1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the primary stateless implementation of the 11 // Alias Analysis interface that implements identities (two different 12 // globals cannot alias, etc), but does no stateful analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/BasicAliasAnalysis.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/CFG.h" 21 #include "llvm/Analysis/CaptureTracking.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include <algorithm> 40 41 #define DEBUG_TYPE "basicaa" 42 43 using namespace llvm; 44 45 /// Enable analysis of recursive PHI nodes. 46 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden, 47 cl::init(false)); 48 /// SearchLimitReached / SearchTimes shows how often the limit of 49 /// to decompose GEPs is reached. It will affect the precision 50 /// of basic alias analysis. 51 STATISTIC(SearchLimitReached, "Number of times the limit to " 52 "decompose GEPs is reached"); 53 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 54 55 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 56 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be 57 /// careful with value equivalence. We use reachability to make sure a value 58 /// cannot be involved in a cycle. 59 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 60 61 // The max limit of the search depth in DecomposeGEPExpression() and 62 // GetUnderlyingObject(), both functions need to use the same search 63 // depth otherwise the algorithm in aliasGEP will assert. 64 static const unsigned MaxLookupSearchDepth = 6; 65 66 bool BasicAAResult::invalidate(Function &F, const PreservedAnalyses &PA, 67 FunctionAnalysisManager::Invalidator &Inv) { 68 // We don't care if this analysis itself is preserved, it has no state. But 69 // we need to check that the analyses it depends on have been. Note that we 70 // may be created without handles to some analyses and in that case don't 71 // depend on them. 72 if (Inv.invalidate<AssumptionAnalysis>(F, PA) || 73 (DT && Inv.invalidate<DominatorTreeAnalysis>(F, PA)) || 74 (LI && Inv.invalidate<LoopAnalysis>(F, PA))) 75 return true; 76 77 // Otherwise this analysis result remains valid. 78 return false; 79 } 80 81 //===----------------------------------------------------------------------===// 82 // Useful predicates 83 //===----------------------------------------------------------------------===// 84 85 /// Returns true if the pointer is to a function-local object that never 86 /// escapes from the function. 87 static bool isNonEscapingLocalObject(const Value *V) { 88 // If this is a local allocation, check to see if it escapes. 89 if (isa<AllocaInst>(V) || isNoAliasCall(V)) 90 // Set StoreCaptures to True so that we can assume in our callers that the 91 // pointer is not the result of a load instruction. Currently 92 // PointerMayBeCaptured doesn't have any special analysis for the 93 // StoreCaptures=false case; if it did, our callers could be refined to be 94 // more precise. 95 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 96 97 // If this is an argument that corresponds to a byval or noalias argument, 98 // then it has not escaped before entering the function. Check if it escapes 99 // inside the function. 100 if (const Argument *A = dyn_cast<Argument>(V)) 101 if (A->hasByValAttr() || A->hasNoAliasAttr()) 102 // Note even if the argument is marked nocapture, we still need to check 103 // for copies made inside the function. The nocapture attribute only 104 // specifies that there are no copies made that outlive the function. 105 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 106 107 return false; 108 } 109 110 /// Returns true if the pointer is one which would have been considered an 111 /// escape by isNonEscapingLocalObject. 112 static bool isEscapeSource(const Value *V) { 113 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V)) 114 return true; 115 116 // The load case works because isNonEscapingLocalObject considers all 117 // stores to be escapes (it passes true for the StoreCaptures argument 118 // to PointerMayBeCaptured). 119 if (isa<LoadInst>(V)) 120 return true; 121 122 return false; 123 } 124 125 /// Returns the size of the object specified by V or UnknownSize if unknown. 126 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 127 const TargetLibraryInfo &TLI, 128 bool RoundToAlign = false) { 129 uint64_t Size; 130 if (getObjectSize(V, Size, DL, &TLI, RoundToAlign)) 131 return Size; 132 return MemoryLocation::UnknownSize; 133 } 134 135 /// Returns true if we can prove that the object specified by V is smaller than 136 /// Size. 137 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 138 const DataLayout &DL, 139 const TargetLibraryInfo &TLI) { 140 // Note that the meanings of the "object" are slightly different in the 141 // following contexts: 142 // c1: llvm::getObjectSize() 143 // c2: llvm.objectsize() intrinsic 144 // c3: isObjectSmallerThan() 145 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 146 // refers to the "entire object". 147 // 148 // Consider this example: 149 // char *p = (char*)malloc(100) 150 // char *q = p+80; 151 // 152 // In the context of c1 and c2, the "object" pointed by q refers to the 153 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 154 // 155 // However, in the context of c3, the "object" refers to the chunk of memory 156 // being allocated. So, the "object" has 100 bytes, and q points to the middle 157 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 158 // parameter, before the llvm::getObjectSize() is called to get the size of 159 // entire object, we should: 160 // - either rewind the pointer q to the base-address of the object in 161 // question (in this case rewind to p), or 162 // - just give up. It is up to caller to make sure the pointer is pointing 163 // to the base address the object. 164 // 165 // We go for 2nd option for simplicity. 166 if (!isIdentifiedObject(V)) 167 return false; 168 169 // This function needs to use the aligned object size because we allow 170 // reads a bit past the end given sufficient alignment. 171 uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/ true); 172 173 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; 174 } 175 176 /// Returns true if we can prove that the object specified by V has size Size. 177 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, 178 const TargetLibraryInfo &TLI) { 179 uint64_t ObjectSize = getObjectSize(V, DL, TLI); 180 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; 181 } 182 183 //===----------------------------------------------------------------------===// 184 // GetElementPtr Instruction Decomposition and Analysis 185 //===----------------------------------------------------------------------===// 186 187 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 188 /// B are constant integers. 189 /// 190 /// Returns the scale and offset values as APInts and return V as a Value*, and 191 /// return whether we looked through any sign or zero extends. The incoming 192 /// Value is known to have IntegerType, and it may already be sign or zero 193 /// extended. 194 /// 195 /// Note that this looks through extends, so the high bits may not be 196 /// represented in the result. 197 /*static*/ const Value *BasicAAResult::GetLinearExpression( 198 const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits, 199 unsigned &SExtBits, const DataLayout &DL, unsigned Depth, 200 AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) { 201 assert(V->getType()->isIntegerTy() && "Not an integer value"); 202 203 // Limit our recursion depth. 204 if (Depth == 6) { 205 Scale = 1; 206 Offset = 0; 207 return V; 208 } 209 210 if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) { 211 // If it's a constant, just convert it to an offset and remove the variable. 212 // If we've been called recursively, the Offset bit width will be greater 213 // than the constant's (the Offset's always as wide as the outermost call), 214 // so we'll zext here and process any extension in the isa<SExtInst> & 215 // isa<ZExtInst> cases below. 216 Offset += Const->getValue().zextOrSelf(Offset.getBitWidth()); 217 assert(Scale == 0 && "Constant values don't have a scale"); 218 return V; 219 } 220 221 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 222 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 223 224 // If we've been called recursively, then Offset and Scale will be wider 225 // than the BOp operands. We'll always zext it here as we'll process sign 226 // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases). 227 APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth()); 228 229 switch (BOp->getOpcode()) { 230 default: 231 // We don't understand this instruction, so we can't decompose it any 232 // further. 