1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the primary stateless implementation of the 10 // Alias Analysis interface that implements identities (two different 11 // globals cannot alias, etc), but does no stateful analysis. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/BasicAliasAnalysis.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/CFG.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/PhiValues.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/Argument.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/GetElementPtrTypeIterator.h" 40 #include "llvm/IR/GlobalAlias.h" 41 #include "llvm/IR/GlobalVariable.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/Operator.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/User.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/InitializePasses.h" 53 #include "llvm/Pass.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Compiler.h" 57 #include "llvm/Support/KnownBits.h" 58 #include <cassert> 59 #include <cstdint> 60 #include <cstdlib> 61 #include <utility> 62 63 #define DEBUG_TYPE "basicaa" 64 65 using namespace llvm; 66 67 /// Enable analysis of recursive PHI nodes. 68 static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden, 69 cl::init(true)); 70 71 /// By default, even on 32-bit architectures we use 64-bit integers for 72 /// calculations. This will allow us to more-aggressively decompose indexing 73 /// expressions calculated using i64 values (e.g., long long in C) which is 74 /// common enough to worry about. 75 static cl::opt<bool> ForceAtLeast64Bits("basic-aa-force-at-least-64b", 76 cl::Hidden, cl::init(true)); 77 static cl::opt<bool> DoubleCalcBits("basic-aa-double-calc-bits", 78 cl::Hidden, cl::init(false)); 79 80 /// SearchLimitReached / SearchTimes shows how often the limit of 81 /// to decompose GEPs is reached. It will affect the precision 82 /// of basic alias analysis. 83 STATISTIC(SearchLimitReached, "Number of times the limit to " 84 "decompose GEPs is reached"); 85 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 86 87 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 88 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be 89 /// careful with value equivalence. We use reachability to make sure a value 90 /// cannot be involved in a cycle. 91 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 92 93 // The max limit of the search depth in DecomposeGEPExpression() and 94 // getUnderlyingObject(), both functions need to use the same search 95 // depth otherwise the algorithm in aliasGEP will assert. 96 static const unsigned MaxLookupSearchDepth = 6; 97 98 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA, 99 FunctionAnalysisManager::Invalidator &Inv) { 100 // We don't care if this analysis itself is preserved, it has no state. But 101 // we need to check that the analyses it depends on have been. Note that we 102 // may be created without handles to some analyses and in that case don't 103 // depend on them. 104 if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) || 105 (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) || 106 (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA))) 107 return true; 108 109 // Otherwise this analysis result remains valid. 110 return false; 111 } 112 113 //===----------------------------------------------------------------------===// 114 // Useful predicates 115 //===----------------------------------------------------------------------===// 116 117 /// Returns true if the pointer is one which would have been considered an 118 /// escape by isNonEscapingLocalObject. 119 static bool isEscapeSource(const Value *V) { 120 if (isa<CallBase>(V)) 121 return true; 122 123 // The load case works because isNonEscapingLocalObject considers all 124 // stores to be escapes (it passes true for the StoreCaptures argument 125 // to PointerMayBeCaptured). 126 if (isa<LoadInst>(V)) 127 return true; 128 129 // The inttoptr case works because isNonEscapingLocalObject considers all 130 // means of converting or equating a pointer to an int (ptrtoint, ptr store 131 // which could be followed by an integer load, ptr<->int compare) as 132 // escaping, and objects located at well-known addresses via platform-specific 133 // means cannot be considered non-escaping local objects. 134 if (isa<IntToPtrInst>(V)) 135 return true; 136 137 return false; 138 } 139 140 /// Returns the size of the object specified by V or UnknownSize if unknown. 141 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 142 const TargetLibraryInfo &TLI, 143 bool NullIsValidLoc, 144 bool RoundToAlign = false) { 145 uint64_t Size; 146 ObjectSizeOpts Opts; 147 Opts.RoundToAlign = RoundToAlign; 148 Opts.NullIsUnknownSize = NullIsValidLoc; 149 if (getObjectSize(V, Size, DL, &TLI, Opts)) 150 return Size; 151 return MemoryLocation::UnknownSize; 152 } 153 154 /// Returns true if we can prove that the object specified by V is smaller than 155 /// Size. 156 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 157 const DataLayout &DL, 158 const TargetLibraryInfo &TLI, 159 bool NullIsValidLoc) { 160 // Note that the meanings of the "object" are slightly different in the 161 // following contexts: 162 // c1: llvm::getObjectSize() 163 // c2: llvm.objectsize() intrinsic 164 // c3: isObjectSmallerThan() 165 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 166 // refers to the "entire object". 167 // 168 // Consider this example: 169 // char *p = (char*)malloc(100) 170 // char *q = p+80; 171 // 172 // In the context of c1 and c2, the "object" pointed by q refers to the 173 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 174 // 175 // However, in the context of c3, the "object" refers to the chunk of memory 176 // being allocated. So, the "object" has 100 bytes, and q points to the middle 177 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 178 // parameter, before the llvm::getObjectSize() is called to get the size of 179 // entire object, we should: 180 // - either rewind the pointer q to the base-address of the object in 181 // question (in this case rewind to p), or 182 // - just give up. It is up to caller to make sure the pointer is pointing 183 // to the base address the object. 184 // 185 // We go for 2nd option for simplicity. 186 if (!isIdentifiedObject(V)) 187 return false; 188 189 // This function needs to use the aligned object size because we allow 190 // reads a bit past the end given sufficient alignment. 191 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc, 192 /*RoundToAlign*/ true); 193 194 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; 195 } 196 197 /// Return the minimal extent from \p V to the end of the underlying object, 198 /// assuming the result is used in an aliasing query. E.g., we do use the query 199 /// location size and the fact that null pointers cannot alias here. 200 static uint64_t getMinimalExtentFrom(const Value &V, 201 const LocationSize &LocSize, 202 const DataLayout &DL, 203 bool NullIsValidLoc) { 204 // If we have dereferenceability information we know a lower bound for the 205 // extent as accesses for a lower offset would be valid. We need to exclude 206 // the "or null" part if null is a valid pointer. 207 bool CanBeNull, CanBeFreed; 208 uint64_t DerefBytes = 209 V.getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed); 210 DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes; 211 DerefBytes = CanBeFreed ? 0 : DerefBytes; 212 // If queried with a precise location size, we assume that location size to be 213 // accessed, thus valid. 214 if (LocSize.isPrecise()) 215 DerefBytes = std::max(DerefBytes, LocSize.getValue()); 216 return DerefBytes; 217 } 218 219 /// Returns true if we can prove that the object specified by V has size Size. 220 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, 221 const TargetLibraryInfo &TLI, bool NullIsValidLoc) { 222 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc); 223 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; 224 } 225 226 //===----------------------------------------------------------------------===// 227 // CaptureInfo implementations 228 //===----------------------------------------------------------------------===// 229 230 CaptureInfo::~CaptureInfo() = default; 231 232 bool SimpleCaptureInfo::isNotCapturedBeforeOrAt(const Value *Object, 233 const Instruction *I) { 234 return isNonEscapingLocalObject(Object, &IsCapturedCache); 235 } 236 237 bool EarliestEscapeInfo::isNotCapturedBeforeOrAt(const Value *Object, 238 const Instruction *I) { 239 if (!isIdentifiedFunctionLocal(Object)) 240 return false; 241 242 auto Iter = EarliestEscapes.insert({Object, nullptr}); 243 if (Iter.second) { 244 Instruction *EarliestCapture = FindEarliestCapture( 245 Object, *const_cast<Function *>(I->getFunction()), 246 /*ReturnCaptures=*/false, /*StoreCaptures=*/true, DT); 247 if (EarliestCapture) { 248 auto Ins = Inst2Obj.insert({EarliestCapture, {}}); 249 Ins.first->second.push_back(Object); 250 } 251 Iter.first->second = EarliestCapture; 252 } 253 254 // No capturing instruction. 