scaled.
522       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
523         if (CIdx->isZero())
524           continue;
525         Decomposed.Offset +=
526             DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize() *
527             CIdx->getValue().sextOrTrunc(MaxPointerSize);
528         continue;
529       }
530 
531       GepHasConstantOffset = false;
532 
533       APInt Scale(MaxPointerSize,
534                   DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize());
535       unsigned ZExtBits = 0, SExtBits = 0;
536 
537       // If the integer type is smaller than the pointer size, it is implicitly
538       // sign extended to pointer size.
539       unsigned Width = Index->getType()->getIntegerBitWidth();
540       if (PointerSize > Width)
541         SExtBits += PointerSize - Width;
542 
543       // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
544       APInt IndexScale(Width, 0), IndexOffset(Width, 0);
545       bool NSW = true, NUW = true;
546       const Value *OrigIndex = Index;
547       Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
548                                   SExtBits, DL, 0, AC, DT, NSW, NUW);
549 
550       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
551       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
552 
553       // It can be the case that, even through C1*V+C2 does not overflow for
554       // relevant values of V, (C2*Scale) can overflow. In that case, we cannot
555       // decompose the expression in this way.
556       //
557       // FIXME: C1*Scale and the other operations in the decomposed
558       // (C1*Scale)*V+C2*Scale can also overflow. We should check for this
559       // possibility.
560       bool Overflow;
561       APInt ScaledOffset = IndexOffset.sextOrTrunc(MaxPointerSize)
562                            .smul_ov(Scale, Overflow);
563       if (Overflow) {
564         Index = OrigIndex;
565         IndexScale = 1;
566         IndexOffset = 0;
567 
568         ZExtBits = SExtBits = 0;
569         if (PointerSize > Width)
570           SExtBits += PointerSize - Width;
571       } else {
572         Decomposed.Offset += ScaledOffset;
573         Scale *= IndexScale.sextOrTrunc(MaxPointerSize);
574       }
575 
576       // If we already had an occurrence of this index variable, merge this
577       // scale into it.  For example, we want to handle:
578       //   A[x][x] -> x*16 + x*4 -> x*20
579       // This also ensures that 'x' only appears in the index list once.
580       for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
581         if (Decomposed.VarIndices[i].V == Index &&
582             Decomposed.VarIndices[i].ZExtBits == ZExtBits &&
583             Decomposed.VarIndices[i].SExtBits == SExtBits) {
584           Scale += Decomposed.VarIndices[i].Scale;
585           Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
586           break;
587         }
588       }
589 
590       // Make sure that we have a scale that makes sense for this target's
591       // pointer size.
592       Scale = adjustToPointerSize(Scale, PointerSize);
593 
594       if (!!Scale) {
595         VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, Scale, CxtI};
596         Decomposed.VarIndices.push_back(Entry);
597       }
598     }
599 
600     // Take care of wrap-arounds
601     if (GepHasConstantOffset)
602       Decomposed.Offset = adjustToPointerSize(Decomposed.Offset, PointerSize);
603 
604     // Analyze the base pointer next.
605     V = GEPOp->getOperand(0);
606   } while (--MaxLookup);
607 
608   // If the chain of expressions is too deep, just return early.
609   Decomposed.Base = V;
610   SearchLimitReached++;
611   return Decomposed;
612 }
613 
614 /// Returns whether the given pointer value points to memory that is local to
615 /// the function, with global constants being considered local to all
616 /// functions.
617 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
618                                            AAQueryInfo &AAQI, bool OrLocal) {
619   assert(Visited.empty() && "Visited must be cleared after use!");
620 
621   unsigned MaxLookup = 8;
622   SmallVector<const Value *, 16> Worklist;
623   Worklist.push_back(Loc.Ptr);
624   do {
625     const Value *V = getUnderlyingObject(Worklist.pop_back_val());
626     if (!Visited.insert(V).second) {
627       Visited.clear();
628       return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
629     }
630 
631     // An alloca instruction defines local memory.
632     if (OrLocal && isa<AllocaInst>(V))
633       continue;
634 
635     // A global constant counts as local memory for our purposes.
636     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
637       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
638       // global to be marked constant in some modules and non-constant in
639       // others.  GV may even be a declaration, not a definition.
640       if (!GV->isConstant()) {
641         Visited.clear();
642         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
643       }
644       continue;
645     }
646 
647     // If both select values point to local memory, then so does the select.
648     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
649       Worklist.push_back(SI->getTrueValue());
650       Worklist.push_back(SI->getFalseValue());
651       continue;
652     }
653 
654     // If all values incoming to a phi node point to local memory, then so does
655     // the phi.
656     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
657       // Don't bother inspecting phi nodes with many operands.
658       if (PN->getNumIncomingValues() > MaxLookup) {
659         Visited.clear();
660         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
661       }
662       append_range(Worklist, PN->incoming_values());
663       continue;
664     }
665 
666     // Otherwise be conservative.
667     Visited.clear();
668     return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
669   } while (!Worklist.empty() && --MaxLookup);
670 
671   Visited.clear();
672   return Worklist.empty();
673 }
674 
675 /// Returns the behavior when calling the given call site.
676 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) {
677   if (Call->doesNotAccessMemory())
678     // Can't do better than this.
679     return FMRB_DoesNotAccessMemory;
680 
681   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
682 
683   // If the callsite knows it only reads memory, don't return worse
684   // than that.
685   if (Call->onlyReadsMemory())
686     Min = FMRB_OnlyReadsMemory;
687   else if (Call->doesNotReadMemory())
688     Min = FMRB_OnlyWritesMemory;
689 
690   if (Call->onlyAccessesArgMemory())
691     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
692   else if (Call->onlyAccessesInaccessibleMemory())
693     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
694   else if (Call->onlyAccessesInaccessibleMemOrArgMem())
695     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
696 
697   // If the call has operand bundles then aliasing attributes from the function
698   // it calls do not directly apply to the call.  This can be made more precise
699   // in the future.
700   if (!Call->hasOperandBundles())
701     if (const Function *F = Call->getCalledFunction())
702       Min =
703           FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
704 
705   return Min;
706 }
707 
708 /// Returns the behavior when calling the given function. For use when the call
709 /// site is not known.
710 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
711   // If the function declares it doesn't access memory, we can't do better.
712   if (F->doesNotAccessMemory())
713     return FMRB_DoesNotAccessMemory;
714 
715   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
716 
717   // If the function declares it only reads memory, go with that.
