1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the primary stateless implementation of the 11 // Alias Analysis interface that implements identities (two different 12 // globals cannot alias, etc), but does no stateful analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/Passes.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/CaptureTracking.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/MemoryBuiltins.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/GlobalAlias.h" 29 #include "llvm/IR/GlobalVariable.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/Operator.h" 34 #include "llvm/Pass.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/GetElementPtrTypeIterator.h" 37 #include "llvm/Target/TargetLibraryInfo.h" 38 #include <algorithm> 39 using namespace llvm; 40 41 //===----------------------------------------------------------------------===// 42 // Useful predicates 43 //===----------------------------------------------------------------------===// 44 45 /// isNonEscapingLocalObject - Return true if the pointer is to a function-local 46 /// object that never escapes from the function. 47 static bool isNonEscapingLocalObject(const Value *V) { 48 // If this is a local allocation, check to see if it escapes. 49 if (isa<AllocaInst>(V) || isNoAliasCall(V)) 50 // Set StoreCaptures to True so that we can assume in our callers that the 51 // pointer is not the result of a load instruction. Currently 52 // PointerMayBeCaptured doesn't have any special analysis for the 53 // StoreCaptures=false case; if it did, our callers could be refined to be 54 // more precise. 55 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 56 57 // If this is an argument that corresponds to a byval or noalias argument, 58 // then it has not escaped before entering the function. Check if it escapes 59 // inside the function. 60 if (const Argument *A = dyn_cast<Argument>(V)) 61 if (A->hasByValAttr() || A->hasNoAliasAttr()) 62 // Note even if the argument is marked nocapture we still need to check 63 // for copies made inside the function. The nocapture attribute only 64 // specifies that there are no copies made that outlive the function. 65 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 66 67 return false; 68 } 69 70 /// isEscapeSource - Return true if the pointer is one which would have 71 /// been considered an escape by isNonEscapingLocalObject. 72 static bool isEscapeSource(const Value *V) { 73 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V)) 74 return true; 75 76 // The load case works because isNonEscapingLocalObject considers all 77 // stores to be escapes (it passes true for the StoreCaptures argument 78 // to PointerMayBeCaptured). 79 if (isa<LoadInst>(V)) 80 return true; 81 82 return false; 83 } 84 85 /// getObjectSize - Return the size of the object specified by V, or 86 /// UnknownSize if unknown. 87 static uint64_t getObjectSize(const Value *V, const DataLayout &TD, 88 const TargetLibraryInfo &TLI, 89 bool RoundToAlign = false) { 90 uint64_t Size; 91 if (getObjectSize(V, Size, &TD, &TLI, RoundToAlign)) 92 return Size; 93 return AliasAnalysis::UnknownSize; 94 } 95 96 /// isObjectSmallerThan - Return true if we can prove that the object specified 97 /// by V is smaller than Size. 98 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 99 const DataLayout &TD, 100 const TargetLibraryInfo &TLI) { 101 // Note that the meanings of the "object" are slightly different in the 102 // following contexts: 103 // c1: llvm::getObjectSize() 104 // c2: llvm.objectsize() intrinsic 105 // c3: isObjectSmallerThan() 106 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 107 // refers to the "entire object". 108 // 109 // Consider this example: 110 // char *p = (char*)malloc(100) 111 // char *q = p+80; 112 // 113 // In the context of c1 and c2, the "object" pointed by q refers to the 114 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 115 // 116 // However, in the context of c3, the "object" refers to the chunk of memory 117 // being allocated. So, the "object" has 100 bytes, and q points to the middle 118 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 119 // parameter, before the llvm::getObjectSize() is called to get the size of 120 // entire object, we should: 121 // - either rewind the pointer q to the base-address of the object in 122 // question (in this case rewind to p), or 123 // - just give up. It is up to caller to make sure the pointer is pointing 124 // to the base address the object. 125 // 126 // We go for 2nd option for simplicity. 127 if (!isIdentifiedObject(V)) 128 return false; 129 130 // This function needs to use the aligned object size because we allow 131 // reads a bit past the end given sufficient alignment. 132 uint64_t ObjectSize = getObjectSize(V, TD, TLI, /*RoundToAlign*/true); 133 134 return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size; 135 } 136 137 /// isObjectSize - Return true if we can prove that the object specified 138 /// by V has size Size. 139 static bool isObjectSize(const Value *V, uint64_t Size, 140 const DataLayout &TD, const TargetLibraryInfo &TLI) { 141 uint64_t ObjectSize = getObjectSize(V, TD, TLI); 142 return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size; 143 } 144 145 /// isIdentifiedFunctionLocal - Return true if V is umabigously identified 146 /// at the function-level. Different IdentifiedFunctionLocals can't alias. 147 /// Further, an IdentifiedFunctionLocal can not alias with any function 148 /// arguments other than itself, which is not neccessarily true for 149 /// IdentifiedObjects. 150 static bool isIdentifiedFunctionLocal(const Value *V) 151 { 152 return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V); 153 } 154 155 156 //===----------------------------------------------------------------------===// 157 // GetElementPtr Instruction Decomposition and Analysis 158 //===----------------------------------------------------------------------===// 159 160 namespace { 161 enum ExtensionKind { 162 EK_NotExtended, 163 EK_SignExt, 164 EK_ZeroExt 165 }; 166 167 struct VariableGEPIndex { 168 const Value *V; 169 ExtensionKind Extension; 170 int64_t Scale; 171 172 bool operator==(const VariableGEPIndex &Other) const { 173 return V == Other.V && Extension == Other.Extension && 174 Scale == Other.Scale; 175 } 176 177 bool operator!