255 if (!Iter.first->second) 256 return true; 257 258 return I != Iter.first->second && 259 !isPotentiallyReachable(Iter.first->second, I, nullptr, &DT, &LI); 260 } 261 262 void EarliestEscapeInfo::removeInstruction(Instruction *I) { 263 auto Iter = Inst2Obj.find(I); 264 if (Iter != Inst2Obj.end()) { 265 for (const Value *Obj : Iter->second) 266 EarliestEscapes.erase(Obj); 267 Inst2Obj.erase(I); 268 } 269 } 270 271 //===----------------------------------------------------------------------===// 272 // GetElementPtr Instruction Decomposition and Analysis 273 //===----------------------------------------------------------------------===// 274 275 namespace { 276 /// Represents zext(sext(V)). 277 struct ExtendedValue { 278 const Value *V; 279 unsigned ZExtBits; 280 unsigned SExtBits; 281 282 explicit ExtendedValue(const Value *V, unsigned ZExtBits = 0, 283 unsigned SExtBits = 0) 284 : V(V), ZExtBits(ZExtBits), SExtBits(SExtBits) {} 285 286 unsigned getBitWidth() const { 287 return V->getType()->getPrimitiveSizeInBits() + ZExtBits + SExtBits; 288 } 289 290 ExtendedValue withValue(const Value *NewV) const { 291 return ExtendedValue(NewV, ZExtBits, SExtBits); 292 } 293 294 ExtendedValue withZExtOfValue(const Value *NewV) const { 295 unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() - 296 NewV->getType()->getPrimitiveSizeInBits(); 297 // zext(sext(zext(NewV))) == zext(zext(zext(NewV))) 298 return ExtendedValue(NewV, ZExtBits + SExtBits + ExtendBy, 0); 299 } 300 301 ExtendedValue withSExtOfValue(const Value *NewV) const { 302 unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() - 303 NewV->getType()->getPrimitiveSizeInBits(); 304 // zext(sext(sext(NewV))) 305 return ExtendedValue(NewV, ZExtBits, SExtBits + ExtendBy); 306 } 307 308 APInt evaluateWith(APInt N) const { 309 assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() && 310 "Incompatible bit width"); 311 if (SExtBits) N = N.sext(N.getBitWidth() + SExtBits); 312 if (ZExtBits) N = N.zext(N.getBitWidth() + ZExtBits); 313 return N; 314 } 315 316 bool canDistributeOver(bool NUW, bool NSW) const { 317 // zext(x op<nuw> y) == zext(x) op<nuw> zext(y) 318 // sext(x op<nsw> y) == sext(x) op<nsw> sext(y) 319 return (!ZExtBits || NUW) && (!SExtBits || NSW); 320 } 321 }; 322 323 /// Represents zext(sext(V)) * Scale + Offset. 324 struct LinearExpression { 325 ExtendedValue Val; 326 APInt Scale; 327 APInt Offset; 328 329 /// True if all operations in this expression are NSW. 330 bool IsNSW; 331 332 LinearExpression(const ExtendedValue &Val, const APInt &Scale, 333 const APInt &Offset, bool IsNSW) 334 : Val(Val), Scale(Scale), Offset(Offset), IsNSW(IsNSW) {} 335 336 LinearExpression(const ExtendedValue &Val) : Val(Val), IsNSW(true) { 337 unsigned BitWidth = Val.getBitWidth(); 338 Scale = APInt(BitWidth, 1); 339 Offset = APInt(BitWidth, 0); 340 } 341 }; 342 } 343 344 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 345 /// B are constant integers. 346 static LinearExpression GetLinearExpression( 347 const ExtendedValue &Val, const DataLayout &DL, unsigned Depth, 348 AssumptionCache *AC, DominatorTree *DT) { 349 // Limit our recursion depth. 350 if (Depth == 6) 351 return Val; 352 353 if (const ConstantInt *Const = dyn_cast<ConstantInt>(Val.V)) 354 return LinearExpression(Val, APInt(Val.getBitWidth(), 0), 355 Val.evaluateWith(Const->getValue()), true); 356 357 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val.V)) { 358 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 359 APInt RHS = Val.evaluateWith(RHSC->getValue()); 360 // The only non-OBO case we deal with is or, and only limited to the 361 // case where it is both nuw and nsw. 362 bool NUW = true, NSW = true; 363 if (isa<OverflowingBinaryOperator>(BOp)) { 364 NUW &= BOp->hasNoUnsignedWrap(); 365 NSW &= BOp->hasNoSignedWrap(); 366 } 367 if (!Val.canDistributeOver(NUW, NSW)) 368 return Val; 369 370 LinearExpression E(Val); 371 switch (BOp->getOpcode()) { 372 default: 373 // We don't understand this instruction, so we can't decompose it any 374 // further. 375 return Val; 376 case Instruction::Or: 377 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 378 // analyze it. 379 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, 380 BOp, DT)) 381 return Val; 382 383 LLVM_FALLTHROUGH; 384 case Instruction::Add: { 385 E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, 386 Depth + 1, AC, DT); 387 E.Offset += RHS; 388 E.IsNSW &= NSW; 389 break; 390 } 391 case Instruction::Sub: { 392 E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, 393 Depth + 1, AC, DT); 394 E.Offset -= RHS; 395 E.IsNSW &= NSW; 396 break; 397 } 398 case Instruction::Mul: { 399 E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, 400 Depth + 1, AC, DT); 401 E.Offset *= RHS; 402 E.Scale *= RHS; 403 E.IsNSW &= NSW; 404 break; 405 } 406 case Instruction::Shl: 407 // We're trying to linearize an expression of the kind: 408 // shl i8 -128, 36 409 // where the shift count exceeds the bitwidth of the type. 410 // We can't decompose this further (the expression would return 411 // a poison value). 412 if (RHS.getLimitedValue() > Val.getBitWidth()) 413 return Val; 414 415 E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, 416 Depth + 1, AC, DT); 417 E.Offset <<= RHS.getLimitedValue(); 418 E.Scale <<= RHS.getLimitedValue(); 419 E.IsNSW &= NSW; 420 break; 421 } 422 return E; 423 } 424 } 425 426 if (isa<ZExtInst>(Val.V)) 427 return GetLinearExpression( 428 Val.withZExtOfValue(cast<CastInst>(Val.V)->getOperand(0)), 429 DL, Depth + 1, AC, DT); 430 431 if (isa<SExtInst>(Val.V)) 432 return GetLinearExpression( 433 Val.withSExtOfValue(cast<CastInst>(Val.V)->getOperand(0)), 434 DL, Depth + 1, AC, DT); 435 436 return Val; 437 } 438 439 /// To ensure a pointer offset fits in an integer of size PointerSize 440 /// (in bits) when that size is smaller than the maximum pointer size. This is 441 /// an issue, for example, in particular for 32b pointers with negative indices 442 /// that rely on two's complement wrap-arounds for precise alias information 443 /// where the maximum pointer size is 64b. 444 static APInt adjustToPointerSize(const APInt &Offset, unsigned PointerSize) { 445 assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!"); 446 unsigned ShiftBits = Offset.getBitWidth() - PointerSize; 447 return (Offset << ShiftBits).ashr(ShiftBits); 448 } 449 450 static unsigned getMaxPointerSize(const DataLayout &DL) { 451 unsigned MaxPointerSize = DL.getMaxPointerSizeInBits(); 452 if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64; 453 if (DoubleCalcBits) MaxPointerSize *= 2; 454 455 return MaxPointerSize; 456 } 457 458 namespace { 459 // A linear transformation of a Value; this class represents ZExt(SExt(V, 460 // SExtBits), ZExtBits) * Scale + Offset. 461 struct VariableGEPIndex { 462 // An opaque Value - we can't decompose this further. 463 const Value *V; 464 465 // We need to track what extensions we've done as we consider the same Value 466 // with different extensions as different variables in a GEP's linear 467 // expression; 468 // e.g.: if V == -1, then sext(x) != zext(x). 469 unsigned ZExtBits; 470 unsigned SExtBits; 471 472 APInt Scale; 473 474 // Context instruction to use when querying information about this index. 475 const Instruction *CxtI; 476 477 /// True if all operations in this expression are NSW. 478 bool IsNSW; 479 480 void dump() const { 481 print(dbgs()); 482 dbgs() << "\n"; 483 } 484 void print(raw_ostream &OS) const { 485 OS << "(V=" << V->getName() 486 << ", zextbits=" << ZExtBits 487 << ", sextbits=" << SExtBits 488 << ", scale=" << Scale << ")"; 489 } 490 }; 491 } 492 493 // Represents the internal structure of a GEP, decomposed into a base pointer, 494 // constant offsets, and variable scaled indices. 495 struct BasicAAResult::DecomposedGEP { 496 // Base pointer of the GEP 497 const Value *Base; 498 // Total constant offset from base. 499 APInt Offset; 500 // Scaled variable (non-constant) indices. 501 SmallVector<VariableGEPIndex, 4> VarIndices; 502 // Is GEP index scale compile-time constant. 503 bool HasCompileTimeConstantScale; 504 // Are all operations inbounds GEPs or non-indexing operations? 505 // (None iff expression doesn't involve any geps) 506 Optional<bool> InBounds; 507 508 void dump() const { 509 print(dbgs()); 510 dbgs() << "\n"; 511 } 512 void print(raw_ostream &OS) const { 513 OS << "(DecomposedGEP Base=" << Base->getName() 514 << ", Offset=" << Offset 515 << ", VarIndices=["; 516 for (size_t i = 0; i < VarIndices.size(); i++) { 517 if (i != 0) 518 OS << ", "; 519 VarIndices[i].print(OS); 520 } 521 OS << "], HasCompileTimeConstantScale=" << HasCompileTimeConstantScale 522 << ")"; 523 } 524 }; 525 526 527 /// If V is a symbolic pointer expression, decompose it into a base pointer 528 /// with a constant offset and a number of scaled symbolic offsets. 529 /// 530 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 531 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 532 /// specified amount, but which may have other unrepresented high bits. As 533 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 534 /// 535 /// This function is capable of analyzing everything that getUnderlyingObject 536 /// can look through. To be able to do that getUnderlyingObject and 537 /// DecomposeGEPExpression must use the same search depth 538 /// (MaxLookupSearchDepth). 539 BasicAAResult::DecomposedGEP 540 BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL, 541 AssumptionCache *AC, DominatorTree *DT) { 542 // Limit recursion depth to limit compile time in crazy cases. 