1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the primary stateless implementation of the 11 // Alias Analysis interface that implements identities (two different 12 // globals cannot alias, etc), but does no stateful analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/Passes.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/Function.h" 21 #include "llvm/GlobalAlias.h" 22 #include "llvm/GlobalVariable.h" 23 #include "llvm/Instructions.h" 24 #include "llvm/IntrinsicInst.h" 25 #include "llvm/LLVMContext.h" 26 #include "llvm/Operator.h" 27 #include "llvm/Pass.h" 28 #include "llvm/Analysis/CaptureTracking.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/Target/TargetData.h" 33 #include "llvm/ADT/SmallPtrSet.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/GetElementPtrTypeIterator.h" 37 #include <algorithm> 38 using namespace llvm; 39 40 //===----------------------------------------------------------------------===// 41 // Useful predicates 42 //===----------------------------------------------------------------------===// 43 44 /// isKnownNonNull - Return true if we know that the specified value is never 45 /// null. 46 static bool isKnownNonNull(const Value *V) { 47 // Alloca never returns null, malloc might. 48 if (isa<AllocaInst>(V)) return true; 49 50 // A byval argument is never null. 51 if (const Argument *A = dyn_cast<Argument>(V)) 52 return A->hasByValAttr(); 53 54 // Global values are not null unless extern weak. 55 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 56 return !GV->hasExternalWeakLinkage(); 57 return false; 58 } 59 60 /// isNonEscapingLocalObject - Return true if the pointer is to a function-local 61 /// object that never escapes from the function. 62 static bool isNonEscapingLocalObject(const Value *V) { 63 // If this is a local allocation, check to see if it escapes. 64 if (isa<AllocaInst>(V) || isNoAliasCall(V)) 65 // Set StoreCaptures to True so that we can assume in our callers that the 66 // pointer is not the result of a load instruction. Currently 67 // PointerMayBeCaptured doesn't have any special analysis for the 68 // StoreCaptures=false case; if it did, our callers could be refined to be 69 // more precise. 70 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 71 72 // If this is an argument that corresponds to a byval or noalias argument, 73 // then it has not escaped before entering the function. Check if it escapes 74 // inside the function. 75 if (const Argument *A = dyn_cast<Argument>(V)) 76 if (A->hasByValAttr() || A->hasNoAliasAttr()) { 77 // Don't bother analyzing arguments already known not to escape. 78 if (A->hasNoCaptureAttr()) 79 return true; 80 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 81 } 82 return false; 83 } 84 85 /// isEscapeSource - Return true if the pointer is one which would have 86 /// been considered an escape by isNonEscapingLocalObject. 87 static bool isEscapeSource(const Value *V) { 88 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V)) 89 return true; 90 91 // The load case works because isNonEscapingLocalObject considers all 92 // stores to be escapes (it passes true for the StoreCaptures argument 93 // to PointerMayBeCaptured). 94 if (isa<LoadInst>(V)) 95 return true; 96 97 return false; 98 } 99 100 /// getObjectSize - Return the size of the object specified by V, or 101 /// UnknownSize if unknown. 102 static uint64_t getObjectSize(const Value *V, const TargetData &TD) { 103 const Type *AccessTy; 104 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 105 if (!GV->hasDefinitiveInitializer()) 106 return AliasAnalysis::UnknownSize; 107 AccessTy = GV->getType()->getElementType(); 108 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 109 if (!AI->isArrayAllocation()) 110 AccessTy = AI->getType()->getElementType(); 111 else 112 return AliasAnalysis::UnknownSize; 113 } else if (const CallInst* CI = extractMallocCall(V)) { 114 if (!isArrayMalloc(V, &TD)) 115 // The size is the argument to the malloc call. 116 if (const ConstantInt* C = dyn_cast<ConstantInt>(CI->getArgOperand(0))) 117 return C->getZExtValue(); 118 return AliasAnalysis::UnknownSize; 119 } else if (const Argument *A = dyn_cast<Argument>(V)) { 120 if (A->hasByValAttr()) 121 AccessTy = cast<PointerType>(A->getType())->getElementType(); 122 else 123 return AliasAnalysis::UnknownSize; 124 } else { 125 return AliasAnalysis::UnknownSize; 126 } 127 128 if (AccessTy->isSized()) 129 return TD.getTypeAllocSize(AccessTy); 130 return AliasAnalysis::UnknownSize; 131 } 132 133 /// isObjectSmallerThan - Return true if we can prove that the object specified 134 /// by V is smaller than Size. 135 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 136 const TargetData &TD) { 137 uint64_t ObjectSize = getObjectSize(V, TD); 138 return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size; 139 } 140 141 /// isObjectSize - Return true if we can prove that the object specified 142 /// by V has size Size. 143 static bool isObjectSize(const Value *V, uint64_t Size, 144 const TargetData &TD) { 145 uint64_t ObjectSize = getObjectSize(V, TD); 146 return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size; 147 } 148 149 //===----------------------------------------------------------------------===// 150 // GetElementPtr Instruction Decomposition and Analysis 151 //===----------------------------------------------------------------------===// 152 153 namespace { 154 enum ExtensionKind { 155 EK_NotExtended, 156 EK_SignExt, 157 EK_ZeroExt 158 }; 159 160 struct VariableGEPIndex { 161 const Value *V; 162 ExtensionKind Extension; 163 int64_t Scale; 164 }; 165 } 166 167 168 /// GetLinearExpression - Analyze the specified value as a linear expression: 169 /// "A*V + B", where A and B are constant integers. Return the scale and offset 170 /// values as APInts and return V as a Value*, and return whether we looked 171 /// through any sign or zero extends. The incoming Value is known to have 172 /// IntegerType and it may already be sign or zero extended. 