1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the primary stateless implementation of the 11 // Alias Analysis interface that implements identities (two different 12 // globals cannot alias, etc), but does no stateful analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/Passes.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/CaptureTracking.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/TargetLibraryInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/GetElementPtrTypeIterator.h" 34 #include "llvm/IR/GlobalAlias.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include <algorithm> 43 using namespace llvm; 44 45 /// Enable analysis of recursive PHI nodes. 46 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", 47 cl::Hidden, cl::init(false)); 48 49 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 50 /// in a cycle. Because we are analysing 'through' phi nodes we need to be 51 /// careful with value equivalence. We use reachability to make sure a value 52 /// cannot be involved in a cycle. 53 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 54 55 // The max limit of the search depth in DecomposeGEPExpression() and 56 // GetUnderlyingObject(), both functions need to use the same search 57 // depth otherwise the algorithm in aliasGEP will assert. 58 static const unsigned MaxLookupSearchDepth = 6; 59 60 //===----------------------------------------------------------------------===// 61 // Useful predicates 62 //===----------------------------------------------------------------------===// 63 64 /// isNonEscapingLocalObject - Return true if the pointer is to a function-local 65 /// object that never escapes from the function. 66 static bool isNonEscapingLocalObject(const Value *V) { 67 // If this is a local allocation, check to see if it escapes. 68 if (isa<AllocaInst>(V) || isNoAliasCall(V)) 69 // Set StoreCaptures to True so that we can assume in our callers that the 70 // pointer is not the result of a load instruction. Currently 71 // PointerMayBeCaptured doesn't have any special analysis for the 72 // StoreCaptures=false case; if it did, our callers could be refined to be 73 // more precise. 74 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 75 76 // If this is an argument that corresponds to a byval or noalias argument, 77 // then it has not escaped before entering the function. Check if it escapes 78 // inside the function. 79 if (const Argument *A = dyn_cast<Argument>(V)) 80 if (A->hasByValAttr() || A->hasNoAliasAttr()) 81 // Note even if the argument is marked nocapture we still need to check 82 // for copies made inside the function. The nocapture attribute only 83 // specifies that there are no copies made that outlive the function. 84 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 85 86 return false; 87 } 88 89 /// isEscapeSource - Return true if the pointer is one which would have 90 /// been considered an escape by isNonEscapingLocalObject. 91 static bool isEscapeSource(const Value *V) { 92 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V)) 93 return true; 94 95 // The load case works because isNonEscapingLocalObject considers all 96 // stores to be escapes (it passes true for the StoreCaptures argument 97 // to PointerMayBeCaptured). 98 if (isa<LoadInst>(V)) 99 return true; 100 101 return false; 102 } 103 104 /// getObjectSize - Return the size of the object specified by V, or 105 /// UnknownSize if unknown. 106 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 107 const TargetLibraryInfo &TLI, 108 bool RoundToAlign = false) { 109 uint64_t Size; 110 if (getObjectSize(V, Size, DL, &TLI, RoundToAlign)) 111 return Size; 112 return MemoryLocation::UnknownSize; 113 } 114 115 /// isObjectSmallerThan - Return true if we can prove that the object specified 116 /// by V is smaller than Size. 117 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 118 const DataLayout &DL, 119 const TargetLibraryInfo &TLI) { 120 // Note that the meanings of the "object" are slightly different in the 121 // following contexts: 122 // c1: llvm::getObjectSize() 123 // c2: llvm.objectsize() intrinsic 124 // c3: isObjectSmallerThan() 125 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 126 // refers to the "entire object". 127 // 128 // Consider this example: 129 // char *p = (char*)malloc(100) 130 // char *q = p+80; 131 // 132 // In the context of c1 and c2, the "object" pointed by q refers to the 133 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 134 // 135 // However, in the context of c3, the "object" refers to the chunk of memory 136 // being allocated. So, the "object" has 100 bytes, and q points to the middle 137 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 138 // parameter, before the llvm::getObjectSize() is called to get the size of 139 // entire object, we should: 140 // - either rewind the pointer q to the base-address of the object in 141 // question (in this case rewind to p), or 142 // - just give up. It is up to caller to make sure the pointer is pointing 143 // to the base address the object. 144 // 145 // We go for 2nd option for simplicity. 146 if (!isIdentifiedObject(V)) 147 return false; 148 149 // This function needs to use the aligned object size because we allow 150 // reads a bit past the end given sufficient alignment. 151 uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/true); 152 153 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; 154 } 155 156 /// isObjectSize - Return true if we can prove that the object specified 157 /// by V has size Size. 158 static bool isObjectSize(const Value *V, uint64_t Size, 159 const DataLayout &DL, const TargetLibraryInfo &TLI) { 160 uint64_t ObjectSize = getObjectSize(V, DL, TLI); 161 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; 162 } 163 164 //===----------------------------------------------------------------------===// 165 // GetElementPtr Instruction Decomposition and Analysis 166 //===----------------------------------------------------------------------===// 167 168 namespace { 169 enum ExtensionKind { 170 EK_NotExtended, 171 EK_SignExt, 172 EK_ZeroExt 173 }; 174 175 struct VariableGEPIndex { 176 const Value *V; 177 ExtensionKind Extension; 178 int64_t Scale; 179 180 bool operator==(const VariableGEPIndex &Other) const { 181 return V == Other.V && Extension == Other.Extension && 182 Scale == Other.Scale; 183 } 184 185 bool operator!=(const VariableGEPIndex &Other) const { 186 return !operator==(Other); 187 } 188 }; 189 } 190 191 192 /// GetLinearExpression - Analyze the specified value as a linear expression: 193 /// "A*V + B", where A and B are constant integers. Return the scale and offset 194 /// values as APInts and return V as a Value*, and return whether we looked 195 /// through any sign or zero extends. The incoming Value is known to have 196 /// IntegerType and it may already be sign or zero extended. 197 /// 198 /// Note that this looks through extends, so the high bits may not be 199 /// represented in the result. 200 static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset, 201 ExtensionKind &Extension, 202 const DataLayout &DL, unsigned Depth, 203 AssumptionCache *AC, DominatorTree *DT) { 204 assert(V->getType()->isIntegerTy() && "Not an integer value"); 205 206 // Limit our recursion depth. 207 if (Depth == 6) { 208 Scale = 1; 209 Offset = 0; 210 return V; 211 } 212 213 if (ConstantInt *Const = dyn_cast<ConstantInt>(V)) { 214 // if it's a constant, just convert it to an offset 215 // and remove the variable. 