543 unsigned MaxLookup = MaxLookupSearchDepth; 544 SearchTimes++; 545 const Instruction *CxtI = dyn_cast<Instruction>(V); 546 547 unsigned MaxPointerSize = getMaxPointerSize(DL); 548 DecomposedGEP Decomposed; 549 Decomposed.Offset = APInt(MaxPointerSize, 0); 550 Decomposed.HasCompileTimeConstantScale = true; 551 do { 552 // See if this is a bitcast or GEP. 553 const Operator *Op = dyn_cast<Operator>(V); 554 if (!Op) { 555 // The only non-operator case we can handle are GlobalAliases. 556 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 557 if (!GA->isInterposable()) { 558 V = GA->getAliasee(); 559 continue; 560 } 561 } 562 Decomposed.Base = V; 563 return Decomposed; 564 } 565 566 if (Op->getOpcode() == Instruction::BitCast || 567 Op->getOpcode() == Instruction::AddrSpaceCast) { 568 V = Op->getOperand(0); 569 continue; 570 } 571 572 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 573 if (!GEPOp) { 574 if (const auto *PHI = dyn_cast<PHINode>(V)) { 575 // Look through single-arg phi nodes created by LCSSA. 576 if (PHI->getNumIncomingValues() == 1) { 577 V = PHI->getIncomingValue(0); 578 continue; 579 } 580 } else if (const auto *Call = dyn_cast<CallBase>(V)) { 581 // CaptureTracking can know about special capturing properties of some 582 // intrinsics like launder.invariant.group, that can't be expressed with 583 // the attributes, but have properties like returning aliasing pointer. 584 // Because some analysis may assume that nocaptured pointer is not 585 // returned from some special intrinsic (because function would have to 586 // be marked with returns attribute), it is crucial to use this function 587 // because it should be in sync with CaptureTracking. Not using it may 588 // cause weird miscompilations where 2 aliasing pointers are assumed to 589 // noalias. 590 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 591 V = RP; 592 continue; 593 } 594 } 595 596 Decomposed.Base = V; 597 return Decomposed; 598 } 599 600 // Track whether we've seen at least one in bounds gep, and if so, whether 601 // all geps parsed were in bounds. 602 if (Decomposed.InBounds == None) 603 Decomposed.InBounds = GEPOp->isInBounds(); 604 else if (!GEPOp->isInBounds()) 605 Decomposed.InBounds = false; 606 607 assert(GEPOp->getSourceElementType()->isSized() && "GEP must be sized"); 608 609 // Don't attempt to analyze GEPs if index scale is not a compile-time 610 // constant. 611 if (isa<ScalableVectorType>(GEPOp->getSourceElementType())) { 612 Decomposed.Base = V; 613 Decomposed.HasCompileTimeConstantScale = false; 614 return Decomposed; 615 } 616 617 unsigned AS = GEPOp->getPointerAddressSpace(); 618 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 619 gep_type_iterator GTI = gep_type_begin(GEPOp); 620 unsigned PointerSize = DL.getPointerSizeInBits(AS); 621 // Assume all GEP operands are constants until proven otherwise. 622 bool GepHasConstantOffset = true; 623 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 624 I != E; ++I, ++GTI) { 625 const Value *Index = *I; 626 // Compute the (potentially symbolic) offset in bytes for this index. 627 if (StructType *STy = GTI.getStructTypeOrNull()) { 628 // For a struct, add the member offset. 629 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 630 if (FieldNo == 0) 631 continue; 632 633 Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo); 634 continue; 635 } 636 637 // For an array/pointer, add the element offset, explicitly scaled. 638 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 639 if (CIdx->isZero()) 640 continue; 641 Decomposed.Offset += 642 DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize() * 643 CIdx->getValue().sextOrTrunc(MaxPointerSize); 644 continue; 645 } 646 647 GepHasConstantOffset = false; 648 649 APInt Scale(MaxPointerSize, 650 DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize()); 651 // If the integer type is smaller than the pointer size, it is implicitly 652 // sign extended to pointer size. 653 unsigned Width = Index->getType()->getIntegerBitWidth(); 654 unsigned SExtBits = PointerSize > Width ? PointerSize - Width : 0; 655 LinearExpression LE = GetLinearExpression( 656 ExtendedValue(Index, 0, SExtBits), DL, 0, AC, DT); 657 658 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 659 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 660 661 // It can be the case that, even through C1*V+C2 does not overflow for 662 // relevant values of V, (C2*Scale) can overflow. In that case, we cannot 663 // decompose the expression in this way. 664 // 665 // FIXME: C1*Scale and the other operations in the decomposed 666 // (C1*Scale)*V+C2*Scale can also overflow. We should check for this 667 // possibility. 668 bool Overflow; 669 APInt ScaledOffset = LE.Offset.sextOrTrunc(MaxPointerSize) 670 .smul_ov(Scale, Overflow); 671 if (Overflow) { 672 LE = LinearExpression(ExtendedValue(Index, 0, SExtBits)); 673 } else { 674 Decomposed.Offset += ScaledOffset; 675 Scale *= LE.Scale.sextOrTrunc(MaxPointerSize); 676 } 677 678 // If we already had an occurrence of this index variable, merge this 679 // scale into it. For example, we want to handle: 680 // A[x][x] -> x*16 + x*4 -> x*20 681 // This also ensures that 'x' only appears in the index list once. 682 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { 683 if (Decomposed.VarIndices[i].V == LE.Val.V && 684 Decomposed.VarIndices[i].ZExtBits == LE.Val.ZExtBits && 685 Decomposed.VarIndices[i].SExtBits == LE.Val.SExtBits) { 686 Scale += Decomposed.VarIndices[i].Scale; 687 Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i); 688 break; 689 } 690 } 691 692 // Make sure that we have a scale that makes sense for this target's 693 // pointer size. 694 Scale = adjustToPointerSize(Scale, PointerSize); 695 696 if (!!Scale) { 697 VariableGEPIndex Entry = { 698 LE.Val.V, LE.Val.ZExtBits, LE.Val.SExtBits, Scale, CxtI, LE.IsNSW}; 699 Decomposed.VarIndices.push_back(Entry); 700 } 701 } 702 703 // Take care of wrap-arounds 704 if (GepHasConstantOffset) 705 Decomposed.Offset = adjustToPointerSize(Decomposed.Offset, PointerSize); 706 707 // Analyze the base pointer next. 708 V = GEPOp->getOperand(0); 709 } while (--MaxLookup); 710 711 // If the chain of expressions is too deep, just return early. 712 Decomposed.Base = V; 713 SearchLimitReached++; 714 return Decomposed; 715 } 716 717 /// Returns whether the given pointer value points to memory that is local to 718 /// the function, with global constants being considered local to all 719 /// functions. 720 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc, 721 AAQueryInfo &AAQI, bool OrLocal) { 722 assert(Visited.empty() && "Visited must be cleared after use!"); 723 724 unsigned MaxLookup = 8; 725 SmallVector<const Value *, 16> Worklist; 726 Worklist.push_back(Loc.Ptr); 727 do { 728 const Value *V = getUnderlyingObject(Worklist.pop_back_val()); 729 if (!Visited.insert(V).second) { 730 Visited.clear(); 731 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 732 } 733 734 // An alloca instruction defines local memory. 735 if (OrLocal && isa<AllocaInst>(V)) 736 continue; 737 738 // A global constant counts as local memory for our purposes. 739 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 740 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 741 // global to be marked constant in some modules and non-constant in 742 // others. GV may even be a declaration, not a definition. 743 if (!GV->isConstant()) { 744 Visited.clear(); 745 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 746 } 747 continue; 748 } 749 750 // If both select values point to local memory, then so does the select. 751 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 752 Worklist.push_back(SI->getTrueValue()); 753 Worklist.push_back(SI->getFalseValue()); 754 continue; 755 } 756 757 // If all values incoming to a phi node point to local memory, then so does 758 // the phi. 759 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 760 // Don't bother inspecting phi nodes with many operands. 761 if (PN->getNumIncomingValues() > MaxLookup) { 762 Visited.clear(); 763 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 764 } 765 append_range(Worklist, PN->incoming_values()); 766 continue; 767 } 768 769 // Otherwise be conservative. 770 Visited.clear(); 771 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 772 } while (!Worklist.empty() && --MaxLookup); 773 774 Visited.clear(); 775 return Worklist.empty(); 776 } 777 778 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) { 779 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call); 780 return II && II->getIntrinsicID() == IID; 781 } 782 783 /// Returns the behavior when calling the given call site. 784 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) { 785 if (Call->doesNotAccessMemory()) 786 // Can't do better than this. 787 return FMRB_DoesNotAccessMemory; 788 789 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 790 791 // If the callsite knows it only reads memory, don't return worse 792 // than that. 793 if (Call->onlyReadsMemory()) 794 Min = FMRB_OnlyReadsMemory; 795 else if (Call->doesNotReadMemory()) 796 Min = FMRB_OnlyWritesMemory; 797 798 if (Call->onlyAccessesArgMemory()) 799 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 800 else if (Call->onlyAccessesInaccessibleMemory()) 801 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 802 else if (Call->onlyAccessesInaccessibleMemOrArgMem()) 803 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 804 805 // If the call has operand bundles then aliasing attributes from the function 806 // it calls do not directly apply to the call. This can be made more precise 807 // in the future. 