1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the primary stateless implementation of the 11 // Alias Analysis interface that implements identities (two different 12 // globals cannot alias, etc), but does no stateful analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/BasicAliasAnalysis.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/CFG.h" 21 #include "llvm/Analysis/CaptureTracking.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include <algorithm> 40 41 #define DEBUG_TYPE "basicaa" 42 43 using namespace llvm; 44 45 /// Enable analysis of recursive PHI nodes. 46 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden, 47 cl::init(false)); 48 /// SearchLimitReached / SearchTimes shows how often the limit of 49 /// to decompose GEPs is reached. It will affect the precision 50 /// of basic alias analysis. 51 STATISTIC(SearchLimitReached, "Number of times the limit to " 52 "decompose GEPs is reached"); 53 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 54 55 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 56 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be 57 /// careful with value equivalence. We use reachability to make sure a value 58 /// cannot be involved in a cycle. 59 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 60 61 // The max limit of the search depth in DecomposeGEPExpression() and 62 // GetUnderlyingObject(), both functions need to use the same search 63 // depth otherwise the algorithm in aliasGEP will assert. 64 static const unsigned MaxLookupSearchDepth = 6; 65 66 bool BasicAAResult::invalidate(Function &F, const PreservedAnalyses &PA, 67 FunctionAnalysisManager::Invalidator &Inv) { 68 // We don't care if this analysis itself is preserved, it has no state. But 69 // we need to check that the analyses it depends on have been. Note that we 70 // may be created without handles to some analyses and in that case don't 71 // depend on them. 72 if (Inv.invalidate<AssumptionAnalysis>(F, PA) || 73 (DT && Inv.invalidate<DominatorTreeAnalysis>(F, PA)) || 74 (LI && Inv.invalidate<LoopAnalysis>(F, PA))) 75 return true; 76 77 // Otherwise this analysis result remains valid. 78 return false; 79 } 80 81 //===----------------------------------------------------------------------===// 82 // Useful predicates 83 //===----------------------------------------------------------------------===// 84 85 /// Returns true if the pointer is to a function-local object that never 86 /// escapes from the function. 87 static bool isNonEscapingLocalObject(const Value *V) { 88 // If this is a local allocation, check to see if it escapes. 89 if (isa<AllocaInst>(V) || isNoAliasCall(V)) 90 // Set StoreCaptures to True so that we can assume in our callers that the 91 // pointer is not the result of a load instruction. Currently 92 // PointerMayBeCaptured doesn't have any special analysis for the 93 // StoreCaptures=false case; if it did, our callers could be refined to be 94 // more precise. 95 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 96 97 // If this is an argument that corresponds to a byval or noalias argument, 98 // then it has not escaped before entering the function. Check if it escapes 99 // inside the function. 100 if (const Argument *A = dyn_cast<Argument>(V)) 101 if (A->hasByValAttr() || A->hasNoAliasAttr()) 102 // Note even if the argument is marked nocapture, we still need to check 103 // for copies made inside the function. The nocapture attribute only 104 // specifies that there are no copies made that outlive the function. 105 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 106 107 return false; 108 } 109 110 /// Returns true if the pointer is one which would have been considered an 111 /// escape by isNonEscapingLocalObject. 112 static bool isEscapeSource(const Value *V) { 113 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V)) 114 return true; 115 116 // The load case works because isNonEscapingLocalObject considers all 117 // stores to be escapes (it passes true for the StoreCaptures argument 118 // to PointerMayBeCaptured). 119 if (isa<LoadInst>(V)) 120 return true; 121 122 return false; 123 } 124 125 /// Returns the size of the object specified by V or UnknownSize if unknown. 126 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 127 const TargetLibraryInfo &TLI, 128 bool RoundToAlign = false) { 129 uint64_t Size; 130 ObjectSizeOpts Opts; 131 Opts.RoundToAlign = RoundToAlign; 132 if (getObjectSize(V, Size, DL, &TLI, Opts)) 133 return Size; 134 return MemoryLocation::UnknownSize; 135 } 136 137 /// Returns true if we can prove that the object specified by V is smaller than 138 /// Size. 139 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 140 const DataLayout &DL, 141 const TargetLibraryInfo &TLI) { 142 // Note that the meanings of the "object" are slightly different in the 143 // following contexts: 144 // c1: llvm::getObjectSize() 145 // c2: llvm.objectsize() intrinsic 146 // c3: isObjectSmallerThan() 147 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 148 // refers to the "entire object". 149 // 150 // Consider this example: 151 // char *p = (char*)malloc(100) 152 // char *q = p+80; 153 // 154 // In the context of c1 and c2, the "object" pointed by q refers to the 155 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 156 // 157 // However, in the context of c3, the "object" refers to the chunk of memory 158 // being allocated. So, the "object" has 100 bytes, and q points to the middle 159 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 160 // parameter, before the llvm::getObjectSize() is called to get the size of 161 // entire object, we should: 162 // - either rewind the pointer q to the base-address of the object in 163 // question (in this case rewind to p), or 164 // - just give up. It is up to caller to make sure the pointer is pointing 165 // to the base address the object. 166 // 167 // We go for 2nd option for simplicity. 168 if (!isIdentifiedObject(V)) 169 return false; 170 171 // This function needs to use the aligned object size because we allow 172 // reads a bit past the end given sufficient alignment. 173 uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/ true); 174 175 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; 176 } 177 178 /// Returns true if we can prove that the object specified by V has size Size. 179 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, 180 const TargetLibraryInfo &TLI) { 181 uint64_t ObjectSize = getObjectSize(V, DL, TLI); 182 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; 183 } 184 185 //===----------------------------------------------------------------------===// 186 // GetElementPtr Instruction Decomposition and Analysis 187 //===----------------------------------------------------------------------===// 188 189 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 190 /// B are constant integers. 191 /// 192 /// Returns the scale and offset values as APInts and return V as a Value*, and 193 /// return whether we looked through any sign or zero extends. The incoming 194 /// Value is known to have IntegerType, and it may already be sign or zero 195 /// extended. 196 /// 197 /// Note that this looks through extends, so the high bits may not be 198 /// represented in the result. 199 /*static*/ const Value *BasicAAResult::GetLinearExpression( 200 const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits, 201 unsigned &SExtBits, const DataLayout &DL, unsigned Depth, 202 AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) { 203 assert(V->getType()->isIntegerTy() && "Not an integer value"); 204 205 // Limit our recursion depth. 206 if (Depth == 6) { 207 Scale = 1; 208 Offset = 0; 209 return V; 210 } 211 212 if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) { 213 // If it's a constant, just convert it to an offset and remove the variable. 214 // If we've been called recursively, the Offset bit width will be greater 215 // than the constant's (the Offset's always as wide as the outermost call), 216 // so we'll zext here and process any extension in the isa<SExtInst> & 217 // isa<ZExtInst> cases below. 218 Offset += Const->getValue().zextOrSelf(Offset.getBitWidth()); 219 assert(Scale == 0 && "Constant values don't have a scale"); 220 return V; 221 } 222 223 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 224 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 225 226 // If we've been called recursively, then Offset and Scale will be wider 227 // than the BOp operands. We'll always zext it here as we'll process sign 228 // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases). 229 APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth()); 230 231 switch (BOp->getOpcode()) { 232 default: 233 // We don't understand this instruction, so we can't decompose it any 234 // further. 