1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the primary stateless implementation of the 11 // Alias Analysis interface that implements identities (two different 12 // globals cannot alias, etc), but does no stateful analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/BasicAliasAnalysis.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/CFG.h" 21 #include "llvm/Analysis/CaptureTracking.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include <algorithm> 40 using namespace llvm; 41 42 /// Enable analysis of recursive PHI nodes. 43 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden, 44 cl::init(false)); 45 46 /// SearchLimitReached / SearchTimes shows how often the limit of 47 /// to decompose GEPs is reached. It will affect the precision 48 /// of basic alias analysis. 49 #define DEBUG_TYPE "basicaa" 50 STATISTIC(SearchLimitReached, "Number of times the limit to " 51 "decompose GEPs is reached"); 52 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 53 54 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 55 /// in a cycle. Because we are analysing 'through' phi nodes we need to be 56 /// careful with value equivalence. We use reachability to make sure a value 57 /// cannot be involved in a cycle. 58 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 59 60 // The max limit of the search depth in DecomposeGEPExpression() and 61 // GetUnderlyingObject(), both functions need to use the same search 62 // depth otherwise the algorithm in aliasGEP will assert. 63 static const unsigned MaxLookupSearchDepth = 6; 64 65 //===----------------------------------------------------------------------===// 66 // Useful predicates 67 //===----------------------------------------------------------------------===// 68 69 /// Returns true if the pointer is to a function-local object that never 70 /// escapes from the function. 71 static bool isNonEscapingLocalObject(const Value *V) { 72 // If this is a local allocation, check to see if it escapes. 73 if (isa<AllocaInst>(V) || isNoAliasCall(V)) 74 // Set StoreCaptures to True so that we can assume in our callers that the 75 // pointer is not the result of a load instruction. Currently 76 // PointerMayBeCaptured doesn't have any special analysis for the 77 // StoreCaptures=false case; if it did, our callers could be refined to be 78 // more precise. 79 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 80 81 // If this is an argument that corresponds to a byval or noalias argument, 82 // then it has not escaped before entering the function. Check if it escapes 83 // inside the function. 84 if (const Argument *A = dyn_cast<Argument>(V)) 85 if (A->hasByValAttr() || A->hasNoAliasAttr()) 86 // Note even if the argument is marked nocapture we still need to check 87 // for copies made inside the function. The nocapture attribute only 88 // specifies that there are no copies made that outlive the function. 89 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 90 91 return false; 92 } 93 94 /// Returns true if the pointer is one which would have been considered an 95 /// escape by isNonEscapingLocalObject. 96 static bool isEscapeSource(const Value *V) { 97 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V)) 98 return true; 99 100 // The load case works because isNonEscapingLocalObject considers all 101 // stores to be escapes (it passes true for the StoreCaptures argument 102 // to PointerMayBeCaptured). 103 if (isa<LoadInst>(V)) 104 return true; 105 106 return false; 107 } 108 109 /// Returns the size of the object specified by V, or UnknownSize if unknown. 110 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 111 const TargetLibraryInfo &TLI, 112 bool RoundToAlign = false) { 113 uint64_t Size; 114 if (getObjectSize(V, Size, DL, &TLI, RoundToAlign)) 115 return Size; 116 return MemoryLocation::UnknownSize; 117 } 118 119 /// Returns true if we can prove that the object specified by V is smaller than 120 /// Size. 121 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 122 const DataLayout &DL, 123 const TargetLibraryInfo &TLI) { 124 // Note that the meanings of the "object" are slightly different in the 125 // following contexts: 126 // c1: llvm::getObjectSize() 127 // c2: llvm.objectsize() intrinsic 128 // c3: isObjectSmallerThan() 129 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 130 // refers to the "entire object". 131 // 132 // Consider this example: 133 // char *p = (char*)malloc(100) 134 // char *q = p+80; 135 // 136 // In the context of c1 and c2, the "object" pointed by q refers to the 137 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 138 // 139 // However, in the context of c3, the "object" refers to the chunk of memory 140 // being allocated. So, the "object" has 100 bytes, and q points to the middle 141 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 142 // parameter, before the llvm::getObjectSize() is called to get the size of 143 // entire object, we should: 144 // - either rewind the pointer q to the base-address of the object in 145 // question (in this case rewind to p), or 146 // - just give up. It is up to caller to make sure the pointer is pointing 147 // to the base address the object. 148 // 149 // We go for 2nd option for simplicity. 150 if (!isIdentifiedObject(V)) 151 return false; 152 153 // This function needs to use the aligned object size because we allow 154 // reads a bit past the end given sufficient alignment. 155 uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/ true); 156 157 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; 158 } 159 160 /// Returns true if we can prove that the object specified by V has size Size. 161 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, 162 const TargetLibraryInfo &TLI) { 163 uint64_t ObjectSize = getObjectSize(V, DL, TLI); 164 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; 165 } 166 167 //===----------------------------------------------------------------------===// 168 // GetElementPtr Instruction Decomposition and Analysis 169 //===----------------------------------------------------------------------===// 170 171 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 172 /// B are constant integers. 173 /// 174 /// Returns the scale and offset values as APInts and return V as a Value*, and 175 /// return whether we looked through any sign or zero extends. The incoming 176 /// Value is known to have IntegerType and it may already be sign or zero 177 /// extended. 178 /// 179 /// Note that this looks through extends, so the high bits may not be 180 /// represented in the result. 181 /*static*/ const Value *BasicAAResult::GetLinearExpression( 182 const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits, 183 unsigned &SExtBits, const DataLayout &DL, unsigned Depth, 184 AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) { 185 assert(V->getType()->isIntegerTy() && "Not an integer value"); 186 187 // Limit our recursion depth. 188 if (Depth == 6) { 189 Scale = 1; 190 Offset = 0; 191 return V; 192 } 193 194 if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) { 195 // if it's a constant, just convert it to an offset and remove the variable. 196 // If we've been called recursively the Offset bit width will be greater 197 // than the constant's (the Offset's always as wide as the outermost call), 198 // so we'll zext here and process any extension in the isa<SExtInst> & 199 // isa<ZExtInst> cases below. 