808 if (!Call->hasOperandBundles()) 809 if (const Function *F = Call->getCalledFunction()) 810 Min = 811 FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F)); 812 813 return Min; 814 } 815 816 /// Returns the behavior when calling the given function. For use when the call 817 /// site is not known. 818 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) { 819 // If the function declares it doesn't access memory, we can't do better. 820 if (F->doesNotAccessMemory()) 821 return FMRB_DoesNotAccessMemory; 822 823 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 824 825 // If the function declares it only reads memory, go with that. 826 if (F->onlyReadsMemory()) 827 Min = FMRB_OnlyReadsMemory; 828 else if (F->doesNotReadMemory()) 829 Min = FMRB_OnlyWritesMemory; 830 831 if (F->onlyAccessesArgMemory()) 832 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 833 else if (F->onlyAccessesInaccessibleMemory()) 834 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 835 else if (F->onlyAccessesInaccessibleMemOrArgMem()) 836 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 837 838 return Min; 839 } 840 841 /// Returns true if this is a writeonly (i.e Mod only) parameter. 842 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx, 843 const TargetLibraryInfo &TLI) { 844 if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly)) 845 return true; 846 847 // We can bound the aliasing properties of memset_pattern16 just as we can 848 // for memcpy/memset. This is particularly important because the 849 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 850 // whenever possible. 851 // FIXME Consider handling this in InferFunctionAttr.cpp together with other 852 // attributes. 853 LibFunc F; 854 if (Call->getCalledFunction() && 855 TLI.getLibFunc(*Call->getCalledFunction(), F) && 856 F == LibFunc_memset_pattern16 && TLI.has(F)) 857 if (ArgIdx == 0) 858 return true; 859 860 // TODO: memset_pattern4, memset_pattern8 861 // TODO: _chk variants 862 // TODO: strcmp, strcpy 863 864 return false; 865 } 866 867 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call, 868 unsigned ArgIdx) { 869 // Checking for known builtin intrinsics and target library functions. 870 if (isWriteOnlyParam(Call, ArgIdx, TLI)) 871 return ModRefInfo::Mod; 872 873 if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly)) 874 return ModRefInfo::Ref; 875 876 if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone)) 877 return ModRefInfo::NoModRef; 878 879 return AAResultBase::getArgModRefInfo(Call, ArgIdx); 880 } 881 882 #ifndef NDEBUG 883 static const Function *getParent(const Value *V) { 884 if (const Instruction *inst = dyn_cast<Instruction>(V)) { 885 if (!inst->getParent()) 886 return nullptr; 887 return inst->getParent()->getParent(); 888 } 889 890 if (const Argument *arg = dyn_cast<Argument>(V)) 891 return arg->getParent(); 892 893 return nullptr; 894 } 895 896 static bool notDifferentParent(const Value *O1, const Value *O2) { 897 898 const Function *F1 = getParent(O1); 899 const Function *F2 = getParent(O2); 900 901 return !F1 || !F2 || F1 == F2; 902 } 903 #endif 904 905 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 906 const MemoryLocation &LocB, 907 AAQueryInfo &AAQI) { 908 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 909 "BasicAliasAnalysis doesn't support interprocedural queries."); 910 return aliasCheck(LocA.Ptr, LocA.Size, LocB.Ptr, LocB.Size, AAQI); 911 } 912 913 /// Checks to see if the specified callsite can clobber the specified memory 914 /// object. 915 /// 916 /// Since we only look at local properties of this function, we really can't 917 /// say much about this query. We do, however, use simple "address taken" 918 /// analysis on local objects. 919 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call, 920 const MemoryLocation &Loc, 921 AAQueryInfo &AAQI) { 922 assert(notDifferentParent(Call, Loc.Ptr) && 923 "AliasAnalysis query involving multiple functions!"); 924 925 const Value *Object = getUnderlyingObject(Loc.Ptr); 926 927 // Calls marked 'tail' cannot read or write allocas from the current frame 928 // because the current frame might be destroyed by the time they run. However, 929 // a tail call may use an alloca with byval. Calling with byval copies the 930 // contents of the alloca into argument registers or stack slots, so there is 931 // no lifetime issue. 932 if (isa<AllocaInst>(Object)) 933 if (const CallInst *CI = dyn_cast<CallInst>(Call)) 934 if (CI->isTailCall() && 935 !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal)) 936 return ModRefInfo::NoModRef; 937 938 // Stack restore is able to modify unescaped dynamic allocas. Assume it may 939 // modify them even though the alloca is not escaped. 940 if (auto *AI = dyn_cast<AllocaInst>(Object)) 941 if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore)) 942 return ModRefInfo::Mod; 943 944 // If the pointer is to a locally allocated object that does not escape, 945 // then the call can not mod/ref the pointer unless the call takes the pointer 946 // as an argument, and itself doesn't capture it. 947 if (!isa<Constant>(Object) && Call != Object && 948 AAQI.CI->isNotCapturedBeforeOrAt(Object, Call)) { 949 950 // Optimistically assume that call doesn't touch Object and check this 951 // assumption in the following loop. 952 ModRefInfo Result = ModRefInfo::NoModRef; 953 bool IsMustAlias = true; 954 955 unsigned OperandNo = 0; 956 for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end(); 957 CI != CE; ++CI, ++OperandNo) { 958 // Only look at the no-capture or byval pointer arguments. If this 959 // pointer were passed to arguments that were neither of these, then it 960 // couldn't be no-capture. 961 if (!(*CI)->getType()->isPointerTy() || 962 (!Call->doesNotCapture(OperandNo) && 963 OperandNo < Call->getNumArgOperands() && 964 !Call->isByValArgument(OperandNo))) 965 continue; 966 967 // Call doesn't access memory through this operand, so we don't care 968 // if it aliases with Object. 969 if (Call->doesNotAccessMemory(OperandNo)) 970 continue; 971 972 // If this is a no-capture pointer argument, see if we can tell that it 973 // is impossible to alias the pointer we're checking. 974 AliasResult AR = getBestAAResults().alias( 975 MemoryLocation::getBeforeOrAfter(*CI), 976 MemoryLocation::getBeforeOrAfter(Object), AAQI); 977 if (AR != AliasResult::MustAlias) 978 IsMustAlias = false; 979 // Operand doesn't alias 'Object', continue looking for other aliases 980 if (AR == AliasResult::NoAlias) 981 continue; 982 // Operand aliases 'Object', but call doesn't modify it. Strengthen 983 // initial assumption and keep looking in case if there are more aliases. 984 if (Call->onlyReadsMemory(OperandNo)) { 985 Result = setRef(Result); 986 continue; 987 } 988 // Operand aliases 'Object' but call only writes into it. 989 if (Call->doesNotReadMemory(OperandNo)) { 990 Result = setMod(Result); 991 continue; 992 } 993 // This operand aliases 'Object' and call reads and writes into it. 994 // Setting ModRef will not yield an early return below, MustAlias is not 995 // used further. 996 Result = ModRefInfo::ModRef; 997 break; 998 } 999 1000 // No operand aliases, reset Must bit. Add below if at least one aliases 1001 // and all aliases found are MustAlias. 1002 if (isNoModRef(Result)) 1003 IsMustAlias = false; 1004 1005 // Early return if we improved mod ref information 1006 if (!isModAndRefSet(Result)) { 1007 if (isNoModRef(Result)) 1008 return ModRefInfo::NoModRef; 1009 return IsMustAlias ? setMust(Result) : clearMust(Result); 1010 } 1011 } 1012 1013 // If the call is malloc/calloc like, we can assume that it doesn't 1014 // modify any IR visible value. This is only valid because we assume these 1015 // routines do not read values visible in the IR. TODO: Consider special 1016 // casing realloc and strdup routines which access only their arguments as 1017 // well. Or alternatively, replace all of this with inaccessiblememonly once 1018 // that's implemented fully. 1019 if (isMallocOrCallocLikeFn(Call, &TLI)) { 1020 // Be conservative if the accessed pointer may alias the allocation - 1021 // fallback to the generic handling below. 1022 if (getBestAAResults().alias(MemoryLocation::getBeforeOrAfter(Call), Loc, 1023 AAQI) == AliasResult::NoAlias) 1024 return ModRefInfo::NoModRef; 1025 } 1026 1027 // The semantics of memcpy intrinsics either exactly overlap or do not 1028 // overlap, i.e., source and destination of any given memcpy are either 1029 // no-alias or must-alias. 1030 if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) { 1031 AliasResult SrcAA = 1032 getBestAAResults().alias(MemoryLocation::getForSource(Inst), Loc, AAQI); 1033 AliasResult DestAA = 1034 getBestAAResults().alias(MemoryLocation::getForDest(Inst), Loc, AAQI); 1035 // It's also possible for Loc to alias both src and dest, or neither. 1036 ModRefInfo rv = ModRefInfo::NoModRef; 1037 if (SrcAA != AliasResult::NoAlias) 1038 rv = setRef(rv); 1039 if (DestAA != AliasResult::NoAlias) 1040 rv = setMod(rv); 1041 return rv; 1042 } 1043 1044 // Guard intrinsics are marked as arbitrarily writing so that proper control 1045 // dependencies are maintained but they never mods any particular memory 1046 // location. 