718   if (F->onlyReadsMemory())
719     Min = FMRB_OnlyReadsMemory;
720   else if (F->doesNotReadMemory())
721     Min = FMRB_OnlyWritesMemory;
722 
723   if (F->onlyAccessesArgMemory())
724     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
725   else if (F->onlyAccessesInaccessibleMemory())
726     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
727   else if (F->onlyAccessesInaccessibleMemOrArgMem())
728     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
729 
730   return Min;
731 }
732 
733 /// Returns true if this is a writeonly (i.e Mod only) parameter.
734 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx,
735                              const TargetLibraryInfo &TLI) {
736   if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly))
737     return true;
738 
739   // We can bound the aliasing properties of memset_pattern16 just as we can
740   // for memcpy/memset.  This is particularly important because the
741   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
742   // whenever possible.
743   // FIXME Consider handling this in InferFunctionAttr.cpp together with other
744   // attributes.
745   LibFunc F;
746   if (Call->getCalledFunction() &&
747       TLI.getLibFunc(*Call->getCalledFunction(), F) &&
748       F == LibFunc_memset_pattern16 && TLI.has(F))
749     if (ArgIdx == 0)
750       return true;
751 
752   // TODO: memset_pattern4, memset_pattern8
753   // TODO: _chk variants
754   // TODO: strcmp, strcpy
755 
756   return false;
757 }
758 
759 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
760                                            unsigned ArgIdx) {
761   // Checking for known builtin intrinsics and target library functions.
762   if (isWriteOnlyParam(Call, ArgIdx, TLI))
763     return ModRefInfo::Mod;
764 
765   if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly))
766     return ModRefInfo::Ref;
767 
768   if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone))
769     return ModRefInfo::NoModRef;
770 
771   return AAResultBase::getArgModRefInfo(Call, ArgIdx);
772 }
773 
774 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
775   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
776   return II && II->getIntrinsicID() == IID;
777 }
778 
779 #ifndef NDEBUG
780 static const Function *getParent(const Value *V) {
781   if (const Instruction *inst = dyn_cast<Instruction>(V)) {
782     if (!inst->getParent())
783       return nullptr;
784     return inst->getParent()->getParent();
785   }
786 
787   if (const Argument *arg = dyn_cast<Argument>(V))
788     return arg->getParent();
789 
790   return nullptr;
791 }
792 
793 static bool notDifferentParent(const Value *O1, const Value *O2) {
794 
795   const Function *F1 = getParent(O1);
796   const Function *F2 = getParent(O2);
797 
798   return !F1 || !F2 || F1 == F2;
799 }
800 #endif
801 
802 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
803                                  const MemoryLocation &LocB,
804                                  AAQueryInfo &AAQI) {
805   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
806          "BasicAliasAnalysis doesn't support interprocedural queries.");
807   return aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr, LocB.Size,
808                     LocB.AATags, AAQI);
809 }
810 
811 /// Checks to see if the specified callsite can clobber the specified memory
812 /// object.
813 ///
814 /// Since we only look at local properties of this function, we really can't
815 /// say much about this query.  We do, however, use simple "address taken"
816 /// analysis on local objects.
817 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
818                                         const MemoryLocation &Loc,
819                                         AAQueryInfo &AAQI) {
820   assert(notDifferentParent(Call, Loc.Ptr) &&
821          "AliasAnalysis query involving multiple functions!");
822 
823   const Value *Object = getUnderlyingObject(Loc.Ptr);
824 
825   // Calls marked 'tail' cannot read or write allocas from the current frame
826   // because the current frame might be destroyed by the time they run. However,
827   // a tail call may use an alloca with byval. Calling with byval copies the
828   // contents of the alloca into argument registers or stack slots, so there is
829   // no lifetime issue.
830   if (isa<AllocaInst>(Object))
831     if (const CallInst *CI = dyn_cast<CallInst>(Call))
832       if (CI->isTailCall() &&
833           !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal))
834         return ModRefInfo::NoModRef;
835 
836   // Stack restore is able to modify unescaped dynamic allocas. Assume it may
837   // modify them even though the alloca is not escaped.
838   if (auto *AI = dyn_cast<AllocaInst>(Object))
839     if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore))
840       return ModRefInfo::Mod;
841 
842   // If the pointer is to a locally allocated object that does not escape,
843   // then the call can not mod/ref the pointer unless the call takes the pointer
844   // as an argument, and itself doesn't capture it.
845   if (!isa<Constant>(Object) && Call != Object &&
846       isNonEscapingLocalObject(Object, &AAQI.IsCapturedCache)) {
847 
848     // Optimistically assume that call doesn't touch Object and check this
849     // assumption in the following loop.
850     ModRefInfo Result = ModRefInfo::NoModRef;
851     bool IsMustAlias = true;
852 
853     unsigned OperandNo = 0;
854     for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
855          CI != CE; ++CI, ++OperandNo) {
856       // Only look at the no-capture or byval pointer arguments.  If this
857       // pointer were passed to arguments that were neither of these, then it
858       // couldn't be no-capture.
859       if (!(*CI)->getType()->isPointerTy() ||
860           (!Call->doesNotCapture(OperandNo) &&
861            OperandNo < Call->getNumArgOperands() &&
862            !Call->isByValArgument(OperandNo)))
863         continue;
864 
865       // Call doesn't access memory through this operand, so we don't care
866       // if it aliases with Object.
867       if (Call->doesNotAccessMemory(OperandNo))
868         continue;
869 
870       // If this is a no-capture pointer argument, see if we can tell that it
871       // is impossible to alias the pointer we're checking.
872       AliasResult AR = getBestAAResults().alias(
873           MemoryLocation::getBeforeOrAfter(*CI),
874           MemoryLocation::getBeforeOrAfter(Object), AAQI);
875       if (AR != MustAlias)
876         IsMustAlias = false;
877       // Operand doesn't alias 'Object', continue looking for other aliases
878       if (AR == NoAlias)
879         continue;
880       // Operand aliases 'Object', but call doesn't modify it. Strengthen
881       // initial assumption and keep looking in case if there are more aliases.
882       if (Call->onlyReadsMemory(OperandNo)) {
883         Result = setRef(Result);
884         continue;
885       }
886       // Operand aliases 'Object' but call only writes into it.
887       if (Call->doesNotReadMemory(OperandNo)) {
888         Result = setMod(Result);
889         continue;
890       }
891       // This operand aliases 'Object' and call reads and writes into it.
892       // Setting ModRef will not yield an early return below, MustAlias is not
893       // used further.