200 Offset += Const->getValue().zextOrSelf(Offset.getBitWidth()); 201 assert(Scale == 0 && "Constant values don't have a scale"); 202 return V; 203 } 204 205 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 206 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 207 208 // If we've been called recursively then Offset and Scale will be wider 209 // that the BOp operands. We'll always zext it here as we'll process sign 210 // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases). 211 APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth()); 212 213 switch (BOp->getOpcode()) { 214 default: 215 // We don't understand this instruction, so we can't decompose it any 216 // further. 217 Scale = 1; 218 Offset = 0; 219 return V; 220 case Instruction::Or: 221 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 222 // analyze it. 223 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, 224 BOp, DT)) { 225 Scale = 1; 226 Offset = 0; 227 return V; 228 } 229 // FALL THROUGH. 230 case Instruction::Add: 231 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 232 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 233 Offset += RHS; 234 break; 235 case Instruction::Sub: 236 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 237 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 238 Offset -= RHS; 239 break; 240 case Instruction::Mul: 241 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 242 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 243 Offset *= RHS; 244 Scale *= RHS; 245 break; 246 case Instruction::Shl: 247 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 248 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 249 Offset <<= RHS.getLimitedValue(); 250 Scale <<= RHS.getLimitedValue(); 251 // the semantics of nsw and nuw for left shifts don't match those of 252 // multiplications, so we won't propagate them. 253 NSW = NUW = false; 254 return V; 255 } 256 257 if (isa<OverflowingBinaryOperator>(BOp)) { 258 NUW &= BOp->hasNoUnsignedWrap(); 259 NSW &= BOp->hasNoSignedWrap(); 260 } 261 return V; 262 } 263 } 264 265 // Since GEP indices are sign extended anyway, we don't care about the high 266 // bits of a sign or zero extended value - just scales and offsets. The 267 // extensions have to be consistent though. 268 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) { 269 Value *CastOp = cast<CastInst>(V)->getOperand(0); 270 unsigned NewWidth = V->getType()->getPrimitiveSizeInBits(); 271 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 272 unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits; 273 const Value *Result = 274 GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL, 275 Depth + 1, AC, DT, NSW, NUW); 276 277 // zext(zext(%x)) == zext(%x), and similiarly for sext; we'll handle this 278 // by just incrementing the number of bits we've extended by. 279 unsigned ExtendedBy = NewWidth - SmallWidth; 280 281 if (isa<SExtInst>(V) && ZExtBits == 0) { 282 // sext(sext(%x, a), b) == sext(%x, a + b) 283 284 if (NSW) { 285 // We haven't sign-wrapped, so it's valid to decompose sext(%x + c) 286 // into sext(%x) + sext(c). We'll sext the Offset ourselves: 287 unsigned OldWidth = Offset.getBitWidth(); 288 Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth); 289 } else { 290 // We may have signed-wrapped, so don't decompose sext(%x + c) into 291 // sext(%x) + sext(c) 292 Scale = 1; 293 Offset = 0; 294 Result = CastOp; 295 ZExtBits = OldZExtBits; 296 SExtBits = OldSExtBits; 297 } 298 SExtBits += ExtendedBy; 299 } else { 300 // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b) 301 302 if (!NUW) { 303 // We may have unsigned-wrapped, so don't decompose zext(%x + c) into 304 // zext(%x) + zext(c) 305 Scale = 1; 306 Offset = 0; 307 Result = CastOp; 308 ZExtBits = OldZExtBits; 309 SExtBits = OldSExtBits; 310 } 311 ZExtBits += ExtendedBy; 312 } 313 314 return Result; 315 } 316 317 Scale = 1; 318 Offset = 0; 319 return V; 320 } 321 322 /// If V is a symbolic pointer expression, decompose it into a base pointer 323 /// with a constant offset and a number of scaled symbolic offsets. 324 /// 325 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 326 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 327 /// specified amount, but which may have other unrepresented high bits. As 328 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 329 /// 330 /// When DataLayout is around, this function is capable of analyzing everything 331 /// that GetUnderlyingObject can look through. To be able to do that 332 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search 333 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks 334 /// through pointer casts. 335 /*static*/ const Value *BasicAAResult::DecomposeGEPExpression( 336 const Value *V, int64_t &BaseOffs, 337 SmallVectorImpl<VariableGEPIndex> &VarIndices, bool &MaxLookupReached, 338 const DataLayout &DL, AssumptionCache *AC, DominatorTree *DT) { 339 // Limit recursion depth to limit compile time in crazy cases. 340 unsigned MaxLookup = MaxLookupSearchDepth; 341 MaxLookupReached = false; 342 SearchTimes++; 343 344 BaseOffs = 0; 345 do { 346 // See if this is a bitcast or GEP. 347 const Operator *Op = dyn_cast<Operator>(V); 348 if (!Op) { 349 // The only non-operator case we can handle are GlobalAliases. 350 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 351 if (!GA->mayBeOverridden()) { 352 V = GA->getAliasee(); 353 continue; 354 } 355 } 356 return V; 357 } 358 359 if (Op->getOpcode() == Instruction::BitCast || 360 Op->getOpcode() == Instruction::AddrSpaceCast) { 361 V = Op->getOperand(0); 362 continue; 363 } 364 365 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 366 if (!GEPOp) { 367 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 368 // can come up with something. This matches what GetUnderlyingObject does. 369 if (const Instruction *I = dyn_cast<Instruction>(V)) 370 // TODO: Get a DominatorTree and AssumptionCache and use them here 371 // (these are both now available in this function, but this should be 372 // updated when GetUnderlyingObject is updated). TLI should be 373 // provided also. 374 if (const Value *Simplified = 375 SimplifyInstruction(const_cast<Instruction *>(I), DL)) { 376 V = Simplified; 377 continue; 378 } 379 380 return V; 381 } 382 383 // Don't attempt to analyze GEPs over unsized objects. 384 if (!GEPOp->getOperand(0)->getType()->getPointerElementType()->isSized()) 385 return V; 386 387 unsigned AS = GEPOp->getPointerAddressSpace(); 388 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 389 gep_type_iterator GTI = gep_type_begin(GEPOp); 390 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 391 I != E; ++I) { 392 const Value *Index = *I; 393 // Compute the (potentially symbolic) offset in bytes for this index. 394 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 395 // For a struct, add the member offset. 396 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 397 if (FieldNo == 0) 398 continue; 399 400 BaseOffs += DL.getStructLayout(STy)->getElementOffset(FieldNo); 401 continue; 402 } 403 404 // For an array/pointer, add the element offset, explicitly scaled. 