235 Scale = 1; 236 Offset = 0; 237 return V; 238 case Instruction::Or: 239 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 240 // analyze it. 241 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, 242 BOp, DT)) { 243 Scale = 1; 244 Offset = 0; 245 return V; 246 } 247 LLVM_FALLTHROUGH; 248 case Instruction::Add: 249 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 250 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 251 Offset += RHS; 252 break; 253 case Instruction::Sub: 254 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 255 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 256 Offset -= RHS; 257 break; 258 case Instruction::Mul: 259 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 260 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 261 Offset *= RHS; 262 Scale *= RHS; 263 break; 264 case Instruction::Shl: 265 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 266 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 267 Offset <<= RHS.getLimitedValue(); 268 Scale <<= RHS.getLimitedValue(); 269 // the semantics of nsw and nuw for left shifts don't match those of 270 // multiplications, so we won't propagate them. 271 NSW = NUW = false; 272 return V; 273 } 274 275 if (isa<OverflowingBinaryOperator>(BOp)) { 276 NUW &= BOp->hasNoUnsignedWrap(); 277 NSW &= BOp->hasNoSignedWrap(); 278 } 279 return V; 280 } 281 } 282 283 // Since GEP indices are sign extended anyway, we don't care about the high 284 // bits of a sign or zero extended value - just scales and offsets. The 285 // extensions have to be consistent though. 286 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) { 287 Value *CastOp = cast<CastInst>(V)->getOperand(0); 288 unsigned NewWidth = V->getType()->getPrimitiveSizeInBits(); 289 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 290 unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits; 291 const Value *Result = 292 GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL, 293 Depth + 1, AC, DT, NSW, NUW); 294 295 // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this 296 // by just incrementing the number of bits we've extended by. 297 unsigned ExtendedBy = NewWidth - SmallWidth; 298 299 if (isa<SExtInst>(V) && ZExtBits == 0) { 300 // sext(sext(%x, a), b) == sext(%x, a + b) 301 302 if (NSW) { 303 // We haven't sign-wrapped, so it's valid to decompose sext(%x + c) 304 // into sext(%x) + sext(c). We'll sext the Offset ourselves: 305 unsigned OldWidth = Offset.getBitWidth(); 306 Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth); 307 } else { 308 // We may have signed-wrapped, so don't decompose sext(%x + c) into 309 // sext(%x) + sext(c) 310 Scale = 1; 311 Offset = 0; 312 Result = CastOp; 313 ZExtBits = OldZExtBits; 314 SExtBits = OldSExtBits; 315 } 316 SExtBits += ExtendedBy; 317 } else { 318 // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b) 319 320 if (!NUW) { 321 // We may have unsigned-wrapped, so don't decompose zext(%x + c) into 322 // zext(%x) + zext(c) 323 Scale = 1; 324 Offset = 0; 325 Result = CastOp; 326 ZExtBits = OldZExtBits; 327 SExtBits = OldSExtBits; 328 } 329 ZExtBits += ExtendedBy; 330 } 331 332 return Result; 333 } 334 335 Scale = 1; 336 Offset = 0; 337 return V; 338 } 339 340 /// To ensure a pointer offset fits in an integer of size PointerSize 341 /// (in bits) when that size is smaller than 64. This is an issue in 342 /// particular for 32b programs with negative indices that rely on two's 343 /// complement wrap-arounds for precise alias information. 344 static int64_t adjustToPointerSize(int64_t Offset, unsigned PointerSize) { 345 assert(PointerSize <= 64 && "Invalid PointerSize!"); 346 unsigned ShiftBits = 64 - PointerSize; 347 return (int64_t)((uint64_t)Offset << ShiftBits) >> ShiftBits; 348 } 349 350 /// If V is a symbolic pointer expression, decompose it into a base pointer 351 /// with a constant offset and a number of scaled symbolic offsets. 352 /// 353 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 354 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 355 /// specified amount, but which may have other unrepresented high bits. As 356 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 357 /// 358 /// When DataLayout is around, this function is capable of analyzing everything 359 /// that GetUnderlyingObject can look through. To be able to do that 360 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search 361 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks 362 /// through pointer casts. 363 bool BasicAAResult::DecomposeGEPExpression(const Value *V, 364 DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC, 365 DominatorTree *DT) { 366 // Limit recursion depth to limit compile time in crazy cases. 367 unsigned MaxLookup = MaxLookupSearchDepth; 368 SearchTimes++; 369 370 Decomposed.StructOffset = 0; 371 Decomposed.OtherOffset = 0; 372 Decomposed.VarIndices.clear(); 373 do { 374 // See if this is a bitcast or GEP. 375 const Operator *Op = dyn_cast<Operator>(V); 376 if (!Op) { 377 // The only non-operator case we can handle are GlobalAliases. 378 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 379 if (!GA->isInterposable()) { 380 V = GA->getAliasee(); 381 continue; 382 } 383 } 384 Decomposed.Base = V; 385 return false; 386 } 387 388 if (Op->getOpcode() == Instruction::BitCast || 389 Op->getOpcode() == Instruction::AddrSpaceCast) { 390 V = Op->getOperand(0); 391 continue; 392 } 393 394 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 395 if (!GEPOp) { 396 if (auto CS = ImmutableCallSite(V)) 397 if (const Value *RV = CS.getReturnedArgOperand()) { 398 V = RV; 399 continue; 400 } 401 402 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 403 // can come up with something. This matches what GetUnderlyingObject does. 404 if (const Instruction *I = dyn_cast<Instruction>(V)) 405 // TODO: Get a DominatorTree and AssumptionCache and use them here 406 // (these are both now available in this function, but this should be 407 // updated when GetUnderlyingObject is updated). TLI should be 408 // provided also. 409 if (const Value *Simplified = 410 SimplifyInstruction(const_cast<Instruction *>(I), DL)) { 411 V = Simplified; 412 continue; 413 } 414 415 Decomposed.Base = V; 416 return false; 417 } 418 419 // Don't attempt to analyze GEPs over unsized objects. 420 if (!GEPOp->getSourceElementType()->isSized()) { 421 Decomposed.Base = V; 422 return false; 423 } 424 425 unsigned AS = GEPOp->getPointerAddressSpace(); 426 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 427 gep_type_iterator GTI = gep_type_begin(GEPOp); 428 unsigned PointerSize = DL.getPointerSizeInBits(AS); 429 // Assume all GEP operands are constants until proven otherwise. 430 bool GepHasConstantOffset = true; 431 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 432 I != E; ++I, ++GTI) { 433 const Value *Index = *I; 434 // Compute the (potentially symbolic) offset in bytes for this index. 435 if (StructType *STy = GTI.getStructTypeOrNull()) { 436 // For a struct, add the member offset. 437 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 438 if (FieldNo == 0) 439 continue; 440 441 Decomposed.StructOffset += 442 DL.getStructLayout(STy)->getElementOffset(FieldNo); 443 continue; 444 } 445 446 // For an array/pointer, add the element offset, explicitly scaled. 447 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 448 if (CIdx->isZero()) 449 continue; 450 Decomposed.OtherOffset += 451 DL.getTypeAllocSize(GTI.getIndexedType()) * CIdx->getSExtValue(); 452 continue; 453 } 454 455 GepHasConstantOffset = false; 456 457 uint64_t Scale = DL.getTypeAllocSize(GTI.getIndexedType()); 458 unsigned ZExtBits = 0, SExtBits = 0; 459 460 // If the integer type is smaller than the pointer size, it is implicitly 461 // sign extended to pointer size. 462 unsigned Width = Index->getType()->getIntegerBitWidth(); 463 if (PointerSize > Width) 464 SExtBits += PointerSize - Width; 465 466 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 467 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 468 bool NSW = true, NUW = true; 469 Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits, 470 SExtBits, DL, 0, AC, DT, NSW, NUW); 471 472 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 473 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 474 Decomposed.OtherOffset += IndexOffset.getSExtValue() * Scale; 475 Scale *= IndexScale.getSExtValue(); 476 477 // If we already had an occurrence of this index variable, merge this 478 // scale into it. For example, we want to handle: 479 // A[x][x] -> x*16 + x*4 -> x*20 480 // This also ensures that 'x' only appears in the index list once. 481 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { 482 if (Decomposed.VarIndices[i].V == Index && 483 Decomposed.VarIndices[i].ZExtBits == ZExtBits && 484 Decomposed.VarIndices[i].SExtBits == SExtBits) { 485 Scale += Decomposed.VarIndices[i].Scale; 486 Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i); 487 break; 488 } 489 } 490 491 // Make sure that we have a scale that makes sense for this target's 492 // pointer size. 493 Scale = adjustToPointerSize(Scale, PointerSize); 494 495 if (Scale) { 496 VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, 497 static_cast<int64_t>(Scale)}; 498 Decomposed.VarIndices.push_back(Entry); 499 } 500 } 501 502 // Take care of wrap-arounds 503 if (GepHasConstantOffset) { 504 Decomposed.StructOffset = 505 adjustToPointerSize(Decomposed.StructOffset, PointerSize); 506 Decomposed.OtherOffset = 507 adjustToPointerSize(Decomposed.OtherOffset, PointerSize); 508 } 509 510 // Analyze the base pointer next. 511 V = GEPOp->getOperand(0); 512 } while (--MaxLookup); 513 514 // If the chain of expressions is too deep, just return early. 