233 Scale = 1; 234 Offset = 0; 235 return V; 236 case Instruction::Or: 237 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 238 // analyze it. 239 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, 240 BOp, DT)) { 241 Scale = 1; 242 Offset = 0; 243 return V; 244 } 245 LLVM_FALLTHROUGH; 246 case Instruction::Add: 247 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 248 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 249 Offset += RHS; 250 break; 251 case Instruction::Sub: 252 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 253 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 254 Offset -= RHS; 255 break; 256 case Instruction::Mul: 257 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 258 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 259 Offset *= RHS; 260 Scale *= RHS; 261 break; 262 case Instruction::Shl: 263 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 264 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 265 Offset <<= RHS.getLimitedValue(); 266 Scale <<= RHS.getLimitedValue(); 267 // the semantics of nsw and nuw for left shifts don't match those of 268 // multiplications, so we won't propagate them. 269 NSW = NUW = false; 270 return V; 271 } 272 273 if (isa<OverflowingBinaryOperator>(BOp)) { 274 NUW &= BOp->hasNoUnsignedWrap(); 275 NSW &= BOp->hasNoSignedWrap(); 276 } 277 return V; 278 } 279 } 280 281 // Since GEP indices are sign extended anyway, we don't care about the high 282 // bits of a sign or zero extended value - just scales and offsets. The 283 // extensions have to be consistent though. 284 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) { 285 Value *CastOp = cast<CastInst>(V)->getOperand(0); 286 unsigned NewWidth = V->getType()->getPrimitiveSizeInBits(); 287 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 288 unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits; 289 const Value *Result = 290 GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL, 291 Depth + 1, AC, DT, NSW, NUW); 292 293 // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this 294 // by just incrementing the number of bits we've extended by. 295 unsigned ExtendedBy = NewWidth - SmallWidth; 296 297 if (isa<SExtInst>(V) && ZExtBits == 0) { 298 // sext(sext(%x, a), b) == sext(%x, a + b) 299 300 if (NSW) { 301 // We haven't sign-wrapped, so it's valid to decompose sext(%x + c) 302 // into sext(%x) + sext(c). We'll sext the Offset ourselves: 303 unsigned OldWidth = Offset.getBitWidth(); 304 Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth); 305 } else { 306 // We may have signed-wrapped, so don't decompose sext(%x + c) into 307 // sext(%x) + sext(c) 308 Scale = 1; 309 Offset = 0; 310 Result = CastOp; 311 ZExtBits = OldZExtBits; 312 SExtBits = OldSExtBits; 313 } 314 SExtBits += ExtendedBy; 315 } else { 316 // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b) 317 318 if (!NUW) { 319 // We may have unsigned-wrapped, so don't decompose zext(%x + c) into 320 // zext(%x) + zext(c) 321 Scale = 1; 322 Offset = 0; 323 Result = CastOp; 324 ZExtBits = OldZExtBits; 325 SExtBits = OldSExtBits; 326 } 327 ZExtBits += ExtendedBy; 328 } 329 330 return Result; 331 } 332 333 Scale = 1; 334 Offset = 0; 335 return V; 336 } 337 338 /// To ensure a pointer offset fits in an integer of size PointerSize 339 /// (in bits) when that size is smaller than 64. This is an issue in 340 /// particular for 32b programs with negative indices that rely on two's 341 /// complement wrap-arounds for precise alias information. 342 static int64_t adjustToPointerSize(int64_t Offset, unsigned PointerSize) { 343 assert(PointerSize <= 64 && "Invalid PointerSize!"); 344 unsigned ShiftBits = 64 - PointerSize; 345 return (int64_t)((uint64_t)Offset << ShiftBits) >> ShiftBits; 346 } 347 348 /// If V is a symbolic pointer expression, decompose it into a base pointer 349 /// with a constant offset and a number of scaled symbolic offsets. 350 /// 351 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 352 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 353 /// specified amount, but which may have other unrepresented high bits. As 354 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 355 /// 356 /// When DataLayout is around, this function is capable of analyzing everything 357 /// that GetUnderlyingObject can look through. To be able to do that 358 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search 359 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks 360 /// through pointer casts. 361 bool BasicAAResult::DecomposeGEPExpression(const Value *V, 362 DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC, 363 DominatorTree *DT) { 364 // Limit recursion depth to limit compile time in crazy cases. 365 unsigned MaxLookup = MaxLookupSearchDepth; 366 SearchTimes++; 367 368 Decomposed.StructOffset = 0; 369 Decomposed.OtherOffset = 0; 370 Decomposed.VarIndices.clear(); 371 do { 372 // See if this is a bitcast or GEP. 373 const Operator *Op = dyn_cast<Operator>(V); 374 if (!Op) { 375 // The only non-operator case we can handle are GlobalAliases. 376 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 377 if (!GA->isInterposable()) { 378 V = GA->getAliasee(); 379 continue; 380 } 381 } 382 Decomposed.Base = V; 383 return false; 384 } 385 386 if (Op->getOpcode() == Instruction::BitCast || 387 Op->getOpcode() == Instruction::AddrSpaceCast) { 388 V = Op->getOperand(0); 389 continue; 390 } 391 392 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 393 if (!GEPOp) { 394 if (auto CS = ImmutableCallSite(V)) 395 if (const Value *RV = CS.getReturnedArgOperand()) { 396 V = RV; 397 continue; 398 } 399 400 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 401 // can come up with something. This matches what GetUnderlyingObject does. 402 if (const Instruction *I = dyn_cast<Instruction>(V)) 403 // TODO: Get a DominatorTree and AssumptionCache and use them here 404 // (these are both now available in this function, but this should be 405 // updated when GetUnderlyingObject is updated). TLI should be 406 // provided also. 407 if (const Value *Simplified = 408 SimplifyInstruction(const_cast<Instruction *>(I), DL)) { 409 V = Simplified; 410 continue; 411 } 412 413 Decomposed.Base = V; 414 return false; 415 } 416 417 // Don't attempt to analyze GEPs over unsized objects. 418 if (!GEPOp->getSourceElementType()->isSized()) { 419 Decomposed.Base = V; 420 return false; 421 } 422 423 unsigned AS = GEPOp->getPointerAddressSpace(); 424 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 425 gep_type_iterator GTI = gep_type_begin(GEPOp); 426 unsigned PointerSize = DL.getPointerSizeInBits(AS); 427 // Assume all GEP operands are constants until proven otherwise. 428 bool GepHasConstantOffset = true; 429 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 430 I != E; ++I, ++GTI) { 431 const Value *Index = *I; 432 // Compute the (potentially symbolic) offset in bytes for this index. 433 if (StructType *STy = GTI.getStructTypeOrNull()) { 434 // For a struct, add the member offset. 435 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 436 if (FieldNo == 0) 437 continue; 438 439 Decomposed.StructOffset += 440 DL.getStructLayout(STy)->getElementOffset(FieldNo); 441 continue; 442 } 443 444 // For an array/pointer, add the element offset, explicitly scaled. 445 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 446 if (CIdx->isZero()) 447 continue; 448 Decomposed.OtherOffset += 449 DL.getTypeAllocSize(GTI.getIndexedType()) * CIdx->getSExtValue(); 450 continue; 451 } 452 453 GepHasConstantOffset = false; 454 455 uint64_t Scale = DL.getTypeAllocSize(GTI.getIndexedType()); 456 unsigned ZExtBits = 0, SExtBits = 0; 457 458 // If the integer type is smaller than the pointer size, it is implicitly 459 // sign extended to pointer size. 460 unsigned Width = Index->getType()->getIntegerBitWidth(); 461 if (PointerSize > Width) 462 SExtBits += PointerSize - Width; 463 464 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 465 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 466 bool NSW = true, NUW = true; 467 Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits, 468 SExtBits, DL, 0, AC, DT, NSW, NUW); 469 470 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 471 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 472 Decomposed.OtherOffset += IndexOffset.getSExtValue() * Scale; 473 Scale *= IndexScale.getSExtValue(); 474 475 // If we already had an occurrence of this index variable, merge this 476 // scale into it. For example, we want to handle: 477 // A[x][x] -> x*16 + x*4 -> x*20 478 // This also ensures that 'x' only appears in the index list once. 479 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { 480 if (Decomposed.VarIndices[i].V == Index && 481 Decomposed.VarIndices[i].ZExtBits == ZExtBits && 482 Decomposed.VarIndices[i].SExtBits == SExtBits) { 483 Scale += Decomposed.VarIndices[i].Scale; 484 Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i); 485 break; 486 } 487 } 488 489 // Make sure that we have a scale that makes sense for this target's 490 // pointer size. 491 Scale = adjustToPointerSize(Scale, PointerSize); 492 493 if (Scale) { 494 VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, 495 static_cast<int64_t>(Scale)}; 496 Decomposed.VarIndices.push_back(Entry); 497 } 498 } 499 500 // Take care of wrap-arounds 501 if (GepHasConstantOffset) { 502 Decomposed.StructOffset = 503 adjustToPointerSize(Decomposed.StructOffset, PointerSize); 504 Decomposed.OtherOffset = 505 adjustToPointerSize(Decomposed.OtherOffset, PointerSize); 506 } 507 508 // Analyze the base pointer next. 509 V = GEPOp->getOperand(0); 510 } while (--MaxLookup); 511 512 // If the chain of expressions is too deep, just return early. 