216 Offset += Const->getValue(); 217 assert(Scale == 0 && "Constant values don't have a scale"); 218 return V; 219 } 220 221 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 222 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 223 switch (BOp->getOpcode()) { 224 default: break; 225 case Instruction::Or: 226 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 227 // analyze it. 228 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, 229 BOp, DT)) 230 break; 231 // FALL THROUGH. 232 case Instruction::Add: 233 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 234 DL, Depth + 1, AC, DT); 235 Offset += RHSC->getValue(); 236 return V; 237 case Instruction::Mul: 238 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 239 DL, Depth + 1, AC, DT); 240 Offset *= RHSC->getValue(); 241 Scale *= RHSC->getValue(); 242 return V; 243 case Instruction::Shl: 244 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 245 DL, Depth + 1, AC, DT); 246 Offset <<= RHSC->getValue().getLimitedValue(); 247 Scale <<= RHSC->getValue().getLimitedValue(); 248 return V; 249 } 250 } 251 } 252 253 // Since GEP indices are sign extended anyway, we don't care about the high 254 // bits of a sign or zero extended value - just scales and offsets. The 255 // extensions have to be consistent though. 256 if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) || 257 (isa<ZExtInst>(V) && Extension != EK_SignExt)) { 258 Value *CastOp = cast<CastInst>(V)->getOperand(0); 259 unsigned OldWidth = Scale.getBitWidth(); 260 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 261 Scale = Scale.trunc(SmallWidth); 262 Offset = Offset.trunc(SmallWidth); 263 Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt; 264 265 Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension, DL, 266 Depth + 1, AC, DT); 267 Scale = Scale.zext(OldWidth); 268 269 // We have to sign-extend even if Extension == EK_ZeroExt as we can't 270 // decompose a sign extension (i.e. zext(x - 1) != zext(x) - zext(-1)). 271 Offset = Offset.sext(OldWidth); 272 273 return Result; 274 } 275 276 Scale = 1; 277 Offset = 0; 278 return V; 279 } 280 281 /// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it 282 /// into a base pointer with a constant offset and a number of scaled symbolic 283 /// offsets. 284 /// 285 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale in 286 /// the VarIndices vector) are Value*'s that are known to be scaled by the 287 /// specified amount, but which may have other unrepresented high bits. As such, 288 /// the gep cannot necessarily be reconstructed from its decomposed form. 289 /// 290 /// When DataLayout is around, this function is capable of analyzing everything 291 /// that GetUnderlyingObject can look through. To be able to do that 292 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search 293 /// depth (MaxLookupSearchDepth). 294 /// When DataLayout not is around, it just looks through pointer casts. 295 /// 296 static const Value * 297 DecomposeGEPExpression(const Value *V, int64_t &BaseOffs, 298 SmallVectorImpl<VariableGEPIndex> &VarIndices, 299 bool &MaxLookupReached, const DataLayout &DL, 300 AssumptionCache *AC, DominatorTree *DT) { 301 // Limit recursion depth to limit compile time in crazy cases. 302 unsigned MaxLookup = MaxLookupSearchDepth; 303 MaxLookupReached = false; 304 305 BaseOffs = 0; 306 do { 307 // See if this is a bitcast or GEP. 308 const Operator *Op = dyn_cast<Operator>(V); 309 if (!Op) { 310 // The only non-operator case we can handle are GlobalAliases. 311 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 312 if (!GA->mayBeOverridden()) { 313 V = GA->getAliasee(); 314 continue; 315 } 316 } 317 return V; 318 } 319 320 if (Op->getOpcode() == Instruction::BitCast || 321 Op->getOpcode() == Instruction::AddrSpaceCast) { 322 V = Op->getOperand(0); 323 continue; 324 } 325 326 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 327 if (!GEPOp) { 328 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 329 // can come up with something. This matches what GetUnderlyingObject does. 330 if (const Instruction *I = dyn_cast<Instruction>(V)) 331 // TODO: Get a DominatorTree and AssumptionCache and use them here 332 // (these are both now available in this function, but this should be 333 // updated when GetUnderlyingObject is updated). TLI should be 334 // provided also. 335 if (const Value *Simplified = 336 SimplifyInstruction(const_cast<Instruction *>(I), DL)) { 337 V = Simplified; 338 continue; 339 } 340 341 return V; 342 } 343 344 // Don't attempt to analyze GEPs over unsized objects. 345 if (!GEPOp->getOperand(0)->getType()->getPointerElementType()->isSized()) 346 return V; 347 348 unsigned AS = GEPOp->getPointerAddressSpace(); 349 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 350 gep_type_iterator GTI = gep_type_begin(GEPOp); 351 for (User::const_op_iterator I = GEPOp->op_begin()+1, 352 E = GEPOp->op_end(); I != E; ++I) { 353 Value *Index = *I; 354 // Compute the (potentially symbolic) offset in bytes for this index. 355 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 356 // For a struct, add the member offset. 357 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 358 if (FieldNo == 0) continue; 359 360 BaseOffs += DL.getStructLayout(STy)->getElementOffset(FieldNo); 361 continue; 362 } 363 364 // For an array/pointer, add the element offset, explicitly scaled. 365 if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 366 if (CIdx->isZero()) continue; 367 BaseOffs += DL.getTypeAllocSize(*GTI) * CIdx->getSExtValue(); 368 continue; 369 } 370 371 uint64_t Scale = DL.getTypeAllocSize(*GTI); 372 ExtensionKind Extension = EK_NotExtended; 373 374 // If the integer type is smaller than the pointer size, it is implicitly 375 // sign extended to pointer size. 376 unsigned Width = Index->getType()->getIntegerBitWidth(); 377 if (DL.getPointerSizeInBits(AS) > Width) 378 Extension = EK_SignExt; 379 380 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 381 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 382 Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension, DL, 383 0, AC, DT); 384 385 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 386 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 387 BaseOffs += IndexOffset.getSExtValue()*Scale; 388 Scale *= IndexScale.getSExtValue(); 389 390 // If we already had an occurrence of this index variable, merge this 391 // scale into it. For example, we want to handle: 392 // A[x][x] -> x*16 + x*4 -> x*20 393 // This also ensures that 'x' only appears in the index list once. 394 for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) { 395 if (VarIndices[i].V == Index && 396 VarIndices[i].Extension == Extension) { 397 Scale += VarIndices[i].Scale; 398 VarIndices.erase(VarIndices.begin()+i); 399 break; 400 } 401 } 402 403 // Make sure that we have a scale that makes sense for this target's 404 // pointer size. 405 if (unsigned ShiftBits = 64 - DL.getPointerSizeInBits(AS)) { 406 Scale <<= ShiftBits; 407 Scale = (int64_t)Scale >> ShiftBits; 408 } 409 410 if (Scale) { 411 VariableGEPIndex Entry = {Index, Extension, 412 static_cast<int64_t>(Scale)}; 413 VarIndices.push_back(Entry); 414 } 415 } 416 417 // Analyze the base pointer next. 418 V = GEPOp->getOperand(0); 419 } while (--MaxLookup); 420 421 // If the chain of expressions is too deep, just return early. 