894       Result = ModRefInfo::ModRef;
895       break;
896     }
897 
898     // No operand aliases, reset Must bit. Add below if at least one aliases
899     // and all aliases found are MustAlias.
900     if (isNoModRef(Result))
901       IsMustAlias = false;
902 
903     // Early return if we improved mod ref information
904     if (!isModAndRefSet(Result)) {
905       if (isNoModRef(Result))
906         return ModRefInfo::NoModRef;
907       return IsMustAlias ? setMust(Result) : clearMust(Result);
908     }
909   }
910 
911   // If the call is malloc/calloc like, we can assume that it doesn't
912   // modify any IR visible value.  This is only valid because we assume these
913   // routines do not read values visible in the IR.  TODO: Consider special
914   // casing realloc and strdup routines which access only their arguments as
915   // well.  Or alternatively, replace all of this with inaccessiblememonly once
916   // that's implemented fully.
917   if (isMallocOrCallocLikeFn(Call, &TLI)) {
918     // Be conservative if the accessed pointer may alias the allocation -
919     // fallback to the generic handling below.
920     if (getBestAAResults().alias(MemoryLocation::getBeforeOrAfter(Call),
921                                  Loc, AAQI) == NoAlias)
922       return ModRefInfo::NoModRef;
923   }
924 
925   // The semantics of memcpy intrinsics either exactly overlap or do not
926   // overlap, i.e., source and destination of any given memcpy are either
927   // no-alias or must-alias.
928   if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) {
929     AliasResult SrcAA =
930         getBestAAResults().alias(MemoryLocation::getForSource(Inst), Loc, AAQI);
931     AliasResult DestAA =
932         getBestAAResults().alias(MemoryLocation::getForDest(Inst), Loc, AAQI);
933     // It's also possible for Loc to alias both src and dest, or neither.
934     ModRefInfo rv = ModRefInfo::NoModRef;
935     if (SrcAA != NoAlias)
936       rv = setRef(rv);
937     if (DestAA != NoAlias)
938       rv = setMod(rv);
939     return rv;
940   }
941 
942   // Guard intrinsics are marked as arbitrarily writing so that proper control
943   // dependencies are maintained but they never mods any particular memory
944   // location.
945   //
946   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
947   // heap state at the point the guard is issued needs to be consistent in case
948   // the guard invokes the "deopt" continuation.
949   if (isIntrinsicCall(Call, Intrinsic::experimental_guard))
950     return ModRefInfo::Ref;
951   // The same applies to deoptimize which is essentially a guard(false).
952   if (isIntrinsicCall(Call, Intrinsic::experimental_deoptimize))
953     return ModRefInfo::Ref;
954 
955   // Like assumes, invariant.start intrinsics were also marked as arbitrarily
956   // writing so that proper control dependencies are maintained but they never
957   // mod any particular memory location visible to the IR.
958   // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
959   // intrinsic is now modeled as reading memory. This prevents hoisting the
960   // invariant.start intrinsic over stores. Consider:
961   // *ptr = 40;
962   // *ptr = 50;
963   // invariant_start(ptr)
964   // int val = *ptr;
965   // print(val);
966   //
967   // This cannot be transformed to:
968   //
969   // *ptr = 40;
970   // invariant_start(ptr)
971   // *ptr = 50;
972   // int val = *ptr;
973   // print(val);
974   //
975   // The transformation will cause the second store to be ignored (based on
976   // rules of invariant.start)  and print 40, while the first program always
977   // prints 50.
978   if (isIntrinsicCall(Call, Intrinsic::invariant_start))
979     return ModRefInfo::Ref;
980 
981   // The AAResultBase base class has some smarts, lets use them.
982   return AAResultBase::getModRefInfo(Call, Loc, AAQI);
983 }
984 
985 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
986                                         const CallBase *Call2,
987                                         AAQueryInfo &AAQI) {
988   // Guard intrinsics are marked as arbitrarily writing so that proper control
989   // dependencies are maintained but they never mods any particular memory
990   // location.
991   //
992   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
993   // heap state at the point the guard is issued needs to be consistent in case
994   // the guard invokes the "deopt" continuation.
995 
996   // NB! This function is *not* commutative, so we special case two
997   // possibilities for guard intrinsics.
998 
999   if (isIntrinsicCall(Call1, Intrinsic::experimental_guard))
1000     return isModSet(createModRefInfo(getModRefBehavior(Call2)))
1001                ? ModRefInfo::Ref
1002                : ModRefInfo::NoModRef;
1003 
1004   if (isIntrinsicCall(Call2, Intrinsic::experimental_guard))
1005     return isModSet(createModRefInfo(getModRefBehavior(Call1)))
1006                ? ModRefInfo::Mod
1007                : ModRefInfo::NoModRef;
1008 
1009   // The AAResultBase base class has some smarts, lets use them.
1010   return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
1011 }
1012 
1013 /// Return true if we know V to the base address of the corresponding memory
1014 /// object.  This implies that any address less than V must be out of bounds
1015 /// for the underlying object.  Note that just being isIdentifiedObject() is
1016 /// not enough - For example, a negative offset from a noalias argument or call
1017 /// can be inbounds w.r.t the actual underlying object.
1018 static bool isBaseOfObject(const Value *V) {
1019   // TODO: We can handle other cases here
1020   // 1) For GC languages, arguments to functions are often required to be
1021   //    base pointers.
1022   // 2) Result of allocation routines are often base pointers.  Leverage TLI.
1023   return (isa<AllocaInst>(V) || isa<GlobalVariable>(V));
1024 }
1025 
1026 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1027 /// another pointer.
1028 ///
1029 /// We know that V1 is a GEP, but we don't know anything about V2.
1030 /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for
1031 /// V2.
1032 AliasResult BasicAAResult::aliasGEP(
1033     const GEPOperator *GEP1, LocationSize V1Size, const AAMDNodes &V1AAInfo,
1034     const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo,
1035     const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) {
1036   DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT);
1037   DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT);
1038 
1039   // Don't attempt to analyze the decomposed GEP if index scale is not a
1040   // compile-time constant.
1041   if (!DecompGEP1.HasCompileTimeConstantScale ||
1042       !DecompGEP2.HasCompileTimeConstantScale)
1043     return MayAlias;
1044 
1045   assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
1046          "DecomposeGEPExpression returned a result different from "
1047          "getUnderlyingObject");
1048 
1049   // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1050   // symbolic difference.
1051   DecompGEP1.Offset -= DecompGEP2.Offset;
1052   GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);
1053 
1054   // If an inbounds GEP would have to start from an out of bounds address
1055   // for the two to alias, then we can assume noalias.