515 Decomposed.Base = V; 516 SearchLimitReached++; 517 return true; 518 } 519 520 /// Returns whether the given pointer value points to memory that is local to 521 /// the function, with global constants being considered local to all 522 /// functions. 523 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc, 524 bool OrLocal) { 525 assert(Visited.empty() && "Visited must be cleared after use!"); 526 527 unsigned MaxLookup = 8; 528 SmallVector<const Value *, 16> Worklist; 529 Worklist.push_back(Loc.Ptr); 530 do { 531 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL); 532 if (!Visited.insert(V).second) { 533 Visited.clear(); 534 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 535 } 536 537 // An alloca instruction defines local memory. 538 if (OrLocal && isa<AllocaInst>(V)) 539 continue; 540 541 // A global constant counts as local memory for our purposes. 542 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 543 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 544 // global to be marked constant in some modules and non-constant in 545 // others. GV may even be a declaration, not a definition. 546 if (!GV->isConstant()) { 547 Visited.clear(); 548 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 549 } 550 continue; 551 } 552 553 // If both select values point to local memory, then so does the select. 554 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 555 Worklist.push_back(SI->getTrueValue()); 556 Worklist.push_back(SI->getFalseValue()); 557 continue; 558 } 559 560 // If all values incoming to a phi node point to local memory, then so does 561 // the phi. 562 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 563 // Don't bother inspecting phi nodes with many operands. 564 if (PN->getNumIncomingValues() > MaxLookup) { 565 Visited.clear(); 566 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 567 } 568 for (Value *IncValue : PN->incoming_values()) 569 Worklist.push_back(IncValue); 570 continue; 571 } 572 573 // Otherwise be conservative. 574 Visited.clear(); 575 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 576 577 } while (!Worklist.empty() && --MaxLookup); 578 579 Visited.clear(); 580 return Worklist.empty(); 581 } 582 583 /// Returns the behavior when calling the given call site. 584 FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) { 585 if (CS.doesNotAccessMemory()) 586 // Can't do better than this. 587 return FMRB_DoesNotAccessMemory; 588 589 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 590 591 // If the callsite knows it only reads memory, don't return worse 592 // than that. 593 if (CS.onlyReadsMemory()) 594 Min = FMRB_OnlyReadsMemory; 595 else if (CS.doesNotReadMemory()) 596 Min = FMRB_DoesNotReadMemory; 597 598 if (CS.onlyAccessesArgMemory()) 599 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 600 601 // If CS has operand bundles then aliasing attributes from the function it 602 // calls do not directly apply to the CallSite. This can be made more 603 // precise in the future. 604 if (!CS.hasOperandBundles()) 605 if (const Function *F = CS.getCalledFunction()) 606 Min = 607 FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F)); 608 609 return Min; 610 } 611 612 /// Returns the behavior when calling the given function. For use when the call 613 /// site is not known. 614 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) { 615 // If the function declares it doesn't access memory, we can't do better. 616 if (F->doesNotAccessMemory()) 617 return FMRB_DoesNotAccessMemory; 618 619 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 620 621 // If the function declares it only reads memory, go with that. 622 if (F->onlyReadsMemory()) 623 Min = FMRB_OnlyReadsMemory; 624 else if (F->doesNotReadMemory()) 625 Min = FMRB_DoesNotReadMemory; 626 627 if (F->onlyAccessesArgMemory()) 628 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 629 else if (F->onlyAccessesInaccessibleMemory()) 630 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 631 else if (F->onlyAccessesInaccessibleMemOrArgMem()) 632 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 633 634 return Min; 635 } 636 637 /// Returns true if this is a writeonly (i.e Mod only) parameter. 638 static bool isWriteOnlyParam(ImmutableCallSite CS, unsigned ArgIdx, 639 const TargetLibraryInfo &TLI) { 640 if (CS.paramHasAttr(ArgIdx + 1, Attribute::WriteOnly)) 641 return true; 642 643 // We can bound the aliasing properties of memset_pattern16 just as we can 644 // for memcpy/memset. This is particularly important because the 645 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 646 // whenever possible. 647 // FIXME Consider handling this in InferFunctionAttr.cpp together with other 648 // attributes. 649 LibFunc F; 650 if (CS.getCalledFunction() && TLI.getLibFunc(*CS.getCalledFunction(), F) && 651 F == LibFunc_memset_pattern16 && TLI.has(F)) 652 if (ArgIdx == 0) 653 return true; 654 655 // TODO: memset_pattern4, memset_pattern8 656 // TODO: _chk variants 657 // TODO: strcmp, strcpy 658 659 return false; 660 } 661 662 ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS, 663 unsigned ArgIdx) { 664 665 // Checking for known builtin intrinsics and target library functions. 666 if (isWriteOnlyParam(CS, ArgIdx, TLI)) 667 return MRI_Mod; 668 669 if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadOnly)) 670 return MRI_Ref; 671 672 if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadNone)) 673 return MRI_NoModRef; 674 675 return AAResultBase::getArgModRefInfo(CS, ArgIdx); 676 } 677 678 static bool isIntrinsicCall(ImmutableCallSite CS, Intrinsic::ID IID) { 679 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 680 return II && II->getIntrinsicID() == IID; 681 } 682 683 #ifndef NDEBUG 684 static const Function *getParent(const Value *V) { 685 if (const Instruction *inst = dyn_cast<Instruction>(V)) 686 return inst->getParent()->getParent(); 687 688 if (const Argument *arg = dyn_cast<Argument>(V)) 689 return arg->getParent(); 690 691 return nullptr; 692 } 693 694 static bool notDifferentParent(const Value *O1, const Value *O2) { 695 696 const Function *F1 = getParent(O1); 697 const Function *F2 = getParent(O2); 698 699 return !F1 || !F2 || F1 == F2; 700 } 701 #endif 702 703 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 704 const MemoryLocation &LocB) { 705 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 706 "BasicAliasAnalysis doesn't support interprocedural queries."); 707 708 // If we have a directly cached entry for these locations, we have recursed 709 // through this once, so just return the cached results. Notably, when this 710 // happens, we don't clear the cache. 711 auto CacheIt = AliasCache.find(LocPair(LocA, LocB)); 712 if (CacheIt != AliasCache.end()) 713 return CacheIt->second; 714 715 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr, 716 LocB.Size, LocB.AATags); 717 // AliasCache rarely has more than 1 or 2 elements, always use 718 // shrink_and_clear so it quickly returns to the inline capacity of the 719 // SmallDenseMap if it ever grows larger. 720 // FIXME: This should really be shrink_to_inline_capacity_and_clear(). 721 AliasCache.shrink_and_clear(); 722 VisitedPhiBBs.clear(); 723 return Alias; 724 } 725 726 /// Checks to see if the specified callsite can clobber the specified memory 727 /// object. 728 /// 729 /// Since we only look at local properties of this function, we really can't 730 /// say much about this query. We do, however, use simple "address taken" 731 /// analysis on local objects. 732 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS, 733 const MemoryLocation &Loc) { 734 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && 735 "AliasAnalysis query involving multiple functions!"); 736 737 const Value *Object = GetUnderlyingObject(Loc.Ptr, DL); 738 739 // If this is a tail call and Loc.Ptr points to a stack location, we know that 740 // the tail call cannot access or modify the local stack. 