422 MaxLookupReached = true; 423 return V; 424 } 425 426 //===----------------------------------------------------------------------===// 427 // BasicAliasAnalysis Pass 428 //===----------------------------------------------------------------------===// 429 430 #ifndef NDEBUG 431 static const Function *getParent(const Value *V) { 432 if (const Instruction *inst = dyn_cast<Instruction>(V)) 433 return inst->getParent()->getParent(); 434 435 if (const Argument *arg = dyn_cast<Argument>(V)) 436 return arg->getParent(); 437 438 return nullptr; 439 } 440 441 static bool notDifferentParent(const Value *O1, const Value *O2) { 442 443 const Function *F1 = getParent(O1); 444 const Function *F2 = getParent(O2); 445 446 return !F1 || !F2 || F1 == F2; 447 } 448 #endif 449 450 namespace { 451 /// BasicAliasAnalysis - This is the primary alias analysis implementation. 452 struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis { 453 static char ID; // Class identification, replacement for typeinfo 454 BasicAliasAnalysis() : ImmutablePass(ID) { 455 initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry()); 456 } 457 458 bool doInitialization(Module &M) override; 459 460 void getAnalysisUsage(AnalysisUsage &AU) const override { 461 AU.addRequired<AliasAnalysis>(); 462 AU.addRequired<AssumptionCacheTracker>(); 463 AU.addRequired<TargetLibraryInfoWrapperPass>(); 464 } 465 466 AliasResult alias(const MemoryLocation &LocA, 467 const MemoryLocation &LocB) override { 468 assert(AliasCache.empty() && "AliasCache must be cleared after use!"); 469 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 470 "BasicAliasAnalysis doesn't support interprocedural queries."); 471 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, 472 LocB.Ptr, LocB.Size, LocB.AATags); 473 // AliasCache rarely has more than 1 or 2 elements, always use 474 // shrink_and_clear so it quickly returns to the inline capacity of the 475 // SmallDenseMap if it ever grows larger. 476 // FIXME: This should really be shrink_to_inline_capacity_and_clear(). 477 AliasCache.shrink_and_clear(); 478 VisitedPhiBBs.clear(); 479 return Alias; 480 } 481 482 ModRefResult getModRefInfo(ImmutableCallSite CS, 483 const MemoryLocation &Loc) override; 484 485 ModRefResult getModRefInfo(ImmutableCallSite CS1, 486 ImmutableCallSite CS2) override; 487 488 /// pointsToConstantMemory - Chase pointers until we find a (constant 489 /// global) or not. 490 bool pointsToConstantMemory(const MemoryLocation &Loc, 491 bool OrLocal) override; 492 493 /// Get the location associated with a pointer argument of a callsite. 494 ModRefResult getArgModRefInfo(ImmutableCallSite CS, 495 unsigned ArgIdx) override; 496 497 /// getModRefBehavior - Return the behavior when calling the given 498 /// call site. 499 ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override; 500 501 /// getModRefBehavior - Return the behavior when calling the given function. 502 /// For use when the call site is not known. 503 ModRefBehavior getModRefBehavior(const Function *F) override; 504 505 /// getAdjustedAnalysisPointer - This method is used when a pass implements 506 /// an analysis interface through multiple inheritance. If needed, it 507 /// should override this to adjust the this pointer as needed for the 508 /// specified pass info. 509 void *getAdjustedAnalysisPointer(const void *ID) override { 510 if (ID == &AliasAnalysis::ID) 511 return (AliasAnalysis*)this; 512 return this; 513 } 514 515 private: 516 // AliasCache - Track alias queries to guard against recursion. 517 typedef std::pair<MemoryLocation, MemoryLocation> LocPair; 518 typedef SmallDenseMap<LocPair, AliasResult, 8> AliasCacheTy; 519 AliasCacheTy AliasCache; 520 521 /// \brief Track phi nodes we have visited. When interpret "Value" pointer 522 /// equality as value equality we need to make sure that the "Value" is not 523 /// part of a cycle. Otherwise, two uses could come from different 524 /// "iterations" of a cycle and see different values for the same "Value" 525 /// pointer. 526 /// The following example shows the problem: 527 /// %p = phi(%alloca1, %addr2) 528 /// %l = load %ptr 529 /// %addr1 = gep, %alloca2, 0, %l 530 /// %addr2 = gep %alloca2, 0, (%l + 1) 531 /// alias(%p, %addr1) -> MayAlias ! 532 /// store %l, ... 533 SmallPtrSet<const BasicBlock*, 8> VisitedPhiBBs; 534 535 // Visited - Track instructions visited by pointsToConstantMemory. 536 SmallPtrSet<const Value*, 16> Visited; 537 538 /// \brief Check whether two Values can be considered equivalent. 539 /// 540 /// In addition to pointer equivalence of \p V1 and \p V2 this checks 541 /// whether they can not be part of a cycle in the value graph by looking at 542 /// all visited phi nodes an making sure that the phis cannot reach the 543 /// value. We have to do this because we are looking through phi nodes (That 544 /// is we say noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 545 bool isValueEqualInPotentialCycles(const Value *V1, const Value *V2); 546 547 /// \brief Dest and Src are the variable indices from two decomposed 548 /// GetElementPtr instructions GEP1 and GEP2 which have common base 549 /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic 550 /// difference between the two pointers. 551 void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest, 552 const SmallVectorImpl<VariableGEPIndex> &Src); 553 554 // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP 555 // instruction against another. 556 AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size, 557 const AAMDNodes &V1AAInfo, 558 const Value *V2, uint64_t V2Size, 559 const AAMDNodes &V2AAInfo, 560 const Value *UnderlyingV1, const Value *UnderlyingV2); 561 562 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI 563 // instruction against another. 564 AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize, 565 const AAMDNodes &PNAAInfo, 566 const Value *V2, uint64_t V2Size, 567 const AAMDNodes &V2AAInfo); 568 569 /// aliasSelect - Disambiguate a Select instruction against another value. 570 AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize, 571 const AAMDNodes &SIAAInfo, 572 const Value *V2, uint64_t V2Size, 573 const AAMDNodes &V2AAInfo); 574 575 AliasResult aliasCheck(const Value *V1, uint64_t V1Size, 576 AAMDNodes V1AATag, 577 const Value *V2, uint64_t V2Size, 578 AAMDNodes V2AATag); 579 }; 580 } // End of anonymous namespace 581 582 // Register this pass... 583 char BasicAliasAnalysis::ID = 0; 584 INITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa", 585 "Basic Alias Analysis (stateless AA impl)", 586 false, true, false) 587 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 588 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 589 INITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa", 590 "Basic Alias Analysis (stateless AA impl)", 591 false, true, false) 592 593 594 ImmutablePass *llvm::createBasicAliasAnalysisPass() { 595 return new BasicAliasAnalysis(); 596 } 597 598 /// pointsToConstantMemory - Returns whether the given pointer value 599 /// points to memory that is local to the function, with global constants being 600 /// considered local to all functions. 601 bool BasicAliasAnalysis::pointsToConstantMemory(const MemoryLocation &Loc, 602 bool OrLocal) { 603 assert(Visited.empty() && "Visited must be cleared after use!"); 604 605 unsigned MaxLookup = 8; 606 SmallVector<const Value *, 16> Worklist; 607 Worklist.push_back(Loc.Ptr); 608 do { 609 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), *DL); 610 if (!Visited.insert(V).second) { 611 Visited.clear(); 612 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 613 } 614 615 // An alloca instruction defines local memory. 616 if (OrLocal && isa<AllocaInst>(V)) 617 continue; 618 619 // A global constant counts as local memory for our purposes. 