405 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 406 if (CIdx->isZero()) 407 continue; 408 BaseOffs += DL.getTypeAllocSize(*GTI) * CIdx->getSExtValue(); 409 continue; 410 } 411 412 uint64_t Scale = DL.getTypeAllocSize(*GTI); 413 unsigned ZExtBits = 0, SExtBits = 0; 414 415 // If the integer type is smaller than the pointer size, it is implicitly 416 // sign extended to pointer size. 417 unsigned Width = Index->getType()->getIntegerBitWidth(); 418 unsigned PointerSize = DL.getPointerSizeInBits(AS); 419 if (PointerSize > Width) 420 SExtBits += PointerSize - Width; 421 422 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 423 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 424 bool NSW = true, NUW = true; 425 Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits, 426 SExtBits, DL, 0, AC, DT, NSW, NUW); 427 428 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 429 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 430 BaseOffs += IndexOffset.getSExtValue() * Scale; 431 Scale *= IndexScale.getSExtValue(); 432 433 // If we already had an occurrence of this index variable, merge this 434 // scale into it. For example, we want to handle: 435 // A[x][x] -> x*16 + x*4 -> x*20 436 // This also ensures that 'x' only appears in the index list once. 437 for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) { 438 if (VarIndices[i].V == Index && VarIndices[i].ZExtBits == ZExtBits && 439 VarIndices[i].SExtBits == SExtBits) { 440 Scale += VarIndices[i].Scale; 441 VarIndices.erase(VarIndices.begin() + i); 442 break; 443 } 444 } 445 446 // Make sure that we have a scale that makes sense for this target's 447 // pointer size. 448 if (unsigned ShiftBits = 64 - PointerSize) { 449 Scale <<= ShiftBits; 450 Scale = (int64_t)Scale >> ShiftBits; 451 } 452 453 if (Scale) { 454 VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, 455 static_cast<int64_t>(Scale)}; 456 VarIndices.push_back(Entry); 457 } 458 } 459 460 // Analyze the base pointer next. 461 V = GEPOp->getOperand(0); 462 } while (--MaxLookup); 463 464 // If the chain of expressions is too deep, just return early. 465 MaxLookupReached = true; 466 SearchLimitReached++; 467 return V; 468 } 469 470 /// Returns whether the given pointer value points to memory that is local to 471 /// the function, with global constants being considered local to all 472 /// functions. 473 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc, 474 bool OrLocal) { 475 assert(Visited.empty() && "Visited must be cleared after use!"); 476 477 unsigned MaxLookup = 8; 478 SmallVector<const Value *, 16> Worklist; 479 Worklist.push_back(Loc.Ptr); 480 do { 481 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL); 482 if (!Visited.insert(V).second) { 483 Visited.clear(); 484 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 485 } 486 487 // An alloca instruction defines local memory. 488 if (OrLocal && isa<AllocaInst>(V)) 489 continue; 490 491 // A global constant counts as local memory for our purposes. 492 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 493 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 494 // global to be marked constant in some modules and non-constant in 495 // others. GV may even be a declaration, not a definition. 496 if (!GV->isConstant()) { 497 Visited.clear(); 498 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 499 } 500 continue; 501 } 502 503 // If both select values point to local memory, then so does the select. 504 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 505 Worklist.push_back(SI->getTrueValue()); 506 Worklist.push_back(SI->getFalseValue()); 507 continue; 508 } 509 510 // If all values incoming to a phi node point to local memory, then so does 511 // the phi. 512 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 513 // Don't bother inspecting phi nodes with many operands. 514 if (PN->getNumIncomingValues() > MaxLookup) { 515 Visited.clear(); 516 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 517 } 518 for (Value *IncValue : PN->incoming_values()) 519 Worklist.push_back(IncValue); 520 continue; 521 } 522 523 // Otherwise be conservative. 524 Visited.clear(); 525 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 526 527 } while (!Worklist.empty() && --MaxLookup); 528 529 Visited.clear(); 530 return Worklist.empty(); 531 } 532 533 // FIXME: This code is duplicated with MemoryLocation and should be hoisted to 534 // some common utility location. 535 static bool isMemsetPattern16(const Function *MS, 536 const TargetLibraryInfo &TLI) { 537 if (TLI.has(LibFunc::memset_pattern16) && 538 MS->getName() == "memset_pattern16") { 539 FunctionType *MemsetType = MS->getFunctionType(); 540 if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 && 541 isa<PointerType>(MemsetType->getParamType(0)) && 542 isa<PointerType>(MemsetType->getParamType(1)) && 543 isa<IntegerType>(MemsetType->getParamType(2))) 544 return true; 545 } 546 547 return false; 548 } 549 550 /// Returns the behavior when calling the given call site. 551 FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) { 552 if (CS.doesNotAccessMemory()) 553 // Can't do better than this. 554 return FMRB_DoesNotAccessMemory; 555 556 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 557 558 // If the callsite knows it only reads memory, don't return worse 559 // than that. 560 if (CS.onlyReadsMemory()) 561 Min = FMRB_OnlyReadsMemory; 562 563 if (CS.onlyAccessesArgMemory()) 564 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 565 566 // The AAResultBase base class has some smarts, lets use them. 567 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min); 568 } 569 570 /// Returns the behavior when calling the given function. For use when the call 571 /// site is not known. 572 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) { 573 // If the function declares it doesn't access memory, we can't do better. 574 if (F->doesNotAccessMemory()) 575 return FMRB_DoesNotAccessMemory; 576 577 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 578 579 // If the function declares it only reads memory, go with that. 580 if (F->onlyReadsMemory()) 581 Min = FMRB_OnlyReadsMemory; 582 583 if (F->onlyAccessesArgMemory()) 584 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 585 586 if (isMemsetPattern16(F, TLI)) 587 Min = FMRB_OnlyAccessesArgumentPointees; 588 589 // Otherwise be conservative. 590 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min); 591 } 592 593 ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS, 594 unsigned ArgIdx) { 595 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) 596 switch (II->getIntrinsicID()) { 597 default: 598 break; 599 case Intrinsic::memset: 600 case Intrinsic::memcpy: 601 case Intrinsic::memmove: 602 assert((ArgIdx == 0 || ArgIdx == 1) && 603 "Invalid argument index for memory intrinsic"); 604 return ArgIdx ? MRI_Ref : MRI_Mod; 605 } 606 607 // We can bound the aliasing properties of memset_pattern16 just as we can 608 // for memcpy/memset. This is particularly important because the 609 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 610 // whenever possible. 