1056   if (*DecompGEP1.InBounds && DecompGEP1.VarIndices.empty() &&
1057       V2Size.hasValue() && DecompGEP1.Offset.sge(V2Size.getValue()) &&
1058       isBaseOfObject(DecompGEP2.Base))
1059     return NoAlias;
1060 
1061   if (isa<GEPOperator>(V2)) {
1062     // Symmetric case to above.
1063     if (*DecompGEP2.InBounds && DecompGEP1.VarIndices.empty() &&
1064         V1Size.hasValue() && DecompGEP1.Offset.sle(-V1Size.getValue()) &&
1065         isBaseOfObject(DecompGEP1.Base))
1066     return NoAlias;
1067   } else {
1068     // TODO: This limitation exists for compile-time reasons. Relax it if we
1069     // can avoid exponential pathological cases.
1070     if (!V1Size.hasValue() && !V2Size.hasValue())
1071       return MayAlias;
1072   }
1073 
1074   // For GEPs with identical offsets, we can preserve the size and AAInfo
1075   // when performing the alias check on the underlying objects.
1076   if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty())
1077     return getBestAAResults().alias(
1078         MemoryLocation(UnderlyingV1, V1Size, V1AAInfo),
1079         MemoryLocation(UnderlyingV2, V2Size, V2AAInfo), AAQI);
1080 
1081   // Do the base pointers alias?
1082   AliasResult BaseAlias = getBestAAResults().alias(
1083       MemoryLocation::getBeforeOrAfter(UnderlyingV1),
1084       MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI);
1085 
1086   // If we get a No or May, then return it immediately, no amount of analysis
1087   // will improve this situation.
1088   if (BaseAlias != MustAlias) {
1089     assert(BaseAlias == NoAlias || BaseAlias == MayAlias);
1090     return BaseAlias;
1091   }
1092 
1093   // If there is a constant difference between the pointers, but the difference
1094   // is less than the size of the associated memory object, then we know
1095   // that the objects are partially overlapping.  If the difference is
1096   // greater, we know they do not overlap.
1097   if (DecompGEP1.Offset != 0 && DecompGEP1.VarIndices.empty()) {
1098     APInt &Off = DecompGEP1.Offset;
1099 
1100     // Initialize for Off >= 0 (V2 <= GEP1) case.
1101     const Value *LeftPtr = V2;
1102     const Value *RightPtr = GEP1;
1103     LocationSize VLeftSize = V2Size;
1104     LocationSize VRightSize = V1Size;
1105 
1106     if (Off.isNegative()) {
1107       // Swap if we have the situation where:
1108       // +                +
1109       // | BaseOffset     |
1110       // ---------------->|
1111       // |-->V1Size       |-------> V2Size
1112       // GEP1             V2
1113       std::swap(LeftPtr, RightPtr);
1114       std::swap(VLeftSize, VRightSize);
1115       Off = -Off;
1116     }
1117 
1118     if (VLeftSize.hasValue()) {
1119       const uint64_t LSize = VLeftSize.getValue();
1120       if (Off.ult(LSize)) {
1121         // Conservatively drop processing if a phi was visited and/or offset is
1122         // too big.
1123         if (VisitedPhiBBs.empty() && VRightSize.hasValue() &&
1124             Off.ule(INT64_MAX)) {
1125           // Memory referenced by right pointer is nested. Save the offset in
1126           // cache.
1127           const uint64_t RSize = VRightSize.getValue();
1128           if ((Off + RSize).ule(LSize))
1129             AAQI.setClobberOffset(LeftPtr, RightPtr, LSize, RSize,
1130                                   Off.getSExtValue());
1131         }
1132         return PartialAlias;
1133       }
1134       return NoAlias;
1135     }
1136   }
1137 
1138   if (!DecompGEP1.VarIndices.empty()) {
1139     APInt GCD;
1140     bool AllNonNegative = DecompGEP1.Offset.isNonNegative();
1141     bool AllNonPositive = DecompGEP1.Offset.isNonPositive();
1142     for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1143       const APInt &Scale = DecompGEP1.VarIndices[i].Scale;
1144       if (i == 0)
1145         GCD = Scale.abs();
1146       else
1147         GCD = APIntOps::GreatestCommonDivisor(GCD, Scale.abs());
1148 
1149       if (AllNonNegative || AllNonPositive) {
1150         // If the Value could change between cycles, then any reasoning about
1151         // the Value this cycle may not hold in the next cycle. We'll just
1152         // give up if we can't determine conditions that hold for every cycle:
1153         const Value *V = DecompGEP1.VarIndices[i].V;
1154         const Instruction *CxtI = DecompGEP1.VarIndices[i].CxtI;
1155 
1156         KnownBits Known = computeKnownBits(V, DL, 0, &AC, CxtI, DT);
1157         bool SignKnownZero = Known.isNonNegative();
1158         bool SignKnownOne = Known.isNegative();
1159 
1160         // Zero-extension widens the variable, and so forces the sign
1161         // bit to zero.
1162         bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
1163         SignKnownZero |= IsZExt;
1164         SignKnownOne &= !IsZExt;
1165 
1166         AllNonNegative &= (SignKnownZero && Scale.isNonNegative()) ||
1167                           (SignKnownOne && Scale.isNonPositive());
1168         AllNonPositive &= (SignKnownZero && Scale.isNonPositive()) ||
1169                           (SignKnownOne && Scale.isNonNegative());
1170       }
1171     }
1172 
1173     // We now have accesses at two offsets from the same base:
1174     //  1. (...)*GCD + DecompGEP1.Offset with size V1Size
1175     //  2. 0 with size V2Size
1176     // Using arithmetic modulo GCD, the accesses are at
1177     // [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits
1178     // into the range [V2Size..GCD), then we know they cannot overlap.
1179     APInt ModOffset = DecompGEP1.Offset.srem(GCD);
1180     if (ModOffset.isNegative())
1181       ModOffset += GCD; // We want mod, not rem.
1182     if (V1Size.hasValue() && V2Size.hasValue() &&
1183         ModOffset.uge(V2Size.getValue()) &&
1184         (GCD - ModOffset).uge(V1Size.getValue()))
1185       return NoAlias;
1186 
1187     // If we know all the variables are non-negative, then the total offset is
1188     // also non-negative and >= DecompGEP1.Offset. We have the following layout:
1189     // [0, V2Size) ... [TotalOffset, TotalOffer+V1Size]
1190     // If DecompGEP1.Offset >= V2Size, the accesses don't alias.