620 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 621 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 622 // global to be marked constant in some modules and non-constant in 623 // others. GV may even be a declaration, not a definition. 624 if (!GV->isConstant()) { 625 Visited.clear(); 626 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 627 } 628 continue; 629 } 630 631 // If both select values point to local memory, then so does the select. 632 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 633 Worklist.push_back(SI->getTrueValue()); 634 Worklist.push_back(SI->getFalseValue()); 635 continue; 636 } 637 638 // If all values incoming to a phi node point to local memory, then so does 639 // the phi. 640 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 641 // Don't bother inspecting phi nodes with many operands. 642 if (PN->getNumIncomingValues() > MaxLookup) { 643 Visited.clear(); 644 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 645 } 646 for (Value *IncValue : PN->incoming_values()) 647 Worklist.push_back(IncValue); 648 continue; 649 } 650 651 // Otherwise be conservative. 652 Visited.clear(); 653 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 654 655 } while (!Worklist.empty() && --MaxLookup); 656 657 Visited.clear(); 658 return Worklist.empty(); 659 } 660 661 // FIXME: This code is duplicated with MemoryLocation and should be hoisted to 662 // some common utility location. 663 static bool isMemsetPattern16(const Function *MS, 664 const TargetLibraryInfo &TLI) { 665 if (TLI.has(LibFunc::memset_pattern16) && 666 MS->getName() == "memset_pattern16") { 667 FunctionType *MemsetType = MS->getFunctionType(); 668 if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 && 669 isa<PointerType>(MemsetType->getParamType(0)) && 670 isa<PointerType>(MemsetType->getParamType(1)) && 671 isa<IntegerType>(MemsetType->getParamType(2))) 672 return true; 673 } 674 675 return false; 676 } 677 678 /// getModRefBehavior - Return the behavior when calling the given call site. 679 AliasAnalysis::ModRefBehavior 680 BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) { 681 if (CS.doesNotAccessMemory()) 682 // Can't do better than this. 683 return DoesNotAccessMemory; 684 685 ModRefBehavior Min = UnknownModRefBehavior; 686 687 // If the callsite knows it only reads memory, don't return worse 688 // than that. 689 if (CS.onlyReadsMemory()) 690 Min = OnlyReadsMemory; 691 692 if (CS.onlyAccessesArgMemory()) 693 Min = ModRefBehavior(Min & OnlyAccessesArgumentPointees); 694 695 // The AliasAnalysis base class has some smarts, lets use them. 696 return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min); 697 } 698 699 /// getModRefBehavior - Return the behavior when calling the given function. 700 /// For use when the call site is not known. 701 AliasAnalysis::ModRefBehavior 702 BasicAliasAnalysis::getModRefBehavior(const Function *F) { 703 // If the function declares it doesn't access memory, we can't do better. 704 if (F->doesNotAccessMemory()) 705 return DoesNotAccessMemory; 706 707 // For intrinsics, we can check the table. 708 if (Intrinsic::ID iid = F->getIntrinsicID()) { 709 #define GET_INTRINSIC_MODREF_BEHAVIOR 710 #include "llvm/IR/Intrinsics.gen" 711 #undef GET_INTRINSIC_MODREF_BEHAVIOR 712 } 713 714 ModRefBehavior Min = UnknownModRefBehavior; 715 716 // If the function declares it only reads memory, go with that. 717 if (F->onlyReadsMemory()) 718 Min = OnlyReadsMemory; 719 720 if (F->onlyAccessesArgMemory()) 721 Min = ModRefBehavior(Min & OnlyAccessesArgumentPointees); 722 723 const TargetLibraryInfo &TLI = 724 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 725 if (isMemsetPattern16(F, TLI)) 726 Min = OnlyAccessesArgumentPointees; 727 728 // Otherwise be conservative. 729 return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min); 730 } 731 732 AliasAnalysis::ModRefResult 733 BasicAliasAnalysis::getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) { 734 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) 735 switch (II->getIntrinsicID()) { 736 default: 737 break; 738 case Intrinsic::memset: 739 case Intrinsic::memcpy: 740 case Intrinsic::memmove: 741 assert((ArgIdx == 0 || ArgIdx == 1) && 742 "Invalid argument index for memory intrinsic"); 743 return ArgIdx ? Ref : Mod; 744 } 745 746 // We can bound the aliasing properties of memset_pattern16 just as we can 747 // for memcpy/memset. This is particularly important because the 748 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 749 // whenever possible. 750 if (CS.getCalledFunction() && 751 isMemsetPattern16(CS.getCalledFunction(), *TLI)) { 752 assert((ArgIdx == 0 || ArgIdx == 1) && 753 "Invalid argument index for memset_pattern16"); 754 return ArgIdx ? Ref : Mod; 755 } 756 // FIXME: Handle memset_pattern4 and memset_pattern8 also. 757 758 return AliasAnalysis::getArgModRefInfo(CS, ArgIdx); 759 } 760 761 static bool isAssumeIntrinsic(ImmutableCallSite CS) { 762 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 763 if (II && II->getIntrinsicID() == Intrinsic::assume) 764 return true; 765 766 return false; 767 } 768 769 bool BasicAliasAnalysis::doInitialization(Module &M) { 770 InitializeAliasAnalysis(this, &M.getDataLayout()); 771 return true; 772 } 773 774 /// getModRefInfo - Check to see if the specified callsite can clobber the 775 /// specified memory object. Since we only look at local properties of this 776 /// function, we really can't say much about this query. We do, however, use 777 /// simple "address taken" analysis on local objects. 778 AliasAnalysis::ModRefResult 779 BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS, 780 const MemoryLocation &Loc) { 781 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && 782 "AliasAnalysis query involving multiple functions!"); 783 784 const Value *Object = GetUnderlyingObject(Loc.Ptr, *DL); 785 786 // If this is a tail call and Loc.Ptr points to a stack location, we know that 787 // the tail call cannot access or modify the local stack. 788 // We cannot exclude byval arguments here; these belong to the caller of 789 // the current function not to the current function, and a tail callee 790 // may reference them. 791 if (isa<AllocaInst>(Object)) 792 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) 793 if (CI->isTailCall()) 794 return NoModRef; 795 796 // If the pointer is to a locally allocated object that does not escape, 797 // then the call can not mod/ref the pointer unless the call takes the pointer 798 // as an argument, and itself doesn't capture it. 799 if (!isa<Constant>(Object) && CS.getInstruction() != Object && 800 isNonEscapingLocalObject(Object)) { 801 bool PassedAsArg = false; 802 unsigned ArgNo = 0; 803 for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end(); 804 CI != CE; ++CI, ++ArgNo) { 805 // Only look at the no-capture or byval pointer arguments. If this 806 // pointer were passed to arguments that were neither of these, then it 807 // couldn't be no-capture. 808 if (!(*CI)->getType()->isPointerTy() || 809 (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo))) 810 continue; 811 812 // If this is a no-capture pointer argument, see if we can tell that it 813 // is impossible to alias the pointer we're checking. If not, we have to 814 // assume that the call could touch the pointer, even though it doesn't 815 // escape. 816 if (!isNoAlias(MemoryLocation(*CI), MemoryLocation(Object))) { 817 PassedAsArg = true; 818 break; 819 } 820 } 821 822 if (!PassedAsArg) 823 return NoModRef; 824 } 825 826 // While the assume intrinsic is marked as arbitrarily writing so that 827 // proper control dependencies will be maintained, it never aliases any 828 // particular memory location. 