1047 // 1048 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 1049 // heap state at the point the guard is issued needs to be consistent in case 1050 // the guard invokes the "deopt" continuation. 1051 if (isIntrinsicCall(Call, Intrinsic::experimental_guard)) 1052 return ModRefInfo::Ref; 1053 // The same applies to deoptimize which is essentially a guard(false). 1054 if (isIntrinsicCall(Call, Intrinsic::experimental_deoptimize)) 1055 return ModRefInfo::Ref; 1056 1057 // Like assumes, invariant.start intrinsics were also marked as arbitrarily 1058 // writing so that proper control dependencies are maintained but they never 1059 // mod any particular memory location visible to the IR. 1060 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start 1061 // intrinsic is now modeled as reading memory. This prevents hoisting the 1062 // invariant.start intrinsic over stores. Consider: 1063 // *ptr = 40; 1064 // *ptr = 50; 1065 // invariant_start(ptr) 1066 // int val = *ptr; 1067 // print(val); 1068 // 1069 // This cannot be transformed to: 1070 // 1071 // *ptr = 40; 1072 // invariant_start(ptr) 1073 // *ptr = 50; 1074 // int val = *ptr; 1075 // print(val); 1076 // 1077 // The transformation will cause the second store to be ignored (based on 1078 // rules of invariant.start) and print 40, while the first program always 1079 // prints 50. 1080 if (isIntrinsicCall(Call, Intrinsic::invariant_start)) 1081 return ModRefInfo::Ref; 1082 1083 // The AAResultBase base class has some smarts, lets use them. 1084 return AAResultBase::getModRefInfo(Call, Loc, AAQI); 1085 } 1086 1087 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1, 1088 const CallBase *Call2, 1089 AAQueryInfo &AAQI) { 1090 // Guard intrinsics are marked as arbitrarily writing so that proper control 1091 // dependencies are maintained but they never mods any particular memory 1092 // location. 1093 // 1094 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 1095 // heap state at the point the guard is issued needs to be consistent in case 1096 // the guard invokes the "deopt" continuation. 1097 1098 // NB! This function is *not* commutative, so we special case two 1099 // possibilities for guard intrinsics. 1100 1101 if (isIntrinsicCall(Call1, Intrinsic::experimental_guard)) 1102 return isModSet(createModRefInfo(getModRefBehavior(Call2))) 1103 ? ModRefInfo::Ref 1104 : ModRefInfo::NoModRef; 1105 1106 if (isIntrinsicCall(Call2, Intrinsic::experimental_guard)) 1107 return isModSet(createModRefInfo(getModRefBehavior(Call1))) 1108 ? ModRefInfo::Mod 1109 : ModRefInfo::NoModRef; 1110 1111 // The AAResultBase base class has some smarts, lets use them. 1112 return AAResultBase::getModRefInfo(Call1, Call2, AAQI); 1113 } 1114 1115 /// Return true if we know V to the base address of the corresponding memory 1116 /// object. This implies that any address less than V must be out of bounds 1117 /// for the underlying object. Note that just being isIdentifiedObject() is 1118 /// not enough - For example, a negative offset from a noalias argument or call 1119 /// can be inbounds w.r.t the actual underlying object. 1120 static bool isBaseOfObject(const Value *V) { 1121 // TODO: We can handle other cases here 1122 // 1) For GC languages, arguments to functions are often required to be 1123 // base pointers. 1124 // 2) Result of allocation routines are often base pointers. Leverage TLI. 1125 return (isa<AllocaInst>(V) || isa<GlobalVariable>(V)); 1126 } 1127 1128 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 1129 /// another pointer. 1130 /// 1131 /// We know that V1 is a GEP, but we don't know anything about V2. 1132 /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for 1133 /// V2. 1134 AliasResult BasicAAResult::aliasGEP( 1135 const GEPOperator *GEP1, LocationSize V1Size, 1136 const Value *V2, LocationSize V2Size, 1137 const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) { 1138 if (!V1Size.hasValue() && !V2Size.hasValue()) { 1139 // TODO: This limitation exists for compile-time reasons. Relax it if we 1140 // can avoid exponential pathological cases. 1141 if (!isa<GEPOperator>(V2)) 1142 return AliasResult::MayAlias; 1143 1144 // If both accesses have unknown size, we can only check whether the base 1145 // objects don't alias. 1146 AliasResult BaseAlias = getBestAAResults().alias( 1147 MemoryLocation::getBeforeOrAfter(UnderlyingV1), 1148 MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI); 1149 return BaseAlias == AliasResult::NoAlias ? AliasResult::NoAlias 1150 : AliasResult::MayAlias; 1151 } 1152 1153 DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT); 1154 DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT); 1155 1156 // Don't attempt to analyze the decomposed GEP if index scale is not a 1157 // compile-time constant. 1158 if (!DecompGEP1.HasCompileTimeConstantScale || 1159 !DecompGEP2.HasCompileTimeConstantScale) 1160 return AliasResult::MayAlias; 1161 1162 assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 && 1163 "DecomposeGEPExpression returned a result different from " 1164 "getUnderlyingObject"); 1165 1166 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1167 // symbolic difference. 1168 subtractDecomposedGEPs(DecompGEP1, DecompGEP2); 1169 1170 // If an inbounds GEP would have to start from an out of bounds address 1171 // for the two to alias, then we can assume noalias. 1172 if (*DecompGEP1.InBounds && DecompGEP1.VarIndices.empty() && 1173 V2Size.hasValue() && DecompGEP1.Offset.sge(V2Size.getValue()) && 1174 isBaseOfObject(DecompGEP2.Base)) 1175 return AliasResult::NoAlias; 1176 1177 if (isa<GEPOperator>(V2)) { 1178 // Symmetric case to above. 1179 if (*DecompGEP2.InBounds && DecompGEP1.VarIndices.empty() && 1180 V1Size.hasValue() && DecompGEP1.Offset.sle(-V1Size.getValue()) && 1181 isBaseOfObject(DecompGEP1.Base)) 1182 return AliasResult::NoAlias; 1183 } 1184 1185 // For GEPs with identical offsets, we can preserve the size and AAInfo 1186 // when performing the alias check on the underlying objects. 1187 if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty()) 1188 return getBestAAResults().alias( 1189 MemoryLocation(UnderlyingV1, V1Size), 1190 MemoryLocation(UnderlyingV2, V2Size), AAQI); 1191 1192 // Do the base pointers alias? 1193 AliasResult BaseAlias = getBestAAResults().alias( 1194 MemoryLocation::getBeforeOrAfter(UnderlyingV1), 1195 MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI); 1196 1197 // If we get a No or May, then return it immediately, no amount of analysis 1198 // will improve this situation. 1199 if (BaseAlias != AliasResult::MustAlias) { 1200 assert(BaseAlias == AliasResult::NoAlias || 1201 BaseAlias == AliasResult::MayAlias); 1202 return BaseAlias; 1203 } 1204 1205 // If there is a constant difference between the pointers, but the difference 1206 // is less than the size of the associated memory object, then we know 1207 // that the objects are partially overlapping. If the difference is 1208 // greater, we know they do not overlap. 1209 if (DecompGEP1.Offset != 0 && DecompGEP1.VarIndices.empty()) { 1210 APInt &Off = DecompGEP1.Offset; 1211 1212 // Initialize for Off >= 0 (V2 <= GEP1) case. 1213 const Value *LeftPtr = V2; 1214 const Value *RightPtr = GEP1; 1215 LocationSize VLeftSize = V2Size; 1216 LocationSize VRightSize = V1Size; 1217 const bool Swapped = Off.isNegative(); 1218 1219 if (Swapped) { 1220 // Swap if we have the situation where: 1221 // + + 1222 // | BaseOffset | 1223 // ---------------->| 1224 // |-->V1Size |-------> V2Size 1225 // GEP1 V2 1226 std::swap(LeftPtr, RightPtr); 1227 std::swap(VLeftSize, VRightSize); 1228 Off = -Off; 1229 } 1230 1231 if (VLeftSize.hasValue()) { 1232 const uint64_t LSize = VLeftSize.getValue(); 1233 if (Off.ult(LSize)) { 1234 // Conservatively drop processing if a phi was visited and/or offset is 1235 // too big. 1236 AliasResult AR = AliasResult::PartialAlias; 1237 if (VRightSize.hasValue() && Off.ule(INT32_MAX) && 1238 (Off + VRightSize.getValue()).ule(LSize)) { 1239 // Memory referenced by right pointer is nested. Save the offset in 1240 // cache. Note that originally offset estimated as GEP1-V2, but 1241 // AliasResult contains the shift that represents GEP1+Offset=V2. 1242 AR.setOffset(-Off.getSExtValue()); 1243 AR.swap(Swapped); 1244 } 1245 return AR; 1246 } 1247 return AliasResult::NoAlias; 1248 } 1249 } 1250 1251 if (!DecompGEP1.VarIndices.empty()) { 1252 APInt GCD; 1253 bool AllNonNegative = DecompGEP1.Offset.isNonNegative(); 1254 bool AllNonPositive = DecompGEP1.Offset.isNonPositive(); 1255 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { 1256 APInt Scale = DecompGEP1.VarIndices[i].Scale; 1257 APInt ScaleForGCD = DecompGEP1.VarIndices[i].Scale; 1258 if (!DecompGEP1.VarIndices[i].IsNSW) 1259 ScaleForGCD = APInt::getOneBitSet(Scale.getBitWidth(), 1260 Scale.countTrailingZeros()); 1261 1262 if (i == 0) 1263 GCD = ScaleForGCD.abs(); 1264 else 1265 GCD = APIntOps::GreatestCommonDivisor(GCD, ScaleForGCD.abs()); 1266 1267 if (AllNonNegative || AllNonPositive) { 1268 // If the Value could change between cycles, then any reasoning about 1269 // the Value this cycle may not hold in the next cycle. We'll just 1270 // give up if we can't determine conditions that hold for every cycle: 1271 const Value *V = DecompGEP1.VarIndices[i].V; 1272 const Instruction *CxtI = DecompGEP1.VarIndices[i].CxtI; 1273 1274 KnownBits Known = computeKnownBits(V, DL, 0, &AC, CxtI, DT); 1275 bool SignKnownZero = Known.isNonNegative(); 1276 bool SignKnownOne = Known.isNegative(); 1277 1278 // Zero-extension widens the variable, and so forces the sign 1279 // bit to zero. 1280 bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V); 1281 SignKnownZero |= IsZExt; 1282 SignKnownOne &= !IsZExt; 1283 1284 AllNonNegative &= (SignKnownZero && Scale.isNonNegative()) || 1285 (SignKnownOne && Scale.isNonPositive()); 1286 AllNonPositive &= (SignKnownZero && Scale.isNonPositive()) || 1287 (SignKnownOne && Scale.isNonNegative()); 1288 } 1289 } 1290 1291 // We now have accesses at two offsets from the same base: 1292 // 1. (...)