1191     if (AllNonNegative && V2Size.hasValue() &&
1192         DecompGEP1.Offset.uge(V2Size.getValue()))
1193       return NoAlias;
1194     // Similarly, if the variables are non-positive, then the total offset is
1195     // also non-positive and <= DecompGEP1.Offset. We have the following layout:
1196     // [TotalOffset, TotalOffset+V1Size) ... [0, V2Size)
1197     // If -DecompGEP1.Offset >= V1Size, the accesses don't alias.
1198     if (AllNonPositive && V1Size.hasValue() &&
1199         (-DecompGEP1.Offset).uge(V1Size.getValue()))
1200       return NoAlias;
1201 
1202     if (V1Size.hasValue() && V2Size.hasValue()) {
1203       // Try to determine whether abs(VarIndex) > 0.
1204       Optional<APInt> MinAbsVarIndex;
1205       if (DecompGEP1.VarIndices.size() == 1) {
1206         // VarIndex = Scale*V. If V != 0 then abs(VarIndex) >= abs(Scale).
1207         const VariableGEPIndex &Var = DecompGEP1.VarIndices[0];
1208         if (isKnownNonZero(Var.V, DL, 0, &AC, Var.CxtI, DT))
1209           MinAbsVarIndex = Var.Scale.abs();
1210       } else if (DecompGEP1.VarIndices.size() == 2) {
1211         // VarIndex = Scale*V0 + (-Scale)*V1.
1212         // If V0 != V1 then abs(VarIndex) >= abs(Scale).
1213         // Check that VisitedPhiBBs is empty, to avoid reasoning about
1214         // inequality of values across loop iterations.
1215         const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0];
1216         const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1];
1217         if (Var0.Scale == -Var1.Scale && Var0.ZExtBits == Var1.ZExtBits &&
1218             Var0.SExtBits == Var1.SExtBits && VisitedPhiBBs.empty() &&
1219             isKnownNonEqual(Var0.V, Var1.V, DL, &AC, /* CxtI */ nullptr, DT))
1220           MinAbsVarIndex = Var0.Scale.abs();
1221       }
1222 
1223       if (MinAbsVarIndex) {
1224         // The constant offset will have added at least +/-MinAbsVarIndex to it.
1225         APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex;
1226         APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex;
1227         // Check that an access at OffsetLo or lower, and an access at OffsetHi
1228         // or higher both do not alias.
1229         if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) &&
1230             OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue()))
1231           return NoAlias;
1232       }
1233     }
1234 
1235     if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
1236                                 DecompGEP1.Offset, &AC, DT))
1237       return NoAlias;
1238   }
1239 
1240   // Statically, we can see that the base objects are the same, but the
1241   // pointers have dynamic offsets which we can't resolve. And none of our
1242   // little tricks above worked.
1243   return MayAlias;
1244 }
1245 
1246 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1247   // If the results agree, take it.
1248   if (A == B)
1249     return A;
1250   // A mix of PartialAlias and MustAlias is PartialAlias.
1251   if ((A == PartialAlias && B == MustAlias) ||
1252       (B == PartialAlias && A == MustAlias))
1253     return PartialAlias;
1254   // Otherwise, we don't know anything.
1255   return MayAlias;
1256 }
1257 
1258 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1259 /// against another.
1260 AliasResult
1261 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize,
1262                            const AAMDNodes &SIAAInfo, const Value *V2,
1263                            LocationSize V2Size, const AAMDNodes &V2AAInfo,
1264                            AAQueryInfo &AAQI) {
1265   // If the values are Selects with the same condition, we can do a more precise
1266   // check: just check for aliases between the values on corresponding arms.
1267   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1268     if (SI->getCondition() == SI2->getCondition()) {
1269       AliasResult Alias = getBestAAResults().alias(
1270           MemoryLocation(SI->getTrueValue(), SISize, SIAAInfo),
1271           MemoryLocation(SI2->getTrueValue(), V2Size, V2AAInfo), AAQI);
1272       if (Alias == MayAlias)
1273         return MayAlias;
1274       AliasResult ThisAlias = getBestAAResults().alias(
1275           MemoryLocation(SI->getFalseValue(), SISize, SIAAInfo),
1276           MemoryLocation(SI2->getFalseValue(), V2Size, V2AAInfo), AAQI);
1277       return MergeAliasResults(ThisAlias, Alias);
1278     }
1279 
1280   // If both arms of the Select node NoAlias or MustAlias V2, then returns
1281   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1282   AliasResult Alias = getBestAAResults().alias(
1283       MemoryLocation(V2, V2Size, V2AAInfo),
1284       MemoryLocation(SI->getTrueValue(), SISize, SIAAInfo), AAQI);
1285   if (Alias == MayAlias)
1286     return MayAlias;
1287 
1288   AliasResult ThisAlias = getBestAAResults().alias(
1289       MemoryLocation(V2, V2Size, V2AAInfo),
1290       MemoryLocation(SI->getFalseValue(), SISize, SIAAInfo), AAQI);
1291   return MergeAliasResults(ThisAlias, Alias);
1292 }
1293 
1294 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1295 /// another.
1296 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
1297                                     const AAMDNodes &PNAAInfo, const Value *V2,
1298                                     LocationSize V2Size,
1299                                     const AAMDNodes &V2AAInfo,
1300                                     AAQueryInfo &AAQI) {
1301   // If the values are PHIs in the same block, we can do a more precise
1302   // as well as efficient check: just check for aliases between the values
1303   // on corresponding edges.
1304   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1305     if (PN2->getParent() == PN->getParent()) {
1306       Optional<AliasResult> Alias;
1307       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1308         AliasResult ThisAlias = getBestAAResults().alias(
1309             MemoryLocation(PN->getIncomingValue(i), PNSize, PNAAInfo),
1310             MemoryLocation(
1311                 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size,
1312                 V2AAInfo),
1313             AAQI);
1314         if (Alias)
1315           *Alias = MergeAliasResults(*Alias, ThisAlias);
1316         else
1317           Alias = ThisAlias;
1318         if (*Alias == MayAlias)
1319           break;
1320       }
1321       return *Alias;
1322     }
1323 
1324   SmallVector<Value *, 4> V1Srcs;
1325   // If a phi operand recurses back to the phi, we can still determine NoAlias
1326   // if we don't alias the underlying objects of the other phi operands, as we
1327   // know that the recursive phi needs to be based on them in some way.