173 /// 174 /// Note that this looks through extends, so the high bits may not be 175 /// represented in the result. 176 static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset, 177 ExtensionKind &Extension, 178 const TargetData &TD, unsigned Depth) { 179 assert(V->getType()->isIntegerTy() && "Not an integer value"); 180 181 // Limit our recursion depth. 182 if (Depth == 6) { 183 Scale = 1; 184 Offset = 0; 185 return V; 186 } 187 188 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 189 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 190 switch (BOp->getOpcode()) { 191 default: break; 192 case Instruction::Or: 193 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 194 // analyze it. 195 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &TD)) 196 break; 197 // FALL THROUGH. 198 case Instruction::Add: 199 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 200 TD, Depth+1); 201 Offset += RHSC->getValue(); 202 return V; 203 case Instruction::Mul: 204 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 205 TD, Depth+1); 206 Offset *= RHSC->getValue(); 207 Scale *= RHSC->getValue(); 208 return V; 209 case Instruction::Shl: 210 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 211 TD, Depth+1); 212 Offset <<= RHSC->getValue().getLimitedValue(); 213 Scale <<= RHSC->getValue().getLimitedValue(); 214 return V; 215 } 216 } 217 } 218 219 // Since GEP indices are sign extended anyway, we don't care about the high 220 // bits of a sign or zero extended value - just scales and offsets. The 221 // extensions have to be consistent though. 222 if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) || 223 (isa<ZExtInst>(V) && Extension != EK_SignExt)) { 224 Value *CastOp = cast<CastInst>(V)->getOperand(0); 225 unsigned OldWidth = Scale.getBitWidth(); 226 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 227 Scale = Scale.trunc(SmallWidth); 228 Offset = Offset.trunc(SmallWidth); 229 Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt; 230 231 Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension, 232 TD, Depth+1); 233 Scale = Scale.zext(OldWidth); 234 Offset = Offset.zext(OldWidth); 235 236 return Result; 237 } 238 239 Scale = 1; 240 Offset = 0; 241 return V; 242 } 243 244 /// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it 245 /// into a base pointer with a constant offset and a number of scaled symbolic 246 /// offsets. 247 /// 248 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale in 249 /// the VarIndices vector) are Value*'s that are known to be scaled by the 250 /// specified amount, but which may have other unrepresented high bits. As such, 251 /// the gep cannot necessarily be reconstructed from its decomposed form. 252 /// 253 /// When TargetData is around, this function is capable of analyzing everything 254 /// that GetUnderlyingObject can look through. When not, it just looks 255 /// through pointer casts. 256 /// 257 static const Value * 258 DecomposeGEPExpression(const Value *V, int64_t &BaseOffs, 259 SmallVectorImpl<VariableGEPIndex> &VarIndices, 260 const TargetData *TD) { 261 // Limit recursion depth to limit compile time in crazy cases. 262 unsigned MaxLookup = 6; 263 264 BaseOffs = 0; 265 do { 266 // See if this is a bitcast or GEP. 267 const Operator *Op = dyn_cast<Operator>(V); 268 if (Op == 0) { 269 // The only non-operator case we can handle are GlobalAliases. 270 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 271 if (!GA->mayBeOverridden()) { 272 V = GA->getAliasee(); 273 continue; 274 } 275 } 276 return V; 277 } 278 279 if (Op->getOpcode() == Instruction::BitCast) { 280 V = Op->getOperand(0); 281 continue; 282 } 283 284 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 285 if (GEPOp == 0) { 286 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 287 // can come up with something. This matches what GetUnderlyingObject does. 288 if (const Instruction *I = dyn_cast<Instruction>(V)) 289 // TODO: Get a DominatorTree and use it here. 290 if (const Value *Simplified = 291 SimplifyInstruction(const_cast<Instruction *>(I), TD)) { 292 V = Simplified; 293 continue; 294 } 295 296 return V; 297 } 298 299 // Don't attempt to analyze GEPs over unsized objects. 300 if (!cast<PointerType>(GEPOp->getOperand(0)->getType()) 301 ->getElementType()->isSized()) 302 return V; 303 304 // If we are lacking TargetData information, we can't compute the offets of 305 // elements computed by GEPs. However, we can handle bitcast equivalent 306 // GEPs. 307 if (TD == 0) { 308 if (!GEPOp->hasAllZeroIndices()) 309 return V; 310 V = GEPOp->getOperand(0); 311 continue; 312 } 313 314 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 315 gep_type_iterator GTI = gep_type_begin(GEPOp); 316 for (User::const_op_iterator I = GEPOp->op_begin()+1, 317 E = GEPOp->op_end(); I != E; ++I) { 318 Value *Index = *I; 319 // Compute the (potentially symbolic) offset in bytes for this index. 320 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) { 321 // For a struct, add the member offset. 