741 // We cannot exclude byval arguments here; these belong to the caller of 742 // the current function not to the current function, and a tail callee 743 // may reference them. 744 if (isa<AllocaInst>(Object)) 745 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) 746 if (CI->isTailCall()) 747 return MRI_NoModRef; 748 749 // If the pointer is to a locally allocated object that does not escape, 750 // then the call can not mod/ref the pointer unless the call takes the pointer 751 // as an argument, and itself doesn't capture it. 752 if (!isa<Constant>(Object) && CS.getInstruction() != Object && 753 isNonEscapingLocalObject(Object)) { 754 755 // Optimistically assume that call doesn't touch Object and check this 756 // assumption in the following loop. 757 ModRefInfo Result = MRI_NoModRef; 758 759 unsigned OperandNo = 0; 760 for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end(); 761 CI != CE; ++CI, ++OperandNo) { 762 // Only look at the no-capture or byval pointer arguments. If this 763 // pointer were passed to arguments that were neither of these, then it 764 // couldn't be no-capture. 765 if (!(*CI)->getType()->isPointerTy() || 766 (!CS.doesNotCapture(OperandNo) && 767 OperandNo < CS.getNumArgOperands() && !CS.isByValArgument(OperandNo))) 768 continue; 769 770 // Call doesn't access memory through this operand, so we don't care 771 // if it aliases with Object. 772 if (CS.doesNotAccessMemory(OperandNo)) 773 continue; 774 775 // If this is a no-capture pointer argument, see if we can tell that it 776 // is impossible to alias the pointer we're checking. 777 AliasResult AR = 778 getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object)); 779 780 // Operand doesnt alias 'Object', continue looking for other aliases 781 if (AR == NoAlias) 782 continue; 783 // Operand aliases 'Object', but call doesn't modify it. Strengthen 784 // initial assumption and keep looking in case if there are more aliases. 785 if (CS.onlyReadsMemory(OperandNo)) { 786 Result = static_cast<ModRefInfo>(Result | MRI_Ref); 787 continue; 788 } 789 // Operand aliases 'Object' but call only writes into it. 790 if (CS.doesNotReadMemory(OperandNo)) { 791 Result = static_cast<ModRefInfo>(Result | MRI_Mod); 792 continue; 793 } 794 // This operand aliases 'Object' and call reads and writes into it. 795 Result = MRI_ModRef; 796 break; 797 } 798 799 // Early return if we improved mod ref information 800 if (Result != MRI_ModRef) 801 return Result; 802 } 803 804 // If the CallSite is to malloc or calloc, we can assume that it doesn't 805 // modify any IR visible value. This is only valid because we assume these 806 // routines do not read values visible in the IR. TODO: Consider special 807 // casing realloc and strdup routines which access only their arguments as 808 // well. Or alternatively, replace all of this with inaccessiblememonly once 809 // that's implemented fully. 810 auto *Inst = CS.getInstruction(); 811 if (isMallocLikeFn(Inst, &TLI) || isCallocLikeFn(Inst, &TLI)) { 812 // Be conservative if the accessed pointer may alias the allocation - 813 // fallback to the generic handling below. 814 if (getBestAAResults().alias(MemoryLocation(Inst), Loc) == NoAlias) 815 return MRI_NoModRef; 816 } 817 818 // The semantics of memcpy intrinsics forbid overlap between their respective 819 // operands, i.e., source and destination of any given memcpy must no-alias. 820 // If Loc must-aliases either one of these two locations, then it necessarily 821 // no-aliases the other. 822 if (auto *Inst = dyn_cast<MemCpyInst>(CS.getInstruction())) { 823 AliasResult SrcAA, DestAA; 824 825 if ((SrcAA = getBestAAResults().alias(MemoryLocation::getForSource(Inst), 826 Loc)) == MustAlias) 827 // Loc is exactly the memcpy source thus disjoint from memcpy dest. 828 return MRI_Ref; 829 if ((DestAA = getBestAAResults().alias(MemoryLocation::getForDest(Inst), 830 Loc)) == MustAlias) 831 // The converse case. 832 return MRI_Mod; 833 834 // It's also possible for Loc to alias both src and dest, or neither. 835 ModRefInfo rv = MRI_NoModRef; 836 if (SrcAA != NoAlias) 837 rv = static_cast<ModRefInfo>(rv | MRI_Ref); 838 if (DestAA != NoAlias) 839 rv = static_cast<ModRefInfo>(rv | MRI_Mod); 840 return rv; 841 } 842 843 // While the assume intrinsic is marked as arbitrarily writing so that 844 // proper control dependencies will be maintained, it never aliases any 845 // particular memory location. 846 if (isIntrinsicCall(CS, Intrinsic::assume)) 847 return MRI_NoModRef; 848 849 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 850 // that proper control dependencies are maintained but they never mods any 851 // particular memory location. 852 // 853 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 854 // heap state at the point the guard is issued needs to be consistent in case 855 // the guard invokes the "deopt" continuation. 856 if (isIntrinsicCall(CS, Intrinsic::experimental_guard)) 857 return MRI_Ref; 858 859 // Like assumes, invariant.start intrinsics were also marked as arbitrarily 860 // writing so that proper control dependencies are maintained but they never 861 // mod any particular memory location visible to the IR. 862 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start 863 // intrinsic is now modeled as reading memory. This prevents hoisting the 864 // invariant.start intrinsic over stores. Consider: 865 // *ptr = 40; 866 // *ptr = 50; 867 // invariant_start(ptr) 868 // int val = *ptr; 869 // print(val); 870 // 871 // This cannot be transformed to: 872 // 873 // *ptr = 40; 874 // invariant_start(ptr) 875 // *ptr = 50; 876 // int val = *ptr; 877 // print(val); 878 // 879 // The transformation will cause the second store to be ignored (based on 880 // rules of invariant.start) and print 40, while the first program always 881 // prints 50. 882 if (isIntrinsicCall(CS, Intrinsic::invariant_start)) 883 return MRI_Ref; 884 885 // The AAResultBase base class has some smarts, lets use them. 886 return AAResultBase::getModRefInfo(CS, Loc); 887 } 888 889 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1, 890 ImmutableCallSite CS2) { 891 // While the assume intrinsic is marked as arbitrarily writing so that 892 // proper control dependencies will be maintained, it never aliases any 893 // particular memory location. 894 if (isIntrinsicCall(CS1, Intrinsic::assume) || 895 isIntrinsicCall(CS2, Intrinsic::assume)) 896 return MRI_NoModRef; 897 898 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 899 // that proper control dependencies are maintained but they never mod any 900 // particular memory location. 901 // 902 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 903 // heap state at the point the guard is issued needs to be consistent in case 904 // the guard invokes the "deopt" continuation. 905 906 // NB! This function is *not* commutative, so we specical case two 907 // possibilities for guard intrinsics. 908 909 if (isIntrinsicCall(CS1, Intrinsic::experimental_guard)) 910 return getModRefBehavior(CS2) & MRI_Mod ? MRI_Ref : MRI_NoModRef; 911 912 if (isIntrinsicCall(CS2, Intrinsic::experimental_guard)) 913 return getModRefBehavior(CS1) & MRI_Mod ? MRI_Mod : MRI_NoModRef; 914 915 // The AAResultBase base class has some smarts, lets use them. 916 return AAResultBase::getModRefInfo(CS1, CS2); 917 } 918 919 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators, 920 /// both having the exact same pointer operand. 921 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1, 922 uint64_t V1Size, 923 const GEPOperator *GEP2, 924 uint64_t V2Size, 925 const DataLayout &DL) { 926 927 assert(GEP1->getPointerOperand()->stripPointerCasts() == 928 GEP2->getPointerOperand()->stripPointerCasts() && 929 GEP1->getPointerOperand()->getType() == 930 GEP2->getPointerOperand()->getType() && 931 "Expected GEPs with the same pointer operand"); 932 933 // Try to determine whether GEP1 and GEP2 index through arrays, into structs, 934 // such that the struct field accesses provably cannot alias. 935 // We also need at least two indices (the pointer, and the struct field). 936 if (GEP1->getNumIndices() != GEP2->getNumIndices() || 937 GEP1->getNumIndices() < 2) 938 return MayAlias; 939 940 // If we don't know the size of the accesses through both GEPs, we can't 941 // determine whether the struct fields accessed can't alias. 942 if (V1Size == MemoryLocation::UnknownSize || 943 V2Size == MemoryLocation::UnknownSize) 944 return MayAlias; 945 946 ConstantInt *C1 = 947 dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1)); 948 ConstantInt *C2 = 949 dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1)); 950 951 // If the last (struct) indices are constants and are equal, the other indices 952 // might be also be dynamically equal, so the GEPs can alias. 953 if (C1 && C2 && C1->getSExtValue() == C2->getSExtValue()) 954 return MayAlias; 955 956 // Find the last-indexed type of the GEP, i.e., the type you'd get if 957 // you stripped the last index. 958 // On the way, look at each indexed type. If there's something other 959 // than an array, different indices can lead to different final types. 960 SmallVector<Value *, 8> IntermediateIndices; 961 962 // Insert the first index; we don't need to check the type indexed 963 // through it as it only drops the pointer indirection. 