=(const VariableGEPIndex &Other) const { 178 return !operator==(Other); 179 } 180 }; 181 } 182 183 184 /// GetLinearExpression - Analyze the specified value as a linear expression: 185 /// "A*V + B", where A and B are constant integers. Return the scale and offset 186 /// values as APInts and return V as a Value*, and return whether we looked 187 /// through any sign or zero extends. The incoming Value is known to have 188 /// IntegerType and it may already be sign or zero extended. 189 /// 190 /// Note that this looks through extends, so the high bits may not be 191 /// represented in the result. 192 static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset, 193 ExtensionKind &Extension, 194 const DataLayout &TD, unsigned Depth) { 195 assert(V->getType()->isIntegerTy() && "Not an integer value"); 196 197 // Limit our recursion depth. 198 if (Depth == 6) { 199 Scale = 1; 200 Offset = 0; 201 return V; 202 } 203 204 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 205 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 206 switch (BOp->getOpcode()) { 207 default: break; 208 case Instruction::Or: 209 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 210 // analyze it. 211 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &TD)) 212 break; 213 // FALL THROUGH. 214 case Instruction::Add: 215 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 216 TD, Depth+1); 217 Offset += RHSC->getValue(); 218 return V; 219 case Instruction::Mul: 220 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 221 TD, Depth+1); 222 Offset *= RHSC->getValue(); 223 Scale *= RHSC->getValue(); 224 return V; 225 case Instruction::Shl: 226 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 227 TD, Depth+1); 228 Offset <<= RHSC->getValue().getLimitedValue(); 229 Scale <<= RHSC->getValue().getLimitedValue(); 230 return V; 231 } 232 } 233 } 234 235 // Since GEP indices are sign extended anyway, we don't care about the high 236 // bits of a sign or zero extended value - just scales and offsets. The 237 // extensions have to be consistent though. 238 if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) || 239 (isa<ZExtInst>(V) && Extension != EK_SignExt)) { 240 Value *CastOp = cast<CastInst>(V)->getOperand(0); 241 unsigned OldWidth = Scale.getBitWidth(); 242 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 243 Scale = Scale.trunc(SmallWidth); 244 Offset = Offset.trunc(SmallWidth); 245 Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt; 246 247 Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension, 248 TD, Depth+1); 249 Scale = Scale.zext(OldWidth); 250 Offset = Offset.zext(OldWidth); 251 252 return Result; 253 } 254 255 Scale = 1; 256 Offset = 0; 257 return V; 258 } 259 260 /// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it 261 /// into a base pointer with a constant offset and a number of scaled symbolic 262 /// offsets. 263 /// 264 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale in 265 /// the VarIndices vector) are Value*'s that are known to be scaled by the 266 /// specified amount, but which may have other unrepresented high bits. As such, 267 /// the gep cannot necessarily be reconstructed from its decomposed form. 268 /// 269 /// When DataLayout is around, this function is capable of analyzing everything 270 /// that GetUnderlyingObject can look through. When not, it just looks 271 /// through pointer casts. 272 /// 273 static const Value * 274 DecomposeGEPExpression(const Value *V, int64_t &BaseOffs, 275 SmallVectorImpl<VariableGEPIndex> &VarIndices, 276 const DataLayout *TD) { 277 // Limit recursion depth to limit compile time in crazy cases. 278 unsigned MaxLookup = 6; 279 280 BaseOffs = 0; 281 do { 282 // See if this is a bitcast or GEP. 283 const Operator *Op = dyn_cast<Operator>(V); 284 if (Op == 0) { 285 // The only non-operator case we can handle are GlobalAliases. 286 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 287 if (!GA->mayBeOverridden()) { 288 V = GA->getAliasee(); 289 continue; 290 } 291 } 292 return V; 293 } 294 295 if (Op->getOpcode() == Instruction::BitCast) { 296 V = Op->getOperand(0); 297 continue; 298 } 299 300 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 301 if (GEPOp == 0) { 302 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 303 // can come up with something. This matches what GetUnderlyingObject does. 304 if (const Instruction *I = dyn_cast<Instruction>(V)) 305 // TODO: Get a DominatorTree and use it here. 306 if (const Value *Simplified = 307 SimplifyInstruction(const_cast<Instruction *>(I), TD)) { 308 V = Simplified; 309 continue; 310 } 311 312 return V; 313 } 314 315 // Don't attempt to analyze GEPs over unsized objects. 316 if (!GEPOp->getOperand(0)->getType()->getPointerElementType()->isSized()) 317 return V; 318 319 // If we are lacking DataLayout information, we can't compute the offets of 320 // elements computed by GEPs. However, we can handle bitcast equivalent 321 // GEPs. 322 if (TD == 0) { 323 if (!GEPOp->hasAllZeroIndices()) 324 return V; 325 V = GEPOp->getOperand(0); 326 continue; 327 } 328 329 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 330 gep_type_iterator GTI = gep_type_begin(GEPOp); 331 for (User::const_op_iterator I = GEPOp->op_begin()+1, 332 E = GEPOp->op_end(); I != E; ++I) { 333 Value *Index = *I; 334 // Compute the (potentially symbolic) offset in bytes for this index. 335 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 336 // For a struct, add the member offset. 337 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 338 if (FieldNo == 0) continue; 339 340 BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo); 341 continue; 342 } 343 344 // For an array/pointer, add the element offset, explicitly scaled. 