611 if (CS.getCalledFunction() && 612 isMemsetPattern16(CS.getCalledFunction(), TLI)) { 613 assert((ArgIdx == 0 || ArgIdx == 1) && 614 "Invalid argument index for memset_pattern16"); 615 return ArgIdx ? MRI_Ref : MRI_Mod; 616 } 617 // FIXME: Handle memset_pattern4 and memset_pattern8 also. 618 619 return AAResultBase::getArgModRefInfo(CS, ArgIdx); 620 } 621 622 static bool isAssumeIntrinsic(ImmutableCallSite CS) { 623 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 624 if (II && II->getIntrinsicID() == Intrinsic::assume) 625 return true; 626 627 return false; 628 } 629 630 /// Checks to see if the specified callsite can clobber the specified memory 631 /// object. 632 /// 633 /// Since we only look at local properties of this function, we really can't 634 /// say much about this query. We do, however, use simple "address taken" 635 /// analysis on local objects. 636 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS, 637 const MemoryLocation &Loc) { 638 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && 639 "AliasAnalysis query involving multiple functions!"); 640 641 const Value *Object = GetUnderlyingObject(Loc.Ptr, DL); 642 643 // If this is a tail call and Loc.Ptr points to a stack location, we know that 644 // the tail call cannot access or modify the local stack. 645 // We cannot exclude byval arguments here; these belong to the caller of 646 // the current function not to the current function, and a tail callee 647 // may reference them. 648 if (isa<AllocaInst>(Object)) 649 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) 650 if (CI->isTailCall()) 651 return MRI_NoModRef; 652 653 // If the pointer is to a locally allocated object that does not escape, 654 // then the call can not mod/ref the pointer unless the call takes the pointer 655 // as an argument, and itself doesn't capture it. 656 if (!isa<Constant>(Object) && CS.getInstruction() != Object && 657 isNonEscapingLocalObject(Object)) { 658 bool PassedAsArg = false; 659 unsigned ArgNo = 0; 660 for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end(); 661 CI != CE; ++CI, ++ArgNo) { 662 // Only look at the no-capture or byval pointer arguments. If this 663 // pointer were passed to arguments that were neither of these, then it 664 // couldn't be no-capture. 665 if (!(*CI)->getType()->isPointerTy() || 666 (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo))) 667 continue; 668 669 // If this is a no-capture pointer argument, see if we can tell that it 670 // is impossible to alias the pointer we're checking. If not, we have to 671 // assume that the call could touch the pointer, even though it doesn't 672 // escape. 673 AliasResult AR = 674 getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object)); 675 if (AR) { 676 PassedAsArg = true; 677 break; 678 } 679 } 680 681 if (!PassedAsArg) 682 return MRI_NoModRef; 683 } 684 685 // While the assume intrinsic is marked as arbitrarily writing so that 686 // proper control dependencies will be maintained, it never aliases any 687 // particular memory location. 688 if (isAssumeIntrinsic(CS)) 689 return MRI_NoModRef; 690 691 // The AAResultBase base class has some smarts, lets use them. 692 return AAResultBase::getModRefInfo(CS, Loc); 693 } 694 695 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1, 696 ImmutableCallSite CS2) { 697 // While the assume intrinsic is marked as arbitrarily writing so that 698 // proper control dependencies will be maintained, it never aliases any 699 // particular memory location. 700 if (isAssumeIntrinsic(CS1) || isAssumeIntrinsic(CS2)) 701 return MRI_NoModRef; 702 703 // The AAResultBase base class has some smarts, lets use them. 704 return AAResultBase::getModRefInfo(CS1, CS2); 705 } 706 707 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators, 708 /// both having the exact same pointer operand. 709 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1, 710 uint64_t V1Size, 711 const GEPOperator *GEP2, 712 uint64_t V2Size, 713 const DataLayout &DL) { 714 715 assert(GEP1->getPointerOperand() == GEP2->getPointerOperand() && 716 "Expected GEPs with the same pointer operand"); 717 718 // Try to determine whether GEP1 and GEP2 index through arrays, into structs, 719 // such that the struct field accesses provably cannot alias. 720 // We also need at least two indices (the pointer, and the struct field). 721 if (GEP1->getNumIndices() != GEP2->getNumIndices() || 722 GEP1->getNumIndices() < 2) 723 return MayAlias; 724 725 // If we don't know the size of the accesses through both GEPs, we can't 726 // determine whether the struct fields accessed can't alias. 727 if (V1Size == MemoryLocation::UnknownSize || 728 V2Size == MemoryLocation::UnknownSize) 729 return MayAlias; 730 731 ConstantInt *C1 = 732 dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1)); 733 ConstantInt *C2 = 734 dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1)); 735 736 // If the last (struct) indices aren't constants, we can't say anything. 737 // If they're identical, the other indices might be also be dynamically 738 // equal, so the GEPs can alias. 739 if (!C1 || !C2 || C1 == C2) 740 return MayAlias; 741 742 // Find the last-indexed type of the GEP, i.e., the type you'd get if 743 // you stripped the last index. 744 // On the way, look at each indexed type. If there's something other 745 // than an array, different indices can lead to different final types. 746 SmallVector<Value *, 8> IntermediateIndices; 747 748 // Insert the first index; we don't need to check the type indexed 749 // through it as it only drops the pointer indirection. 750 assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine"); 751 IntermediateIndices.push_back(GEP1->getOperand(1)); 752 753 // Insert all the remaining indices but the last one. 754 // Also, check that they all index through arrays. 755 for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) { 756 if (!isa<ArrayType>(GetElementPtrInst::getIndexedType( 757 GEP1->getSourceElementType(), IntermediateIndices))) 758 return MayAlias; 759 IntermediateIndices.push_back(GEP1->getOperand(i + 1)); 760 } 761 762 StructType *LastIndexedStruct = 763 dyn_cast<StructType>(GetElementPtrInst::getIndexedType( 764 GEP1->getSourceElementType(), IntermediateIndices)); 765 766 if (!LastIndexedStruct) 767 return MayAlias; 768 769 // We know that: 770 // - both GEPs begin indexing from the exact same pointer; 771 // - the last indices in both GEPs are constants, indexing into a struct; 772 // - said indices are different, hence, the pointed-to fields are different; 773 // - both GEPs only index through arrays prior to that. 774 // 775 // This lets us determine that the struct that GEP1 indexes into and the 776 // struct that GEP2 indexes into must either precisely overlap or be 777 // completely disjoint. Because they cannot partially overlap, indexing into 778 // different non-overlapping fields of the struct will never alias. 779 780 // Therefore, the only remaining thing needed to show that both GEPs can't 781 // alias is that the fields are not overlapping. 782 const StructLayout *SL = DL.getStructLayout(LastIndexedStruct); 783 const uint64_t StructSize = SL->getSizeInBytes(); 784 const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue()); 785 const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue()); 786 787 auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size, 788 uint64_t V2Off, uint64_t V2Size) { 789 return V1Off < V2Off && V1Off + V1Size <= V2Off && 790 ((V2Off + V2Size <= StructSize) || 791 (V2Off + V2Size - StructSize <= V1Off)); 792 }; 793 794 if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) || 795 EltsDontOverlap(V2Off, V2Size, V1Off, V1Size)) 796 return NoAlias; 797 798 return MayAlias; 799 } 800 801 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 802 /// another pointer. 