829 if (isAssumeIntrinsic(CS)) 830 return NoModRef; 831 832 // The AliasAnalysis base class has some smarts, lets use them. 833 return AliasAnalysis::getModRefInfo(CS, Loc); 834 } 835 836 AliasAnalysis::ModRefResult 837 BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS1, 838 ImmutableCallSite CS2) { 839 // While the assume intrinsic is marked as arbitrarily writing so that 840 // proper control dependencies will be maintained, it never aliases any 841 // particular memory location. 842 if (isAssumeIntrinsic(CS1) || isAssumeIntrinsic(CS2)) 843 return NoModRef; 844 845 // The AliasAnalysis base class has some smarts, lets use them. 846 return AliasAnalysis::getModRefInfo(CS1, CS2); 847 } 848 849 /// \brief Provide ad-hoc rules to disambiguate accesses through two GEP 850 /// operators, both having the exact same pointer operand. 851 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1, 852 uint64_t V1Size, 853 const GEPOperator *GEP2, 854 uint64_t V2Size, 855 const DataLayout &DL) { 856 857 assert(GEP1->getPointerOperand() == GEP2->getPointerOperand() && 858 "Expected GEPs with the same pointer operand"); 859 860 // Try to determine whether GEP1 and GEP2 index through arrays, into structs, 861 // such that the struct field accesses provably cannot alias. 862 // We also need at least two indices (the pointer, and the struct field). 863 if (GEP1->getNumIndices() != GEP2->getNumIndices() || 864 GEP1->getNumIndices() < 2) 865 return MayAlias; 866 867 // If we don't know the size of the accesses through both GEPs, we can't 868 // determine whether the struct fields accessed can't alias. 869 if (V1Size == MemoryLocation::UnknownSize || 870 V2Size == MemoryLocation::UnknownSize) 871 return MayAlias; 872 873 ConstantInt *C1 = 874 dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1)); 875 ConstantInt *C2 = 876 dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1)); 877 878 // If the last (struct) indices aren't constants, we can't say anything. 879 // If they're identical, the other indices might be also be dynamically 880 // equal, so the GEPs can alias. 881 if (!C1 || !C2 || C1 == C2) 882 return MayAlias; 883 884 // Find the last-indexed type of the GEP, i.e., the type you'd get if 885 // you stripped the last index. 886 // On the way, look at each indexed type. If there's something other 887 // than an array, different indices can lead to different final types. 888 SmallVector<Value *, 8> IntermediateIndices; 889 890 // Insert the first index; we don't need to check the type indexed 891 // through it as it only drops the pointer indirection. 892 assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine"); 893 IntermediateIndices.push_back(GEP1->getOperand(1)); 894 895 // Insert all the remaining indices but the last one. 896 // Also, check that they all index through arrays. 897 for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) { 898 if (!isa<ArrayType>(GetElementPtrInst::getIndexedType( 899 GEP1->getSourceElementType(), IntermediateIndices))) 900 return MayAlias; 901 IntermediateIndices.push_back(GEP1->getOperand(i + 1)); 902 } 903 904 StructType *LastIndexedStruct = 905 dyn_cast<StructType>(GetElementPtrInst::getIndexedType( 906 GEP1->getSourceElementType(), IntermediateIndices)); 907 908 if (!LastIndexedStruct) 909 return MayAlias; 910 911 // We know that: 912 // - both GEPs begin indexing from the exact same pointer; 913 // - the last indices in both GEPs are constants, indexing into a struct; 914 // - said indices are different, hence, the pointed-to fields are different; 915 // - both GEPs only index through arrays prior to that. 916 // 917 // This lets us determine that the struct that GEP1 indexes into and the 918 // struct that GEP2 indexes into must either precisely overlap or be 919 // completely disjoint. Because they cannot partially overlap, indexing into 920 // different non-overlapping fields of the struct will never alias. 921 922 // Therefore, the only remaining thing needed to show that both GEPs can't 923 // alias is that the fields are not overlapping. 924 const StructLayout *SL = DL.getStructLayout(LastIndexedStruct); 925 const uint64_t StructSize = SL->getSizeInBytes(); 926 const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue()); 927 const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue()); 928 929 auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size, 930 uint64_t V2Off, uint64_t V2Size) { 931 return V1Off < V2Off && V1Off + V1Size <= V2Off && 932 ((V2Off + V2Size <= StructSize) || 933 (V2Off + V2Size - StructSize <= V1Off)); 934 }; 935 936 if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) || 937 EltsDontOverlap(V2Off, V2Size, V1Off, V1Size)) 938 return NoAlias; 939 940 return MayAlias; 941 } 942 943 /// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction 944 /// against another pointer. We know that V1 is a GEP, but we don't know 945 /// anything about V2. UnderlyingV1 is GetUnderlyingObject(GEP1, DL), 946 /// UnderlyingV2 is the same for V2. 947 /// 948 AliasResult BasicAliasAnalysis::aliasGEP( 949 const GEPOperator *GEP1, uint64_t V1Size, const AAMDNodes &V1AAInfo, 950 const Value *V2, uint64_t V2Size, const AAMDNodes &V2AAInfo, 951 const Value *UnderlyingV1, const Value *UnderlyingV2) { 952 int64_t GEP1BaseOffset; 953 bool GEP1MaxLookupReached; 954 SmallVector<VariableGEPIndex, 4> GEP1VariableIndices; 955 956 // We have to get two AssumptionCaches here because GEP1 and V2 may be from 957 // different functions. 958 // FIXME: This really doesn't make any sense. We get a dominator tree below 959 // that can only refer to a single function. But this function (aliasGEP) is 960 // a method on an immutable pass that can be called when there *isn't* 961 // a single function. The old pass management layer makes this "work", but 962 // this isn't really a clean solution. 963 AssumptionCacheTracker &ACT = getAnalysis<AssumptionCacheTracker>(); 964 AssumptionCache *AC1 = nullptr, *AC2 = nullptr; 965 if (auto *GEP1I = dyn_cast<Instruction>(GEP1)) 966 AC1 = &ACT.getAssumptionCache( 967 const_cast<Function &>(*GEP1I->getParent()->getParent())); 968 if (auto *I2 = dyn_cast<Instruction>(V2)) 969 AC2 = &ACT.getAssumptionCache( 970 const_cast<Function &>(*I2->getParent()->getParent())); 971 972 DominatorTreeWrapperPass *DTWP = 973 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 974 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 975 976 // If we have two gep instructions with must-alias or not-alias'ing base 977 // pointers, figure out if the indexes to the GEP tell us anything about the 978 // derived pointer. 979 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 980 // Do the base pointers alias? 981 AliasResult BaseAlias = 982 aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(), 983 UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes()); 984 985 // Check for geps of non-aliasing underlying pointers where the offsets are 986 // identical. 987 if ((BaseAlias == MayAlias) && V1Size == V2Size) { 988 // Do the base pointers alias assuming type and size. 989 AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, 990 V1AAInfo, UnderlyingV2, 991 V2Size, V2AAInfo); 992 if (PreciseBaseAlias == NoAlias) { 993 // See if the computed offset from the common pointer tells us about the 994 // relation of the resulting pointer. 