322 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 323 if (FieldNo == 0) continue; 324 325 BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo); 326 continue; 327 } 328 329 // For an array/pointer, add the element offset, explicitly scaled. 330 if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 331 if (CIdx->isZero()) continue; 332 BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue(); 333 continue; 334 } 335 336 uint64_t Scale = TD->getTypeAllocSize(*GTI); 337 ExtensionKind Extension = EK_NotExtended; 338 339 // If the integer type is smaller than the pointer size, it is implicitly 340 // sign extended to pointer size. 341 unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth(); 342 if (TD->getPointerSizeInBits() > Width) 343 Extension = EK_SignExt; 344 345 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 346 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 347 Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension, 348 *TD, 0); 349 350 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 351 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 352 BaseOffs += IndexOffset.getSExtValue()*Scale; 353 Scale *= IndexScale.getSExtValue(); 354 355 356 // If we already had an occurrence of this index variable, merge this 357 // scale into it. For example, we want to handle: 358 // A[x][x] -> x*16 + x*4 -> x*20 359 // This also ensures that 'x' only appears in the index list once. 360 for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) { 361 if (VarIndices[i].V == Index && 362 VarIndices[i].Extension == Extension) { 363 Scale += VarIndices[i].Scale; 364 VarIndices.erase(VarIndices.begin()+i); 365 break; 366 } 367 } 368 369 // Make sure that we have a scale that makes sense for this target's 370 // pointer size. 371 if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) { 372 Scale <<= ShiftBits; 373 Scale = (int64_t)Scale >> ShiftBits; 374 } 375 376 if (Scale) { 377 VariableGEPIndex Entry = {Index, Extension, Scale}; 378 VarIndices.push_back(Entry); 379 } 380 } 381 382 // Analyze the base pointer next. 383 V = GEPOp->getOperand(0); 384 } while (--MaxLookup); 385 386 // If the chain of expressions is too deep, just return early. 387 return V; 388 } 389 390 /// GetIndexDifference - Dest and Src are the variable indices from two 391 /// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base 392 /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic 393 /// difference between the two pointers. 394 static void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest, 395 const SmallVectorImpl<VariableGEPIndex> &Src) { 396 if (Src.empty()) return; 397 398 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 399 const Value *V = Src[i].V; 400 ExtensionKind Extension = Src[i].Extension; 401 int64_t Scale = Src[i].Scale; 402 403 // Find V in Dest. This is N^2, but pointer indices almost never have more 404 // than a few variable indexes. 405 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 406 if (Dest[j].V != V || Dest[j].Extension != Extension) continue; 407 408 // If we found it, subtract off Scale V's from the entry in Dest. If it 409 // goes to zero, remove the entry. 410 if (Dest[j].Scale != Scale) 411 Dest[j].Scale -= Scale; 412 else 413 Dest.erase(Dest.begin()+j); 414 Scale = 0; 415 break; 416 } 417 418 // If we didn't consume this entry, add it to the end of the Dest list. 419 if (Scale) { 420 VariableGEPIndex Entry = { V, Extension, -Scale }; 421 Dest.push_back(Entry); 422 } 423 } 424 } 425 426 //===----------------------------------------------------------------------===// 427 // BasicAliasAnalysis Pass 428 //===----------------------------------------------------------------------===// 429 430 #ifndef NDEBUG 431 static const Function *getParent(const Value *V) { 432 if (const Instruction *inst = dyn_cast<Instruction>(V)) 433 return inst->getParent()->getParent(); 434 435 if (const Argument *arg = dyn_cast<Argument>(V)) 436 return arg->getParent(); 437 438 return NULL; 439 } 440 441 static bool notDifferentParent(const Value *O1, const Value *O2) { 442 443 const Function *F1 = getParent(O1); 444 const Function *F2 = getParent(O2); 445 446 return !F1 || !F2 || F1 == F2; 447 } 448 #endif 449 450 namespace { 451 /// BasicAliasAnalysis - This is the primary alias analysis implementation. 452 struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis { 453 static char ID; // Class identification, replacement for typeinfo 454 BasicAliasAnalysis() : ImmutablePass(ID) { 455 initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry()); 456 } 457 458 virtual void initializePass() { 459 InitializeAliasAnalysis(this); 460 } 461 462 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 463 AU.addRequired<AliasAnalysis>(); 464 } 465 466 virtual AliasResult alias(const Location &LocA, 467 const Location &LocB) { 468 assert(Visited.empty() && "Visited must be cleared after use!"); 469 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 470 "BasicAliasAnalysis doesn't support interprocedural queries."); 471 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.TBAATag, 472 LocB.Ptr, LocB.Size, LocB.TBAATag); 473 Visited.clear(); 474 return Alias; 475 } 476 477 virtual ModRefResult getModRefInfo(ImmutableCallSite CS, 478 const Location &Loc); 479 480 virtual ModRefResult getModRefInfo(ImmutableCallSite CS1, 481 ImmutableCallSite CS2) { 482 // The AliasAnalysis base class has some smarts, lets use them. 483 return AliasAnalysis::getModRefInfo(CS1, CS2); 484 } 485 486 /// pointsToConstantMemory - Chase pointers until we find a (constant 487 /// global) or not. 488 virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal); 489 490 /// getModRefBehavior - Return the behavior when calling the given 491 /// call site. 492 virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS); 493 494 /// getModRefBehavior - Return the behavior when calling the given function. 