345 if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 346 if (CIdx->isZero()) continue; 347 BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue(); 348 continue; 349 } 350 351 uint64_t Scale = TD->getTypeAllocSize(*GTI); 352 ExtensionKind Extension = EK_NotExtended; 353 354 // If the integer type is smaller than the pointer size, it is implicitly 355 // sign extended to pointer size. 356 unsigned Width = Index->getType()->getIntegerBitWidth(); 357 if (TD->getPointerSizeInBits() > Width) 358 Extension = EK_SignExt; 359 360 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 361 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 362 Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension, 363 *TD, 0); 364 365 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 366 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 367 BaseOffs += IndexOffset.getSExtValue()*Scale; 368 Scale *= IndexScale.getSExtValue(); 369 370 // If we already had an occurrence of this index variable, merge this 371 // scale into it. For example, we want to handle: 372 // A[x][x] -> x*16 + x*4 -> x*20 373 // This also ensures that 'x' only appears in the index list once. 374 for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) { 375 if (VarIndices[i].V == Index && 376 VarIndices[i].Extension == Extension) { 377 Scale += VarIndices[i].Scale; 378 VarIndices.erase(VarIndices.begin()+i); 379 break; 380 } 381 } 382 383 // Make sure that we have a scale that makes sense for this target's 384 // pointer size. 385 if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) { 386 Scale <<= ShiftBits; 387 Scale = (int64_t)Scale >> ShiftBits; 388 } 389 390 if (Scale) { 391 VariableGEPIndex Entry = {Index, Extension, 392 static_cast<int64_t>(Scale)}; 393 VarIndices.push_back(Entry); 394 } 395 } 396 397 // Analyze the base pointer next. 398 V = GEPOp->getOperand(0); 399 } while (--MaxLookup); 400 401 // If the chain of expressions is too deep, just return early. 402 return V; 403 } 404 405 /// GetIndexDifference - Dest and Src are the variable indices from two 406 /// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base 407 /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic 408 /// difference between the two pointers. 409 static void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest, 410 const SmallVectorImpl<VariableGEPIndex> &Src) { 411 if (Src.empty()) return; 412 413 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 414 const Value *V = Src[i].V; 415 ExtensionKind Extension = Src[i].Extension; 416 int64_t Scale = Src[i].Scale; 417 418 // Find V in Dest. This is N^2, but pointer indices almost never have more 419 // than a few variable indexes. 420 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 421 if (Dest[j].V != V || Dest[j].Extension != Extension) continue; 422 423 // If we found it, subtract off Scale V's from the entry in Dest. If it 424 // goes to zero, remove the entry. 425 if (Dest[j].Scale != Scale) 426 Dest[j].Scale -= Scale; 427 else 428 Dest.erase(Dest.begin()+j); 429 Scale = 0; 430 break; 431 } 432 433 // If we didn't consume this entry, add it to the end of the Dest list. 434 if (Scale) { 435 VariableGEPIndex Entry = { V, Extension, -Scale }; 436 Dest.push_back(Entry); 437 } 438 } 439 } 440 441 //===----------------------------------------------------------------------===// 442 // BasicAliasAnalysis Pass 443 //===----------------------------------------------------------------------===// 444 445 #ifndef NDEBUG 446 static const Function *getParent(const Value *V) { 447 if (const Instruction *inst = dyn_cast<Instruction>(V)) 448 return inst->getParent()->getParent(); 449 450 if (const Argument *arg = dyn_cast<Argument>(V)) 451 return arg->getParent(); 452 453 return NULL; 454 } 455 456 static bool notDifferentParent(const Value *O1, const Value *O2) { 457 458 const Function *F1 = getParent(O1); 459 const Function *F2 = getParent(O2); 460 461 return !F1 || !F2 || F1 == F2; 462 } 463 #endif 464 465 namespace { 466 /// BasicAliasAnalysis - This is the primary alias analysis implementation. 467 struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis { 468 static char ID; // Class identification, replacement for typeinfo 469 BasicAliasAnalysis() : ImmutablePass(ID) { 470 initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry()); 471 } 472 473 virtual void initializePass() { 474 InitializeAliasAnalysis(this); 475 } 476 477 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 478 AU.addRequired<AliasAnalysis>(); 479 AU.addRequired<TargetLibraryInfo>(); 480 } 481 482 virtual AliasResult alias(const Location &LocA, 483 const Location &LocB) { 484 assert(AliasCache.empty() && "AliasCache must be cleared after use!"); 485 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 486 "BasicAliasAnalysis doesn't support interprocedural queries."); 487 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.TBAATag, 488 LocB.Ptr, LocB.Size, LocB.TBAATag); 489 // AliasCache rarely has more than 1 or 2 elements, always use 490 // shrink_and_clear so it quickly returns to the inline capacity of the 491 // SmallDenseMap if it ever grows larger. 492 // FIXME: This should really be shrink_to_inline_capacity_and_clear(). 493 AliasCache.shrink_and_clear(); 494 return Alias; 495 } 496 497 virtual ModRefResult getModRefInfo(ImmutableCallSite CS, 498 const Location &Loc); 499 500 virtual ModRefResult getModRefInfo(ImmutableCallSite CS1, 501 ImmutableCallSite CS2) { 502 // The AliasAnalysis base class has some smarts, lets use them. 503 return AliasAnalysis::getModRefInfo(CS1, CS2); 504 } 505 506 /// pointsToConstantMemory - Chase pointers until we find a (constant 507 /// global) or not. 508 virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal); 509 510 /// getModRefBehavior - Return the behavior when calling the given 511 /// call site. 512 virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS); 513 514 /// getModRefBehavior - Return the behavior when calling the given function. 515 /// For use when the call site is not known. 