803 /// 804 /// We know that V1 is a GEP, but we don't know anything about V2. 805 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for 806 /// V2. 807 AliasResult BasicAAResult::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, 808 const AAMDNodes &V1AAInfo, const Value *V2, 809 uint64_t V2Size, const AAMDNodes &V2AAInfo, 810 const Value *UnderlyingV1, 811 const Value *UnderlyingV2) { 812 int64_t GEP1BaseOffset; 813 bool GEP1MaxLookupReached; 814 SmallVector<VariableGEPIndex, 4> GEP1VariableIndices; 815 816 // If we have two gep instructions with must-alias or not-alias'ing base 817 // pointers, figure out if the indexes to the GEP tell us anything about the 818 // derived pointer. 819 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 820 // Do the base pointers alias? 821 AliasResult BaseAlias = 822 aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(), 823 UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes()); 824 825 // Check for geps of non-aliasing underlying pointers where the offsets are 826 // identical. 827 if ((BaseAlias == MayAlias) && V1Size == V2Size) { 828 // Do the base pointers alias assuming type and size. 829 AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo, 830 UnderlyingV2, V2Size, V2AAInfo); 831 if (PreciseBaseAlias == NoAlias) { 832 // See if the computed offset from the common pointer tells us about the 833 // relation of the resulting pointer. 834 int64_t GEP2BaseOffset; 835 bool GEP2MaxLookupReached; 836 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 837 const Value *GEP2BasePtr = 838 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, 839 GEP2MaxLookupReached, DL, &AC, DT); 840 const Value *GEP1BasePtr = 841 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 842 GEP1MaxLookupReached, DL, &AC, DT); 843 // DecomposeGEPExpression and GetUnderlyingObject should return the 844 // same result except when DecomposeGEPExpression has no DataLayout. 845 // FIXME: They always have a DataLayout so this should become an 846 // assert. 847 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 848 return MayAlias; 849 } 850 // If the max search depth is reached the result is undefined 851 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 852 return MayAlias; 853 854 // Same offsets. 855 if (GEP1BaseOffset == GEP2BaseOffset && 856 GEP1VariableIndices == GEP2VariableIndices) 857 return NoAlias; 858 GEP1VariableIndices.clear(); 859 } 860 } 861 862 // If we get a No or May, then return it immediately, no amount of analysis 863 // will improve this situation. 864 if (BaseAlias != MustAlias) 865 return BaseAlias; 866 867 // Otherwise, we have a MustAlias. Since the base pointers alias each other 868 // exactly, see if the computed offset from the common pointer tells us 869 // about the relation of the resulting pointer. 870 const Value *GEP1BasePtr = 871 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 872 GEP1MaxLookupReached, DL, &AC, DT); 873 874 int64_t GEP2BaseOffset; 875 bool GEP2MaxLookupReached; 876 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 877 const Value *GEP2BasePtr = 878 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, 879 GEP2MaxLookupReached, DL, &AC, DT); 880 881 // DecomposeGEPExpression and GetUnderlyingObject should return the 882 // same result except when DecomposeGEPExpression has no DataLayout. 883 // FIXME: They always have a DataLayout so this should become an assert. 884 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 885 return MayAlias; 886 } 887 888 // If we know the two GEPs are based off of the exact same pointer (and not 889 // just the same underlying object), see if that tells us anything about 890 // the resulting pointers. 891 if (GEP1->getPointerOperand() == GEP2->getPointerOperand()) { 892 AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL); 893 // If we couldn't find anything interesting, don't abandon just yet. 894 if (R != MayAlias) 895 return R; 896 } 897 898 // If the max search depth is reached the result is undefined 899 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 900 return MayAlias; 901 902 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 903 // symbolic difference. 904 GEP1BaseOffset -= GEP2BaseOffset; 905 GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices); 906 907 } else { 908 // Check to see if these two pointers are related by the getelementptr 909 // instruction. If one pointer is a GEP with a non-zero index of the other 910 // pointer, we know they cannot alias. 911 912 // If both accesses are unknown size, we can't do anything useful here. 913 if (V1Size == MemoryLocation::UnknownSize && 914 V2Size == MemoryLocation::UnknownSize) 915 return MayAlias; 916 917 AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, 918 AAMDNodes(), V2, V2Size, V2AAInfo); 919 if (R != MustAlias) 920 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 921 // If V2 is known not to alias GEP base pointer, then the two values 922 // cannot alias per GEP semantics: "A pointer value formed from a 923 // getelementptr instruction is associated with the addresses associated 924 // with the first operand of the getelementptr". 925 return R; 926 927 const Value *GEP1BasePtr = 928 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 929 GEP1MaxLookupReached, DL, &AC, DT); 930 931 // DecomposeGEPExpression and GetUnderlyingObject should return the 932 // same result except when DecomposeGEPExpression has no DataLayout. 933 // FIXME: They always have a DataLayout so this should become an assert. 934 if (GEP1BasePtr != UnderlyingV1) { 935 return MayAlias; 936 } 937 // If the max search depth is reached the result is undefined 938 if (GEP1MaxLookupReached) 939 return MayAlias; 940 } 941 942 // In the two GEP Case, if there is no difference in the offsets of the 943 // computed pointers, the resultant pointers are a must alias. This 944 // hapens when we have two lexically identical GEP's (for example). 945 // 946 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 947 // must aliases the GEP, the end result is a must alias also. 948 if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty()) 949 return MustAlias; 950 951 // If there is a constant difference between the pointers, but the difference 952 // is less than the size of the associated memory object, then we know 953 // that the objects are partially overlapping. If the difference is 954 // greater, we know they do not overlap. 955 if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) { 956 if (GEP1BaseOffset >= 0) { 957 if (V2Size != MemoryLocation::UnknownSize) { 958 if ((uint64_t)GEP1BaseOffset < V2Size) 959 return PartialAlias; 960 return NoAlias; 961 } 962 } else { 963 // We have the situation where: 964 // + + 965 // | BaseOffset | 966 // ---------------->| 967 // |-->V1Size |-------> V2Size 968 // GEP1 V2 969 // We need to know that V2Size is not unknown, otherwise we might have 970 // stripped a gep with negative index ('gep <ptr>, -1, ...). 