513 Decomposed.Base = V; 514 SearchLimitReached++; 515 return true; 516 } 517 518 /// Returns whether the given pointer value points to memory that is local to 519 /// the function, with global constants being considered local to all 520 /// functions. 521 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc, 522 bool OrLocal) { 523 assert(Visited.empty() && "Visited must be cleared after use!"); 524 525 unsigned MaxLookup = 8; 526 SmallVector<const Value *, 16> Worklist; 527 Worklist.push_back(Loc.Ptr); 528 do { 529 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL); 530 if (!Visited.insert(V).second) { 531 Visited.clear(); 532 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 533 } 534 535 // An alloca instruction defines local memory. 536 if (OrLocal && isa<AllocaInst>(V)) 537 continue; 538 539 // A global constant counts as local memory for our purposes. 540 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 541 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 542 // global to be marked constant in some modules and non-constant in 543 // others. GV may even be a declaration, not a definition. 544 if (!GV->isConstant()) { 545 Visited.clear(); 546 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 547 } 548 continue; 549 } 550 551 // If both select values point to local memory, then so does the select. 552 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 553 Worklist.push_back(SI->getTrueValue()); 554 Worklist.push_back(SI->getFalseValue()); 555 continue; 556 } 557 558 // If all values incoming to a phi node point to local memory, then so does 559 // the phi. 560 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 561 // Don't bother inspecting phi nodes with many operands. 562 if (PN->getNumIncomingValues() > MaxLookup) { 563 Visited.clear(); 564 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 565 } 566 for (Value *IncValue : PN->incoming_values()) 567 Worklist.push_back(IncValue); 568 continue; 569 } 570 571 // Otherwise be conservative. 572 Visited.clear(); 573 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 574 575 } while (!Worklist.empty() && --MaxLookup); 576 577 Visited.clear(); 578 return Worklist.empty(); 579 } 580 581 /// Returns the behavior when calling the given call site. 582 FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) { 583 if (CS.doesNotAccessMemory()) 584 // Can't do better than this. 585 return FMRB_DoesNotAccessMemory; 586 587 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 588 589 // If the callsite knows it only reads memory, don't return worse 590 // than that. 591 if (CS.onlyReadsMemory()) 592 Min = FMRB_OnlyReadsMemory; 593 else if (CS.doesNotReadMemory()) 594 Min = FMRB_DoesNotReadMemory; 595 596 if (CS.onlyAccessesArgMemory()) 597 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 598 599 // If CS has operand bundles then aliasing attributes from the function it 600 // calls do not directly apply to the CallSite. This can be made more 601 // precise in the future. 602 if (!CS.hasOperandBundles()) 603 if (const Function *F = CS.getCalledFunction()) 604 Min = 605 FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F)); 606 607 return Min; 608 } 609 610 /// Returns the behavior when calling the given function. For use when the call 611 /// site is not known. 612 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) { 613 // If the function declares it doesn't access memory, we can't do better. 614 if (F->doesNotAccessMemory()) 615 return FMRB_DoesNotAccessMemory; 616 617 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 618 619 // If the function declares it only reads memory, go with that. 620 if (F->onlyReadsMemory()) 621 Min = FMRB_OnlyReadsMemory; 622 else if (F->doesNotReadMemory()) 623 Min = FMRB_DoesNotReadMemory; 624 625 if (F->onlyAccessesArgMemory()) 626 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 627 else if (F->onlyAccessesInaccessibleMemory()) 628 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 629 else if (F->onlyAccessesInaccessibleMemOrArgMem()) 630 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 631 632 return Min; 633 } 634 635 /// Returns true if this is a writeonly (i.e Mod only) parameter. 636 static bool isWriteOnlyParam(ImmutableCallSite CS, unsigned ArgIdx, 637 const TargetLibraryInfo &TLI) { 638 if (CS.paramHasAttr(ArgIdx + 1, Attribute::WriteOnly)) 639 return true; 640 641 // We can bound the aliasing properties of memset_pattern16 just as we can 642 // for memcpy/memset. This is particularly important because the 643 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 644 // whenever possible. 645 // FIXME Consider handling this in InferFunctionAttr.cpp together with other 646 // attributes. 647 LibFunc F; 648 if (CS.getCalledFunction() && TLI.getLibFunc(*CS.getCalledFunction(), F) && 649 F == LibFunc_memset_pattern16 && TLI.has(F)) 650 if (ArgIdx == 0) 651 return true; 652 653 // TODO: memset_pattern4, memset_pattern8 654 // TODO: _chk variants 655 // TODO: strcmp, strcpy 656 657 return false; 658 } 659 660 ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS, 661 unsigned ArgIdx) { 662 663 // Checking for known builtin intrinsics and target library functions. 664 if (isWriteOnlyParam(CS, ArgIdx, TLI)) 665 return MRI_Mod; 666 667 if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadOnly)) 668 return MRI_Ref; 669 670 if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadNone)) 671 return MRI_NoModRef; 672 673 return AAResultBase::getArgModRefInfo(CS, ArgIdx); 674 } 675 676 static bool isIntrinsicCall(ImmutableCallSite CS, Intrinsic::ID IID) { 677 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 678 return II && II->getIntrinsicID() == IID; 679 } 680 681 #ifndef NDEBUG 682 static const Function *getParent(const Value *V) { 683 if (const Instruction *inst = dyn_cast<Instruction>(V)) 684 return inst->getParent()->getParent(); 685 686 if (const Argument *arg = dyn_cast<Argument>(V)) 687 return arg->getParent(); 688 689 return nullptr; 690 } 691 692 static bool notDifferentParent(const Value *O1, const Value *O2) { 693 694 const Function *F1 = getParent(O1); 695 const Function *F2 = getParent(O2); 696 697 return !F1 || !F2 || F1 == F2; 698 } 699 #endif 700 701 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 702 const MemoryLocation &LocB) { 703 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 704 "BasicAliasAnalysis doesn't support interprocedural queries."); 705 706 // If we have a directly cached entry for these locations, we have recursed 707 // through this once, so just return the cached results. Notably, when this 708 // happens, we don't clear the cache. 709 auto CacheIt = AliasCache.find(LocPair(LocA, LocB)); 710 if (CacheIt != AliasCache.end()) 711 return CacheIt->second; 712 713 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr, 714 LocB.Size, LocB.AATags); 715 // AliasCache rarely has more than 1 or 2 elements, always use 716 // shrink_and_clear so it quickly returns to the inline capacity of the 717 // SmallDenseMap if it ever grows larger. 718 // FIXME: This should really be shrink_to_inline_capacity_and_clear(). 719 AliasCache.shrink_and_clear(); 720 VisitedPhiBBs.clear(); 721 return Alias; 722 } 723 724 /// Checks to see if the specified callsite can clobber the specified memory 725 /// object. 726 /// 727 /// Since we only look at local properties of this function, we really can't 728 /// say much about this query. We do, however, use simple "address taken" 729 /// analysis on local objects. 730 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS, 731 const MemoryLocation &Loc) { 732 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && 733 "AliasAnalysis query involving multiple functions!"); 734 735 const Value *Object = GetUnderlyingObject(Loc.Ptr, DL); 736 737 // If this is a tail call and Loc.Ptr points to a stack location, we know that 738 // the tail call cannot access or modify the local stack. 