516 virtual ModRefBehavior getModRefBehavior(const Function *F); 517 518 /// getAdjustedAnalysisPointer - This method is used when a pass implements 519 /// an analysis interface through multiple inheritance. If needed, it 520 /// should override this to adjust the this pointer as needed for the 521 /// specified pass info. 522 virtual void *getAdjustedAnalysisPointer(const void *ID) { 523 if (ID == &AliasAnalysis::ID) 524 return (AliasAnalysis*)this; 525 return this; 526 } 527 528 private: 529 // AliasCache - Track alias queries to guard against recursion. 530 typedef std::pair<Location, Location> LocPair; 531 typedef SmallDenseMap<LocPair, AliasResult, 8> AliasCacheTy; 532 AliasCacheTy AliasCache; 533 534 // Visited - Track instructions visited by pointsToConstantMemory. 535 SmallPtrSet<const Value*, 16> Visited; 536 537 // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP 538 // instruction against another. 539 AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size, 540 const MDNode *V1TBAAInfo, 541 const Value *V2, uint64_t V2Size, 542 const MDNode *V2TBAAInfo, 543 const Value *UnderlyingV1, const Value *UnderlyingV2); 544 545 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI 546 // instruction against another. 547 AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize, 548 const MDNode *PNTBAAInfo, 549 const Value *V2, uint64_t V2Size, 550 const MDNode *V2TBAAInfo); 551 552 /// aliasSelect - Disambiguate a Select instruction against another value. 553 AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize, 554 const MDNode *SITBAAInfo, 555 const Value *V2, uint64_t V2Size, 556 const MDNode *V2TBAAInfo); 557 558 AliasResult aliasCheck(const Value *V1, uint64_t V1Size, 559 const MDNode *V1TBAATag, 560 const Value *V2, uint64_t V2Size, 561 const MDNode *V2TBAATag); 562 }; 563 } // End of anonymous namespace 564 565 // Register this pass... 566 char BasicAliasAnalysis::ID = 0; 567 INITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa", 568 "Basic Alias Analysis (stateless AA impl)", 569 false, true, false) 570 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 571 INITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa", 572 "Basic Alias Analysis (stateless AA impl)", 573 false, true, false) 574 575 576 ImmutablePass *llvm::createBasicAliasAnalysisPass() { 577 return new BasicAliasAnalysis(); 578 } 579 580 /// pointsToConstantMemory - Returns whether the given pointer value 581 /// points to memory that is local to the function, with global constants being 582 /// considered local to all functions. 583 bool 584 BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) { 585 assert(Visited.empty() && "Visited must be cleared after use!"); 586 587 unsigned MaxLookup = 8; 588 SmallVector<const Value *, 16> Worklist; 589 Worklist.push_back(Loc.Ptr); 590 do { 591 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), TD); 592 if (!Visited.insert(V)) { 593 Visited.clear(); 594 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 595 } 596 597 // An alloca instruction defines local memory. 598 if (OrLocal && isa<AllocaInst>(V)) 599 continue; 600 601 // A global constant counts as local memory for our purposes. 602 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 603 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 604 // global to be marked constant in some modules and non-constant in 605 // others. GV may even be a declaration, not a definition. 606 if (!GV->isConstant()) { 607 Visited.clear(); 608 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 609 } 610 continue; 611 } 612 613 // If both select values point to local memory, then so does the select. 614 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 615 Worklist.push_back(SI->getTrueValue()); 616 Worklist.push_back(SI->getFalseValue()); 617 continue; 618 } 619 620 // If all values incoming to a phi node point to local memory, then so does 621 // the phi. 622 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 623 // Don't bother inspecting phi nodes with many operands. 624 if (PN->getNumIncomingValues() > MaxLookup) { 625 Visited.clear(); 626 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 627 } 628 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 629 Worklist.push_back(PN->getIncomingValue(i)); 630 continue; 631 } 632 633 // Otherwise be conservative. 634 Visited.clear(); 635 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 636 637 } while (!Worklist.empty() && --MaxLookup); 638 639 Visited.clear(); 640 return Worklist.empty(); 641 } 642 643 /// getModRefBehavior - Return the behavior when calling the given call site. 644 AliasAnalysis::ModRefBehavior 645 BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) { 646 if (CS.doesNotAccessMemory()) 647 // Can't do better than this. 648 return DoesNotAccessMemory; 649 650 ModRefBehavior Min = UnknownModRefBehavior; 651 652 // If the callsite knows it only reads memory, don't return worse 653 // than that. 654 if (CS.onlyReadsMemory()) 655 Min = OnlyReadsMemory; 656 657 // The AliasAnalysis base class has some smarts, lets use them. 658 return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min); 659 } 660 661 /// getModRefBehavior - Return the behavior when calling the given function. 662 /// For use when the call site is not known. 663 AliasAnalysis::ModRefBehavior 664 BasicAliasAnalysis::getModRefBehavior(const Function *F) { 665 // If the function declares it doesn't access memory, we can't do better. 666 if (F->doesNotAccessMemory()) 667 return DoesNotAccessMemory; 668 669 // For intrinsics, we can check the table. 670 if (unsigned iid = F->getIntrinsicID()) { 671 #define GET_INTRINSIC_MODREF_BEHAVIOR 672 #include "llvm/IR/Intrinsics.gen" 673 #undef GET_INTRINSIC_MODREF_BEHAVIOR 674 } 675 676 ModRefBehavior Min = UnknownModRefBehavior; 677 678 // If the function declares it only reads memory, go with that. 679 if (F->onlyReadsMemory()) 680 Min = OnlyReadsMemory; 681 682 // Otherwise be conservative. 683 return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min); 684 } 685 686 /// getModRefInfo - Check to see if the specified callsite can clobber the 687 /// specified memory object. Since we only look at local properties of this 688 /// function, we really can't say much about this query. We do, however, use 689 /// simple "address taken" analysis on local objects. 