*GCD + DecompGEP1.Offset with size V1Size 1293 // 2. 0 with size V2Size 1294 // Using arithmetic modulo GCD, the accesses are at 1295 // [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits 1296 // into the range [V2Size..GCD), then we know they cannot overlap. 1297 APInt ModOffset = DecompGEP1.Offset.srem(GCD); 1298 if (ModOffset.isNegative()) 1299 ModOffset += GCD; // We want mod, not rem. 1300 if (V1Size.hasValue() && V2Size.hasValue() && 1301 ModOffset.uge(V2Size.getValue()) && 1302 (GCD - ModOffset).uge(V1Size.getValue())) 1303 return AliasResult::NoAlias; 1304 1305 // If we know all the variables are non-negative, then the total offset is 1306 // also non-negative and >= DecompGEP1.Offset. We have the following layout: 1307 // [0, V2Size) ... [TotalOffset, TotalOffer+V1Size] 1308 // If DecompGEP1.Offset >= V2Size, the accesses don't alias. 1309 if (AllNonNegative && V2Size.hasValue() && 1310 DecompGEP1.Offset.uge(V2Size.getValue())) 1311 return AliasResult::NoAlias; 1312 // Similarly, if the variables are non-positive, then the total offset is 1313 // also non-positive and <= DecompGEP1.Offset. We have the following layout: 1314 // [TotalOffset, TotalOffset+V1Size) ... [0, V2Size) 1315 // If -DecompGEP1.Offset >= V1Size, the accesses don't alias. 1316 if (AllNonPositive && V1Size.hasValue() && 1317 (-DecompGEP1.Offset).uge(V1Size.getValue())) 1318 return AliasResult::NoAlias; 1319 1320 if (V1Size.hasValue() && V2Size.hasValue()) { 1321 // Try to determine whether abs(VarIndex) > 0. 1322 Optional<APInt> MinAbsVarIndex; 1323 if (DecompGEP1.VarIndices.size() == 1) { 1324 // VarIndex = Scale*V. If V != 0 then abs(VarIndex) >= abs(Scale). 1325 const VariableGEPIndex &Var = DecompGEP1.VarIndices[0]; 1326 if (isKnownNonZero(Var.V, DL, 0, &AC, Var.CxtI, DT)) 1327 MinAbsVarIndex = Var.Scale.abs(); 1328 } else if (DecompGEP1.VarIndices.size() == 2) { 1329 // VarIndex = Scale*V0 + (-Scale)*V1. 1330 // If V0 != V1 then abs(VarIndex) >= abs(Scale). 1331 // Check that VisitedPhiBBs is empty, to avoid reasoning about 1332 // inequality of values across loop iterations. 1333 const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0]; 1334 const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1]; 1335 if (Var0.Scale == -Var1.Scale && Var0.ZExtBits == Var1.ZExtBits && 1336 Var0.SExtBits == Var1.SExtBits && VisitedPhiBBs.empty() && 1337 isKnownNonEqual(Var0.V, Var1.V, DL, &AC, /* CxtI */ nullptr, DT)) 1338 MinAbsVarIndex = Var0.Scale.abs(); 1339 } 1340 1341 if (MinAbsVarIndex) { 1342 // The constant offset will have added at least +/-MinAbsVarIndex to it. 1343 APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex; 1344 APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex; 1345 // Check that an access at OffsetLo or lower, and an access at OffsetHi 1346 // or higher both do not alias. 1347 if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) && 1348 OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue())) 1349 return AliasResult::NoAlias; 1350 } 1351 } 1352 1353 if (constantOffsetHeuristic(DecompGEP1, V1Size, V2Size, &AC, DT)) 1354 return AliasResult::NoAlias; 1355 } 1356 1357 // Statically, we can see that the base objects are the same, but the 1358 // pointers have dynamic offsets which we can't resolve. And none of our 1359 // little tricks above worked. 1360 return AliasResult::MayAlias; 1361 } 1362 1363 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1364 // If the results agree, take it. 1365 if (A == B) 1366 return A; 1367 // A mix of PartialAlias and MustAlias is PartialAlias. 1368 if ((A == AliasResult::PartialAlias && B == AliasResult::MustAlias) || 1369 (B == AliasResult::PartialAlias && A == AliasResult::MustAlias)) 1370 return AliasResult::PartialAlias; 1371 // Otherwise, we don't know anything. 1372 return AliasResult::MayAlias; 1373 } 1374 1375 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1376 /// against another. 1377 AliasResult 1378 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize, 1379 const Value *V2, LocationSize V2Size, 1380 AAQueryInfo &AAQI) { 1381 // If the values are Selects with the same condition, we can do a more precise 1382 // check: just check for aliases between the values on corresponding arms. 1383 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1384 if (SI->getCondition() == SI2->getCondition()) { 1385 AliasResult Alias = getBestAAResults().alias( 1386 MemoryLocation(SI->getTrueValue(), SISize), 1387 MemoryLocation(SI2->getTrueValue(), V2Size), AAQI); 1388 if (Alias == AliasResult::MayAlias) 1389 return AliasResult::MayAlias; 1390 AliasResult ThisAlias = getBestAAResults().alias( 1391 MemoryLocation(SI->getFalseValue(), SISize), 1392 MemoryLocation(SI2->getFalseValue(), V2Size), AAQI); 1393 return MergeAliasResults(ThisAlias, Alias); 1394 } 1395 1396 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1397 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1398 AliasResult Alias = getBestAAResults().alias( 1399 MemoryLocation(V2, V2Size), 1400 MemoryLocation(SI->getTrueValue(), SISize), AAQI); 1401 if (Alias == AliasResult::MayAlias) 1402 return AliasResult::MayAlias; 1403 1404 AliasResult ThisAlias = getBestAAResults().alias( 1405 MemoryLocation(V2, V2Size), 1406 MemoryLocation(SI->getFalseValue(), SISize), AAQI); 1407 return MergeAliasResults(ThisAlias, Alias); 1408 } 1409 1410 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1411 /// another. 1412 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize, 1413 const Value *V2, LocationSize V2Size, 1414 AAQueryInfo &AAQI) { 1415 if (!PN->getNumIncomingValues()) 1416 return AliasResult::NoAlias; 1417 // If the values are PHIs in the same block, we can do a more precise 1418 // as well as efficient check: just check for aliases between the values 1419 // on corresponding edges. 1420 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1421 if (PN2->getParent() == PN->getParent()) { 1422 Optional<AliasResult> Alias; 1423 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1424 AliasResult ThisAlias = getBestAAResults().alias( 1425 MemoryLocation(PN->getIncomingValue(i), PNSize), 1426 MemoryLocation( 1427 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size), 1428 AAQI); 1429 if (Alias) 1430 *Alias = MergeAliasResults(*Alias, ThisAlias); 1431 else 1432 Alias = ThisAlias; 1433 if (*Alias == AliasResult::MayAlias) 1434 break; 1435 } 1436 return *Alias; 1437 } 1438 1439 SmallVector<Value *, 4> V1Srcs; 1440 // If a phi operand recurses back to the phi, we can still determine NoAlias 1441 // if we don't alias the underlying objects of the other phi operands, as we 1442 // know that the recursive phi needs to be based on them in some way. 1443 bool isRecursive = false; 1444 auto CheckForRecPhi = [&](Value *PV) { 1445 if (!EnableRecPhiAnalysis) 1446 return false; 1447 if (getUnderlyingObject(PV) == PN) { 1448 isRecursive = true; 1449 return true; 1450 } 1451 return false; 1452 }; 1453 1454 if (PV) { 1455 // If we have PhiValues then use it to get the underlying phi values. 1456 const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN); 1457 // If we have more phi values than the search depth then return MayAlias 1458 // conservatively to avoid compile time explosion. The worst possible case 1459 // is if both sides are PHI nodes. In which case, this is O(m x n) time 1460 // where 'm' and 'n' are the number of PHI sources. 1461 if (PhiValueSet.size() > MaxLookupSearchDepth) 1462 return AliasResult::MayAlias; 1463 // Add the values to V1Srcs 1464 for (Value *PV1 : PhiValueSet) { 1465 if (CheckForRecPhi(PV1)) 1466 continue; 1467 V1Srcs.push_back(PV1); 1468 } 1469 } else { 1470 // If we don't have PhiInfo then just look at the operands of the phi itself 1471 // FIXME: Remove this once we can guarantee that we have PhiInfo always 1472 SmallPtrSet<Value *, 4> UniqueSrc; 1473 Value *OnePhi = nullptr; 1474 for (Value *PV1 : PN->incoming_values()) { 1475 if (isa<PHINode>(PV1)) { 1476 if (OnePhi && OnePhi != PV1) { 1477 // To control potential compile time explosion, we choose to be 1478 // conserviate when we have more than one Phi input. It is important 1479 // that we handle the single phi case as that lets us handle LCSSA 1480 // phi nodes and (combined with the recursive phi handling) simple 1481 // pointer induction variable patterns. 1482 return AliasResult::MayAlias; 1483 } 1484 OnePhi = PV1; 1485 } 1486 1487 if (CheckForRecPhi(PV1)) 1488 continue; 1489 1490 if (UniqueSrc.insert(PV1).second) 1491 V1Srcs.push_back(PV1); 1492 } 1493 1494 if (OnePhi && UniqueSrc.size() > 1) 1495 // Out of an abundance of caution, allow only the trivial lcssa and 1496 // recursive phi cases. 