739 // We cannot exclude byval arguments here; these belong to the caller of 740 // the current function not to the current function, and a tail callee 741 // may reference them. 742 if (isa<AllocaInst>(Object)) 743 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) 744 if (CI->isTailCall()) 745 return MRI_NoModRef; 746 747 // If the pointer is to a locally allocated object that does not escape, 748 // then the call can not mod/ref the pointer unless the call takes the pointer 749 // as an argument, and itself doesn't capture it. 750 if (!isa<Constant>(Object) && CS.getInstruction() != Object && 751 isNonEscapingLocalObject(Object)) { 752 753 // Optimistically assume that call doesn't touch Object and check this 754 // assumption in the following loop. 755 ModRefInfo Result = MRI_NoModRef; 756 757 unsigned OperandNo = 0; 758 for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end(); 759 CI != CE; ++CI, ++OperandNo) { 760 // Only look at the no-capture or byval pointer arguments. If this 761 // pointer were passed to arguments that were neither of these, then it 762 // couldn't be no-capture. 763 if (!(*CI)->getType()->isPointerTy() || 764 (!CS.doesNotCapture(OperandNo) && 765 OperandNo < CS.getNumArgOperands() && !CS.isByValArgument(OperandNo))) 766 continue; 767 768 // Call doesn't access memory through this operand, so we don't care 769 // if it aliases with Object. 770 if (CS.doesNotAccessMemory(OperandNo)) 771 continue; 772 773 // If this is a no-capture pointer argument, see if we can tell that it 774 // is impossible to alias the pointer we're checking. 775 AliasResult AR = 776 getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object)); 777 778 // Operand doesnt alias 'Object', continue looking for other aliases 779 if (AR == NoAlias) 780 continue; 781 // Operand aliases 'Object', but call doesn't modify it. Strengthen 782 // initial assumption and keep looking in case if there are more aliases. 783 if (CS.onlyReadsMemory(OperandNo)) { 784 Result = static_cast<ModRefInfo>(Result | MRI_Ref); 785 continue; 786 } 787 // Operand aliases 'Object' but call only writes into it. 788 if (CS.doesNotReadMemory(OperandNo)) { 789 Result = static_cast<ModRefInfo>(Result | MRI_Mod); 790 continue; 791 } 792 // This operand aliases 'Object' and call reads and writes into it. 793 Result = MRI_ModRef; 794 break; 795 } 796 797 // Early return if we improved mod ref information 798 if (Result != MRI_ModRef) 799 return Result; 800 } 801 802 // If the CallSite is to malloc or calloc, we can assume that it doesn't 803 // modify any IR visible value. This is only valid because we assume these 804 // routines do not read values visible in the IR. TODO: Consider special 805 // casing realloc and strdup routines which access only their arguments as 806 // well. Or alternatively, replace all of this with inaccessiblememonly once 807 // that's implemented fully. 808 auto *Inst = CS.getInstruction(); 809 if (isMallocLikeFn(Inst, &TLI) || isCallocLikeFn(Inst, &TLI)) { 810 // Be conservative if the accessed pointer may alias the allocation - 811 // fallback to the generic handling below. 812 if (getBestAAResults().alias(MemoryLocation(Inst), Loc) == NoAlias) 813 return MRI_NoModRef; 814 } 815 816 // The semantics of memcpy intrinsics forbid overlap between their respective 817 // operands, i.e., source and destination of any given memcpy must no-alias. 818 // If Loc must-aliases either one of these two locations, then it necessarily 819 // no-aliases the other. 820 if (auto *Inst = dyn_cast<MemCpyInst>(CS.getInstruction())) { 821 AliasResult SrcAA, DestAA; 822 823 if ((SrcAA = getBestAAResults().alias(MemoryLocation::getForSource(Inst), 824 Loc)) == MustAlias) 825 // Loc is exactly the memcpy source thus disjoint from memcpy dest. 826 return MRI_Ref; 827 if ((DestAA = getBestAAResults().alias(MemoryLocation::getForDest(Inst), 828 Loc)) == MustAlias) 829 // The converse case. 830 return MRI_Mod; 831 832 // It's also possible for Loc to alias both src and dest, or neither. 833 ModRefInfo rv = MRI_NoModRef; 834 if (SrcAA != NoAlias) 835 rv = static_cast<ModRefInfo>(rv | MRI_Ref); 836 if (DestAA != NoAlias) 837 rv = static_cast<ModRefInfo>(rv | MRI_Mod); 838 return rv; 839 } 840 841 // While the assume intrinsic is marked as arbitrarily writing so that 842 // proper control dependencies will be maintained, it never aliases any 843 // particular memory location. 844 if (isIntrinsicCall(CS, Intrinsic::assume)) 845 return MRI_NoModRef; 846 847 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 848 // that proper control dependencies are maintained but they never mods any 849 // particular memory location. 850 // 851 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 852 // heap state at the point the guard is issued needs to be consistent in case 853 // the guard invokes the "deopt" continuation. 854 if (isIntrinsicCall(CS, Intrinsic::experimental_guard)) 855 return MRI_Ref; 856 857 // Like assumes, invariant.start intrinsics were also marked as arbitrarily 858 // writing so that proper control dependencies are maintained but they never 859 // mod any particular memory location visible to the IR. 860 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start 861 // intrinsic is now modeled as reading memory. This prevents hoisting the 862 // invariant.start intrinsic over stores. Consider: 863 // *ptr = 40; 864 // *ptr = 50; 865 // invariant_start(ptr) 866 // int val = *ptr; 867 // print(val); 868 // 869 // This cannot be transformed to: 870 // 871 // *ptr = 40; 872 // invariant_start(ptr) 873 // *ptr = 50; 874 // int val = *ptr; 875 // print(val); 876 // 877 // The transformation will cause the second store to be ignored (based on 878 // rules of invariant.start) and print 40, while the first program always 879 // prints 50. 880 if (isIntrinsicCall(CS, Intrinsic::invariant_start)) 881 return MRI_Ref; 882 883 // The AAResultBase base class has some smarts, lets use them. 884 return AAResultBase::getModRefInfo(CS, Loc); 885 } 886 887 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1, 888 ImmutableCallSite CS2) { 889 // While the assume intrinsic is marked as arbitrarily writing so that 890 // proper control dependencies will be maintained, it never aliases any 891 // particular memory location. 892 if (isIntrinsicCall(CS1, Intrinsic::assume) || 893 isIntrinsicCall(CS2, Intrinsic::assume)) 894 return MRI_NoModRef; 895 896 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 897 // that proper control dependencies are maintained but they never mod any 898 // particular memory location. 899 // 900 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 901 // heap state at the point the guard is issued needs to be consistent in case 902 // the guard invokes the "deopt" continuation. 903 904 // NB! This function is *not* commutative, so we specical case two 905 // possibilities for guard intrinsics. 906 907 if (isIntrinsicCall(CS1, Intrinsic::experimental_guard)) 908 return getModRefBehavior(CS2) & MRI_Mod ? MRI_Ref : MRI_NoModRef; 909 910 if (isIntrinsicCall(CS2, Intrinsic::experimental_guard)) 911 return getModRefBehavior(CS1) & MRI_Mod ? MRI_Mod : MRI_NoModRef; 912 913 // The AAResultBase base class has some smarts, lets use them. 914 return AAResultBase::getModRefInfo(CS1, CS2); 915 } 916 917 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators, 918 /// both having the exact same pointer operand. 919 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1, 920 uint64_t V1Size, 921 const GEPOperator *GEP2, 922 uint64_t V2Size, 923 const DataLayout &DL) { 924 925 assert(GEP1->getPointerOperand()->stripPointerCasts() == 926 GEP2->getPointerOperand()->stripPointerCasts() && 927 GEP1->getPointerOperand()->getType() == 928 GEP2->getPointerOperand()->getType() && 929 "Expected GEPs with the same pointer operand"); 930 931 // Try to determine whether GEP1 and GEP2 index through arrays, into structs, 932 // such that the struct field accesses provably cannot alias. 933 // We also need at least two indices (the pointer, and the struct field). 934 if (GEP1->getNumIndices() != GEP2->getNumIndices() || 935 GEP1->getNumIndices() < 2) 936 return MayAlias; 937 938 // If we don't know the size of the accesses through both GEPs, we can't 939 // determine whether the struct fields accessed can't alias. 940 if (V1Size == MemoryLocation::UnknownSize || 941 V2Size == MemoryLocation::UnknownSize) 942 return MayAlias; 943 944 ConstantInt *C1 = 945 dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1)); 946 ConstantInt *C2 = 947 dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1)); 948 949 // If the last (struct) indices are constants and are equal, the other indices 950 // might be also be dynamically equal, so the GEPs can alias. 951 if (C1 && C2 && C1->getSExtValue() == C2->getSExtValue()) 952 return MayAlias; 953 954 // Find the last-indexed type of the GEP, i.e., the type you'd get if 955 // you stripped the last index. 956 // On the way, look at each indexed type. If there's something other 957 // than an array, different indices can lead to different final types. 958 SmallVector<Value *, 8> IntermediateIndices; 959 960 // Insert the first index; we don't need to check the type indexed 961 // through it as it only drops the pointer indirection. 