1328   bool isRecursive = false;
1329   auto CheckForRecPhi = [&](Value *PV) {
1330     if (!EnableRecPhiAnalysis)
1331       return false;
1332     if (getUnderlyingObject(PV) == PN) {
1333       isRecursive = true;
1334       return true;
1335     }
1336     return false;
1337   };
1338 
1339   if (PV) {
1340     // If we have PhiValues then use it to get the underlying phi values.
1341     const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN);
1342     // If we have more phi values than the search depth then return MayAlias
1343     // conservatively to avoid compile time explosion. The worst possible case
1344     // is if both sides are PHI nodes. In which case, this is O(m x n) time
1345     // where 'm' and 'n' are the number of PHI sources.
1346     if (PhiValueSet.size() > MaxLookupSearchDepth)
1347       return MayAlias;
1348     // Add the values to V1Srcs
1349     for (Value *PV1 : PhiValueSet) {
1350       if (CheckForRecPhi(PV1))
1351         continue;
1352       V1Srcs.push_back(PV1);
1353     }
1354   } else {
1355     // If we don't have PhiInfo then just look at the operands of the phi itself
1356     // FIXME: Remove this once we can guarantee that we have PhiInfo always
1357     SmallPtrSet<Value *, 4> UniqueSrc;
1358     Value *OnePhi = nullptr;
1359     for (Value *PV1 : PN->incoming_values()) {
1360       if (isa<PHINode>(PV1)) {
1361         if (OnePhi && OnePhi != PV1) {
1362           // To control potential compile time explosion, we choose to be
1363           // conserviate when we have more than one Phi input.  It is important
1364           // that we handle the single phi case as that lets us handle LCSSA
1365           // phi nodes and (combined with the recursive phi handling) simple
1366           // pointer induction variable patterns.
1367           return MayAlias;
1368         }
1369         OnePhi = PV1;
1370       }
1371 
1372       if (CheckForRecPhi(PV1))
1373         continue;
1374 
1375       if (UniqueSrc.insert(PV1).second)
1376         V1Srcs.push_back(PV1);
1377     }
1378 
1379     if (OnePhi && UniqueSrc.size() > 1)
1380       // Out of an abundance of caution, allow only the trivial lcssa and
1381       // recursive phi cases.
1382       return MayAlias;
1383   }
1384 
1385   // If V1Srcs is empty then that means that the phi has no underlying non-phi
1386   // value. This should only be possible in blocks unreachable from the entry
1387   // block, but return MayAlias just in case.
1388   if (V1Srcs.empty())
1389     return MayAlias;
1390 
1391   // If this PHI node is recursive, indicate that the pointer may be moved
1392   // across iterations. We can only prove NoAlias if different underlying
1393   // objects are involved.
1394   if (isRecursive)
1395     PNSize = LocationSize::beforeOrAfterPointer();
1396 
1397   // In the recursive alias queries below, we may compare values from two
1398   // different loop iterations. Keep track of visited phi blocks, which will
1399   // be used when determining value equivalence.
1400   bool BlockInserted = VisitedPhiBBs.insert(PN->getParent()).second;
1401   auto _ = make_scope_exit([&]() {
1402     if (BlockInserted)
1403       VisitedPhiBBs.erase(PN->getParent());
1404   });
1405 
1406   // If we inserted a block into VisitedPhiBBs, alias analysis results that
1407   // have been cached earlier may no longer be valid. Perform recursive queries
1408   // with a new AAQueryInfo.
1409   AAQueryInfo NewAAQI = AAQI.withEmptyCache();
1410   AAQueryInfo *UseAAQI = BlockInserted ? &NewAAQI : &AAQI;
1411 
1412   AliasResult Alias = getBestAAResults().alias(
1413       MemoryLocation(V2, V2Size, V2AAInfo),
1414       MemoryLocation(V1Srcs[0], PNSize, PNAAInfo), *UseAAQI);
1415 
1416   // Early exit if the check of the first PHI source against V2 is MayAlias.
1417   // Other results are not possible.
1418   if (Alias == MayAlias)
1419     return MayAlias;
1420   // With recursive phis we cannot guarantee that MustAlias/PartialAlias will
1421   // remain valid to all elements and needs to conservatively return MayAlias.
1422   if (isRecursive && Alias != NoAlias)
1423     return MayAlias;
1424 
1425   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1426   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1427   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1428     Value *V = V1Srcs[i];
1429 
1430     AliasResult ThisAlias = getBestAAResults().alias(
1431         MemoryLocation(V2, V2Size, V2AAInfo),
1432         MemoryLocation(V, PNSize, PNAAInfo), *UseAAQI);
1433     Alias = MergeAliasResults(ThisAlias, Alias);
1434     if (Alias == MayAlias)
1435       break;
1436   }
1437 
1438   return Alias;
1439 }
1440 
1441 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1442 /// array references.
1443 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
1444                                       const AAMDNodes &V1AAInfo,
1445                                       const Value *V2, LocationSize V2Size,
1446                                       const AAMDNodes &V2AAInfo,
1447                                       AAQueryInfo &AAQI) {
1448   // If either of the memory references is empty, it doesn't matter what the
1449   // pointer values are.
1450   if (V1Size.isZero() || V2Size.isZero())
1451     return NoAlias;
1452 
1453   // Strip off any casts if they exist.
1454   V1 = V1->stripPointerCastsForAliasAnalysis();
1455   V2 = V2->stripPointerCastsForAliasAnalysis();
1456 
1457   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1458   // value for undef that aliases nothing in the program.
1459   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1460     return NoAlias;
1461 
1462   // Are we checking for alias of the same value?
1463   // Because we look 'through' phi nodes, we could look at "Value" pointers from
1464   // different iterations. We must therefore make sure that this is not the
1465   // case. The function isValueEqualInPotentialCycles ensures that this cannot
1466   // happen by looking at the visited phi nodes and making sure they cannot
1467   // reach the value.
1468   if (isValueEqualInPotentialCycles(V1, V2))
1469     return MustAlias;
1470 
1471   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1472     return NoAlias; // Scalars cannot alias each other
1473 
1474   // Figure out what objects these things are pointing to if we can.
1475   const Value *O1 = getUnderlyingObject(V1, MaxLookupSearchDepth);
1476   const Value *O2 = getUnderlyingObject(V2, MaxLookupSearchDepth);
1477 
1478   // Null values in the default address space don't point to any object, so they
1479   // don't alias any other pointer.
1480   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1481     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1482       return NoAlias;
1483   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1484     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1485       return NoAlias;
1486 
1487   if (O1 != O2) {
1488     // If V1/V2 point to two different objects, we know that we have no alias.
1489     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1490       return NoAlias;
1491 
1492     // Constant pointers can't alias with non-const isIdentifiedObject objects.