495 /// For use when the call site is not known. 496 virtual ModRefBehavior getModRefBehavior(const Function *F); 497 498 /// getAdjustedAnalysisPointer - This method is used when a pass implements 499 /// an analysis interface through multiple inheritance. If needed, it 500 /// should override this to adjust the this pointer as needed for the 501 /// specified pass info. 502 virtual void *getAdjustedAnalysisPointer(const void *ID) { 503 if (ID == &AliasAnalysis::ID) 504 return (AliasAnalysis*)this; 505 return this; 506 } 507 508 private: 509 // Visited - Track instructions visited by a aliasPHI, aliasSelect(), and aliasGEP(). 510 SmallPtrSet<const Value*, 16> Visited; 511 512 // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP 513 // instruction against another. 514 AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size, 515 const Value *V2, uint64_t V2Size, 516 const MDNode *V2TBAAInfo, 517 const Value *UnderlyingV1, const Value *UnderlyingV2); 518 519 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI 520 // instruction against another. 521 AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize, 522 const MDNode *PNTBAAInfo, 523 const Value *V2, uint64_t V2Size, 524 const MDNode *V2TBAAInfo); 525 526 /// aliasSelect - Disambiguate a Select instruction against another value. 527 AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize, 528 const MDNode *SITBAAInfo, 529 const Value *V2, uint64_t V2Size, 530 const MDNode *V2TBAAInfo); 531 532 AliasResult aliasCheck(const Value *V1, uint64_t V1Size, 533 const MDNode *V1TBAATag, 534 const Value *V2, uint64_t V2Size, 535 const MDNode *V2TBAATag); 536 }; 537 } // End of anonymous namespace 538 539 // Register this pass... 540 char BasicAliasAnalysis::ID = 0; 541 INITIALIZE_AG_PASS(BasicAliasAnalysis, AliasAnalysis, "basicaa", 542 "Basic Alias Analysis (stateless AA impl)", 543 false, true, false) 544 545 ImmutablePass *llvm::createBasicAliasAnalysisPass() { 546 return new BasicAliasAnalysis(); 547 } 548 549 /// pointsToConstantMemory - Returns whether the given pointer value 550 /// points to memory that is local to the function, with global constants being 551 /// considered local to all functions. 552 bool 553 BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) { 554 assert(Visited.empty() && "Visited must be cleared after use!"); 555 556 unsigned MaxLookup = 8; 557 SmallVector<const Value *, 16> Worklist; 558 Worklist.push_back(Loc.Ptr); 559 do { 560 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), TD); 561 if (!Visited.insert(V)) { 562 Visited.clear(); 563 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 564 } 565 566 // An alloca instruction defines local memory. 567 if (OrLocal && isa<AllocaInst>(V)) 568 continue; 569 570 // A global constant counts as local memory for our purposes. 571 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 572 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 573 // global to be marked constant in some modules and non-constant in 574 // others. GV may even be a declaration, not a definition. 575 if (!GV->isConstant()) { 576 Visited.clear(); 577 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 578 } 579 continue; 580 } 581 582 // If both select values point to local memory, then so does the select. 583 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 584 Worklist.push_back(SI->getTrueValue()); 585 Worklist.push_back(SI->getFalseValue()); 586 continue; 587 } 588 589 // If all values incoming to a phi node point to local memory, then so does 590 // the phi. 591 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 592 // Don't bother inspecting phi nodes with many operands. 593 if (PN->getNumIncomingValues() > MaxLookup) { 594 Visited.clear(); 595 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 596 } 597 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 598 Worklist.push_back(PN->getIncomingValue(i)); 599 continue; 600 } 601 602 // Otherwise be conservative. 603 Visited.clear(); 604 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 605 606 } while (!Worklist.empty() && --MaxLookup); 607 608 Visited.clear(); 609 return Worklist.empty(); 610 } 611 612 /// getModRefBehavior - Return the behavior when calling the given call site. 613 AliasAnalysis::ModRefBehavior 614 BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) { 615 if (CS.doesNotAccessMemory()) 616 // Can't do better than this. 617 return DoesNotAccessMemory; 618 619 ModRefBehavior Min = UnknownModRefBehavior; 620 621 // If the callsite knows it only reads memory, don't return worse 622 // than that. 623 if (CS.onlyReadsMemory()) 624 Min = OnlyReadsMemory; 625 626 // The AliasAnalysis base class has some smarts, lets use them. 627 return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min); 628 } 629 630 /// getModRefBehavior - Return the behavior when calling the given function. 631 /// For use when the call site is not known. 632 AliasAnalysis::ModRefBehavior 633 BasicAliasAnalysis::getModRefBehavior(const Function *F) { 634 // If the function declares it doesn't access memory, we can't do better. 