962 assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine"); 963 IntermediateIndices.push_back(GEP1->getOperand(1)); 964 965 // Insert all the remaining indices but the last one. 966 // Also, check that they all index through arrays. 967 for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) { 968 if (!isa<ArrayType>(GetElementPtrInst::getIndexedType( 969 GEP1->getSourceElementType(), IntermediateIndices))) 970 return MayAlias; 971 IntermediateIndices.push_back(GEP1->getOperand(i + 1)); 972 } 973 974 auto *Ty = GetElementPtrInst::getIndexedType( 975 GEP1->getSourceElementType(), IntermediateIndices); 976 StructType *LastIndexedStruct = dyn_cast<StructType>(Ty); 977 978 if (isa<SequentialType>(Ty)) { 979 // We know that: 980 // - both GEPs begin indexing from the exact same pointer; 981 // - the last indices in both GEPs are constants, indexing into a sequential 982 // type (array or pointer); 983 // - both GEPs only index through arrays prior to that. 984 // 985 // Because array indices greater than the number of elements are valid in 986 // GEPs, unless we know the intermediate indices are identical between 987 // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't 988 // partially overlap. We also need to check that the loaded size matches 989 // the element size, otherwise we could still have overlap. 990 const uint64_t ElementSize = 991 DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType()); 992 if (V1Size != ElementSize || V2Size != ElementSize) 993 return MayAlias; 994 995 for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i) 996 if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1)) 997 return MayAlias; 998 999 // Now we know that the array/pointer that GEP1 indexes into and that 1000 // that GEP2 indexes into must either precisely overlap or be disjoint. 1001 // Because they cannot partially overlap and because fields in an array 1002 // cannot overlap, if we can prove the final indices are different between 1003 // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias. 1004 1005 // If the last indices are constants, we've already checked they don't 1006 // equal each other so we can exit early. 1007 if (C1 && C2) 1008 return NoAlias; 1009 if (isKnownNonEqual(GEP1->getOperand(GEP1->getNumOperands() - 1), 1010 GEP2->getOperand(GEP2->getNumOperands() - 1), 1011 DL)) 1012 return NoAlias; 1013 return MayAlias; 1014 } else if (!LastIndexedStruct || !C1 || !C2) { 1015 return MayAlias; 1016 } 1017 1018 // We know that: 1019 // - both GEPs begin indexing from the exact same pointer; 1020 // - the last indices in both GEPs are constants, indexing into a struct; 1021 // - said indices are different, hence, the pointed-to fields are different; 1022 // - both GEPs only index through arrays prior to that. 1023 // 1024 // This lets us determine that the struct that GEP1 indexes into and the 1025 // struct that GEP2 indexes into must either precisely overlap or be 1026 // completely disjoint. Because they cannot partially overlap, indexing into 1027 // different non-overlapping fields of the struct will never alias. 1028 1029 // Therefore, the only remaining thing needed to show that both GEPs can't 1030 // alias is that the fields are not overlapping. 1031 const StructLayout *SL = DL.getStructLayout(LastIndexedStruct); 1032 const uint64_t StructSize = SL->getSizeInBytes(); 1033 const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue()); 1034 const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue()); 1035 1036 auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size, 1037 uint64_t V2Off, uint64_t V2Size) { 1038 return V1Off < V2Off && V1Off + V1Size <= V2Off && 1039 ((V2Off + V2Size <= StructSize) || 1040 (V2Off + V2Size - StructSize <= V1Off)); 1041 }; 1042 1043 if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) || 1044 EltsDontOverlap(V2Off, V2Size, V1Off, V1Size)) 1045 return NoAlias; 1046 1047 return MayAlias; 1048 } 1049 1050 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the 1051 // beginning of the object the GEP points would have a negative offset with 1052 // repsect to the alloca, that means the GEP can not alias pointer (b). 1053 // Note that the pointer based on the alloca may not be a GEP. For 1054 // example, it may be the alloca itself. 1055 // The same applies if (b) is based on a GlobalVariable. Note that just being 1056 // based on isIdentifiedObject() is not enough - we need an identified object 1057 // that does not permit access to negative offsets. For example, a negative 1058 // offset from a noalias argument or call can be inbounds w.r.t the actual 1059 // underlying object. 1060 // 1061 // For example, consider: 1062 // 1063 // struct { int f0, int f1, ...} foo; 1064 // foo alloca; 1065 // foo* random = bar(alloca); 1066 // int *f0 = &alloca.f0 1067 // int *f1 = &random->f1; 1068 // 1069 // Which is lowered, approximately, to: 1070 // 1071 // %alloca = alloca %struct.foo 1072 // %random = call %struct.foo* @random(%struct.foo* %alloca) 1073 // %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0 1074 // %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1 1075 // 1076 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated 1077 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also 1078 // point into the same object. But since %f0 points to the beginning of %alloca, 1079 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher 1080 // than (%alloca - 1), and so is not inbounds, a contradiction. 1081 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp, 1082 const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject, 1083 uint64_t ObjectAccessSize) { 1084 // If the object access size is unknown, or the GEP isn't inbounds, bail. 1085 if (ObjectAccessSize == MemoryLocation::UnknownSize || !GEPOp->isInBounds()) 1086 return false; 1087 1088 // We need the object to be an alloca or a globalvariable, and want to know 1089 // the offset of the pointer from the object precisely, so no variable 1090 // indices are allowed. 1091 if (!(isa<AllocaInst>(DecompObject.Base) || 1092 isa<GlobalVariable>(DecompObject.Base)) || 1093 !DecompObject.VarIndices.empty()) 1094 return false; 1095 1096 int64_t ObjectBaseOffset = DecompObject.StructOffset + 1097 DecompObject.OtherOffset; 1098 1099 // If the GEP has no variable indices, we know the precise offset 1100 // from the base, then use it. If the GEP has variable indices, we're in 1101 // a bit more trouble: we can't count on the constant offsets that come 1102 // from non-struct sources, since these can be "rewound" by a negative 1103 // variable offset. So use only offsets that came from structs. 1104 int64_t GEPBaseOffset = DecompGEP.StructOffset; 1105 if (DecompGEP.VarIndices.empty()) 1106 GEPBaseOffset += DecompGEP.OtherOffset; 1107 1108 return (GEPBaseOffset >= ObjectBaseOffset + (int64_t)ObjectAccessSize); 1109 } 1110 1111 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 1112 /// another pointer. 1113 /// 1114 /// We know that V1 is a GEP, but we don't know anything about V2. 1115 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for 1116 /// V2. 1117 AliasResult BasicAAResult::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, 1118 const AAMDNodes &V1AAInfo, const Value *V2, 1119 uint64_t V2Size, const AAMDNodes &V2AAInfo, 1120 const Value *UnderlyingV1, 1121 const Value *UnderlyingV2) { 1122 DecomposedGEP DecompGEP1, DecompGEP2; 1123 bool GEP1MaxLookupReached = 1124 DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT); 1125 bool GEP2MaxLookupReached = 1126 DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT); 1127 1128 int64_t GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset; 1129 int64_t GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset; 1130 1131 assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 && 1132 "DecomposeGEPExpression returned a result different from " 1133 "GetUnderlyingObject"); 1134 1135 // If the GEP's offset relative to its base is such that the base would 1136 // fall below the start of the object underlying V2, then the GEP and V2 1137 // cannot alias. 1138 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1139 isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size)) 1140 return NoAlias; 1141 // If we have two gep instructions with must-alias or not-alias'ing base 1142 // pointers, figure out if the indexes to the GEP tell us anything about the 1143 // derived pointer. 1144 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 1145 // Check for the GEP base being at a negative offset, this time in the other 1146 // direction. 1147 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1148 isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size)) 1149 return NoAlias; 1150 // Do the base pointers alias? 1151 AliasResult BaseAlias = 1152 aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(), 1153 UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes()); 1154 1155 // Check for geps of non-aliasing underlying pointers where the offsets are 1156 // identical. 