995 int64_t GEP2BaseOffset; 996 bool GEP2MaxLookupReached; 997 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 998 const Value *GEP2BasePtr = 999 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, 1000 GEP2MaxLookupReached, *DL, AC2, DT); 1001 const Value *GEP1BasePtr = 1002 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 1003 GEP1MaxLookupReached, *DL, AC1, DT); 1004 // DecomposeGEPExpression and GetUnderlyingObject should return the 1005 // same result except when DecomposeGEPExpression has no DataLayout. 1006 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 1007 assert(!DL && 1008 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 1009 return MayAlias; 1010 } 1011 // If the max search depth is reached the result is undefined 1012 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1013 return MayAlias; 1014 1015 // Same offsets. 1016 if (GEP1BaseOffset == GEP2BaseOffset && 1017 GEP1VariableIndices == GEP2VariableIndices) 1018 return NoAlias; 1019 GEP1VariableIndices.clear(); 1020 } 1021 } 1022 1023 // If we get a No or May, then return it immediately, no amount of analysis 1024 // will improve this situation. 1025 if (BaseAlias != MustAlias) return BaseAlias; 1026 1027 // Otherwise, we have a MustAlias. Since the base pointers alias each other 1028 // exactly, see if the computed offset from the common pointer tells us 1029 // about the relation of the resulting pointer. 1030 const Value *GEP1BasePtr = 1031 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 1032 GEP1MaxLookupReached, *DL, AC1, DT); 1033 1034 int64_t GEP2BaseOffset; 1035 bool GEP2MaxLookupReached; 1036 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 1037 const Value *GEP2BasePtr = 1038 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, 1039 GEP2MaxLookupReached, *DL, AC2, DT); 1040 1041 // DecomposeGEPExpression and GetUnderlyingObject should return the 1042 // same result except when DecomposeGEPExpression has no DataLayout. 1043 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 1044 assert(!DL && 1045 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 1046 return MayAlias; 1047 } 1048 1049 // If we know the two GEPs are based off of the exact same pointer (and not 1050 // just the same underlying object), see if that tells us anything about 1051 // the resulting pointers. 1052 if (DL && GEP1->getPointerOperand() == GEP2->getPointerOperand()) { 1053 AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, *DL); 1054 // If we couldn't find anything interesting, don't abandon just yet. 1055 if (R != MayAlias) 1056 return R; 1057 } 1058 1059 // If the max search depth is reached the result is undefined 1060 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1061 return MayAlias; 1062 1063 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1064 // symbolic difference. 1065 GEP1BaseOffset -= GEP2BaseOffset; 1066 GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices); 1067 1068 } else { 1069 // Check to see if these two pointers are related by the getelementptr 1070 // instruction. If one pointer is a GEP with a non-zero index of the other 1071 // pointer, we know they cannot alias. 1072 1073 // If both accesses are unknown size, we can't do anything useful here. 1074 if (V1Size == MemoryLocation::UnknownSize && 1075 V2Size == MemoryLocation::UnknownSize) 1076 return MayAlias; 1077 1078 AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, 1079 AAMDNodes(), V2, V2Size, V2AAInfo); 1080 if (R != MustAlias) 1081 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 1082 // If V2 is known not to alias GEP base pointer, then the two values 1083 // cannot alias per GEP semantics: "A pointer value formed from a 1084 // getelementptr instruction is associated with the addresses associated 1085 // with the first operand of the getelementptr". 1086 return R; 1087 1088 const Value *GEP1BasePtr = 1089 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 1090 GEP1MaxLookupReached, *DL, AC1, DT); 1091 1092 // DecomposeGEPExpression and GetUnderlyingObject should return the 1093 // same result except when DecomposeGEPExpression has no DataLayout. 1094 if (GEP1BasePtr != UnderlyingV1) { 1095 assert(!DL && 1096 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 1097 return MayAlias; 1098 } 1099 // If the max search depth is reached the result is undefined 1100 if (GEP1MaxLookupReached) 1101 return MayAlias; 1102 } 1103 1104 // In the two GEP Case, if there is no difference in the offsets of the 1105 // computed pointers, the resultant pointers are a must alias. This 1106 // hapens when we have two lexically identical GEP's (for example). 1107 // 1108 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 1109 // must aliases the GEP, the end result is a must alias also. 1110 if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty()) 1111 return MustAlias; 1112 1113 // If there is a constant difference between the pointers, but the difference 1114 // is less than the size of the associated memory object, then we know 1115 // that the objects are partially overlapping. If the difference is 1116 // greater, we know they do not overlap. 1117 if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) { 1118 if (GEP1BaseOffset >= 0) { 1119 if (V2Size != MemoryLocation::UnknownSize) { 1120 if ((uint64_t)GEP1BaseOffset < V2Size) 1121 return PartialAlias; 1122 return NoAlias; 1123 } 1124 } else { 1125 // We have the situation where: 1126 // + + 1127 // | BaseOffset | 1128 // ---------------->| 1129 // |-->V1Size |-------> V2Size 1130 // GEP1 V2 1131 // We need to know that V2Size is not unknown, otherwise we might have 1132 // stripped a gep with negative index ('gep <ptr>, -1, ...). 1133 if (V1Size != MemoryLocation::UnknownSize && 1134 V2Size != MemoryLocation::UnknownSize) { 1135 if (-(uint64_t)GEP1BaseOffset < V1Size) 1136 return PartialAlias; 1137 return NoAlias; 1138 } 1139 } 1140 } 1141 1142 if (!GEP1VariableIndices.empty()) { 1143 uint64_t Modulo = 0; 1144 bool AllPositive = true; 1145 for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) { 1146 1147 // Try to distinguish something like &A[i][1] against &A[42][0]. 1148 // Grab the least significant bit set in any of the scales. We 1149 // don't need std::abs here (even if the scale's negative) as we'll 1150 // be ^'ing Modulo with itself later. 1151 Modulo |= (uint64_t) GEP1VariableIndices[i].Scale; 1152 1153 if (AllPositive) { 1154 // If the Value could change between cycles, then any reasoning about 1155 // the Value this cycle may not hold in the next cycle. We'll just 1156 // give up if we can't determine conditions that hold for every cycle: 1157 const Value *V = GEP1VariableIndices[i].V; 1158 1159 bool SignKnownZero, SignKnownOne; 1160 ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, *DL, 1161 0, AC1, nullptr, DT); 1162 1163 // Zero-extension widens the variable, and so forces the sign 1164 // bit to zero. 1165 bool IsZExt = GEP1VariableIndices[i].Extension == EK_ZeroExt; 1166 SignKnownZero |= IsZExt; 1167 SignKnownOne &= !IsZExt; 1168 1169 // If the variable begins with a zero then we know it's 1170 // positive, regardless of whether the value is signed or 1171 // unsigned. 1172 int64_t Scale = GEP1VariableIndices[i].Scale; 1173 AllPositive = 1174 (SignKnownZero && Scale >= 0) || 1175 (SignKnownOne && Scale < 0); 1176 } 1177 } 1178 1179 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1180 1181 // We can compute the difference between the two addresses 1182 // mod Modulo. Check whether that difference guarantees that the 1183 // two locations do not alias. 1184 uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1); 1185 if (V1Size != MemoryLocation::UnknownSize && 1186 V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size && 1187 V1Size <= Modulo - ModOffset) 1188 return NoAlias; 1189 1190 // If we know all the variables are positive, then GEP1 >= GEP1BasePtr. 