1493     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1494         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1495       return NoAlias;
1496 
1497     // Function arguments can't alias with things that are known to be
1498     // unambigously identified at the function level.
1499     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1500         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1501       return NoAlias;
1502 
1503     // If one pointer is the result of a call/invoke or load and the other is a
1504     // non-escaping local object within the same function, then we know the
1505     // object couldn't escape to a point where the call could return it.
1506     //
1507     // Note that if the pointers are in different functions, there are a
1508     // variety of complications. A call with a nocapture argument may still
1509     // temporary store the nocapture argument's value in a temporary memory
1510     // location if that memory location doesn't escape. Or it may pass a
1511     // nocapture value to other functions as long as they don't capture it.
1512     if (isEscapeSource(O1) &&
1513         isNonEscapingLocalObject(O2, &AAQI.IsCapturedCache))
1514       return NoAlias;
1515     if (isEscapeSource(O2) &&
1516         isNonEscapingLocalObject(O1, &AAQI.IsCapturedCache))
1517       return NoAlias;
1518   }
1519 
1520   // If the size of one access is larger than the entire object on the other
1521   // side, then we know such behavior is undefined and can assume no alias.
1522   bool NullIsValidLocation = NullPointerIsDefined(&F);
1523   if ((isObjectSmallerThan(
1524           O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL,
1525           TLI, NullIsValidLocation)) ||
1526       (isObjectSmallerThan(
1527           O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL,
1528           TLI, NullIsValidLocation)))
1529     return NoAlias;
1530 
1531   // If one the accesses may be before the accessed pointer, canonicalize this
1532   // by using unknown after-pointer sizes for both accesses. This is
1533   // equivalent, because regardless of which pointer is lower, one of them
1534   // will always came after the other, as long as the underlying objects aren't
1535   // disjoint. We do this so that the rest of BasicAA does not have to deal
1536   // with accesses before the base pointer, and to improve cache utilization by
1537   // merging equivalent states.
1538   if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) {
1539     V1Size = LocationSize::afterPointer();
1540     V2Size = LocationSize::afterPointer();
1541   }
1542 
1543   // FIXME: If this depth limit is hit, then we may cache sub-optimal results
1544   // for recursive queries. For this reason, this limit is chosen to be large
1545   // enough to be very rarely hit, while still being small enough to avoid
1546   // stack overflows.
1547   if (AAQI.Depth >= 512)
1548     return MayAlias;
1549 
1550   // Check the cache before climbing up use-def chains. This also terminates
1551   // otherwise infinitely recursive queries.
1552   AAQueryInfo::LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
1553                             MemoryLocation(V2, V2Size, V2AAInfo));
1554   if (V1 > V2)
1555     std::swap(Locs.first, Locs.second);
1556   const auto &Pair = AAQI.AliasCache.try_emplace(
1557       Locs, AAQueryInfo::CacheEntry{NoAlias, 0});
1558   if (!Pair.second) {
1559     auto &Entry = Pair.first->second;
1560     if (!Entry.isDefinitive()) {
1561       // Remember that we used an assumption.
1562       ++Entry.NumAssumptionUses;
1563       ++AAQI.NumAssumptionUses;
1564     }
1565     return Entry.Result;
1566   }
1567 
1568   int OrigNumAssumptionUses = AAQI.NumAssumptionUses;
1569   unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size();
1570   AliasResult Result = aliasCheckRecursive(V1, V1Size, V1AAInfo, V2, V2Size,
1571                                            V2AAInfo, AAQI, O1, O2);
1572 
1573   auto It = AAQI.AliasCache.find(Locs);
1574   assert(It != AAQI.AliasCache.end() && "Must be in cache");
1575   auto &Entry = It->second;
1576 
1577   // Check whether a NoAlias assumption has been used, but disproven.
1578   bool AssumptionDisproven = Entry.NumAssumptionUses > 0 && Result != NoAlias;
1579   if (AssumptionDisproven)
1580     Result = MayAlias;
1581 
1582   // This is a definitive result now, when considered as a root query.
1583   AAQI.NumAssumptionUses -= Entry.NumAssumptionUses;
1584   Entry.Result = Result;
1585   Entry.NumAssumptionUses = -1;
1586 
1587   // If the assumption has been disproven, remove any results that may have
1588   // been based on this assumption. Do this after the Entry updates above to
1589   // avoid iterator invalidation.
1590   if (AssumptionDisproven)
1591     while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults)
1592       AAQI.AliasCache.erase(AAQI.AssumptionBasedResults.pop_back_val());
1593 
1594   // The result may still be based on assumptions higher up in the chain.
1595   // Remember it, so it can be purged from the cache later.
1596   if (OrigNumAssumptionUses != AAQI.NumAssumptionUses && Result != MayAlias)
1597     AAQI.AssumptionBasedResults.push_back(Locs);
1598   return Result;
1599 }
1600 
1601 AliasResult BasicAAResult::aliasCheckRecursive(
1602     const Value *V1, LocationSize V1Size, const AAMDNodes &V1AAInfo,
1603     const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo,
1604     AAQueryInfo &AAQI, const Value *O1, const Value *O2) {
1605   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1606     AliasResult Result =
1607         aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2, AAQI);
1608     if (Result != MayAlias)
1609       return Result;
1610   } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) {
1611     AliasResult Result =
1612         aliasGEP(GV2, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, O2, O1, AAQI);
1613     if (Result != MayAlias)
1614       return Result;
1615   }
1616 
1617   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1618     AliasResult Result =
1619         aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, AAQI);
1620     if (Result != MayAlias)
1621       return Result;
1622   } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) {
1623     AliasResult Result =
1624         aliasPHI(PN, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, AAQI);
1625     if (Result != MayAlias)
1626       return Result;
1627   }
1628 
1629   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1630     AliasResult Result =
1631         aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, AAQI);
1632     if (Result != MayAlias)
1633       return Result;
1634   } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) {
1635     AliasResult Result =
1636         aliasSelect(S2, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, AAQI);
1637     if (Result != MayAlias)
1638       return Result;
1639   }
1640 
1641   // If both pointers are pointing into the same object and one of them
1642   // accesses the entire object, then the accesses must overlap in some way.
1643   if (O1 == O2) {
1644     bool NullIsValidLocation = NullPointerIsDefined(&F);
1645     if (V1Size.isPrecise() && V2Size.isPrecise() &&
1646         (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
1647          isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation)))
1648       return PartialAlias;
1649   }
1650 
1651   return MayAlias;
1652 }
1653 
1654 /// Check whether two Values can be considered equivalent.