1497 return AliasResult::MayAlias; 1498 } 1499 1500 // If V1Srcs is empty then that means that the phi has no underlying non-phi 1501 // value. This should only be possible in blocks unreachable from the entry 1502 // block, but return MayAlias just in case. 1503 if (V1Srcs.empty()) 1504 return AliasResult::MayAlias; 1505 1506 // If this PHI node is recursive, indicate that the pointer may be moved 1507 // across iterations. We can only prove NoAlias if different underlying 1508 // objects are involved. 1509 if (isRecursive) 1510 PNSize = LocationSize::beforeOrAfterPointer(); 1511 1512 // In the recursive alias queries below, we may compare values from two 1513 // different loop iterations. Keep track of visited phi blocks, which will 1514 // be used when determining value equivalence. 1515 bool BlockInserted = VisitedPhiBBs.insert(PN->getParent()).second; 1516 auto _ = make_scope_exit([&]() { 1517 if (BlockInserted) 1518 VisitedPhiBBs.erase(PN->getParent()); 1519 }); 1520 1521 // If we inserted a block into VisitedPhiBBs, alias analysis results that 1522 // have been cached earlier may no longer be valid. Perform recursive queries 1523 // with a new AAQueryInfo. 1524 AAQueryInfo NewAAQI = AAQI.withEmptyCache(); 1525 AAQueryInfo *UseAAQI = BlockInserted ? &NewAAQI : &AAQI; 1526 1527 AliasResult Alias = getBestAAResults().alias( 1528 MemoryLocation(V2, V2Size), 1529 MemoryLocation(V1Srcs[0], PNSize), *UseAAQI); 1530 1531 // Early exit if the check of the first PHI source against V2 is MayAlias. 1532 // Other results are not possible. 1533 if (Alias == AliasResult::MayAlias) 1534 return AliasResult::MayAlias; 1535 // With recursive phis we cannot guarantee that MustAlias/PartialAlias will 1536 // remain valid to all elements and needs to conservatively return MayAlias. 1537 if (isRecursive && Alias != AliasResult::NoAlias) 1538 return AliasResult::MayAlias; 1539 1540 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1541 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1542 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1543 Value *V = V1Srcs[i]; 1544 1545 AliasResult ThisAlias = getBestAAResults().alias( 1546 MemoryLocation(V2, V2Size), MemoryLocation(V, PNSize), *UseAAQI); 1547 Alias = MergeAliasResults(ThisAlias, Alias); 1548 if (Alias == AliasResult::MayAlias) 1549 break; 1550 } 1551 1552 return Alias; 1553 } 1554 1555 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1556 /// array references. 1557 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size, 1558 const Value *V2, LocationSize V2Size, 1559 AAQueryInfo &AAQI) { 1560 // If either of the memory references is empty, it doesn't matter what the 1561 // pointer values are. 1562 if (V1Size.isZero() || V2Size.isZero()) 1563 return AliasResult::NoAlias; 1564 1565 // Strip off any casts if they exist. 1566 V1 = V1->stripPointerCastsForAliasAnalysis(); 1567 V2 = V2->stripPointerCastsForAliasAnalysis(); 1568 1569 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1570 // value for undef that aliases nothing in the program. 1571 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1572 return AliasResult::NoAlias; 1573 1574 // Are we checking for alias of the same value? 1575 // Because we look 'through' phi nodes, we could look at "Value" pointers from 1576 // different iterations. We must therefore make sure that this is not the 1577 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1578 // happen by looking at the visited phi nodes and making sure they cannot 1579 // reach the value. 1580 if (isValueEqualInPotentialCycles(V1, V2)) 1581 return AliasResult::MustAlias; 1582 1583 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1584 return AliasResult::NoAlias; // Scalars cannot alias each other 1585 1586 // Figure out what objects these things are pointing to if we can. 1587 const Value *O1 = getUnderlyingObject(V1, MaxLookupSearchDepth); 1588 const Value *O2 = getUnderlyingObject(V2, MaxLookupSearchDepth); 1589 1590 // Null values in the default address space don't point to any object, so they 1591 // don't alias any other pointer. 1592 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1593 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1594 return AliasResult::NoAlias; 1595 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1596 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1597 return AliasResult::NoAlias; 1598 1599 if (O1 != O2) { 1600 // If V1/V2 point to two different objects, we know that we have no alias. 1601 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1602 return AliasResult::NoAlias; 1603 1604 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1605 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1606 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1607 return AliasResult::NoAlias; 1608 1609 // Function arguments can't alias with things that are known to be 1610 // unambigously identified at the function level. 1611 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1612 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1613 return AliasResult::NoAlias; 1614 1615 // If one pointer is the result of a call/invoke or load and the other is a 1616 // non-escaping local object within the same function, then we know the 1617 // object couldn't escape to a point where the call could return it. 1618 // 1619 // Note that if the pointers are in different functions, there are a 1620 // variety of complications. A call with a nocapture argument may still 1621 // temporary store the nocapture argument's value in a temporary memory 1622 // location if that memory location doesn't escape. Or it may pass a 1623 // nocapture value to other functions as long as they don't capture it. 1624 if (isEscapeSource(O1) && 1625 AAQI.CI->isNotCapturedBeforeOrAt(O2, cast<Instruction>(O1))) 1626 return AliasResult::NoAlias; 1627 if (isEscapeSource(O2) && 1628 AAQI.CI->isNotCapturedBeforeOrAt(O1, cast<Instruction>(O2))) 1629 return AliasResult::NoAlias; 1630 } 1631 1632 // If the size of one access is larger than the entire object on the other 1633 // side, then we know such behavior is undefined and can assume no alias. 1634 bool NullIsValidLocation = NullPointerIsDefined(&F); 1635 if ((isObjectSmallerThan( 1636 O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL, 1637 TLI, NullIsValidLocation)) || 1638 (isObjectSmallerThan( 1639 O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL, 1640 TLI, NullIsValidLocation))) 1641 return AliasResult::NoAlias; 1642 1643 // If one the accesses may be before the accessed pointer, canonicalize this 1644 // by using unknown after-pointer sizes for both accesses. This is 1645 // equivalent, because regardless of which pointer is lower, one of them 1646 // will always came after the other, as long as the underlying objects aren't 1647 // disjoint. We do this so that the rest of BasicAA does not have to deal 1648 // with accesses before the base pointer, and to improve cache utilization by 1649 // merging equivalent states. 1650 if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) { 1651 V1Size = LocationSize::afterPointer(); 1652 V2Size = LocationSize::afterPointer(); 1653 } 1654 1655 // FIXME: If this depth limit is hit, then we may cache sub-optimal results 1656 // for recursive queries. For this reason, this limit is chosen to be large 1657 // enough to be very rarely hit, while still being small enough to avoid 1658 // stack overflows. 1659 if (AAQI.Depth >= 512) 1660 return AliasResult::MayAlias; 1661 1662 // Check the cache before climbing up use-def chains. This also terminates 1663 // otherwise infinitely recursive queries. 1664 AAQueryInfo::LocPair Locs({V1, V1Size}, {V2, V2Size}); 1665 const bool Swapped = V1 > V2; 1666 if (Swapped) 1667 std::swap(Locs.first, Locs.second); 1668 const auto &Pair = AAQI.AliasCache.try_emplace( 1669 Locs, AAQueryInfo::CacheEntry{AliasResult::NoAlias, 0}); 1670 if (!Pair.second) { 1671 auto &Entry = Pair.first->second; 1672 if (!Entry.isDefinitive()) { 1673 // Remember that we used an assumption. 1674 ++Entry.NumAssumptionUses; 1675 ++AAQI.NumAssumptionUses; 1676 } 1677 // Cache contains sorted {V1,V2} pairs but we should return original order. 1678 auto Result = Entry.Result; 1679 Result.swap(Swapped); 1680 return Result; 1681 } 1682 1683 int OrigNumAssumptionUses = AAQI.NumAssumptionUses; 1684 unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size(); 1685 AliasResult Result = 1686 aliasCheckRecursive(V1, V1Size, V2, V2Size, AAQI, O1, O2); 1687 1688 auto It = AAQI.AliasCache.find(Locs); 1689 assert(It != AAQI.AliasCache.end() && "Must be in cache"); 1690 auto &Entry = It->second; 1691 1692 // Check whether a NoAlias assumption has been used, but disproven. 1693 bool AssumptionDisproven = 1694 Entry.NumAssumptionUses > 0 && Result != AliasResult::NoAlias; 1695 if (AssumptionDisproven) 1696 Result = AliasResult::MayAlias; 1697 1698 // This is a definitive result now, when considered as a root query. 1699 AAQI.NumAssumptionUses -= Entry.NumAssumptionUses; 1700 Entry.Result = Result; 1701 // Cache contains sorted {V1,V2} pairs. 1702 Entry.Result.swap(Swapped); 1703 Entry.NumAssumptionUses = -1; 1704 1705 // If the assumption has been disproven, remove any results that may have 1706 // been based on this assumption. Do this after the Entry updates above to 1707 // avoid iterator invalidation. 1708 if (AssumptionDisproven) 1709 while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults) 1710 AAQI.AliasCache.erase(AAQI.AssumptionBasedResults.pop_back_val()); 1711 1712 // The result may still be based on assumptions higher up in the chain. 