964 assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine"); 965 IntermediateIndices.push_back(GEP1->getOperand(1)); 966 967 // Insert all the remaining indices but the last one. 968 // Also, check that they all index through arrays. 969 for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) { 970 if (!isa<ArrayType>(GetElementPtrInst::getIndexedType( 971 GEP1->getSourceElementType(), IntermediateIndices))) 972 return MayAlias; 973 IntermediateIndices.push_back(GEP1->getOperand(i + 1)); 974 } 975 976 auto *Ty = GetElementPtrInst::getIndexedType( 977 GEP1->getSourceElementType(), IntermediateIndices); 978 StructType *LastIndexedStruct = dyn_cast<StructType>(Ty); 979 980 if (isa<SequentialType>(Ty)) { 981 // We know that: 982 // - both GEPs begin indexing from the exact same pointer; 983 // - the last indices in both GEPs are constants, indexing into a sequential 984 // type (array or pointer); 985 // - both GEPs only index through arrays prior to that. 986 // 987 // Because array indices greater than the number of elements are valid in 988 // GEPs, unless we know the intermediate indices are identical between 989 // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't 990 // partially overlap. We also need to check that the loaded size matches 991 // the element size, otherwise we could still have overlap. 992 const uint64_t ElementSize = 993 DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType()); 994 if (V1Size != ElementSize || V2Size != ElementSize) 995 return MayAlias; 996 997 for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i) 998 if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1)) 999 return MayAlias; 1000 1001 // Now we know that the array/pointer that GEP1 indexes into and that 1002 // that GEP2 indexes into must either precisely overlap or be disjoint. 1003 // Because they cannot partially overlap and because fields in an array 1004 // cannot overlap, if we can prove the final indices are different between 1005 // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias. 1006 1007 // If the last indices are constants, we've already checked they don't 1008 // equal each other so we can exit early. 1009 if (C1 && C2) 1010 return NoAlias; 1011 if (isKnownNonEqual(GEP1->getOperand(GEP1->getNumOperands() - 1), 1012 GEP2->getOperand(GEP2->getNumOperands() - 1), 1013 DL)) 1014 return NoAlias; 1015 return MayAlias; 1016 } else if (!LastIndexedStruct || !C1 || !C2) { 1017 return MayAlias; 1018 } 1019 1020 // We know that: 1021 // - both GEPs begin indexing from the exact same pointer; 1022 // - the last indices in both GEPs are constants, indexing into a struct; 1023 // - said indices are different, hence, the pointed-to fields are different; 1024 // - both GEPs only index through arrays prior to that. 1025 // 1026 // This lets us determine that the struct that GEP1 indexes into and the 1027 // struct that GEP2 indexes into must either precisely overlap or be 1028 // completely disjoint. Because they cannot partially overlap, indexing into 1029 // different non-overlapping fields of the struct will never alias. 1030 1031 // Therefore, the only remaining thing needed to show that both GEPs can't 1032 // alias is that the fields are not overlapping. 1033 const StructLayout *SL = DL.getStructLayout(LastIndexedStruct); 1034 const uint64_t StructSize = SL->getSizeInBytes(); 1035 const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue()); 1036 const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue()); 1037 1038 auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size, 1039 uint64_t V2Off, uint64_t V2Size) { 1040 return V1Off < V2Off && V1Off + V1Size <= V2Off && 1041 ((V2Off + V2Size <= StructSize) || 1042 (V2Off + V2Size - StructSize <= V1Off)); 1043 }; 1044 1045 if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) || 1046 EltsDontOverlap(V2Off, V2Size, V1Off, V1Size)) 1047 return NoAlias; 1048 1049 return MayAlias; 1050 } 1051 1052 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the 1053 // beginning of the object the GEP points would have a negative offset with 1054 // repsect to the alloca, that means the GEP can not alias pointer (b). 1055 // Note that the pointer based on the alloca may not be a GEP. For 1056 // example, it may be the alloca itself. 1057 // The same applies if (b) is based on a GlobalVariable. Note that just being 1058 // based on isIdentifiedObject() is not enough - we need an identified object 1059 // that does not permit access to negative offsets. For example, a negative 1060 // offset from a noalias argument or call can be inbounds w.r.t the actual 1061 // underlying object. 1062 // 1063 // For example, consider: 1064 // 1065 // struct { int f0, int f1, ...} foo; 1066 // foo alloca; 1067 // foo* random = bar(alloca); 1068 // int *f0 = &alloca.f0 1069 // int *f1 = &random->f1; 1070 // 1071 // Which is lowered, approximately, to: 1072 // 1073 // %alloca = alloca %struct.foo 1074 // %random = call %struct.foo* @random(%struct.foo* %alloca) 1075 // %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0 1076 // %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1 1077 // 1078 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated 1079 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also 1080 // point into the same object. But since %f0 points to the beginning of %alloca, 1081 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher 1082 // than (%alloca - 1), and so is not inbounds, a contradiction. 1083 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp, 1084 const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject, 1085 uint64_t ObjectAccessSize) { 1086 // If the object access size is unknown, or the GEP isn't inbounds, bail. 1087 if (ObjectAccessSize == MemoryLocation::UnknownSize || !GEPOp->isInBounds()) 1088 return false; 1089 1090 // We need the object to be an alloca or a globalvariable, and want to know 1091 // the offset of the pointer from the object precisely, so no variable 1092 // indices are allowed. 1093 if (!(isa<AllocaInst>(DecompObject.Base) || 1094 isa<GlobalVariable>(DecompObject.Base)) || 1095 !DecompObject.VarIndices.empty()) 1096 return false; 1097 1098 int64_t ObjectBaseOffset = DecompObject.StructOffset + 1099 DecompObject.OtherOffset; 1100 1101 // If the GEP has no variable indices, we know the precise offset 1102 // from the base, then use it. If the GEP has variable indices, we're in 1103 // a bit more trouble: we can't count on the constant offsets that come 1104 // from non-struct sources, since these can be "rewound" by a negative 1105 // variable offset. So use only offsets that came from structs. 1106 int64_t GEPBaseOffset = DecompGEP.StructOffset; 1107 if (DecompGEP.VarIndices.empty()) 1108 GEPBaseOffset += DecompGEP.OtherOffset; 1109 1110 return (GEPBaseOffset >= ObjectBaseOffset + (int64_t)ObjectAccessSize); 1111 } 1112 1113 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 1114 /// another pointer. 1115 /// 1116 /// We know that V1 is a GEP, but we don't know anything about V2. 1117 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for 1118 /// V2. 1119 AliasResult BasicAAResult::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, 1120 const AAMDNodes &V1AAInfo, const Value *V2, 1121 uint64_t V2Size, const AAMDNodes &V2AAInfo, 1122 const Value *UnderlyingV1, 1123 const Value *UnderlyingV2) { 1124 DecomposedGEP DecompGEP1, DecompGEP2; 1125 bool GEP1MaxLookupReached = 1126 DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT); 1127 bool GEP2MaxLookupReached = 1128 DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT); 1129 1130 int64_t GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset; 1131 int64_t GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset; 1132 1133 assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 && 1134 "DecomposeGEPExpression returned a result different from " 1135 "GetUnderlyingObject"); 1136 1137 // If the GEP's offset relative to its base is such that the base would 1138 // fall below the start of the object underlying V2, then the GEP and V2 1139 // cannot alias. 1140 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1141 isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size)) 1142 return NoAlias; 1143 // If we have two gep instructions with must-alias or not-alias'ing base 1144 // pointers, figure out if the indexes to the GEP tell us anything about the 1145 // derived pointer. 1146 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 1147 // Check for the GEP base being at a negative offset, this time in the other 1148 // direction. 1149 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1150 isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size)) 1151 return NoAlias; 1152 // Do the base pointers alias? 1153 AliasResult BaseAlias = 1154 aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(), 1155 UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes()); 1156 1157 // Check for geps of non-aliasing underlying pointers where the offsets are 1158 // identical. 