1157 if ((BaseAlias == MayAlias) && V1Size == V2Size) { 1158 // Do the base pointers alias assuming type and size. 1159 AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo, 1160 UnderlyingV2, V2Size, V2AAInfo); 1161 if (PreciseBaseAlias == NoAlias) { 1162 // See if the computed offset from the common pointer tells us about the 1163 // relation of the resulting pointer. 1164 // If the max search depth is reached the result is undefined 1165 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1166 return MayAlias; 1167 1168 // Same offsets. 1169 if (GEP1BaseOffset == GEP2BaseOffset && 1170 DecompGEP1.VarIndices == DecompGEP2.VarIndices) 1171 return NoAlias; 1172 } 1173 } 1174 1175 // If we get a No or May, then return it immediately, no amount of analysis 1176 // will improve this situation. 1177 if (BaseAlias != MustAlias) 1178 return BaseAlias; 1179 1180 // Otherwise, we have a MustAlias. Since the base pointers alias each other 1181 // exactly, see if the computed offset from the common pointer tells us 1182 // about the relation of the resulting pointer. 1183 // If we know the two GEPs are based off of the exact same pointer (and not 1184 // just the same underlying object), see if that tells us anything about 1185 // the resulting pointers. 1186 if (GEP1->getPointerOperand()->stripPointerCasts() == 1187 GEP2->getPointerOperand()->stripPointerCasts() && 1188 GEP1->getPointerOperand()->getType() == 1189 GEP2->getPointerOperand()->getType()) { 1190 AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL); 1191 // If we couldn't find anything interesting, don't abandon just yet. 1192 if (R != MayAlias) 1193 return R; 1194 } 1195 1196 // If the max search depth is reached, the result is undefined 1197 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1198 return MayAlias; 1199 1200 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1201 // symbolic difference. 1202 GEP1BaseOffset -= GEP2BaseOffset; 1203 GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices); 1204 1205 } else { 1206 // Check to see if these two pointers are related by the getelementptr 1207 // instruction. If one pointer is a GEP with a non-zero index of the other 1208 // pointer, we know they cannot alias. 1209 1210 // If both accesses are unknown size, we can't do anything useful here. 1211 if (V1Size == MemoryLocation::UnknownSize && 1212 V2Size == MemoryLocation::UnknownSize) 1213 return MayAlias; 1214 1215 AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, 1216 AAMDNodes(), V2, MemoryLocation::UnknownSize, 1217 V2AAInfo, nullptr, UnderlyingV2); 1218 if (R != MustAlias) 1219 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 1220 // If V2 is known not to alias GEP base pointer, then the two values 1221 // cannot alias per GEP semantics: "Any memory access must be done through 1222 // a pointer value associated with an address range of the memory access, 1223 // otherwise the behavior is undefined.". 1224 return R; 1225 1226 // If the max search depth is reached the result is undefined 1227 if (GEP1MaxLookupReached) 1228 return MayAlias; 1229 } 1230 1231 // In the two GEP Case, if there is no difference in the offsets of the 1232 // computed pointers, the resultant pointers are a must alias. This 1233 // happens when we have two lexically identical GEP's (for example). 1234 // 1235 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 1236 // must aliases the GEP, the end result is a must alias also. 1237 if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty()) 1238 return MustAlias; 1239 1240 // If there is a constant difference between the pointers, but the difference 1241 // is less than the size of the associated memory object, then we know 1242 // that the objects are partially overlapping. If the difference is 1243 // greater, we know they do not overlap. 1244 if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) { 1245 if (GEP1BaseOffset >= 0) { 1246 if (V2Size != MemoryLocation::UnknownSize) { 1247 if ((uint64_t)GEP1BaseOffset < V2Size) 1248 return PartialAlias; 1249 return NoAlias; 1250 } 1251 } else { 1252 // We have the situation where: 1253 // + + 1254 // | BaseOffset | 1255 // ---------------->| 1256 // |-->V1Size |-------> V2Size 1257 // GEP1 V2 1258 // We need to know that V2Size is not unknown, otherwise we might have 1259 // stripped a gep with negative index ('gep <ptr>, -1, ...). 1260 if (V1Size != MemoryLocation::UnknownSize && 1261 V2Size != MemoryLocation::UnknownSize) { 1262 if (-(uint64_t)GEP1BaseOffset < V1Size) 1263 return PartialAlias; 1264 return NoAlias; 1265 } 1266 } 1267 } 1268 1269 if (!DecompGEP1.VarIndices.empty()) { 1270 uint64_t Modulo = 0; 1271 bool AllPositive = true; 1272 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { 1273 1274 // Try to distinguish something like &A[i][1] against &A[42][0]. 1275 // Grab the least significant bit set in any of the scales. We 1276 // don't need std::abs here (even if the scale's negative) as we'll 1277 // be ^'ing Modulo with itself later. 1278 Modulo |= (uint64_t)DecompGEP1.VarIndices[i].Scale; 1279 1280 if (AllPositive) { 1281 // If the Value could change between cycles, then any reasoning about 1282 // the Value this cycle may not hold in the next cycle. We'll just 1283 // give up if we can't determine conditions that hold for every cycle: 1284 const Value *V = DecompGEP1.VarIndices[i].V; 1285 1286 bool SignKnownZero, SignKnownOne; 1287 ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, DL, 1288 0, &AC, nullptr, DT); 1289 1290 // Zero-extension widens the variable, and so forces the sign 1291 // bit to zero. 1292 bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V); 1293 SignKnownZero |= IsZExt; 1294 SignKnownOne &= !IsZExt; 1295 1296 // If the variable begins with a zero then we know it's 1297 // positive, regardless of whether the value is signed or 1298 // unsigned. 1299 int64_t Scale = DecompGEP1.VarIndices[i].Scale; 1300 AllPositive = 1301 (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0); 1302 } 1303 } 1304 1305 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1306 1307 // We can compute the difference between the two addresses 1308 // mod Modulo. Check whether that difference guarantees that the 1309 // two locations do not alias. 1310 uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1); 1311 if (V1Size != MemoryLocation::UnknownSize && 1312 V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size && 1313 V1Size <= Modulo - ModOffset) 1314 return NoAlias; 1315 1316 // If we know all the variables are positive, then GEP1 >= GEP1BasePtr. 1317 // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers 1318 // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr. 1319 if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset) 1320 return NoAlias; 1321 1322 if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size, 1323 GEP1BaseOffset, &AC, DT)) 1324 return NoAlias; 1325 } 1326 1327 // Statically, we can see that the base objects are the same, but the 1328 // pointers have dynamic offsets which we can't resolve. And none of our 1329 // little tricks above worked. 1330 // 1331 // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the 1332 // practical effect of this is protecting TBAA in the case of dynamic 1333 // indices into arrays of unions or malloc'd memory. 1334 return PartialAlias; 1335 } 1336 1337 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1338 // If the results agree, take it. 1339 if (A == B) 1340 return A; 1341 // A mix of PartialAlias and MustAlias is PartialAlias. 1342 if ((A == PartialAlias && B == MustAlias) || 1343 (B == PartialAlias && A == MustAlias)) 1344 return PartialAlias; 1345 // Otherwise, we don't know anything. 1346 return MayAlias; 1347 } 1348 1349 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1350 /// against another. 1351 AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, uint64_t SISize, 1352 const AAMDNodes &SIAAInfo, 1353 const Value *V2, uint64_t V2Size, 1354 const AAMDNodes &V2AAInfo, 1355 const Value *UnderV2) { 1356 // If the values are Selects with the same condition, we can do a more precise 1357 // check: just check for aliases between the values on corresponding arms. 1358 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1359 if (SI->getCondition() == SI2->getCondition()) { 1360 AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, 1361 SI2->getTrueValue(), V2Size, V2AAInfo); 1362 if (Alias == MayAlias) 1363 return MayAlias; 1364 AliasResult ThisAlias = 1365 aliasCheck(SI->getFalseValue(), SISize, SIAAInfo, 1366 SI2->getFalseValue(), V2Size, V2AAInfo); 1367 return MergeAliasResults(ThisAlias, Alias); 1368 } 1369 1370 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1371 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1372 AliasResult Alias = 1373 aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), 1374 SISize, SIAAInfo, UnderV2); 1375 if (Alias == MayAlias) 1376 return MayAlias; 1377 1378 AliasResult ThisAlias = 1379 aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo, 1380 UnderV2); 1381 return MergeAliasResults(ThisAlias, Alias); 1382 } 1383 1384 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1385 /// another. 