690 AliasAnalysis::ModRefResult 691 BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS, 692 const Location &Loc) { 693 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && 694 "AliasAnalysis query involving multiple functions!"); 695 696 const Value *Object = GetUnderlyingObject(Loc.Ptr, TD); 697 698 // If this is a tail call and Loc.Ptr points to a stack location, we know that 699 // the tail call cannot access or modify the local stack. 700 // We cannot exclude byval arguments here; these belong to the caller of 701 // the current function not to the current function, and a tail callee 702 // may reference them. 703 if (isa<AllocaInst>(Object)) 704 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) 705 if (CI->isTailCall()) 706 return NoModRef; 707 708 // If the pointer is to a locally allocated object that does not escape, 709 // then the call can not mod/ref the pointer unless the call takes the pointer 710 // as an argument, and itself doesn't capture it. 711 if (!isa<Constant>(Object) && CS.getInstruction() != Object && 712 isNonEscapingLocalObject(Object)) { 713 bool PassedAsArg = false; 714 unsigned ArgNo = 0; 715 for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end(); 716 CI != CE; ++CI, ++ArgNo) { 717 // Only look at the no-capture or byval pointer arguments. If this 718 // pointer were passed to arguments that were neither of these, then it 719 // couldn't be no-capture. 720 if (!(*CI)->getType()->isPointerTy() || 721 (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo))) 722 continue; 723 724 // If this is a no-capture pointer argument, see if we can tell that it 725 // is impossible to alias the pointer we're checking. If not, we have to 726 // assume that the call could touch the pointer, even though it doesn't 727 // escape. 728 if (!isNoAlias(Location(*CI), Location(Object))) { 729 PassedAsArg = true; 730 break; 731 } 732 } 733 734 if (!PassedAsArg) 735 return NoModRef; 736 } 737 738 const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>(); 739 ModRefResult Min = ModRef; 740 741 // Finally, handle specific knowledge of intrinsics. 742 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 743 if (II != 0) 744 switch (II->getIntrinsicID()) { 745 default: break; 746 case Intrinsic::memcpy: 747 case Intrinsic::memmove: { 748 uint64_t Len = UnknownSize; 749 if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) 750 Len = LenCI->getZExtValue(); 751 Value *Dest = II->getArgOperand(0); 752 Value *Src = II->getArgOperand(1); 753 // If it can't overlap the source dest, then it doesn't modref the loc. 754 if (isNoAlias(Location(Dest, Len), Loc)) { 755 if (isNoAlias(Location(Src, Len), Loc)) 756 return NoModRef; 757 // If it can't overlap the dest, then worst case it reads the loc. 758 Min = Ref; 759 } else if (isNoAlias(Location(Src, Len), Loc)) { 760 // If it can't overlap the source, then worst case it mutates the loc. 761 Min = Mod; 762 } 763 break; 764 } 765 case Intrinsic::memset: 766 // Since memset is 'accesses arguments' only, the AliasAnalysis base class 767 // will handle it for the variable length case. 768 if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) { 769 uint64_t Len = LenCI->getZExtValue(); 770 Value *Dest = II->getArgOperand(0); 771 if (isNoAlias(Location(Dest, Len), Loc)) 772 return NoModRef; 773 } 774 // We know that memset doesn't load anything. 775 Min = Mod; 776 break; 777 case Intrinsic::lifetime_start: 778 case Intrinsic::lifetime_end: 779 case Intrinsic::invariant_start: { 780 uint64_t PtrSize = 781 cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(); 782 if (isNoAlias(Location(II->getArgOperand(1), 783 PtrSize, 784 II->getMetadata(LLVMContext::MD_tbaa)), 785 Loc)) 786 return NoModRef; 787 break; 788 } 789 case Intrinsic::invariant_end: { 790 uint64_t PtrSize = 791 cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(); 792 if (isNoAlias(Location(II->getArgOperand(2), 793 PtrSize, 794 II->getMetadata(LLVMContext::MD_tbaa)), 795 Loc)) 796 return NoModRef; 797 break; 798 } 799 case Intrinsic::arm_neon_vld1: { 800 // LLVM's vld1 and vst1 intrinsics currently only support a single 801 // vector register. 802 uint64_t Size = 803 TD ? TD->getTypeStoreSize(II->getType()) : UnknownSize; 804 if (isNoAlias(Location(II->getArgOperand(0), Size, 805 II->getMetadata(LLVMContext::MD_tbaa)), 806 Loc)) 807 return NoModRef; 808 break; 809 } 810 case Intrinsic::arm_neon_vst1: { 811 uint64_t Size = 812 TD ? TD->getTypeStoreSize(II->getArgOperand(1)->getType()) : UnknownSize; 813 if (isNoAlias(Location(II->getArgOperand(0), Size, 814 II->getMetadata(LLVMContext::MD_tbaa)), 815 Loc)) 816 return NoModRef; 817 break; 818 } 819 } 820 821 // We can bound the aliasing properties of memset_pattern16 just as we can 822 // for memcpy/memset. This is particularly important because the 823 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 824 // whenever possible. 825 else if (TLI.has(LibFunc::memset_pattern16) && 826 CS.getCalledFunction() && 827 CS.getCalledFunction()->getName() == "memset_pattern16") { 828 const Function *MS = CS.getCalledFunction(); 829 FunctionType *MemsetType = MS->getFunctionType(); 830 if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 && 831 isa<PointerType>(MemsetType->getParamType(0)) && 832 isa<PointerType>(MemsetType->getParamType(1)) && 833 isa<IntegerType>(MemsetType->getParamType(2))) { 834 uint64_t Len = UnknownSize; 835 if (const ConstantInt *LenCI = dyn_cast<ConstantInt>(CS.getArgument(2))) 836 Len = LenCI->getZExtValue(); 837 const Value *Dest = CS.getArgument(0); 838 const Value *Src = CS.getArgument(1); 839 // If it can't overlap the source dest, then it doesn't modref the loc. 840 if (isNoAlias(Location(Dest, Len), Loc)) { 841 // Always reads 16 bytes of the source. 842 if (isNoAlias(Location(Src, 16), Loc)) 843 return NoModRef; 844 // If it can't overlap the dest, then worst case it reads the loc. 845 Min = Ref; 846 // Always reads 16 bytes of the source. 