1159 if ((BaseAlias == MayAlias) && V1Size == V2Size) { 1160 // Do the base pointers alias assuming type and size. 1161 AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo, 1162 UnderlyingV2, V2Size, V2AAInfo); 1163 if (PreciseBaseAlias == NoAlias) { 1164 // See if the computed offset from the common pointer tells us about the 1165 // relation of the resulting pointer. 1166 // If the max search depth is reached the result is undefined 1167 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1168 return MayAlias; 1169 1170 // Same offsets. 1171 if (GEP1BaseOffset == GEP2BaseOffset && 1172 DecompGEP1.VarIndices == DecompGEP2.VarIndices) 1173 return NoAlias; 1174 } 1175 } 1176 1177 // If we get a No or May, then return it immediately, no amount of analysis 1178 // will improve this situation. 1179 if (BaseAlias != MustAlias) 1180 return BaseAlias; 1181 1182 // Otherwise, we have a MustAlias. Since the base pointers alias each other 1183 // exactly, see if the computed offset from the common pointer tells us 1184 // about the relation of the resulting pointer. 1185 // If we know the two GEPs are based off of the exact same pointer (and not 1186 // just the same underlying object), see if that tells us anything about 1187 // the resulting pointers. 1188 if (GEP1->getPointerOperand()->stripPointerCasts() == 1189 GEP2->getPointerOperand()->stripPointerCasts() && 1190 GEP1->getPointerOperand()->getType() == 1191 GEP2->getPointerOperand()->getType()) { 1192 AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL); 1193 // If we couldn't find anything interesting, don't abandon just yet. 1194 if (R != MayAlias) 1195 return R; 1196 } 1197 1198 // If the max search depth is reached, the result is undefined 1199 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1200 return MayAlias; 1201 1202 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1203 // symbolic difference. 1204 GEP1BaseOffset -= GEP2BaseOffset; 1205 GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices); 1206 1207 } else { 1208 // Check to see if these two pointers are related by the getelementptr 1209 // instruction. If one pointer is a GEP with a non-zero index of the other 1210 // pointer, we know they cannot alias. 1211 1212 // If both accesses are unknown size, we can't do anything useful here. 1213 if (V1Size == MemoryLocation::UnknownSize && 1214 V2Size == MemoryLocation::UnknownSize) 1215 return MayAlias; 1216 1217 AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, 1218 AAMDNodes(), V2, MemoryLocation::UnknownSize, 1219 V2AAInfo, nullptr, UnderlyingV2); 1220 if (R != MustAlias) 1221 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 1222 // If V2 is known not to alias GEP base pointer, then the two values 1223 // cannot alias per GEP semantics: "Any memory access must be done through 1224 // a pointer value associated with an address range of the memory access, 1225 // otherwise the behavior is undefined.". 1226 return R; 1227 1228 // If the max search depth is reached the result is undefined 1229 if (GEP1MaxLookupReached) 1230 return MayAlias; 1231 } 1232 1233 // In the two GEP Case, if there is no difference in the offsets of the 1234 // computed pointers, the resultant pointers are a must alias. This 1235 // happens when we have two lexically identical GEP's (for example). 1236 // 1237 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 1238 // must aliases the GEP, the end result is a must alias also. 1239 if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty()) 1240 return MustAlias; 1241 1242 // If there is a constant difference between the pointers, but the difference 1243 // is less than the size of the associated memory object, then we know 1244 // that the objects are partially overlapping. If the difference is 1245 // greater, we know they do not overlap. 1246 if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) { 1247 if (GEP1BaseOffset >= 0) { 1248 if (V2Size != MemoryLocation::UnknownSize) { 1249 if ((uint64_t)GEP1BaseOffset < V2Size) 1250 return PartialAlias; 1251 return NoAlias; 1252 } 1253 } else { 1254 // We have the situation where: 1255 // + + 1256 // | BaseOffset | 1257 // ---------------->| 1258 // |-->V1Size |-------> V2Size 1259 // GEP1 V2 1260 // We need to know that V2Size is not unknown, otherwise we might have 1261 // stripped a gep with negative index ('gep <ptr>, -1, ...). 1262 if (V1Size != MemoryLocation::UnknownSize && 1263 V2Size != MemoryLocation::UnknownSize) { 1264 if (-(uint64_t)GEP1BaseOffset < V1Size) 1265 return PartialAlias; 1266 return NoAlias; 1267 } 1268 } 1269 } 1270 1271 if (!DecompGEP1.VarIndices.empty()) { 1272 uint64_t Modulo = 0; 1273 bool AllPositive = true; 1274 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { 1275 1276 // Try to distinguish something like &A[i][1] against &A[42][0]. 1277 // Grab the least significant bit set in any of the scales. We 1278 // don't need std::abs here (even if the scale's negative) as we'll 1279 // be ^'ing Modulo with itself later. 1280 Modulo |= (uint64_t)DecompGEP1.VarIndices[i].Scale; 1281 1282 if (AllPositive) { 1283 // If the Value could change between cycles, then any reasoning about 1284 // the Value this cycle may not hold in the next cycle. We'll just 1285 // give up if we can't determine conditions that hold for every cycle: 1286 const Value *V = DecompGEP1.VarIndices[i].V; 1287 1288 bool SignKnownZero, SignKnownOne; 1289 ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, DL, 1290 0, &AC, nullptr, DT); 1291 1292 // Zero-extension widens the variable, and so forces the sign 1293 // bit to zero. 1294 bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V); 1295 SignKnownZero |= IsZExt; 1296 SignKnownOne &= !IsZExt; 1297 1298 // If the variable begins with a zero then we know it's 1299 // positive, regardless of whether the value is signed or 1300 // unsigned. 1301 int64_t Scale = DecompGEP1.VarIndices[i].Scale; 1302 AllPositive = 1303 (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0); 1304 } 1305 } 1306 1307 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1308 1309 // We can compute the difference between the two addresses 1310 // mod Modulo. Check whether that difference guarantees that the 1311 // two locations do not alias. 1312 uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1); 1313 if (V1Size != MemoryLocation::UnknownSize && 1314 V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size && 1315 V1Size <= Modulo - ModOffset) 1316 return NoAlias; 1317 1318 // If we know all the variables are positive, then GEP1 >= GEP1BasePtr. 1319 // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers 1320 // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr. 1321 if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset) 1322 return NoAlias; 1323 1324 if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size, 1325 GEP1BaseOffset, &AC, DT)) 1326 return NoAlias; 1327 } 1328 1329 // Statically, we can see that the base objects are the same, but the 1330 // pointers have dynamic offsets which we can't resolve. And none of our 1331 // little tricks above worked. 1332 // 1333 // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the 1334 // practical effect of this is protecting TBAA in the case of dynamic 1335 // indices into arrays of unions or malloc'd memory. 1336 return PartialAlias; 1337 } 1338 1339 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1340 // If the results agree, take it. 1341 if (A == B) 1342 return A; 1343 // A mix of PartialAlias and MustAlias is PartialAlias. 1344 if ((A == PartialAlias && B == MustAlias) || 1345 (B == PartialAlias && A == MustAlias)) 1346 return PartialAlias; 1347 // Otherwise, we don't know anything. 1348 return MayAlias; 1349 } 1350 1351 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1352 /// against another. 1353 AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, uint64_t SISize, 1354 const AAMDNodes &SIAAInfo, 1355 const Value *V2, uint64_t V2Size, 1356 const AAMDNodes &V2AAInfo, 1357 const Value *UnderV2) { 1358 // If the values are Selects with the same condition, we can do a more precise 1359 // check: just check for aliases between the values on corresponding arms. 1360 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1361 if (SI->getCondition() == SI2->getCondition()) { 1362 AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, 1363 SI2->getTrueValue(), V2Size, V2AAInfo); 1364 if (Alias == MayAlias) 1365 return MayAlias; 1366 AliasResult ThisAlias = 1367 aliasCheck(SI->getFalseValue(), SISize, SIAAInfo, 1368 SI2->getFalseValue(), V2Size, V2AAInfo); 1369 return MergeAliasResults(ThisAlias, Alias); 1370 } 1371 1372 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1373 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1374 AliasResult Alias = 1375 aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), 1376 SISize, SIAAInfo, UnderV2); 1377 if (Alias == MayAlias) 1378 return MayAlias; 1379 1380 AliasResult ThisAlias = 1381 aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo, 1382 UnderV2); 1383 return MergeAliasResults(ThisAlias, Alias); 1384 } 1385 1386 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1387 /// another. 