971 if (V1Size != MemoryLocation::UnknownSize && 972 V2Size != MemoryLocation::UnknownSize) { 973 if (-(uint64_t)GEP1BaseOffset < V1Size) 974 return PartialAlias; 975 return NoAlias; 976 } 977 } 978 } 979 980 if (!GEP1VariableIndices.empty()) { 981 uint64_t Modulo = 0; 982 bool AllPositive = true; 983 for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) { 984 985 // Try to distinguish something like &A[i][1] against &A[42][0]. 986 // Grab the least significant bit set in any of the scales. We 987 // don't need std::abs here (even if the scale's negative) as we'll 988 // be ^'ing Modulo with itself later. 989 Modulo |= (uint64_t)GEP1VariableIndices[i].Scale; 990 991 if (AllPositive) { 992 // If the Value could change between cycles, then any reasoning about 993 // the Value this cycle may not hold in the next cycle. We'll just 994 // give up if we can't determine conditions that hold for every cycle: 995 const Value *V = GEP1VariableIndices[i].V; 996 997 bool SignKnownZero, SignKnownOne; 998 ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, DL, 999 0, &AC, nullptr, DT); 1000 1001 // Zero-extension widens the variable, and so forces the sign 1002 // bit to zero. 1003 bool IsZExt = GEP1VariableIndices[i].ZExtBits > 0 || isa<ZExtInst>(V); 1004 SignKnownZero |= IsZExt; 1005 SignKnownOne &= !IsZExt; 1006 1007 // If the variable begins with a zero then we know it's 1008 // positive, regardless of whether the value is signed or 1009 // unsigned. 1010 int64_t Scale = GEP1VariableIndices[i].Scale; 1011 AllPositive = 1012 (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0); 1013 } 1014 } 1015 1016 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1017 1018 // We can compute the difference between the two addresses 1019 // mod Modulo. Check whether that difference guarantees that the 1020 // two locations do not alias. 1021 uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1); 1022 if (V1Size != MemoryLocation::UnknownSize && 1023 V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size && 1024 V1Size <= Modulo - ModOffset) 1025 return NoAlias; 1026 1027 // If we know all the variables are positive, then GEP1 >= GEP1BasePtr. 1028 // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers 1029 // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr. 1030 if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset) 1031 return NoAlias; 1032 1033 if (constantOffsetHeuristic(GEP1VariableIndices, V1Size, V2Size, 1034 GEP1BaseOffset, &AC, DT)) 1035 return NoAlias; 1036 } 1037 1038 // Statically, we can see that the base objects are the same, but the 1039 // pointers have dynamic offsets which we can't resolve. And none of our 1040 // little tricks above worked. 1041 // 1042 // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the 1043 // practical effect of this is protecting TBAA in the case of dynamic 1044 // indices into arrays of unions or malloc'd memory. 1045 return PartialAlias; 1046 } 1047 1048 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1049 // If the results agree, take it. 1050 if (A == B) 1051 return A; 1052 // A mix of PartialAlias and MustAlias is PartialAlias. 1053 if ((A == PartialAlias && B == MustAlias) || 1054 (B == PartialAlias && A == MustAlias)) 1055 return PartialAlias; 1056 // Otherwise, we don't know anything. 1057 return MayAlias; 1058 } 1059 1060 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1061 /// against another. 1062 AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, uint64_t SISize, 1063 const AAMDNodes &SIAAInfo, 1064 const Value *V2, uint64_t V2Size, 1065 const AAMDNodes &V2AAInfo) { 1066 // If the values are Selects with the same condition, we can do a more precise 1067 // check: just check for aliases between the values on corresponding arms. 1068 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1069 if (SI->getCondition() == SI2->getCondition()) { 1070 AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, 1071 SI2->getTrueValue(), V2Size, V2AAInfo); 1072 if (Alias == MayAlias) 1073 return MayAlias; 1074 AliasResult ThisAlias = 1075 aliasCheck(SI->getFalseValue(), SISize, SIAAInfo, 1076 SI2->getFalseValue(), V2Size, V2AAInfo); 1077 return MergeAliasResults(ThisAlias, Alias); 1078 } 1079 1080 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1081 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1082 AliasResult Alias = 1083 aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), SISize, SIAAInfo); 1084 if (Alias == MayAlias) 1085 return MayAlias; 1086 1087 AliasResult ThisAlias = 1088 aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo); 1089 return MergeAliasResults(ThisAlias, Alias); 1090 } 1091 1092 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1093 /// another. 1094 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, uint64_t PNSize, 1095 const AAMDNodes &PNAAInfo, const Value *V2, 1096 uint64_t V2Size, 1097 const AAMDNodes &V2AAInfo) { 1098 // Track phi nodes we have visited. We use this information when we determine 1099 // value equivalence. 1100 VisitedPhiBBs.insert(PN->getParent()); 1101 1102 // If the values are PHIs in the same block, we can do a more precise 1103 // as well as efficient check: just check for aliases between the values 1104 // on corresponding edges. 1105 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1106 if (PN2->getParent() == PN->getParent()) { 1107 LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo), 1108 MemoryLocation(V2, V2Size, V2AAInfo)); 1109 if (PN > V2) 1110 std::swap(Locs.first, Locs.second); 1111 // Analyse the PHIs' inputs under the assumption that the PHIs are 1112 // NoAlias. 1113 // If the PHIs are May/MustAlias there must be (recursively) an input 1114 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1115 // there must be an operation on the PHIs within the PHIs' value cycle 1116 // that causes a MayAlias. 1117 // Pretend the phis do not alias. 1118 AliasResult Alias = NoAlias; 1119 assert(AliasCache.count(Locs) && 1120 "There must exist an entry for the phi node"); 1121 AliasResult OrigAliasResult = AliasCache[Locs]; 1122 AliasCache[Locs] = NoAlias; 1123 1124 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1125 AliasResult ThisAlias = 1126 aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo, 1127 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1128 V2Size, V2AAInfo); 1129 Alias = MergeAliasResults(ThisAlias, Alias); 1130 if (Alias == MayAlias) 1131 break; 1132 } 1133 1134 // Reset if speculation failed. 1135 if (Alias != NoAlias) 1136 AliasCache[Locs] = OrigAliasResult; 1137 1138 return Alias; 1139 } 1140 1141 SmallPtrSet<Value *, 4> UniqueSrc; 1142 SmallVector<Value *, 4> V1Srcs; 1143 bool isRecursive = false; 1144 for (Value *PV1 : PN->incoming_values()) { 1145 if (isa<PHINode>(PV1)) 1146 // If any of the source itself is a PHI, return MayAlias conservatively 1147 // to avoid compile time explosion. The worst possible case is if both 1148 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1149 // and 'n' are the number of PHI sources. 1150 return MayAlias; 1151 1152 if (EnableRecPhiAnalysis) 1153 if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) { 1154 // Check whether the incoming value is a GEP that advances the pointer 1155 // result of this PHI node (e.g. in a loop). If this is the case, we 1156 // would recurse and always get a MayAlias. Handle this case specially 1157 // below. 