1191 // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers 1192 // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr. 1193 if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t) GEP1BaseOffset) 1194 return NoAlias; 1195 } 1196 1197 // Statically, we can see that the base objects are the same, but the 1198 // pointers have dynamic offsets which we can't resolve. And none of our 1199 // little tricks above worked. 1200 // 1201 // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the 1202 // practical effect of this is protecting TBAA in the case of dynamic 1203 // indices into arrays of unions or malloc'd memory. 1204 return PartialAlias; 1205 } 1206 1207 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1208 // If the results agree, take it. 1209 if (A == B) 1210 return A; 1211 // A mix of PartialAlias and MustAlias is PartialAlias. 1212 if ((A == PartialAlias && B == MustAlias) || 1213 (B == PartialAlias && A == MustAlias)) 1214 return PartialAlias; 1215 // Otherwise, we don't know anything. 1216 return MayAlias; 1217 } 1218 1219 /// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select 1220 /// instruction against another. 1221 AliasResult BasicAliasAnalysis::aliasSelect(const SelectInst *SI, 1222 uint64_t SISize, 1223 const AAMDNodes &SIAAInfo, 1224 const Value *V2, uint64_t V2Size, 1225 const AAMDNodes &V2AAInfo) { 1226 // If the values are Selects with the same condition, we can do a more precise 1227 // check: just check for aliases between the values on corresponding arms. 1228 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1229 if (SI->getCondition() == SI2->getCondition()) { 1230 AliasResult Alias = 1231 aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, 1232 SI2->getTrueValue(), V2Size, V2AAInfo); 1233 if (Alias == MayAlias) 1234 return MayAlias; 1235 AliasResult ThisAlias = 1236 aliasCheck(SI->getFalseValue(), SISize, SIAAInfo, 1237 SI2->getFalseValue(), V2Size, V2AAInfo); 1238 return MergeAliasResults(ThisAlias, Alias); 1239 } 1240 1241 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1242 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1243 AliasResult Alias = 1244 aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), SISize, SIAAInfo); 1245 if (Alias == MayAlias) 1246 return MayAlias; 1247 1248 AliasResult ThisAlias = 1249 aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo); 1250 return MergeAliasResults(ThisAlias, Alias); 1251 } 1252 1253 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction 1254 // against another. 1255 AliasResult BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize, 1256 const AAMDNodes &PNAAInfo, 1257 const Value *V2, uint64_t V2Size, 1258 const AAMDNodes &V2AAInfo) { 1259 // Track phi nodes we have visited. We use this information when we determine 1260 // value equivalence. 1261 VisitedPhiBBs.insert(PN->getParent()); 1262 1263 // If the values are PHIs in the same block, we can do a more precise 1264 // as well as efficient check: just check for aliases between the values 1265 // on corresponding edges. 1266 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1267 if (PN2->getParent() == PN->getParent()) { 1268 LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo), 1269 MemoryLocation(V2, V2Size, V2AAInfo)); 1270 if (PN > V2) 1271 std::swap(Locs.first, Locs.second); 1272 // Analyse the PHIs' inputs under the assumption that the PHIs are 1273 // NoAlias. 1274 // If the PHIs are May/MustAlias there must be (recursively) an input 1275 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1276 // there must be an operation on the PHIs within the PHIs' value cycle 1277 // that causes a MayAlias. 1278 // Pretend the phis do not alias. 1279 AliasResult Alias = NoAlias; 1280 assert(AliasCache.count(Locs) && 1281 "There must exist an entry for the phi node"); 1282 AliasResult OrigAliasResult = AliasCache[Locs]; 1283 AliasCache[Locs] = NoAlias; 1284 1285 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1286 AliasResult ThisAlias = 1287 aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo, 1288 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1289 V2Size, V2AAInfo); 1290 Alias = MergeAliasResults(ThisAlias, Alias); 1291 if (Alias == MayAlias) 1292 break; 1293 } 1294 1295 // Reset if speculation failed. 1296 if (Alias != NoAlias) 1297 AliasCache[Locs] = OrigAliasResult; 1298 1299 return Alias; 1300 } 1301 1302 SmallPtrSet<Value*, 4> UniqueSrc; 1303 SmallVector<Value*, 4> V1Srcs; 1304 bool isRecursive = false; 1305 for (Value *PV1 : PN->incoming_values()) { 1306 if (isa<PHINode>(PV1)) 1307 // If any of the source itself is a PHI, return MayAlias conservatively 1308 // to avoid compile time explosion. The worst possible case is if both 1309 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1310 // and 'n' are the number of PHI sources. 1311 return MayAlias; 1312 1313 if (EnableRecPhiAnalysis) 1314 if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) { 1315 // Check whether the incoming value is a GEP that advances the pointer 1316 // result of this PHI node (e.g. in a loop). If this is the case, we 1317 // would recurse and always get a MayAlias. Handle this case specially 1318 // below. 1319 if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 && 1320 isa<ConstantInt>(PV1GEP->idx_begin())) { 1321 isRecursive = true; 1322 continue; 1323 } 1324 } 1325 1326 if (UniqueSrc.insert(PV1).second) 1327 V1Srcs.push_back(PV1); 1328 } 1329 1330 // If this PHI node is recursive, set the size of the accessed memory to 1331 // unknown to represent all the possible values the GEP could advance the 1332 // pointer to. 1333 if (isRecursive) 1334 PNSize = MemoryLocation::UnknownSize; 1335 1336 AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, 1337 V1Srcs[0], PNSize, PNAAInfo); 1338 1339 // Early exit if the check of the first PHI source against V2 is MayAlias. 1340 // Other results are not possible. 1341 if (Alias == MayAlias) 1342 return MayAlias; 1343 1344 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1345 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1346 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1347 Value *V = V1Srcs[i]; 1348 1349 AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo, 1350 V, PNSize, PNAAInfo); 1351 Alias = MergeAliasResults(ThisAlias, Alias); 1352 if (Alias == MayAlias) 1353 break; 1354 } 1355 1356 return Alias; 1357 } 1358 1359 // aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases, 1360 // such as array references. 1361 // 1362 AliasResult BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size, 1363 AAMDNodes V1AAInfo, const Value *V2, 1364 uint64_t V2Size, 1365 AAMDNodes V2AAInfo) { 1366 // If either of the memory references is empty, it doesn't matter what the 1367 // pointer values are. 1368 if (V1Size == 0 || V2Size == 0) 1369 return NoAlias; 1370 1371 // Strip off any casts if they exist. 1372 V1 = V1->stripPointerCasts(); 1373 V2 = V2->stripPointerCasts(); 1374 1375 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1376 // value for undef that aliases nothing in the program. 1377 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1378 return NoAlias; 1379 1380 // Are we checking for alias of the same value? 1381 // Because we look 'through' phi nodes we could look at "Value" pointers from 1382 // different iterations. We must therefore make sure that this is not the 1383 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1384 // happen by looking at the visited phi nodes and making sure they cannot 1385 // reach the value. 