1386 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, uint64_t PNSize, 1387 const AAMDNodes &PNAAInfo, const Value *V2, 1388 uint64_t V2Size, const AAMDNodes &V2AAInfo, 1389 const Value *UnderV2) { 1390 // Track phi nodes we have visited. We use this information when we determine 1391 // value equivalence. 1392 VisitedPhiBBs.insert(PN->getParent()); 1393 1394 // If the values are PHIs in the same block, we can do a more precise 1395 // as well as efficient check: just check for aliases between the values 1396 // on corresponding edges. 1397 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1398 if (PN2->getParent() == PN->getParent()) { 1399 LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo), 1400 MemoryLocation(V2, V2Size, V2AAInfo)); 1401 if (PN > V2) 1402 std::swap(Locs.first, Locs.second); 1403 // Analyse the PHIs' inputs under the assumption that the PHIs are 1404 // NoAlias. 1405 // If the PHIs are May/MustAlias there must be (recursively) an input 1406 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1407 // there must be an operation on the PHIs within the PHIs' value cycle 1408 // that causes a MayAlias. 1409 // Pretend the phis do not alias. 1410 AliasResult Alias = NoAlias; 1411 assert(AliasCache.count(Locs) && 1412 "There must exist an entry for the phi node"); 1413 AliasResult OrigAliasResult = AliasCache[Locs]; 1414 AliasCache[Locs] = NoAlias; 1415 1416 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1417 AliasResult ThisAlias = 1418 aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo, 1419 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1420 V2Size, V2AAInfo); 1421 Alias = MergeAliasResults(ThisAlias, Alias); 1422 if (Alias == MayAlias) 1423 break; 1424 } 1425 1426 // Reset if speculation failed. 1427 if (Alias != NoAlias) 1428 AliasCache[Locs] = OrigAliasResult; 1429 1430 return Alias; 1431 } 1432 1433 SmallPtrSet<Value *, 4> UniqueSrc; 1434 SmallVector<Value *, 4> V1Srcs; 1435 bool isRecursive = false; 1436 for (Value *PV1 : PN->incoming_values()) { 1437 if (isa<PHINode>(PV1)) 1438 // If any of the source itself is a PHI, return MayAlias conservatively 1439 // to avoid compile time explosion. The worst possible case is if both 1440 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1441 // and 'n' are the number of PHI sources. 1442 return MayAlias; 1443 1444 if (EnableRecPhiAnalysis) 1445 if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) { 1446 // Check whether the incoming value is a GEP that advances the pointer 1447 // result of this PHI node (e.g. in a loop). If this is the case, we 1448 // would recurse and always get a MayAlias. Handle this case specially 1449 // below. 1450 if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 && 1451 isa<ConstantInt>(PV1GEP->idx_begin())) { 1452 isRecursive = true; 1453 continue; 1454 } 1455 } 1456 1457 if (UniqueSrc.insert(PV1).second) 1458 V1Srcs.push_back(PV1); 1459 } 1460 1461 // If this PHI node is recursive, set the size of the accessed memory to 1462 // unknown to represent all the possible values the GEP could advance the 1463 // pointer to. 1464 if (isRecursive) 1465 PNSize = MemoryLocation::UnknownSize; 1466 1467 AliasResult Alias = 1468 aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], 1469 PNSize, PNAAInfo, UnderV2); 1470 1471 // Early exit if the check of the first PHI source against V2 is MayAlias. 1472 // Other results are not possible. 1473 if (Alias == MayAlias) 1474 return MayAlias; 1475 1476 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1477 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1478 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1479 Value *V = V1Srcs[i]; 1480 1481 AliasResult ThisAlias = 1482 aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, UnderV2); 1483 Alias = MergeAliasResults(ThisAlias, Alias); 1484 if (Alias == MayAlias) 1485 break; 1486 } 1487 1488 return Alias; 1489 } 1490 1491 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1492 /// array references. 1493 AliasResult BasicAAResult::aliasCheck(const Value *V1, uint64_t V1Size, 1494 AAMDNodes V1AAInfo, const Value *V2, 1495 uint64_t V2Size, AAMDNodes V2AAInfo, 1496 const Value *O1, const Value *O2) { 1497 // If either of the memory references is empty, it doesn't matter what the 1498 // pointer values are. 1499 if (V1Size == 0 || V2Size == 0) 1500 return NoAlias; 1501 1502 // Strip off any casts if they exist. 1503 V1 = V1->stripPointerCasts(); 1504 V2 = V2->stripPointerCasts(); 1505 1506 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1507 // value for undef that aliases nothing in the program. 1508 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1509 return NoAlias; 1510 1511 // Are we checking for alias of the same value? 1512 // Because we look 'through' phi nodes, we could look at "Value" pointers from 1513 // different iterations. We must therefore make sure that this is not the 1514 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1515 // happen by looking at the visited phi nodes and making sure they cannot 1516 // reach the value. 1517 if (isValueEqualInPotentialCycles(V1, V2)) 1518 return MustAlias; 1519 1520 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1521 return NoAlias; // Scalars cannot alias each other 1522 1523 // Figure out what objects these things are pointing to if we can. 1524 if (O1 == nullptr) 1525 O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth); 1526 1527 if (O2 == nullptr) 1528 O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth); 1529 1530 // Null values in the default address space don't point to any object, so they 1531 // don't alias any other pointer. 1532 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1533 if (CPN->getType()->getAddressSpace() == 0) 1534 return NoAlias; 1535 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1536 if (CPN->getType()->getAddressSpace() == 0) 1537 return NoAlias; 1538 1539 if (O1 != O2) { 1540 // If V1/V2 point to two different objects, we know that we have no alias. 1541 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1542 return NoAlias; 1543 1544 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1545 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1546 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1547 return NoAlias; 1548 1549 // Function arguments can't alias with things that are known to be 1550 // unambigously identified at the function level. 1551 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1552 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1553 return NoAlias; 1554 1555 // Most objects can't alias null. 1556 if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) || 1557 (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2))) 1558 return NoAlias; 1559 1560 // If one pointer is the result of a call/invoke or load and the other is a 1561 // non-escaping local object within the same function, then we know the 1562 // object couldn't escape to a point where the call could return it. 1563 // 1564 // Note that if the pointers are in different functions, there are a 1565 // variety of complications. A call with a nocapture argument may still 1566 // temporary store the nocapture argument's value in a temporary memory 1567 // location if that memory location doesn't escape. Or it may pass a 1568 // nocapture value to other functions as long as they don't capture it. 1569 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) 1570 return NoAlias; 1571 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) 1572 return NoAlias; 1573 } 1574 1575 // If the size of one access is larger than the entire object on the other 1576 // side, then we know such behavior is undefined and can assume no alias. 1577 if ((V1Size != MemoryLocation::UnknownSize && 1578 isObjectSmallerThan(O2, V1Size, DL, TLI)) || 1579 (V2Size != MemoryLocation::UnknownSize && 1580 isObjectSmallerThan(O1, V2Size, DL, TLI))) 1581 return NoAlias; 1582 1583 // Check the cache before climbing up use-def chains. This also terminates 1584 // otherwise infinitely recursive queries. 1585 LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo), 1586 MemoryLocation(V2, V2Size, V2AAInfo)); 1587 if (V1 > V2) 1588 std::swap(Locs.first, Locs.second); 1589 std::pair<AliasCacheTy::iterator, bool> Pair = 1590 AliasCache.insert(std::make_pair(Locs, MayAlias)); 1591 if (!Pair.second) 1592 return Pair.first->second; 1593 1594 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1595 // GEP can't simplify, we don't even look at the PHI cases. 