635 if (F->doesNotAccessMemory()) 636 return DoesNotAccessMemory; 637 638 // For intrinsics, we can check the table. 639 if (unsigned iid = F->getIntrinsicID()) { 640 #define GET_INTRINSIC_MODREF_BEHAVIOR 641 #include "llvm/Intrinsics.gen" 642 #undef GET_INTRINSIC_MODREF_BEHAVIOR 643 } 644 645 ModRefBehavior Min = UnknownModRefBehavior; 646 647 // If the function declares it only reads memory, go with that. 648 if (F->onlyReadsMemory()) 649 Min = OnlyReadsMemory; 650 651 // Otherwise be conservative. 652 return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min); 653 } 654 655 /// getModRefInfo - Check to see if the specified callsite can clobber the 656 /// specified memory object. Since we only look at local properties of this 657 /// function, we really can't say much about this query. We do, however, use 658 /// simple "address taken" analysis on local objects. 659 AliasAnalysis::ModRefResult 660 BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS, 661 const Location &Loc) { 662 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && 663 "AliasAnalysis query involving multiple functions!"); 664 665 const Value *Object = GetUnderlyingObject(Loc.Ptr, TD); 666 667 // If this is a tail call and Loc.Ptr points to a stack location, we know that 668 // the tail call cannot access or modify the local stack. 669 // We cannot exclude byval arguments here; these belong to the caller of 670 // the current function not to the current function, and a tail callee 671 // may reference them. 672 if (isa<AllocaInst>(Object)) 673 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) 674 if (CI->isTailCall()) 675 return NoModRef; 676 677 // If the pointer is to a locally allocated object that does not escape, 678 // then the call can not mod/ref the pointer unless the call takes the pointer 679 // as an argument, and itself doesn't capture it. 680 if (!isa<Constant>(Object) && CS.getInstruction() != Object && 681 isNonEscapingLocalObject(Object)) { 682 bool PassedAsArg = false; 683 unsigned ArgNo = 0; 684 for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end(); 685 CI != CE; ++CI, ++ArgNo) { 686 // Only look at the no-capture or byval pointer arguments. If this 687 // pointer were passed to arguments that were neither of these, then it 688 // couldn't be no-capture. 689 if (!(*CI)->getType()->isPointerTy() || 690 (!CS.paramHasAttr(ArgNo+1, Attribute::NoCapture) && 691 !CS.paramHasAttr(ArgNo+1, Attribute::ByVal))) 692 continue; 693 694 // If this is a no-capture pointer argument, see if we can tell that it 695 // is impossible to alias the pointer we're checking. If not, we have to 696 // assume that the call could touch the pointer, even though it doesn't 697 // escape. 698 if (!isNoAlias(Location(cast<Value>(CI)), Loc)) { 699 PassedAsArg = true; 700 break; 701 } 702 } 703 704 if (!PassedAsArg) 705 return NoModRef; 706 } 707 708 ModRefResult Min = ModRef; 709 710 // Finally, handle specific knowledge of intrinsics. 711 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 712 if (II != 0) 713 switch (II->getIntrinsicID()) { 714 default: break; 715 case Intrinsic::memcpy: 716 case Intrinsic::memmove: { 717 uint64_t Len = UnknownSize; 718 if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) 719 Len = LenCI->getZExtValue(); 720 Value *Dest = II->getArgOperand(0); 721 Value *Src = II->getArgOperand(1); 722 // If it can't overlap the source dest, then it doesn't modref the loc. 723 if (isNoAlias(Location(Dest, Len), Loc)) { 724 if (isNoAlias(Location(Src, Len), Loc)) 725 return NoModRef; 726 // If it can't overlap the dest, then worst case it reads the loc. 727 Min = Ref; 728 } else if (isNoAlias(Location(Src, Len), Loc)) { 729 // If it can't overlap the source, then worst case it mutates the loc. 730 Min = Mod; 731 } 732 break; 733 } 734 case Intrinsic::memset: 735 // Since memset is 'accesses arguments' only, the AliasAnalysis base class 736 // will handle it for the variable length case. 737 if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) { 738 uint64_t Len = LenCI->getZExtValue(); 739 Value *Dest = II->getArgOperand(0); 740 if (isNoAlias(Location(Dest, Len), Loc)) 741 return NoModRef; 742 } 743 // We know that memset doesn't load anything. 744 Min = Mod; 745 break; 746 case Intrinsic::atomic_cmp_swap: 747 case Intrinsic::atomic_swap: 748 case Intrinsic::atomic_load_add: 749 case Intrinsic::atomic_load_sub: 750 case Intrinsic::atomic_load_and: 751 case Intrinsic::atomic_load_nand: 752 case Intrinsic::atomic_load_or: 753 case Intrinsic::atomic_load_xor: 754 case Intrinsic::atomic_load_max: 755 case Intrinsic::atomic_load_min: 756 case Intrinsic::atomic_load_umax: 757 case Intrinsic::atomic_load_umin: 758 if (TD) { 759 Value *Op1 = II->getArgOperand(0); 760 uint64_t Op1Size = TD->getTypeStoreSize(Op1->getType()); 761 MDNode *Tag = II->getMetadata(LLVMContext::MD_tbaa); 762 if (isNoAlias(Location(Op1, Op1Size, Tag), Loc)) 763 return NoModRef; 764 } 765 break; 766 case Intrinsic::lifetime_start: 767 case Intrinsic::lifetime_end: 768 case Intrinsic::invariant_start: { 769 uint64_t PtrSize = 770 cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(); 771 if (isNoAlias(Location(II->getArgOperand(1), 772 PtrSize, 773 II->getMetadata(LLVMContext::MD_tbaa)), 774 Loc)) 775 return NoModRef; 776 break; 777 } 778 case Intrinsic::invariant_end: { 779 uint64_t PtrSize = 780 cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(); 781 if (isNoAlias(Location(II->getArgOperand(2), 782 PtrSize, 783 II->getMetadata(LLVMContext::MD_tbaa)), 784 Loc)) 785 return NoModRef; 786 break; 787 } 788 case Intrinsic::arm_neon_vld1: { 789 // LLVM's vld1 and vst1 intrinsics currently only support a single 790 // vector register. 