1158 if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 && 1159 isa<ConstantInt>(PV1GEP->idx_begin())) { 1160 isRecursive = true; 1161 continue; 1162 } 1163 } 1164 1165 if (UniqueSrc.insert(PV1).second) 1166 V1Srcs.push_back(PV1); 1167 } 1168 1169 // If this PHI node is recursive, set the size of the accessed memory to 1170 // unknown to represent all the possible values the GEP could advance the 1171 // pointer to. 1172 if (isRecursive) 1173 PNSize = MemoryLocation::UnknownSize; 1174 1175 AliasResult Alias = 1176 aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize, PNAAInfo); 1177 1178 // Early exit if the check of the first PHI source against V2 is MayAlias. 1179 // Other results are not possible. 1180 if (Alias == MayAlias) 1181 return MayAlias; 1182 1183 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1184 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1185 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1186 Value *V = V1Srcs[i]; 1187 1188 AliasResult ThisAlias = 1189 aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo); 1190 Alias = MergeAliasResults(ThisAlias, Alias); 1191 if (Alias == MayAlias) 1192 break; 1193 } 1194 1195 return Alias; 1196 } 1197 1198 /// Provideis a bunch of ad-hoc rules to disambiguate in common cases, such as 1199 /// array references. 1200 AliasResult BasicAAResult::aliasCheck(const Value *V1, uint64_t V1Size, 1201 AAMDNodes V1AAInfo, const Value *V2, 1202 uint64_t V2Size, AAMDNodes V2AAInfo) { 1203 // If either of the memory references is empty, it doesn't matter what the 1204 // pointer values are. 1205 if (V1Size == 0 || V2Size == 0) 1206 return NoAlias; 1207 1208 // Strip off any casts if they exist. 1209 V1 = V1->stripPointerCasts(); 1210 V2 = V2->stripPointerCasts(); 1211 1212 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1213 // value for undef that aliases nothing in the program. 1214 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1215 return NoAlias; 1216 1217 // Are we checking for alias of the same value? 1218 // Because we look 'through' phi nodes we could look at "Value" pointers from 1219 // different iterations. We must therefore make sure that this is not the 1220 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1221 // happen by looking at the visited phi nodes and making sure they cannot 1222 // reach the value. 1223 if (isValueEqualInPotentialCycles(V1, V2)) 1224 return MustAlias; 1225 1226 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1227 return NoAlias; // Scalars cannot alias each other 1228 1229 // Figure out what objects these things are pointing to if we can. 1230 const Value *O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth); 1231 const Value *O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth); 1232 1233 // Null values in the default address space don't point to any object, so they 1234 // don't alias any other pointer. 1235 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1236 if (CPN->getType()->getAddressSpace() == 0) 1237 return NoAlias; 1238 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1239 if (CPN->getType()->getAddressSpace() == 0) 1240 return NoAlias; 1241 1242 if (O1 != O2) { 1243 // If V1/V2 point to two different objects we know that we have no alias. 1244 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1245 return NoAlias; 1246 1247 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1248 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1249 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1250 return NoAlias; 1251 1252 // Function arguments can't alias with things that are known to be 1253 // unambigously identified at the function level. 1254 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1255 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1256 return NoAlias; 1257 1258 // Most objects can't alias null. 1259 if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) || 1260 (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2))) 1261 return NoAlias; 1262 1263 // If one pointer is the result of a call/invoke or load and the other is a 1264 // non-escaping local object within the same function, then we know the 1265 // object couldn't escape to a point where the call could return it. 1266 // 1267 // Note that if the pointers are in different functions, there are a 1268 // variety of complications. A call with a nocapture argument may still 1269 // temporary store the nocapture argument's value in a temporary memory 1270 // location if that memory location doesn't escape. Or it may pass a 1271 // nocapture value to other functions as long as they don't capture it. 1272 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) 1273 return NoAlias; 1274 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) 1275 return NoAlias; 1276 } 1277 1278 // If the size of one access is larger than the entire object on the other 1279 // side, then we know such behavior is undefined and can assume no alias. 1280 if ((V1Size != MemoryLocation::UnknownSize && 1281 isObjectSmallerThan(O2, V1Size, DL, TLI)) || 1282 (V2Size != MemoryLocation::UnknownSize && 1283 isObjectSmallerThan(O1, V2Size, DL, TLI))) 1284 return NoAlias; 1285 1286 // Check the cache before climbing up use-def chains. This also terminates 1287 // otherwise infinitely recursive queries. 1288 LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo), 1289 MemoryLocation(V2, V2Size, V2AAInfo)); 1290 if (V1 > V2) 1291 std::swap(Locs.first, Locs.second); 1292 std::pair<AliasCacheTy::iterator, bool> Pair = 1293 AliasCache.insert(std::make_pair(Locs, MayAlias)); 1294 if (!Pair.second) 1295 return Pair.first->second; 1296 1297 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1298 // GEP can't simplify, we don't even look at the PHI cases. 1299 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1300 std::swap(V1, V2); 1301 std::swap(V1Size, V2Size); 1302 std::swap(O1, O2); 1303 std::swap(V1AAInfo, V2AAInfo); 1304 } 1305 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1306 AliasResult Result = 1307 aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2); 1308 if (Result != MayAlias) 1309 return AliasCache[Locs] = Result; 1310 } 1311 1312 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1313 std::swap(V1, V2); 1314 std::swap(V1Size, V2Size); 1315 std::swap(V1AAInfo, V2AAInfo); 1316 } 1317 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1318 AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo); 1319 if (Result != MayAlias) 1320 return AliasCache[Locs] = Result; 1321 } 1322 1323 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1324 std::swap(V1, V2); 1325 std::swap(V1Size, V2Size); 1326 std::swap(V1AAInfo, V2AAInfo); 1327 } 1328 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1329 AliasResult Result = 1330 aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo); 1331 if (Result != MayAlias) 1332 return AliasCache[Locs] = Result; 1333 } 1334 1335 // If both pointers are pointing into the same object and one of them 1336 // accesses is accessing the entire object, then the accesses must 1337 // overlap in some way. 1338 if (O1 == O2) 1339 if ((V1Size != MemoryLocation::UnknownSize && 1340 isObjectSize(O1, V1Size, DL, TLI)) || 1341 (V2Size != MemoryLocation::UnknownSize && 1342 isObjectSize(O2, V2Size, DL, TLI))) 1343 return AliasCache[Locs] = PartialAlias; 1344 1345 // Recurse back into the best AA results we have, potentially with refined 1346 // memory locations. We have already ensured that BasicAA has a MayAlias 1347 // cache result for these, so any recursion back into BasicAA won't loop. 1348 AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second); 1349 return AliasCache[Locs] = Result; 1350 } 1351 1352 /// Check whether two Values can be considered equivalent. 