1596 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1597 std::swap(V1, V2); 1598 std::swap(V1Size, V2Size); 1599 std::swap(O1, O2); 1600 std::swap(V1AAInfo, V2AAInfo); 1601 } 1602 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1603 AliasResult Result = 1604 aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2); 1605 if (Result != MayAlias) 1606 return AliasCache[Locs] = Result; 1607 } 1608 1609 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1610 std::swap(V1, V2); 1611 std::swap(O1, O2); 1612 std::swap(V1Size, V2Size); 1613 std::swap(V1AAInfo, V2AAInfo); 1614 } 1615 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1616 AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, 1617 V2, V2Size, V2AAInfo, O2); 1618 if (Result != MayAlias) 1619 return AliasCache[Locs] = Result; 1620 } 1621 1622 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1623 std::swap(V1, V2); 1624 std::swap(O1, O2); 1625 std::swap(V1Size, V2Size); 1626 std::swap(V1AAInfo, V2AAInfo); 1627 } 1628 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1629 AliasResult Result = 1630 aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2); 1631 if (Result != MayAlias) 1632 return AliasCache[Locs] = Result; 1633 } 1634 1635 // If both pointers are pointing into the same object and one of them 1636 // accesses the entire object, then the accesses must overlap in some way. 1637 if (O1 == O2) 1638 if ((V1Size != MemoryLocation::UnknownSize && 1639 isObjectSize(O1, V1Size, DL, TLI)) || 1640 (V2Size != MemoryLocation::UnknownSize && 1641 isObjectSize(O2, V2Size, DL, TLI))) 1642 return AliasCache[Locs] = PartialAlias; 1643 1644 // Recurse back into the best AA results we have, potentially with refined 1645 // memory locations. We have already ensured that BasicAA has a MayAlias 1646 // cache result for these, so any recursion back into BasicAA won't loop. 1647 AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second); 1648 return AliasCache[Locs] = Result; 1649 } 1650 1651 /// Check whether two Values can be considered equivalent. 1652 /// 1653 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether 1654 /// they can not be part of a cycle in the value graph by looking at all 1655 /// visited phi nodes an making sure that the phis cannot reach the value. We 1656 /// have to do this because we are looking through phi nodes (That is we say 1657 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1658 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1659 const Value *V2) { 1660 if (V != V2) 1661 return false; 1662 1663 const Instruction *Inst = dyn_cast<Instruction>(V); 1664 if (!Inst) 1665 return true; 1666 1667 if (VisitedPhiBBs.empty()) 1668 return true; 1669 1670 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1671 return false; 1672 1673 // Make sure that the visited phis cannot reach the Value. This ensures that 1674 // the Values cannot come from different iterations of a potential cycle the 1675 // phi nodes could be involved in. 1676 for (auto *P : VisitedPhiBBs) 1677 if (isPotentiallyReachable(&P->front(), Inst, DT, LI)) 1678 return false; 1679 1680 return true; 1681 } 1682 1683 /// Computes the symbolic difference between two de-composed GEPs. 1684 /// 1685 /// Dest and Src are the variable indices from two decomposed GetElementPtr 1686 /// instructions GEP1 and GEP2 which have common base pointers. 1687 void BasicAAResult::GetIndexDifference( 1688 SmallVectorImpl<VariableGEPIndex> &Dest, 1689 const SmallVectorImpl<VariableGEPIndex> &Src) { 1690 if (Src.empty()) 1691 return; 1692 1693 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1694 const Value *V = Src[i].V; 1695 unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits; 1696 int64_t Scale = Src[i].Scale; 1697 1698 // Find V in Dest. This is N^2, but pointer indices almost never have more 1699 // than a few variable indexes. 1700 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1701 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1702 Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits) 1703 continue; 1704 1705 // If we found it, subtract off Scale V's from the entry in Dest. If it 1706 // goes to zero, remove the entry. 1707 if (Dest[j].Scale != Scale) 1708 Dest[j].Scale -= Scale; 1709 else 1710 Dest.erase(Dest.begin() + j); 1711 Scale = 0; 1712 break; 1713 } 1714 1715 // If we didn't consume this entry, add it to the end of the Dest list. 1716 if (Scale) { 1717 VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale}; 1718 Dest.push_back(Entry); 1719 } 1720 } 1721 } 1722 1723 bool BasicAAResult::constantOffsetHeuristic( 1724 const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size, 1725 uint64_t V2Size, int64_t BaseOffset, AssumptionCache *AC, 1726 DominatorTree *DT) { 1727 if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize || 1728 V2Size == MemoryLocation::UnknownSize) 1729 return false; 1730 1731 const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1]; 1732 1733 if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits || 1734 Var0.Scale != -Var1.Scale) 1735 return false; 1736 1737 unsigned Width = Var1.V->getType()->getIntegerBitWidth(); 1738 1739 // We'll strip off the Extensions of Var0 and Var1 and do another round 1740 // of GetLinearExpression decomposition. In the example above, if Var0 1741 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 1742 1743 APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0), 1744 V1Offset(Width, 0); 1745 bool NSW = true, NUW = true; 1746 unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0; 1747 const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits, 1748 V0SExtBits, DL, 0, AC, DT, NSW, NUW); 1749 NSW = true; 1750 NUW = true; 1751 const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits, 1752 V1SExtBits, DL, 0, AC, DT, NSW, NUW); 1753 1754 if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits || 1755 V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1)) 1756 return false; 1757 1758 // We have a hit - Var0 and Var1 only differ by a constant offset! 1759 1760 // If we've been sext'ed then zext'd the maximum difference between Var0 and 1761 // Var1 is possible to calculate, but we're just interested in the absolute 1762 // minimum difference between the two. The minimum distance may occur due to 1763 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 1764 // the minimum distance between %i and %i + 5 is 3. 1765 APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff; 1766 MinDiff = APIntOps::umin(MinDiff, Wrapped); 1767 uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale); 1768 1769 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 1770 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 1771 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 1772 // V2Size can fit in the MinDiffBytes gap. 1773 return V1Size + std::abs(BaseOffset) <= MinDiffBytes && 1774 V2Size + std::abs(BaseOffset) <= MinDiffBytes; 1775 } 1776 1777 //===----------------------------------------------------------------------===// 1778 // BasicAliasAnalysis Pass 1779 //===----------------------------------------------------------------------===// 1780 1781 AnalysisKey BasicAA::Key; 1782 1783 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) { 1784 return BasicAAResult(F.getParent()->getDataLayout(), 1785 AM.getResult<TargetLibraryAnalysis>(F), 1786 AM.getResult<AssumptionAnalysis>(F), 1787 &AM.getResult<DominatorTreeAnalysis>(F), 1788 AM.getCachedResult<LoopAnalysis>(F)); 1789 } 1790 1791 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 1792 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1793 } 1794 1795 char BasicAAWrapperPass::ID = 0; 1796 void BasicAAWrapperPass::anchor() {} 1797 1798 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa", 1799 "Basic Alias Analysis (stateless AA impl)", true, true) 1800 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1801 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1802 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1803 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa", 1804 "Basic Alias Analysis (stateless AA impl)", true, true) 1805 1806 FunctionPass *llvm::createBasicAAWrapperPass() { 1807 return new BasicAAWrapperPass(); 1808 } 1809 1810 bool BasicAAWrapperPass::runOnFunction(Function &F) { 1811 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 1812 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 1813 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); 1814 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 1815 1816 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), TLIWP.getTLI(), 1817 ACT.getAssumptionCache(F), &DTWP.getDomTree(), 1818 LIWP ? &LIWP->getLoopInfo() : nullptr)); 1819 1820 return false; 1821 } 1822 1823 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1824 AU.setPreservesAll(); 1825 AU.addRequired<AssumptionCacheTracker>(); 1826 AU.addRequired<DominatorTreeWrapperPass>(); 1827 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1828 } 1829 1830 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { 1831 return BasicAAResult( 1832 F.getParent()->getDataLayout(), 1833 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 1834 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 1835 } 1836