791 uint64_t Size = 792 TD ? TD->getTypeStoreSize(II->getType()) : UnknownSize; 793 if (isNoAlias(Location(II->getArgOperand(0), Size, 794 II->getMetadata(LLVMContext::MD_tbaa)), 795 Loc)) 796 return NoModRef; 797 break; 798 } 799 case Intrinsic::arm_neon_vst1: { 800 uint64_t Size = 801 TD ? TD->getTypeStoreSize(II->getArgOperand(1)->getType()) : UnknownSize; 802 if (isNoAlias(Location(II->getArgOperand(0), Size, 803 II->getMetadata(LLVMContext::MD_tbaa)), 804 Loc)) 805 return NoModRef; 806 break; 807 } 808 } 809 810 // The AliasAnalysis base class has some smarts, lets use them. 811 return ModRefResult(AliasAnalysis::getModRefInfo(CS, Loc) & Min); 812 } 813 814 /// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction 815 /// against another pointer. We know that V1 is a GEP, but we don't know 816 /// anything about V2. UnderlyingV1 is GetUnderlyingObject(GEP1, TD), 817 /// UnderlyingV2 is the same for V2. 818 /// 819 AliasAnalysis::AliasResult 820 BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, 821 const Value *V2, uint64_t V2Size, 822 const MDNode *V2TBAAInfo, 823 const Value *UnderlyingV1, 824 const Value *UnderlyingV2) { 825 // If this GEP has been visited before, we're on a use-def cycle. 826 // Such cycles are only valid when PHI nodes are involved or in unreachable 827 // code. The visitPHI function catches cycles containing PHIs, but there 828 // could still be a cycle without PHIs in unreachable code. 829 if (!Visited.insert(GEP1)) 830 return MayAlias; 831 832 int64_t GEP1BaseOffset; 833 SmallVector<VariableGEPIndex, 4> GEP1VariableIndices; 834 835 // If we have two gep instructions with must-alias'ing base pointers, figure 836 // out if the indexes to the GEP tell us anything about the derived pointer. 837 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 838 // Do the base pointers alias? 839 AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, 0, 840 UnderlyingV2, UnknownSize, 0); 841 842 // If we get a No or May, then return it immediately, no amount of analysis 843 // will improve this situation. 844 if (BaseAlias != MustAlias) return BaseAlias; 845 846 // Otherwise, we have a MustAlias. Since the base pointers alias each other 847 // exactly, see if the computed offset from the common pointer tells us 848 // about the relation of the resulting pointer. 849 const Value *GEP1BasePtr = 850 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD); 851 852 int64_t GEP2BaseOffset; 853 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 854 const Value *GEP2BasePtr = 855 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD); 856 857 // If DecomposeGEPExpression isn't able to look all the way through the 858 // addressing operation, we must not have TD and this is too complex for us 859 // to handle without it. 860 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 861 assert(TD == 0 && 862 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 863 return MayAlias; 864 } 865 866 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 867 // symbolic difference. 868 GEP1BaseOffset -= GEP2BaseOffset; 869 GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices); 870 871 } else { 872 // Check to see if these two pointers are related by the getelementptr 873 // instruction. If one pointer is a GEP with a non-zero index of the other 874 // pointer, we know they cannot alias. 875 876 // If both accesses are unknown size, we can't do anything useful here. 877 if (V1Size == UnknownSize && V2Size == UnknownSize) 878 return MayAlias; 879 880 AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, 0, 881 V2, V2Size, V2TBAAInfo); 882 if (R != MustAlias) 883 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 884 // If V2 is known not to alias GEP base pointer, then the two values 885 // cannot alias per GEP semantics: "A pointer value formed from a 886 // getelementptr instruction is associated with the addresses associated 887 // with the first operand of the getelementptr". 888 return R; 889 890 const Value *GEP1BasePtr = 891 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD); 892 893 // If DecomposeGEPExpression isn't able to look all the way through the 894 // addressing operation, we must not have TD and this is too complex for us 895 // to handle without it. 896 if (GEP1BasePtr != UnderlyingV1) { 897 assert(TD == 0 && 898 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 899 return MayAlias; 900 } 901 } 902 903 // In the two GEP Case, if there is no difference in the offsets of the 904 // computed pointers, the resultant pointers are a must alias. This 905 // hapens when we have two lexically identical GEP's (for example). 906 // 907 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 908 // must aliases the GEP, the end result is a must alias also. 909 if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty()) 910 return MustAlias; 911 912 // If there is a difference between the pointers, but the difference is 913 // less than the size of the associated memory object, then we know 914 // that the objects are partially overlapping. 915 if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) { 916 if (GEP1BaseOffset >= 0 ? 