1713 // Remember it, so it can be purged from the cache later. 1714 if (OrigNumAssumptionUses != AAQI.NumAssumptionUses && 1715 Result != AliasResult::MayAlias) 1716 AAQI.AssumptionBasedResults.push_back(Locs); 1717 return Result; 1718 } 1719 1720 AliasResult BasicAAResult::aliasCheckRecursive( 1721 const Value *V1, LocationSize V1Size, 1722 const Value *V2, LocationSize V2Size, 1723 AAQueryInfo &AAQI, const Value *O1, const Value *O2) { 1724 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1725 AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, O1, O2, AAQI); 1726 if (Result != AliasResult::MayAlias) 1727 return Result; 1728 } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) { 1729 AliasResult Result = aliasGEP(GV2, V2Size, V1, V1Size, O2, O1, AAQI); 1730 if (Result != AliasResult::MayAlias) 1731 return Result; 1732 } 1733 1734 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1735 AliasResult Result = aliasPHI(PN, V1Size, V2, V2Size, AAQI); 1736 if (Result != AliasResult::MayAlias) 1737 return Result; 1738 } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) { 1739 AliasResult Result = aliasPHI(PN, V2Size, V1, V1Size, AAQI); 1740 if (Result != AliasResult::MayAlias) 1741 return Result; 1742 } 1743 1744 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1745 AliasResult Result = aliasSelect(S1, V1Size, V2, V2Size, AAQI); 1746 if (Result != AliasResult::MayAlias) 1747 return Result; 1748 } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) { 1749 AliasResult Result = aliasSelect(S2, V2Size, V1, V1Size, AAQI); 1750 if (Result != AliasResult::MayAlias) 1751 return Result; 1752 } 1753 1754 // If both pointers are pointing into the same object and one of them 1755 // accesses the entire object, then the accesses must overlap in some way. 1756 if (O1 == O2) { 1757 bool NullIsValidLocation = NullPointerIsDefined(&F); 1758 if (V1Size.isPrecise() && V2Size.isPrecise() && 1759 (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) || 1760 isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation))) 1761 return AliasResult::PartialAlias; 1762 } 1763 1764 return AliasResult::MayAlias; 1765 } 1766 1767 /// Check whether two Values can be considered equivalent. 1768 /// 1769 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether 1770 /// they can not be part of a cycle in the value graph by looking at all 1771 /// visited phi nodes an making sure that the phis cannot reach the value. We 1772 /// have to do this because we are looking through phi nodes (That is we say 1773 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1774 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1775 const Value *V2) { 1776 if (V != V2) 1777 return false; 1778 1779 const Instruction *Inst = dyn_cast<Instruction>(V); 1780 if (!Inst) 1781 return true; 1782 1783 if (VisitedPhiBBs.empty()) 1784 return true; 1785 1786 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1787 return false; 1788 1789 // Make sure that the visited phis cannot reach the Value. This ensures that 1790 // the Values cannot come from different iterations of a potential cycle the 1791 // phi nodes could be involved in. 1792 for (auto *P : VisitedPhiBBs) 1793 if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT)) 1794 return false; 1795 1796 return true; 1797 } 1798 1799 /// Computes the symbolic difference between two de-composed GEPs. 1800 void BasicAAResult::subtractDecomposedGEPs(DecomposedGEP &DestGEP, 1801 const DecomposedGEP &SrcGEP) { 1802 DestGEP.Offset -= SrcGEP.Offset; 1803 for (const VariableGEPIndex &Src : SrcGEP.VarIndices) { 1804 // Find V in Dest. This is N^2, but pointer indices almost never have more 1805 // than a few variable indexes. 1806 bool Found = false; 1807 for (auto I : enumerate(DestGEP.VarIndices)) { 1808 VariableGEPIndex &Dest = I.value(); 1809 if (!isValueEqualInPotentialCycles(Dest.V, Src.V) || 1810 Dest.ZExtBits != Src.ZExtBits || Dest.SExtBits != Src.SExtBits) 1811 continue; 1812 1813 // If we found it, subtract off Scale V's from the entry in Dest. If it 1814 // goes to zero, remove the entry. 1815 if (Dest.Scale != Src.Scale) { 1816 Dest.Scale -= Src.Scale; 1817 Dest.IsNSW = false; 1818 } else { 1819 DestGEP.VarIndices.erase(DestGEP.VarIndices.begin() + I.index()); 1820 } 1821 Found = true; 1822 break; 1823 } 1824 1825 // If we didn't consume this entry, add it to the end of the Dest list. 1826 if (!Found) { 1827 VariableGEPIndex Entry = {Src.V, Src.ZExtBits, Src.SExtBits, 1828 -Src.Scale, Src.CxtI, Src.IsNSW}; 1829 DestGEP.VarIndices.push_back(Entry); 1830 } 1831 } 1832 } 1833 1834 bool BasicAAResult::constantOffsetHeuristic( 1835 const DecomposedGEP &GEP, LocationSize MaybeV1Size, 1836 LocationSize MaybeV2Size, AssumptionCache *AC, DominatorTree *DT) { 1837 if (GEP.VarIndices.size() != 2 || !MaybeV1Size.hasValue() || 1838 !MaybeV2Size.hasValue()) 1839 return false; 1840 1841 const uint64_t V1Size = MaybeV1Size.getValue(); 1842 const uint64_t V2Size = MaybeV2Size.getValue(); 1843 1844 const VariableGEPIndex &Var0 = GEP.VarIndices[0], &Var1 = GEP.VarIndices[1]; 1845 1846 if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits || 1847 Var0.Scale != -Var1.Scale || Var0.V->getType() != Var1.V->getType()) 1848 return false; 1849 1850 // We'll strip off the Extensions of Var0 and Var1 and do another round 1851 // of GetLinearExpression decomposition. In the example above, if Var0 1852 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 1853 1854 LinearExpression E0 = 1855 GetLinearExpression(ExtendedValue(Var0.V), DL, 0, AC, DT); 1856 LinearExpression E1 = 1857 GetLinearExpression(ExtendedValue(Var1.V), DL, 0, AC, DT); 1858 if (E0.Scale != E1.Scale || E0.Val.ZExtBits != E1.Val.ZExtBits || 1859 E0.Val.SExtBits != E1.Val.SExtBits || 1860 !isValueEqualInPotentialCycles(E0.Val.V, E1.Val.V)) 1861 return false; 1862 1863 // We have a hit - Var0 and Var1 only differ by a constant offset! 1864 1865 // If we've been sext'ed then zext'd the maximum difference between Var0 and 1866 // Var1 is possible to calculate, but we're just interested in the absolute 1867 // minimum difference between the two. The minimum distance may occur due to 1868 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 1869 // the minimum distance between %i and %i + 5 is 3. 1870 APInt MinDiff = E0.Offset - E1.Offset, Wrapped = -MinDiff; 1871 MinDiff = APIntOps::umin(MinDiff, Wrapped); 1872 APInt MinDiffBytes = 1873 MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs(); 1874 1875 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 1876 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 1877 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 1878 // V2Size can fit in the MinDiffBytes gap. 1879 return MinDiffBytes.uge(V1Size + GEP.Offset.abs()) && 1880 MinDiffBytes.uge(V2Size + GEP.Offset.abs()); 1881 } 1882 1883 //===----------------------------------------------------------------------===// 1884 // BasicAliasAnalysis Pass 1885 //===----------------------------------------------------------------------===// 1886 1887 AnalysisKey BasicAA::Key; 1888 1889 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) { 1890 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1891 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1892 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 1893 auto *PV = AM.getCachedResult<PhiValuesAnalysis>(F); 1894 return BasicAAResult(F.getParent()->getDataLayout(), F, TLI, AC, DT, PV); 1895 } 1896 1897 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 1898 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1899 } 1900 1901 char BasicAAWrapperPass::ID = 0; 1902 1903 void BasicAAWrapperPass::anchor() {} 1904 1905 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa", 1906 "Basic Alias Analysis (stateless AA impl)", true, true) 1907 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1908 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1909 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1910 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass) 1911 INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa", 1912 "Basic Alias Analysis (stateless AA impl)", true, true) 1913 1914 FunctionPass *llvm::createBasicAAWrapperPass() { 1915 return new BasicAAWrapperPass(); 1916 } 1917 1918 bool BasicAAWrapperPass::runOnFunction(Function &F) { 1919 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 1920 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 1921 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); 1922 auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>(); 1923 1924 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F, 1925 TLIWP.getTLI(F), ACT.getAssumptionCache(F), 1926 &DTWP.getDomTree(), 1927 PVWP ? &PVWP->getResult() : nullptr)); 1928 1929 return false; 1930 } 1931 1932 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1933 AU.setPreservesAll(); 1934 AU.addRequiredTransitive<AssumptionCacheTracker>(); 1935 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 1936 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 1937 AU.addUsedIfAvailable<PhiValuesWrapperPass>(); 1938 } 1939 1940 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { 1941 return BasicAAResult( 1942 F.getParent()->getDataLayout(), F, 1943 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 1944 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 1945 } 1946