1353 /// 1354 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether 1355 /// they can not be part of a cycle in the value graph by looking at all 1356 /// visited phi nodes an making sure that the phis cannot reach the value. We 1357 /// have to do this because we are looking through phi nodes (That is we say 1358 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1359 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1360 const Value *V2) { 1361 if (V != V2) 1362 return false; 1363 1364 const Instruction *Inst = dyn_cast<Instruction>(V); 1365 if (!Inst) 1366 return true; 1367 1368 if (VisitedPhiBBs.empty()) 1369 return true; 1370 1371 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1372 return false; 1373 1374 // Make sure that the visited phis cannot reach the Value. This ensures that 1375 // the Values cannot come from different iterations of a potential cycle the 1376 // phi nodes could be involved in. 1377 for (auto *P : VisitedPhiBBs) 1378 if (isPotentiallyReachable(P->begin(), Inst, DT, LI)) 1379 return false; 1380 1381 return true; 1382 } 1383 1384 /// Computes the symbolic difference between two de-composed GEPs. 1385 /// 1386 /// Dest and Src are the variable indices from two decomposed GetElementPtr 1387 /// instructions GEP1 and GEP2 which have common base pointers. 1388 void BasicAAResult::GetIndexDifference( 1389 SmallVectorImpl<VariableGEPIndex> &Dest, 1390 const SmallVectorImpl<VariableGEPIndex> &Src) { 1391 if (Src.empty()) 1392 return; 1393 1394 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1395 const Value *V = Src[i].V; 1396 unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits; 1397 int64_t Scale = Src[i].Scale; 1398 1399 // Find V in Dest. This is N^2, but pointer indices almost never have more 1400 // than a few variable indexes. 1401 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1402 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1403 Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits) 1404 continue; 1405 1406 // If we found it, subtract off Scale V's from the entry in Dest. If it 1407 // goes to zero, remove the entry. 1408 if (Dest[j].Scale != Scale) 1409 Dest[j].Scale -= Scale; 1410 else 1411 Dest.erase(Dest.begin() + j); 1412 Scale = 0; 1413 break; 1414 } 1415 1416 // If we didn't consume this entry, add it to the end of the Dest list. 1417 if (Scale) { 1418 VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale}; 1419 Dest.push_back(Entry); 1420 } 1421 } 1422 } 1423 1424 bool BasicAAResult::constantOffsetHeuristic( 1425 const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size, 1426 uint64_t V2Size, int64_t BaseOffset, AssumptionCache *AC, 1427 DominatorTree *DT) { 1428 if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize || 1429 V2Size == MemoryLocation::UnknownSize) 1430 return false; 1431 1432 const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1]; 1433 1434 if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits || 1435 Var0.Scale != -Var1.Scale) 1436 return false; 1437 1438 unsigned Width = Var1.V->getType()->getIntegerBitWidth(); 1439 1440 // We'll strip off the Extensions of Var0 and Var1 and do another round 1441 // of GetLinearExpression decomposition. In the example above, if Var0 1442 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 1443 1444 APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0), 1445 V1Offset(Width, 0); 1446 bool NSW = true, NUW = true; 1447 unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0; 1448 const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits, 1449 V0SExtBits, DL, 0, AC, DT, NSW, NUW); 1450 NSW = true, NUW = true; 1451 const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits, 1452 V1SExtBits, DL, 0, AC, DT, NSW, NUW); 1453 1454 if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits || 1455 V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1)) 1456 return false; 1457 1458 // We have a hit - Var0 and Var1 only differ by a constant offset! 1459 1460 // If we've been sext'ed then zext'd the maximum difference between Var0 and 1461 // Var1 is possible to calculate, but we're just interested in the absolute 1462 // minumum difference between the two. The minimum distance may occur due to 1463 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 1464 // the minimum distance between %i and %i + 5 is 3. 1465 APInt MinDiff = V0Offset - V1Offset, 1466 Wrapped = APInt::getMaxValue(Width) - MinDiff + APInt(Width, 1); 1467 MinDiff = APIntOps::umin(MinDiff, Wrapped); 1468 uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale); 1469 1470 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 1471 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 1472 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 1473 // V2Size can fit in the MinDiffBytes gap. 1474 return V1Size + std::abs(BaseOffset) <= MinDiffBytes && 1475 V2Size + std::abs(BaseOffset) <= MinDiffBytes; 1476 } 1477 1478 //===----------------------------------------------------------------------===// 1479 // BasicAliasAnalysis Pass 1480 //===----------------------------------------------------------------------===// 1481 1482 char BasicAA::PassID; 1483 1484 BasicAAResult BasicAA::run(Function &F, AnalysisManager<Function> *AM) { 1485 return BasicAAResult(F.getParent()->getDataLayout(), 1486 AM->getResult<TargetLibraryAnalysis>(F), 1487 AM->getResult<AssumptionAnalysis>(F), 1488 AM->getCachedResult<DominatorTreeAnalysis>(F), 1489 AM->getCachedResult<LoopAnalysis>(F)); 1490 } 1491 1492 char BasicAAWrapperPass::ID = 0; 1493 void BasicAAWrapperPass::anchor() {} 1494 1495 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa", 1496 "Basic Alias Analysis (stateless AA impl)", true, true) 1497 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1498 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1499 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa", 1500 "Basic Alias Analysis (stateless AA impl)", true, true) 1501 1502 FunctionPass *llvm::createBasicAAWrapperPass() { 1503 return new BasicAAWrapperPass(); 1504 } 1505 1506 bool BasicAAWrapperPass::runOnFunction(Function &F) { 1507 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 1508 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 1509 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1510 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 1511 1512 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), TLIWP.getTLI(), 1513 ACT.getAssumptionCache(F), 1514 DTWP ? &DTWP->getDomTree() : nullptr, 1515 LIWP ? &LIWP->getLoopInfo() : nullptr)); 1516 1517 return false; 1518 } 1519 1520 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1521 AU.setPreservesAll(); 1522 AU.addRequired<AssumptionCacheTracker>(); 1523 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1524 } 1525 1526 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { 1527 return BasicAAResult( 1528 F.getParent()->getDataLayout(), 1529 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 1530 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 1531 } 1532