1388 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, uint64_t PNSize, 1389 const AAMDNodes &PNAAInfo, const Value *V2, 1390 uint64_t V2Size, const AAMDNodes &V2AAInfo, 1391 const Value *UnderV2) { 1392 // Track phi nodes we have visited. We use this information when we determine 1393 // value equivalence. 1394 VisitedPhiBBs.insert(PN->getParent()); 1395 1396 // If the values are PHIs in the same block, we can do a more precise 1397 // as well as efficient check: just check for aliases between the values 1398 // on corresponding edges. 1399 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1400 if (PN2->getParent() == PN->getParent()) { 1401 LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo), 1402 MemoryLocation(V2, V2Size, V2AAInfo)); 1403 if (PN > V2) 1404 std::swap(Locs.first, Locs.second); 1405 // Analyse the PHIs' inputs under the assumption that the PHIs are 1406 // NoAlias. 1407 // If the PHIs are May/MustAlias there must be (recursively) an input 1408 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1409 // there must be an operation on the PHIs within the PHIs' value cycle 1410 // that causes a MayAlias. 1411 // Pretend the phis do not alias. 1412 AliasResult Alias = NoAlias; 1413 assert(AliasCache.count(Locs) && 1414 "There must exist an entry for the phi node"); 1415 AliasResult OrigAliasResult = AliasCache[Locs]; 1416 AliasCache[Locs] = NoAlias; 1417 1418 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1419 AliasResult ThisAlias = 1420 aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo, 1421 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1422 V2Size, V2AAInfo); 1423 Alias = MergeAliasResults(ThisAlias, Alias); 1424 if (Alias == MayAlias) 1425 break; 1426 } 1427 1428 // Reset if speculation failed. 1429 if (Alias != NoAlias) 1430 AliasCache[Locs] = OrigAliasResult; 1431 1432 return Alias; 1433 } 1434 1435 SmallPtrSet<Value *, 4> UniqueSrc; 1436 SmallVector<Value *, 4> V1Srcs; 1437 bool isRecursive = false; 1438 for (Value *PV1 : PN->incoming_values()) { 1439 if (isa<PHINode>(PV1)) 1440 // If any of the source itself is a PHI, return MayAlias conservatively 1441 // to avoid compile time explosion. The worst possible case is if both 1442 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1443 // and 'n' are the number of PHI sources. 1444 return MayAlias; 1445 1446 if (EnableRecPhiAnalysis) 1447 if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) { 1448 // Check whether the incoming value is a GEP that advances the pointer 1449 // result of this PHI node (e.g. in a loop). If this is the case, we 1450 // would recurse and always get a MayAlias. Handle this case specially 1451 // below. 1452 if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 && 1453 isa<ConstantInt>(PV1GEP->idx_begin())) { 1454 isRecursive = true; 1455 continue; 1456 } 1457 } 1458 1459 if (UniqueSrc.insert(PV1).second) 1460 V1Srcs.push_back(PV1); 1461 } 1462 1463 // If this PHI node is recursive, set the size of the accessed memory to 1464 // unknown to represent all the possible values the GEP could advance the 1465 // pointer to. 1466 if (isRecursive) 1467 PNSize = MemoryLocation::UnknownSize; 1468 1469 AliasResult Alias = 1470 aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], 1471 PNSize, PNAAInfo, UnderV2); 1472 1473 // Early exit if the check of the first PHI source against V2 is MayAlias. 1474 // Other results are not possible. 1475 if (Alias == MayAlias) 1476 return MayAlias; 1477 1478 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1479 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1480 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1481 Value *V = V1Srcs[i]; 1482 1483 AliasResult ThisAlias = 1484 aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, UnderV2); 1485 Alias = MergeAliasResults(ThisAlias, Alias); 1486 if (Alias == MayAlias) 1487 break; 1488 } 1489 1490 return Alias; 1491 } 1492 1493 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1494 /// array references. 1495 AliasResult BasicAAResult::aliasCheck(const Value *V1, uint64_t V1Size, 1496 AAMDNodes V1AAInfo, const Value *V2, 1497 uint64_t V2Size, AAMDNodes V2AAInfo, 1498 const Value *O1, const Value *O2) { 1499 // If either of the memory references is empty, it doesn't matter what the 1500 // pointer values are. 1501 if (V1Size == 0 || V2Size == 0) 1502 return NoAlias; 1503 1504 // Strip off any casts if they exist. 1505 V1 = V1->stripPointerCasts(); 1506 V2 = V2->stripPointerCasts(); 1507 1508 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1509 // value for undef that aliases nothing in the program. 1510 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1511 return NoAlias; 1512 1513 // Are we checking for alias of the same value? 1514 // Because we look 'through' phi nodes, we could look at "Value" pointers from 1515 // different iterations. We must therefore make sure that this is not the 1516 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1517 // happen by looking at the visited phi nodes and making sure they cannot 1518 // reach the value. 1519 if (isValueEqualInPotentialCycles(V1, V2)) 1520 return MustAlias; 1521 1522 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1523 return NoAlias; // Scalars cannot alias each other 1524 1525 // Figure out what objects these things are pointing to if we can. 1526 if (O1 == nullptr) 1527 O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth); 1528 1529 if (O2 == nullptr) 1530 O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth); 1531 1532 // Null values in the default address space don't point to any object, so they 1533 // don't alias any other pointer. 1534 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1535 if (CPN->getType()->getAddressSpace() == 0) 1536 return NoAlias; 1537 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1538 if (CPN->getType()->getAddressSpace() == 0) 1539 return NoAlias; 1540 1541 if (O1 != O2) { 1542 // If V1/V2 point to two different objects, we know that we have no alias. 1543 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1544 return NoAlias; 1545 1546 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1547 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1548 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1549 return NoAlias; 1550 1551 // Function arguments can't alias with things that are known to be 1552 // unambigously identified at the function level. 1553 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1554 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1555 return NoAlias; 1556 1557 // Most objects can't alias null. 1558 if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) || 1559 (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2))) 1560 return NoAlias; 1561 1562 // If one pointer is the result of a call/invoke or load and the other is a 1563 // non-escaping local object within the same function, then we know the 1564 // object couldn't escape to a point where the call could return it. 1565 // 1566 // Note that if the pointers are in different functions, there are a 1567 // variety of complications. A call with a nocapture argument may still 1568 // temporary store the nocapture argument's value in a temporary memory 1569 // location if that memory location doesn't escape. Or it may pass a 1570 // nocapture value to other functions as long as they don't capture it. 1571 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) 1572 return NoAlias; 1573 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) 1574 return NoAlias; 1575 } 1576 1577 // If the size of one access is larger than the entire object on the other 1578 // side, then we know such behavior is undefined and can assume no alias. 1579 if ((V1Size != MemoryLocation::UnknownSize && 1580 isObjectSmallerThan(O2, V1Size, DL, TLI)) || 1581 (V2Size != MemoryLocation::UnknownSize && 1582 isObjectSmallerThan(O1, V2Size, DL, TLI))) 1583 return NoAlias; 1584 1585 // Check the cache before climbing up use-def chains. This also terminates 1586 // otherwise infinitely recursive queries. 1587 LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo), 1588 MemoryLocation(V2, V2Size, V2AAInfo)); 1589 if (V1 > V2) 1590 std::swap(Locs.first, Locs.second); 1591 std::pair<AliasCacheTy::iterator, bool> Pair = 1592 AliasCache.insert(std::make_pair(Locs, MayAlias)); 1593 if (!Pair.second) 1594 return Pair.first->second; 1595 1596 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1597 // GEP can't simplify, we don't even look at the PHI cases. 