917 (V2Size != UnknownSize && (uint64_t)GEP1BaseOffset < V2Size) : 918 (V1Size != UnknownSize && -(uint64_t)GEP1BaseOffset < V1Size && 919 GEP1BaseOffset != INT64_MIN)) 920 return PartialAlias; 921 } 922 923 // If we have a known constant offset, see if this offset is larger than the 924 // access size being queried. If so, and if no variable indices can remove 925 // pieces of this constant, then we know we have a no-alias. For example, 926 // &A[100] != &A. 927 928 // In order to handle cases like &A[100][i] where i is an out of range 929 // subscript, we have to ignore all constant offset pieces that are a multiple 930 // of a scaled index. Do this by removing constant offsets that are a 931 // multiple of any of our variable indices. This allows us to transform 932 // things like &A[i][1] because i has a stride of (e.g.) 8 bytes but the 1 933 // provides an offset of 4 bytes (assuming a <= 4 byte access). 934 for (unsigned i = 0, e = GEP1VariableIndices.size(); 935 i != e && GEP1BaseOffset;++i) 936 if (int64_t RemovedOffset = GEP1BaseOffset/GEP1VariableIndices[i].Scale) 937 GEP1BaseOffset -= RemovedOffset*GEP1VariableIndices[i].Scale; 938 939 // If our known offset is bigger than the access size, we know we don't have 940 // an alias. 941 if (GEP1BaseOffset) { 942 if (GEP1BaseOffset >= 0 ? 943 (V2Size != UnknownSize && (uint64_t)GEP1BaseOffset >= V2Size) : 944 (V1Size != UnknownSize && -(uint64_t)GEP1BaseOffset >= V1Size && 945 GEP1BaseOffset != INT64_MIN)) 946 return NoAlias; 947 } 948 949 return MayAlias; 950 } 951 952 /// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select 953 /// instruction against another. 954 AliasAnalysis::AliasResult 955 BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize, 956 const MDNode *SITBAAInfo, 957 const Value *V2, uint64_t V2Size, 958 const MDNode *V2TBAAInfo) { 959 // If this select has been visited before, we're on a use-def cycle. 960 // Such cycles are only valid when PHI nodes are involved or in unreachable 961 // code. The visitPHI function catches cycles containing PHIs, but there 962 // could still be a cycle without PHIs in unreachable code. 963 if (!Visited.insert(SI)) 964 return MayAlias; 965 966 // If the values are Selects with the same condition, we can do a more precise 967 // check: just check for aliases between the values on corresponding arms. 968 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 969 if (SI->getCondition() == SI2->getCondition()) { 970 AliasResult Alias = 971 aliasCheck(SI->getTrueValue(), SISize, SITBAAInfo, 972 SI2->getTrueValue(), V2Size, V2TBAAInfo); 973 if (Alias == MayAlias) 974 return MayAlias; 975 AliasResult ThisAlias = 976 aliasCheck(SI->getFalseValue(), SISize, SITBAAInfo, 977 SI2->getFalseValue(), V2Size, V2TBAAInfo); 978 if (ThisAlias != Alias) 979 return MayAlias; 980 return Alias; 981 } 982 983 // If both arms of the Select node NoAlias or MustAlias V2, then returns 984 // NoAlias / MustAlias. Otherwise, returns MayAlias. 985 AliasResult Alias = 986 aliasCheck(V2, V2Size, V2TBAAInfo, SI->getTrueValue(), SISize, SITBAAInfo); 987 if (Alias == MayAlias) 988 return MayAlias; 989 990 // If V2 is visited, the recursive case will have been caught in the 991 // above aliasCheck call, so these subsequent calls to aliasCheck 992 // don't need to assume that V2 is being visited recursively. 993 Visited.erase(V2); 994 995 AliasResult ThisAlias = 996 aliasCheck(V2, V2Size, V2TBAAInfo, SI->getFalseValue(), SISize, SITBAAInfo); 997 if (ThisAlias != Alias) 998 return MayAlias; 999 return Alias; 1000 } 1001 1002 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction 1003 // against another. 1004 AliasAnalysis::AliasResult 1005 BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize, 1006 const MDNode *PNTBAAInfo, 1007 const Value *V2, uint64_t V2Size, 1008 const MDNode *V2TBAAInfo) { 1009 // The PHI node has already been visited, avoid recursion any further. 1010 if (!Visited.insert(PN)) 1011 return MayAlias; 1012 1013 // If the values are PHIs in the same block, we can do a more precise 1014 // as well as efficient check: just check for aliases between the values 1015 // on corresponding edges. 1016 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1017 if (PN2->getParent() == PN->getParent()) { 1018 AliasResult Alias = 1019 aliasCheck(PN->getIncomingValue(0), PNSize, PNTBAAInfo, 1020 PN2->getIncomingValueForBlock(PN->getIncomingBlock(0)), 1021 V2Size, V2TBAAInfo); 1022 if (Alias == MayAlias) 1023 return MayAlias; 1024 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 1025 AliasResult ThisAlias = 1026 aliasCheck(PN->getIncomingValue(i), PNSize, PNTBAAInfo, 1027 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1028 V2Size, V2TBAAInfo); 1029 if (ThisAlias != Alias) 1030 return MayAlias; 1031 } 1032 return Alias; 1033 } 1034 1035 SmallPtrSet<Value*, 4> UniqueSrc; 1036 SmallVector<Value*, 4> V1Srcs; 1037 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1038 Value *PV1 = PN->getIncomingValue(i); 1039 if (isa<PHINode>(PV1)) 1040 // If any of the source itself is a PHI, return MayAlias conservatively 1041 // to avoid compile time explosion. The worst possible case is if both 1042 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1043 // and 'n' are the number of PHI sources. 1044 return MayAlias; 1045 if (UniqueSrc.insert(PV1)) 1046 V1Srcs.push_back(PV1); 1047 } 1048 1049 AliasResult Alias = aliasCheck(V2, V2Size, V2TBAAInfo, 1050 V1Srcs[0], PNSize, PNTBAAInfo); 1051 // Early exit if the check of the first PHI source against V2 is MayAlias. 1052 // Other results are not possible. 