847 } else if (isNoAlias(Location(Src, 16), Loc)) { 848 // If it can't overlap the source, then worst case it mutates the loc. 849 Min = Mod; 850 } 851 } 852 } 853 854 // The AliasAnalysis base class has some smarts, lets use them. 855 return ModRefResult(AliasAnalysis::getModRefInfo(CS, Loc) & Min); 856 } 857 858 static bool areVarIndicesEqual(SmallVectorImpl<VariableGEPIndex> &Indices1, 859 SmallVectorImpl<VariableGEPIndex> &Indices2) { 860 unsigned Size1 = Indices1.size(); 861 unsigned Size2 = Indices2.size(); 862 863 if (Size1 != Size2) 864 return false; 865 866 for (unsigned I = 0; I != Size1; ++I) 867 if (Indices1[I] != Indices2[I]) 868 return false; 869 870 return true; 871 } 872 873 /// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction 874 /// against another pointer. We know that V1 is a GEP, but we don't know 875 /// anything about V2. UnderlyingV1 is GetUnderlyingObject(GEP1, TD), 876 /// UnderlyingV2 is the same for V2. 877 /// 878 AliasAnalysis::AliasResult 879 BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, 880 const MDNode *V1TBAAInfo, 881 const Value *V2, uint64_t V2Size, 882 const MDNode *V2TBAAInfo, 883 const Value *UnderlyingV1, 884 const Value *UnderlyingV2) { 885 int64_t GEP1BaseOffset; 886 SmallVector<VariableGEPIndex, 4> GEP1VariableIndices; 887 888 // If we have two gep instructions with must-alias or not-alias'ing base 889 // pointers, figure out if the indexes to the GEP tell us anything about the 890 // derived pointer. 891 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 892 // Do the base pointers alias? 893 AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, 0, 894 UnderlyingV2, UnknownSize, 0); 895 896 // Check for geps of non-aliasing underlying pointers where the offsets are 897 // identical. 898 if ((BaseAlias == MayAlias) && V1Size == V2Size) { 899 // Do the base pointers alias assuming type and size. 900 AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, 901 V1TBAAInfo, UnderlyingV2, 902 V2Size, V2TBAAInfo); 903 if (PreciseBaseAlias == NoAlias) { 904 // See if the computed offset from the common pointer tells us about the 905 // relation of the resulting pointer. 906 int64_t GEP2BaseOffset; 907 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 908 const Value *GEP2BasePtr = 909 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD); 910 const Value *GEP1BasePtr = 911 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD); 912 // DecomposeGEPExpression and GetUnderlyingObject should return the 913 // same result except when DecomposeGEPExpression has no DataLayout. 914 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 915 assert(TD == 0 && 916 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 917 return MayAlias; 918 } 919 // Same offsets. 920 if (GEP1BaseOffset == GEP2BaseOffset && 921 areVarIndicesEqual(GEP1VariableIndices, GEP2VariableIndices)) 922 return NoAlias; 923 GEP1VariableIndices.clear(); 924 } 925 } 926 927 // If we get a No or May, then return it immediately, no amount of analysis 928 // will improve this situation. 929 if (BaseAlias != MustAlias) return BaseAlias; 930 931 // Otherwise, we have a MustAlias. Since the base pointers alias each other 932 // exactly, see if the computed offset from the common pointer tells us 933 // about the relation of the resulting pointer. 934 const Value *GEP1BasePtr = 935 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD); 936 937 int64_t GEP2BaseOffset; 938 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 939 const Value *GEP2BasePtr = 940 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD); 941 942 // DecomposeGEPExpression and GetUnderlyingObject should return the 943 // same result except when DecomposeGEPExpression has no DataLayout. 944 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 945 assert(TD == 0 && 946 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 947 return MayAlias; 948 } 949 950 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 951 // symbolic difference. 952 GEP1BaseOffset -= GEP2BaseOffset; 953 GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices); 954 955 } else { 956 // Check to see if these two pointers are related by the getelementptr 957 // instruction. If one pointer is a GEP with a non-zero index of the other 958 // pointer, we know they cannot alias. 959 960 // If both accesses are unknown size, we can't do anything useful here. 961 if (V1Size == UnknownSize && V2Size == UnknownSize) 962 return MayAlias; 963 964 AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, 0, 965 V2, V2Size, V2TBAAInfo); 966 if (R != MustAlias) 967 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 968 // If V2 is known not to alias GEP base pointer, then the two values 969 // cannot alias per GEP semantics: "A pointer value formed from a 970 // getelementptr instruction is associated with the addresses associated 971 // with the first operand of the getelementptr". 972 return R; 973 974 const Value *GEP1BasePtr = 975 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD); 976 977 // DecomposeGEPExpression and GetUnderlyingObject should return the 978 // same result except when DecomposeGEPExpression has no DataLayout. 979 if (GEP1BasePtr != UnderlyingV1) { 980 assert(TD == 0 && 981 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 982 return MayAlias; 983 } 984 } 985 986 // In the two GEP Case, if there is no difference in the offsets of the 987 // computed pointers, the resultant pointers are a must alias. This 988 // hapens when we have two lexically identical GEP's (for example). 989 // 990 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 991 // must aliases the GEP, the end result is a must alias also. 992 if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty()) 993 return MustAlias; 994 995 // If there is a constant difference between the pointers, but the difference 996 // is less than the size of the associated memory object, then we know 997 // that the objects are partially overlapping. If the difference is 998 // greater, we know they do not overlap. 