1598 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1599 std::swap(V1, V2); 1600 std::swap(V1Size, V2Size); 1601 std::swap(O1, O2); 1602 std::swap(V1AAInfo, V2AAInfo); 1603 } 1604 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1605 AliasResult Result = 1606 aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2); 1607 if (Result != MayAlias) 1608 return AliasCache[Locs] = Result; 1609 } 1610 1611 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1612 std::swap(V1, V2); 1613 std::swap(O1, O2); 1614 std::swap(V1Size, V2Size); 1615 std::swap(V1AAInfo, V2AAInfo); 1616 } 1617 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1618 AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, 1619 V2, V2Size, V2AAInfo, O2); 1620 if (Result != MayAlias) 1621 return AliasCache[Locs] = Result; 1622 } 1623 1624 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1625 std::swap(V1, V2); 1626 std::swap(O1, O2); 1627 std::swap(V1Size, V2Size); 1628 std::swap(V1AAInfo, V2AAInfo); 1629 } 1630 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1631 AliasResult Result = 1632 aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2); 1633 if (Result != MayAlias) 1634 return AliasCache[Locs] = Result; 1635 } 1636 1637 // If both pointers are pointing into the same object and one of them 1638 // accesses the entire object, then the accesses must overlap in some way. 1639 if (O1 == O2) 1640 if ((V1Size != MemoryLocation::UnknownSize && 1641 isObjectSize(O1, V1Size, DL, TLI)) || 1642 (V2Size != MemoryLocation::UnknownSize && 1643 isObjectSize(O2, V2Size, DL, TLI))) 1644 return AliasCache[Locs] = PartialAlias; 1645 1646 // Recurse back into the best AA results we have, potentially with refined 1647 // memory locations. We have already ensured that BasicAA has a MayAlias 1648 // cache result for these, so any recursion back into BasicAA won't loop. 1649 AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second); 1650 return AliasCache[Locs] = Result; 1651 } 1652 1653 /// Check whether two Values can be considered equivalent. 1654 /// 1655 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether 1656 /// they can not be part of a cycle in the value graph by looking at all 1657 /// visited phi nodes an making sure that the phis cannot reach the value. We 1658 /// have to do this because we are looking through phi nodes (That is we say 1659 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1660 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1661 const Value *V2) { 1662 if (V != V2) 1663 return false; 1664 1665 const Instruction *Inst = dyn_cast<Instruction>(V); 1666 if (!Inst) 1667 return true; 1668 1669 if (VisitedPhiBBs.empty()) 1670 return true; 1671 1672 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1673 return false; 1674 1675 // Make sure that the visited phis cannot reach the Value. This ensures that 1676 // the Values cannot come from different iterations of a potential cycle the 1677 // phi nodes could be involved in. 1678 for (auto *P : VisitedPhiBBs) 1679 if (isPotentiallyReachable(&P->front(), Inst, DT, LI)) 1680 return false; 1681 1682 return true; 1683 } 1684 1685 /// Computes the symbolic difference between two de-composed GEPs. 1686 /// 1687 /// Dest and Src are the variable indices from two decomposed GetElementPtr 1688 /// instructions GEP1 and GEP2 which have common base pointers. 1689 void BasicAAResult::GetIndexDifference( 1690 SmallVectorImpl<VariableGEPIndex> &Dest, 1691 const SmallVectorImpl<VariableGEPIndex> &Src) { 1692 if (Src.empty()) 1693 return; 1694 1695 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1696 const Value *V = Src[i].V; 1697 unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits; 1698 int64_t Scale = Src[i].Scale; 1699 1700 // Find V in Dest. This is N^2, but pointer indices almost never have more 1701 // than a few variable indexes. 1702 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1703 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1704 Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits) 1705 continue; 1706 1707 // If we found it, subtract off Scale V's from the entry in Dest. If it 1708 // goes to zero, remove the entry. 1709 if (Dest[j].Scale != Scale) 1710 Dest[j].Scale -= Scale; 1711 else 1712 Dest.erase(Dest.begin() + j); 1713 Scale = 0; 1714 break; 1715 } 1716 1717 // If we didn't consume this entry, add it to the end of the Dest list. 1718 if (Scale) { 1719 VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale}; 1720 Dest.push_back(Entry); 1721 } 1722 } 1723 } 1724 1725 bool BasicAAResult::constantOffsetHeuristic( 1726 const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size, 1727 uint64_t V2Size, int64_t BaseOffset, AssumptionCache *AC, 1728 DominatorTree *DT) { 1729 if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize || 1730 V2Size == MemoryLocation::UnknownSize) 1731 return false; 1732 1733 const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1]; 1734 1735 if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits || 1736 Var0.Scale != -Var1.Scale) 1737 return false; 1738 1739 unsigned Width = Var1.V->getType()->getIntegerBitWidth(); 1740 1741 // We'll strip off the Extensions of Var0 and Var1 and do another round 1742 // of GetLinearExpression decomposition. In the example above, if Var0 1743 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 1744 1745 APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0), 1746 V1Offset(Width, 0); 1747 bool NSW = true, NUW = true; 1748 unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0; 1749 const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits, 1750 V0SExtBits, DL, 0, AC, DT, NSW, NUW); 1751 NSW = true; 1752 NUW = true; 1753 const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits, 1754 V1SExtBits, DL, 0, AC, DT, NSW, NUW); 1755 1756 if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits || 1757 V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1)) 1758 return false; 1759 1760 // We have a hit - Var0 and Var1 only differ by a constant offset! 1761 1762 // If we've been sext'ed then zext'd the maximum difference between Var0 and 1763 // Var1 is possible to calculate, but we're just interested in the absolute 1764 // minimum difference between the two. The minimum distance may occur due to 1765 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 1766 // the minimum distance between %i and %i + 5 is 3. 1767 APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff; 1768 MinDiff = APIntOps::umin(MinDiff, Wrapped); 1769 uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale); 1770 1771 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 1772 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 1773 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 1774 // V2Size can fit in the MinDiffBytes gap. 1775 return V1Size + std::abs(BaseOffset) <= MinDiffBytes && 1776 V2Size + std::abs(BaseOffset) <= MinDiffBytes; 1777 } 1778 1779 //===----------------------------------------------------------------------===// 1780 // BasicAliasAnalysis Pass 1781 //===----------------------------------------------------------------------===// 1782 1783 AnalysisKey BasicAA::Key; 1784 1785 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) { 1786 return BasicAAResult(F.getParent()->getDataLayout(), 1787 AM.getResult<TargetLibraryAnalysis>(F), 1788 AM.getResult<AssumptionAnalysis>(F), 1789 &AM.getResult<DominatorTreeAnalysis>(F), 1790 AM.getCachedResult<LoopAnalysis>(F)); 1791 } 1792 1793 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 1794 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1795 } 1796 1797 char BasicAAWrapperPass::ID = 0; 1798 void BasicAAWrapperPass::anchor() {} 1799 1800 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa", 1801 "Basic Alias Analysis (stateless AA impl)", true, true) 1802 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1803 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1804 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1805 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa", 1806 "Basic Alias Analysis (stateless AA impl)", true, true) 1807 1808 FunctionPass *llvm::createBasicAAWrapperPass() { 1809 return new BasicAAWrapperPass(); 1810 } 1811 1812 bool BasicAAWrapperPass::runOnFunction(Function &F) { 1813 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 1814 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 1815 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); 1816 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 1817 1818 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), TLIWP.getTLI(), 1819 ACT.getAssumptionCache(F), &DTWP.getDomTree(), 1820 LIWP ? &LIWP->getLoopInfo() : nullptr)); 1821 1822 return false; 1823 } 1824 1825 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1826 AU.setPreservesAll(); 1827 AU.addRequired<AssumptionCacheTracker>(); 1828 AU.addRequired<DominatorTreeWrapperPass>(); 1829 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1830 } 1831 1832 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { 1833 return BasicAAResult( 1834 F.getParent()->getDataLayout(), 1835 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 1836 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 1837 } 1838