1053 if (Alias == MayAlias) 1054 return MayAlias; 1055 1056 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1057 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1058 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1059 Value *V = V1Srcs[i]; 1060 1061 // If V2 is visited, the recursive case will have been caught in the 1062 // above aliasCheck call, so these subsequent calls to aliasCheck 1063 // don't need to assume that V2 is being visited recursively. 1064 Visited.erase(V2); 1065 1066 AliasResult ThisAlias = aliasCheck(V2, V2Size, V2TBAAInfo, 1067 V, PNSize, PNTBAAInfo); 1068 if (ThisAlias != Alias || ThisAlias == MayAlias) 1069 return MayAlias; 1070 } 1071 1072 return Alias; 1073 } 1074 1075 // aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases, 1076 // such as array references. 1077 // 1078 AliasAnalysis::AliasResult 1079 BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size, 1080 const MDNode *V1TBAAInfo, 1081 const Value *V2, uint64_t V2Size, 1082 const MDNode *V2TBAAInfo) { 1083 // If either of the memory references is empty, it doesn't matter what the 1084 // pointer values are. 1085 if (V1Size == 0 || V2Size == 0) 1086 return NoAlias; 1087 1088 // Strip off any casts if they exist. 1089 V1 = V1->stripPointerCasts(); 1090 V2 = V2->stripPointerCasts(); 1091 1092 // Are we checking for alias of the same value? 1093 if (V1 == V2) return MustAlias; 1094 1095 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1096 return NoAlias; // Scalars cannot alias each other 1097 1098 // Figure out what objects these things are pointing to if we can. 1099 const Value *O1 = GetUnderlyingObject(V1, TD); 1100 const Value *O2 = GetUnderlyingObject(V2, TD); 1101 1102 // Null values in the default address space don't point to any object, so they 1103 // don't alias any other pointer. 1104 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1105 if (CPN->getType()->getAddressSpace() == 0) 1106 return NoAlias; 1107 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1108 if (CPN->getType()->getAddressSpace() == 0) 1109 return NoAlias; 1110 1111 if (O1 != O2) { 1112 // If V1/V2 point to two different objects we know that we have no alias. 1113 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1114 return NoAlias; 1115 1116 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1117 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1118 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1119 return NoAlias; 1120 1121 // Arguments can't alias with local allocations or noalias calls 1122 // in the same function. 1123 if (((isa<Argument>(O1) && (isa<AllocaInst>(O2) || isNoAliasCall(O2))) || 1124 (isa<Argument>(O2) && (isa<AllocaInst>(O1) || isNoAliasCall(O1))))) 1125 return NoAlias; 1126 1127 // Most objects can't alias null. 1128 if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) || 1129 (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2))) 1130 return NoAlias; 1131 1132 // If one pointer is the result of a call/invoke or load and the other is a 1133 // non-escaping local object within the same function, then we know the 1134 // object couldn't escape to a point where the call could return it. 1135 // 1136 // Note that if the pointers are in different functions, there are a 1137 // variety of complications. A call with a nocapture argument may still 1138 // temporary store the nocapture argument's value in a temporary memory 1139 // location if that memory location doesn't escape. Or it may pass a 1140 // nocapture value to other functions as long as they don't capture it. 1141 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) 1142 return NoAlias; 1143 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) 1144 return NoAlias; 1145 } 1146 1147 // If the size of one access is larger than the entire object on the other 1148 // side, then we know such behavior is undefined and can assume no alias. 1149 if (TD) 1150 if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *TD)) || 1151 (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *TD))) 1152 return NoAlias; 1153 1154 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1155 // GEP can't simplify, we don't even look at the PHI cases. 1156 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1157 std::swap(V1, V2); 1158 std::swap(V1Size, V2Size); 1159 std::swap(O1, O2); 1160 } 1161 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1162 AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, V2TBAAInfo, O1, O2); 1163 if (Result != MayAlias) return Result; 1164 } 1165 1166 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1167 std::swap(V1, V2); 1168 std::swap(V1Size, V2Size); 1169 } 1170 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1171 AliasResult Result = aliasPHI(PN, V1Size, V1TBAAInfo, 1172 V2, V2Size, V2TBAAInfo); 1173 if (Result != MayAlias) return Result; 1174 } 1175 1176 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1177 std::swap(V1, V2); 1178 std::swap(V1Size, V2Size); 1179 } 1180 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1181 AliasResult Result = aliasSelect(S1, V1Size, V1TBAAInfo, 1182 V2, V2Size, V2TBAAInfo); 1183 if (Result != MayAlias) return Result; 1184 } 1185 1186 // If both pointers are pointing into the same object and one of them 1187 // accesses is accessing the entire object, then the accesses must 1188 // overlap in some way. 1189 if (TD && O1 == O2) 1190 if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *TD)) || 1191 (V2Size != UnknownSize && isObjectSize(O2, V2Size, *TD))) 1192 return PartialAlias; 1193 1194 return AliasAnalysis::alias(Location(V1, V1Size, V1TBAAInfo), 1195 Location(V2, V2Size, V2TBAAInfo)); 1196 } 1197