999 if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) { 1000 if (GEP1BaseOffset >= 0) { 1001 if (V2Size != UnknownSize) { 1002 if ((uint64_t)GEP1BaseOffset < V2Size) 1003 return PartialAlias; 1004 return NoAlias; 1005 } 1006 } else { 1007 if (V1Size != UnknownSize) { 1008 if (-(uint64_t)GEP1BaseOffset < V1Size) 1009 return PartialAlias; 1010 return NoAlias; 1011 } 1012 } 1013 } 1014 1015 // Try to distinguish something like &A[i][1] against &A[42][0]. 1016 // Grab the least significant bit set in any of the scales. 1017 if (!GEP1VariableIndices.empty()) { 1018 uint64_t Modulo = 0; 1019 for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) 1020 Modulo |= (uint64_t)GEP1VariableIndices[i].Scale; 1021 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1022 1023 // We can compute the difference between the two addresses 1024 // mod Modulo. Check whether that difference guarantees that the 1025 // two locations do not alias. 1026 uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1); 1027 if (V1Size != UnknownSize && V2Size != UnknownSize && 1028 ModOffset >= V2Size && V1Size <= Modulo - ModOffset) 1029 return NoAlias; 1030 } 1031 1032 // Statically, we can see that the base objects are the same, but the 1033 // pointers have dynamic offsets which we can't resolve. And none of our 1034 // little tricks above worked. 1035 // 1036 // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the 1037 // practical effect of this is protecting TBAA in the case of dynamic 1038 // indices into arrays of unions or malloc'd memory. 1039 return PartialAlias; 1040 } 1041 1042 static AliasAnalysis::AliasResult 1043 MergeAliasResults(AliasAnalysis::AliasResult A, AliasAnalysis::AliasResult B) { 1044 // If the results agree, take it. 1045 if (A == B) 1046 return A; 1047 // A mix of PartialAlias and MustAlias is PartialAlias. 1048 if ((A == AliasAnalysis::PartialAlias && B == AliasAnalysis::MustAlias) || 1049 (B == AliasAnalysis::PartialAlias && A == AliasAnalysis::MustAlias)) 1050 return AliasAnalysis::PartialAlias; 1051 // Otherwise, we don't know anything. 1052 return AliasAnalysis::MayAlias; 1053 } 1054 1055 /// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select 1056 /// instruction against another. 1057 AliasAnalysis::AliasResult 1058 BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize, 1059 const MDNode *SITBAAInfo, 1060 const Value *V2, uint64_t V2Size, 1061 const MDNode *V2TBAAInfo) { 1062 // If the values are Selects with the same condition, we can do a more precise 1063 // check: just check for aliases between the values on corresponding arms. 1064 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1065 if (SI->getCondition() == SI2->getCondition()) { 1066 AliasResult Alias = 1067 aliasCheck(SI->getTrueValue(), SISize, SITBAAInfo, 1068 SI2->getTrueValue(), V2Size, V2TBAAInfo); 1069 if (Alias == MayAlias) 1070 return MayAlias; 1071 AliasResult ThisAlias = 1072 aliasCheck(SI->getFalseValue(), SISize, SITBAAInfo, 1073 SI2->getFalseValue(), V2Size, V2TBAAInfo); 1074 return MergeAliasResults(ThisAlias, Alias); 1075 } 1076 1077 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1078 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1079 AliasResult Alias = 1080 aliasCheck(V2, V2Size, V2TBAAInfo, SI->getTrueValue(), SISize, SITBAAInfo); 1081 if (Alias == MayAlias) 1082 return MayAlias; 1083 1084 AliasResult ThisAlias = 1085 aliasCheck(V2, V2Size, V2TBAAInfo, SI->getFalseValue(), SISize, SITBAAInfo); 1086 return MergeAliasResults(ThisAlias, Alias); 1087 } 1088 1089 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction 1090 // against another. 1091 AliasAnalysis::AliasResult 1092 BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize, 1093 const MDNode *PNTBAAInfo, 1094 const Value *V2, uint64_t V2Size, 1095 const MDNode *V2TBAAInfo) { 1096 // If the values are PHIs in the same block, we can do a more precise 1097 // as well as efficient check: just check for aliases between the values 1098 // on corresponding edges. 1099 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1100 if (PN2->getParent() == PN->getParent()) { 1101 LocPair Locs(Location(PN, PNSize, PNTBAAInfo), 1102 Location(V2, V2Size, V2TBAAInfo)); 1103 if (PN > V2) 1104 std::swap(Locs.first, Locs.second); 1105 // Analyse the PHIs' inputs under the assumption that the PHIs are 1106 // NoAlias. 1107 // If the PHIs are May/MustAlias there must be (recursively) an input 1108 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1109 // there must be an operation on the PHIs within the PHIs' value cycle 1110 // that causes a MayAlias. 1111 // Pretend the phis do not alias. 1112 AliasResult Alias = NoAlias; 1113 assert(AliasCache.count(Locs) && 1114 "There must exist an entry for the phi node"); 1115 AliasResult OrigAliasResult = AliasCache[Locs]; 1116 AliasCache[Locs] = NoAlias; 1117 1118 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1119 AliasResult ThisAlias = 1120 aliasCheck(PN->getIncomingValue(i), PNSize, PNTBAAInfo, 1121 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1122 V2Size, V2TBAAInfo); 1123 Alias = MergeAliasResults(ThisAlias, Alias); 1124 if (Alias == MayAlias) 1125 break; 1126 } 1127 1128 // Reset if speculation failed. 1129 if (Alias != NoAlias) 1130 AliasCache[Locs] = OrigAliasResult; 1131 1132 return Alias; 1133 } 1134 1135 SmallPtrSet<Value*, 4> UniqueSrc; 1136 SmallVector<Value*, 4> V1Srcs; 1137 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1138 Value *PV1 = PN->getIncomingValue(i); 1139 if (isa<PHINode>(PV1)) 1140 // If any of the source itself is a PHI, return MayAlias conservatively 1141 // to avoid compile time explosion. The worst possible case is if both 1142 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1143 // and 'n' are the number of PHI sources. 1144 return MayAlias; 1145 if (UniqueSrc.insert(PV1)) 1146 V1Srcs.push_back(PV1); 1147 } 1148 1149 AliasResult Alias = aliasCheck(V2, V2Size, V2TBAAInfo, 1150 V1Srcs[0], PNSize, PNTBAAInfo); 1151 // Early exit if the check of the first PHI source against V2 is MayAlias. 1152 // Other results are not possible. 