1655 ///
1656 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1657 /// they can not be part of a cycle in the value graph by looking at all
1658 /// visited phi nodes an making sure that the phis cannot reach the value. We
1659 /// have to do this because we are looking through phi nodes (That is we say
1660 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1661 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1662                                                   const Value *V2) {
1663   if (V != V2)
1664     return false;
1665 
1666   const Instruction *Inst = dyn_cast<Instruction>(V);
1667   if (!Inst)
1668     return true;
1669 
1670   if (VisitedPhiBBs.empty())
1671     return true;
1672 
1673   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1674     return false;
1675 
1676   // Make sure that the visited phis cannot reach the Value. This ensures that
1677   // the Values cannot come from different iterations of a potential cycle the
1678   // phi nodes could be involved in.
1679   for (auto *P : VisitedPhiBBs)
1680     if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT))
1681       return false;
1682 
1683   return true;
1684 }
1685 
1686 /// Computes the symbolic difference between two de-composed GEPs.
1687 ///
1688 /// Dest and Src are the variable indices from two decomposed GetElementPtr
1689 /// instructions GEP1 and GEP2 which have common base pointers.
1690 void BasicAAResult::GetIndexDifference(
1691     SmallVectorImpl<VariableGEPIndex> &Dest,
1692     const SmallVectorImpl<VariableGEPIndex> &Src) {
1693   if (Src.empty())
1694     return;
1695 
1696   for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1697     const Value *V = Src[i].V;
1698     unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
1699     APInt Scale = Src[i].Scale;
1700 
1701     // Find V in Dest.  This is N^2, but pointer indices almost never have more
1702     // than a few variable indexes.
1703     for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1704       if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1705           Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
1706         continue;
1707 
1708       // If we found it, subtract off Scale V's from the entry in Dest.  If it
1709       // goes to zero, remove the entry.
1710       if (Dest[j].Scale != Scale)
1711         Dest[j].Scale -= Scale;
1712       else
1713         Dest.erase(Dest.begin() + j);
1714       Scale = 0;
1715       break;
1716     }
1717 
1718     // If we didn't consume this entry, add it to the end of the Dest list.
1719     if (!!Scale) {
1720       VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale, Src[i].CxtI};
1721       Dest.push_back(Entry);
1722     }
1723   }
1724 }
1725 
1726 bool BasicAAResult::constantOffsetHeuristic(
1727     const SmallVectorImpl<VariableGEPIndex> &VarIndices,
1728     LocationSize MaybeV1Size, LocationSize MaybeV2Size, const APInt &BaseOffset,
1729     AssumptionCache *AC, DominatorTree *DT) {
1730   if (VarIndices.size() != 2 || !MaybeV1Size.hasValue() ||
1731       !MaybeV2Size.hasValue())
1732     return false;
1733 
1734   const uint64_t V1Size = MaybeV1Size.getValue();
1735   const uint64_t V2Size = MaybeV2Size.getValue();
1736 
1737   const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
1738 
1739   if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
1740       Var0.Scale != -Var1.Scale)
1741     return false;
1742 
1743   unsigned Width = Var1.V->getType()->getIntegerBitWidth();
1744 
1745   // We'll strip off the Extensions of Var0 and Var1 and do another round
1746   // of GetLinearExpression decomposition. In the example above, if Var0
1747   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1748 
1749   APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
1750       V1Offset(Width, 0);
1751   bool NSW = true, NUW = true;
1752   unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
1753   const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
1754                                         V0SExtBits, DL, 0, AC, DT, NSW, NUW);
1755   NSW = true;
1756   NUW = true;
1757   const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
1758                                         V1SExtBits, DL, 0, AC, DT, NSW, NUW);
1759 
1760   if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
1761       V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
1762     return false;
1763 
1764   // We have a hit - Var0 and Var1 only differ by a constant offset!
1765 
1766   // If we've been sext'ed then zext'd the maximum difference between Var0 and
1767   // Var1 is possible to calculate, but we're just interested in the absolute
1768   // minimum difference between the two. The minimum distance may occur due to
1769   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1770   // the minimum distance between %i and %i + 5 is 3.
1771   APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
1772   MinDiff = APIntOps::umin(MinDiff, Wrapped);
1773   APInt MinDiffBytes =
1774     MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs();
1775 
1776   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
1777   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
1778   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
1779   // V2Size can fit in the MinDiffBytes gap.
1780   return MinDiffBytes.uge(V1Size + BaseOffset.abs()) &&
1781          MinDiffBytes.uge(V2Size + BaseOffset.abs());
1782 }
1783 
1784 //===----------------------------------------------------------------------===//
1785 // BasicAliasAnalysis Pass
1786 //===----------------------------------------------------------------------===//
1787 
1788 AnalysisKey BasicAA::Key;
1789 
1790 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
1791   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1792   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1793   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1794   auto *PV = AM.getCachedResult<PhiValuesAnalysis>(F);
1795   return BasicAAResult(F.getParent()->getDataLayout(), F, TLI, AC, DT, PV);
1796 }
1797 
1798 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
1799   initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
1800 }
1801 
1802 char BasicAAWrapperPass::ID = 0;
1803 
1804 void BasicAAWrapperPass::anchor() {}
1805 
1806 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa",
1807                       "Basic Alias Analysis (stateless AA impl)", true, true)
1808 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1809 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1810 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1811 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
1812 INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa",
1813                     "Basic Alias Analysis (stateless AA impl)", true, true)
1814 
1815 FunctionPass *llvm::createBasicAAWrapperPass() {
1816   return new BasicAAWrapperPass();
1817 }
1818 
1819 bool BasicAAWrapperPass::runOnFunction(Function &F) {
1820   auto &ACT = getAnalysis<AssumptionCacheTracker>();
1821   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
1822   auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
1823   auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>();
1824 
1825   Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F,
1826                                  TLIWP.getTLI(F), ACT.getAssumptionCache(F),
1827                                  &DTWP.getDomTree(),
1828                                  PVWP ? &PVWP->getResult() : nullptr));
1829 
1830   return false;
1831 }
1832 
1833 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1834   AU.setPreservesAll();
1835   AU.addRequiredTransitive<AssumptionCacheTracker>();
1836   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
1837   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1838   AU.addUsedIfAvailable<PhiValuesWrapperPass>();
1839 }
1840 
1841 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
1842   return BasicAAResult(
1843       F.getParent()->getDataLayout(), F,
1844       P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
1845       P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
1846 }
1847