1386 if (isValueEqualInPotentialCycles(V1, V2)) 1387 return MustAlias; 1388 1389 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1390 return NoAlias; // Scalars cannot alias each other 1391 1392 // Figure out what objects these things are pointing to if we can. 1393 const Value *O1 = GetUnderlyingObject(V1, *DL, MaxLookupSearchDepth); 1394 const Value *O2 = GetUnderlyingObject(V2, *DL, MaxLookupSearchDepth); 1395 1396 // Null values in the default address space don't point to any object, so they 1397 // don't alias any other pointer. 1398 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1399 if (CPN->getType()->getAddressSpace() == 0) 1400 return NoAlias; 1401 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1402 if (CPN->getType()->getAddressSpace() == 0) 1403 return NoAlias; 1404 1405 if (O1 != O2) { 1406 // If V1/V2 point to two different objects we know that we have no alias. 1407 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1408 return NoAlias; 1409 1410 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1411 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1412 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1413 return NoAlias; 1414 1415 // Function arguments can't alias with things that are known to be 1416 // unambigously identified at the function level. 1417 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1418 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1419 return NoAlias; 1420 1421 // Most objects can't alias null. 1422 if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) || 1423 (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2))) 1424 return NoAlias; 1425 1426 // If one pointer is the result of a call/invoke or load and the other is a 1427 // non-escaping local object within the same function, then we know the 1428 // object couldn't escape to a point where the call could return it. 1429 // 1430 // Note that if the pointers are in different functions, there are a 1431 // variety of complications. A call with a nocapture argument may still 1432 // temporary store the nocapture argument's value in a temporary memory 1433 // location if that memory location doesn't escape. Or it may pass a 1434 // nocapture value to other functions as long as they don't capture it. 1435 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) 1436 return NoAlias; 1437 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) 1438 return NoAlias; 1439 } 1440 1441 // If the size of one access is larger than the entire object on the other 1442 // side, then we know such behavior is undefined and can assume no alias. 1443 if (DL) 1444 if ((V1Size != MemoryLocation::UnknownSize && 1445 isObjectSmallerThan(O2, V1Size, *DL, *TLI)) || 1446 (V2Size != MemoryLocation::UnknownSize && 1447 isObjectSmallerThan(O1, V2Size, *DL, *TLI))) 1448 return NoAlias; 1449 1450 // Check the cache before climbing up use-def chains. This also terminates 1451 // otherwise infinitely recursive queries. 1452 LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo), 1453 MemoryLocation(V2, V2Size, V2AAInfo)); 1454 if (V1 > V2) 1455 std::swap(Locs.first, Locs.second); 1456 std::pair<AliasCacheTy::iterator, bool> Pair = 1457 AliasCache.insert(std::make_pair(Locs, MayAlias)); 1458 if (!Pair.second) 1459 return Pair.first->second; 1460 1461 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1462 // GEP can't simplify, we don't even look at the PHI cases. 1463 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1464 std::swap(V1, V2); 1465 std::swap(V1Size, V2Size); 1466 std::swap(O1, O2); 1467 std::swap(V1AAInfo, V2AAInfo); 1468 } 1469 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1470 AliasResult Result = aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2); 1471 if (Result != MayAlias) return AliasCache[Locs] = Result; 1472 } 1473 1474 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1475 std::swap(V1, V2); 1476 std::swap(V1Size, V2Size); 1477 std::swap(V1AAInfo, V2AAInfo); 1478 } 1479 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1480 AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, 1481 V2, V2Size, V2AAInfo); 1482 if (Result != MayAlias) return AliasCache[Locs] = Result; 1483 } 1484 1485 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1486 std::swap(V1, V2); 1487 std::swap(V1Size, V2Size); 1488 std::swap(V1AAInfo, V2AAInfo); 1489 } 1490 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1491 AliasResult Result = aliasSelect(S1, V1Size, V1AAInfo, 1492 V2, V2Size, V2AAInfo); 1493 if (Result != MayAlias) return AliasCache[Locs] = Result; 1494 } 1495 1496 // If both pointers are pointing into the same object and one of them 1497 // accesses is accessing the entire object, then the accesses must 1498 // overlap in some way. 1499 if (DL && O1 == O2) 1500 if ((V1Size != MemoryLocation::UnknownSize && 1501 isObjectSize(O1, V1Size, *DL, *TLI)) || 1502 (V2Size != MemoryLocation::UnknownSize && 1503 isObjectSize(O2, V2Size, *DL, *TLI))) 1504 return AliasCache[Locs] = PartialAlias; 1505 1506 AliasResult Result = 1507 AliasAnalysis::alias(MemoryLocation(V1, V1Size, V1AAInfo), 1508 MemoryLocation(V2, V2Size, V2AAInfo)); 1509 return AliasCache[Locs] = Result; 1510 } 1511 1512 bool BasicAliasAnalysis::isValueEqualInPotentialCycles(const Value *V, 1513 const Value *V2) { 1514 if (V != V2) 1515 return false; 1516 1517 const Instruction *Inst = dyn_cast<Instruction>(V); 1518 if (!Inst) 1519 return true; 1520 1521 if (VisitedPhiBBs.empty()) 1522 return true; 1523 1524 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1525 return false; 1526 1527 // Use dominance or loop info if available. 1528 DominatorTreeWrapperPass *DTWP = 1529 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1530 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 1531 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 1532 LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 1533 1534 // Make sure that the visited phis cannot reach the Value. This ensures that 1535 // the Values cannot come from different iterations of a potential cycle the 1536 // phi nodes could be involved in. 1537 for (auto *P : VisitedPhiBBs) 1538 if (isPotentiallyReachable(P->begin(), Inst, DT, LI)) 1539 return false; 1540 1541 return true; 1542 } 1543 1544 /// GetIndexDifference - Dest and Src are the variable indices from two 1545 /// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base 1546 /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic 1547 /// difference between the two pointers. 1548 void BasicAliasAnalysis::GetIndexDifference( 1549 SmallVectorImpl<VariableGEPIndex> &Dest, 1550 const SmallVectorImpl<VariableGEPIndex> &Src) { 1551 if (Src.empty()) 1552 return; 1553 1554 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1555 const Value *V = Src[i].V; 1556 ExtensionKind Extension = Src[i].Extension; 1557 int64_t Scale = Src[i].Scale; 1558 1559 // Find V in Dest. This is N^2, but pointer indices almost never have more 1560 // than a few variable indexes. 1561 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1562 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1563 Dest[j].Extension != Extension) 1564 continue; 1565 1566 // If we found it, subtract off Scale V's from the entry in Dest. If it 1567 // goes to zero, remove the entry. 1568 if (Dest[j].Scale != Scale) 1569 Dest[j].Scale -= Scale; 1570 else 1571 Dest.erase(Dest.begin() + j); 1572 Scale = 0; 1573 break; 1574 } 1575 1576 // If we didn't consume this entry, add it to the end of the Dest list. 1577 if (Scale) { 1578 VariableGEPIndex Entry = { V, Extension, -Scale }; 1579 Dest.push_back(Entry); 1580 } 1581 } 1582 } 1583