1153 if (Alias == MayAlias) 1154 return MayAlias; 1155 1156 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1157 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1158 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1159 Value *V = V1Srcs[i]; 1160 1161 AliasResult ThisAlias = aliasCheck(V2, V2Size, V2TBAAInfo, 1162 V, PNSize, PNTBAAInfo); 1163 Alias = MergeAliasResults(ThisAlias, Alias); 1164 if (Alias == MayAlias) 1165 break; 1166 } 1167 1168 return Alias; 1169 } 1170 1171 // aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases, 1172 // such as array references. 1173 // 1174 AliasAnalysis::AliasResult 1175 BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size, 1176 const MDNode *V1TBAAInfo, 1177 const Value *V2, uint64_t V2Size, 1178 const MDNode *V2TBAAInfo) { 1179 // If either of the memory references is empty, it doesn't matter what the 1180 // pointer values are. 1181 if (V1Size == 0 || V2Size == 0) 1182 return NoAlias; 1183 1184 // Strip off any casts if they exist. 1185 V1 = V1->stripPointerCasts(); 1186 V2 = V2->stripPointerCasts(); 1187 1188 // Are we checking for alias of the same value? 1189 if (V1 == V2) return MustAlias; 1190 1191 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1192 return NoAlias; // Scalars cannot alias each other 1193 1194 // Figure out what objects these things are pointing to if we can. 1195 const Value *O1 = GetUnderlyingObject(V1, TD); 1196 const Value *O2 = GetUnderlyingObject(V2, TD); 1197 1198 // Null values in the default address space don't point to any object, so they 1199 // don't alias any other pointer. 1200 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1201 if (CPN->getType()->getAddressSpace() == 0) 1202 return NoAlias; 1203 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1204 if (CPN->getType()->getAddressSpace() == 0) 1205 return NoAlias; 1206 1207 if (O1 != O2) { 1208 // If V1/V2 point to two different objects we know that we have no alias. 1209 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1210 return NoAlias; 1211 1212 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1213 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1214 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1215 return NoAlias; 1216 1217 // Function arguments can't alias with things that are known to be 1218 // unambigously identified at the function level. 1219 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1220 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1221 return NoAlias; 1222 1223 // Most objects can't alias null. 1224 if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) || 1225 (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2))) 1226 return NoAlias; 1227 1228 // If one pointer is the result of a call/invoke or load and the other is a 1229 // non-escaping local object within the same function, then we know the 1230 // object couldn't escape to a point where the call could return it. 1231 // 1232 // Note that if the pointers are in different functions, there are a 1233 // variety of complications. A call with a nocapture argument may still 1234 // temporary store the nocapture argument's value in a temporary memory 1235 // location if that memory location doesn't escape. Or it may pass a 1236 // nocapture value to other functions as long as they don't capture it. 1237 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) 1238 return NoAlias; 1239 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) 1240 return NoAlias; 1241 } 1242 1243 // If the size of one access is larger than the entire object on the other 1244 // side, then we know such behavior is undefined and can assume no alias. 1245 if (TD) 1246 if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *TD, *TLI)) || 1247 (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *TD, *TLI))) 1248 return NoAlias; 1249 1250 // Check the cache before climbing up use-def chains. This also terminates 1251 // otherwise infinitely recursive queries. 1252 LocPair Locs(Location(V1, V1Size, V1TBAAInfo), 1253 Location(V2, V2Size, V2TBAAInfo)); 1254 if (V1 > V2) 1255 std::swap(Locs.first, Locs.second); 1256 std::pair<AliasCacheTy::iterator, bool> Pair = 1257 AliasCache.insert(std::make_pair(Locs, MayAlias)); 1258 if (!Pair.second) 1259 return Pair.first->second; 1260 1261 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1262 // GEP can't simplify, we don't even look at the PHI cases. 1263 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1264 std::swap(V1, V2); 1265 std::swap(V1Size, V2Size); 1266 std::swap(O1, O2); 1267 std::swap(V1TBAAInfo, V2TBAAInfo); 1268 } 1269 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1270 AliasResult Result = aliasGEP(GV1, V1Size, V1TBAAInfo, V2, V2Size, V2TBAAInfo, O1, O2); 1271 if (Result != MayAlias) return AliasCache[Locs] = Result; 1272 } 1273 1274 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1275 std::swap(V1, V2); 1276 std::swap(V1Size, V2Size); 1277 std::swap(V1TBAAInfo, V2TBAAInfo); 1278 } 1279 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1280 AliasResult Result = aliasPHI(PN, V1Size, V1TBAAInfo, 1281 V2, V2Size, V2TBAAInfo); 1282 if (Result != MayAlias) return AliasCache[Locs] = Result; 1283 } 1284 1285 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1286 std::swap(V1, V2); 1287 std::swap(V1Size, V2Size); 1288 std::swap(V1TBAAInfo, V2TBAAInfo); 1289 } 1290 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1291 AliasResult Result = aliasSelect(S1, V1Size, V1TBAAInfo, 1292 V2, V2Size, V2TBAAInfo); 1293 if (Result != MayAlias) return AliasCache[Locs] = Result; 1294 } 1295 1296 // If both pointers are pointing into the same object and one of them 1297 // accesses is accessing the entire object, then the accesses must 1298 // overlap in some way. 1299 if (TD && O1 == O2) 1300 if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *TD, *TLI)) || 1301 (V2Size != UnknownSize && isObjectSize(O2, V2Size, *TD, *TLI))) 1302 return AliasCache[Locs] = PartialAlias; 1303 1304 AliasResult Result = 1305 AliasAnalysis::alias(Location(V1, V1Size, V1TBAAInfo), 1306 Location(V2, V2Size, V2TBAAInfo)); 1307 return AliasCache[Locs] = Result; 1308 } 1309