1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the primary stateless implementation of the 10 // Alias Analysis interface that implements identities (two different 11 // globals cannot alias, etc), but does no stateful analysis. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/BasicAliasAnalysis.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/Analysis/CaptureTracking.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/PhiValues.h" 31 #include "llvm/IR/Argument.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/GetElementPtrTypeIterator.h" 40 #include "llvm/IR/GlobalAlias.h" 41 #include "llvm/IR/GlobalVariable.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/Operator.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/User.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Compiler.h" 56 #include "llvm/Support/KnownBits.h" 57 #include <cassert> 58 #include <cstdint> 59 #include <cstdlib> 60 #include <utility> 61 62 #define DEBUG_TYPE "basicaa" 63 64 using namespace llvm; 65 66 /// Enable analysis of recursive PHI nodes. 67 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden, 68 cl::init(false)); 69 70 /// By default, even on 32-bit architectures we use 64-bit integers for 71 /// calculations. This will allow us to more-aggressively decompose indexing 72 /// expressions calculated using i64 values (e.g., long long in C) which is 73 /// common enough to worry about. 74 static cl::opt<bool> ForceAtLeast64Bits("basicaa-force-at-least-64b", 75 cl::Hidden, cl::init(true)); 76 static cl::opt<bool> DoubleCalcBits("basicaa-double-calc-bits", 77 cl::Hidden, cl::init(false)); 78 79 /// SearchLimitReached / SearchTimes shows how often the limit of 80 /// to decompose GEPs is reached. It will affect the precision 81 /// of basic alias analysis. 82 STATISTIC(SearchLimitReached, "Number of times the limit to " 83 "decompose GEPs is reached"); 84 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 85 86 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 87 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be 88 /// careful with value equivalence. We use reachability to make sure a value 89 /// cannot be involved in a cycle. 90 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 91 92 // The max limit of the search depth in DecomposeGEPExpression() and 93 // GetUnderlyingObject(), both functions need to use the same search 94 // depth otherwise the algorithm in aliasGEP will assert. 95 static const unsigned MaxLookupSearchDepth = 6; 96 97 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA, 98 FunctionAnalysisManager::Invalidator &Inv) { 99 // We don't care if this analysis itself is preserved, it has no state. But 100 // we need to check that the analyses it depends on have been. Note that we 101 // may be created without handles to some analyses and in that case don't 102 // depend on them. 103 if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) || 104 (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) || 105 (LI && Inv.invalidate<LoopAnalysis>(Fn, PA)) || 106 (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA))) 107 return true; 108 109 // Otherwise this analysis result remains valid. 110 return false; 111 } 112 113 //===----------------------------------------------------------------------===// 114 // Useful predicates 115 //===----------------------------------------------------------------------===// 116 117 /// Returns true if the pointer is to a function-local object that never 118 /// escapes from the function. 119 static bool isNonEscapingLocalObject(const Value *V) { 120 // If this is a local allocation, check to see if it escapes. 121 if (isa<AllocaInst>(V) || isNoAliasCall(V)) 122 // Set StoreCaptures to True so that we can assume in our callers that the 123 // pointer is not the result of a load instruction. Currently 124 // PointerMayBeCaptured doesn't have any special analysis for the 125 // StoreCaptures=false case; if it did, our callers could be refined to be 126 // more precise. 127 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 128 129 // If this is an argument that corresponds to a byval or noalias argument, 130 // then it has not escaped before entering the function. Check if it escapes 131 // inside the function. 132 if (const Argument *A = dyn_cast<Argument>(V)) 133 if (A->hasByValAttr() || A->hasNoAliasAttr()) 134 // Note even if the argument is marked nocapture, we still need to check 135 // for copies made inside the function. The nocapture attribute only 136 // specifies that there are no copies made that outlive the function. 137 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 138 139 return false; 140 } 141 142 /// Returns true if the pointer is one which would have been considered an 143 /// escape by isNonEscapingLocalObject. 144 static bool isEscapeSource(const Value *V) { 145 if (isa<CallBase>(V)) 146 return true; 147 148 if (isa<Argument>(V)) 149 return true; 150 151 // The load case works because isNonEscapingLocalObject considers all 152 // stores to be escapes (it passes true for the StoreCaptures argument 153 // to PointerMayBeCaptured). 154 if (isa<LoadInst>(V)) 155 return true; 156 157 return false; 158 } 159 160 /// Returns the size of the object specified by V or UnknownSize if unknown. 161 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 162 const TargetLibraryInfo &TLI, 163 bool NullIsValidLoc, 164 bool RoundToAlign = false) { 165 uint64_t Size; 166 ObjectSizeOpts Opts; 167 Opts.RoundToAlign = RoundToAlign; 168 Opts.NullIsUnknownSize = NullIsValidLoc; 169 if (getObjectSize(V, Size, DL, &TLI, Opts)) 170 return Size; 171 return MemoryLocation::UnknownSize; 172 } 173 174 /// Returns true if we can prove that the object specified by V is smaller than 175 /// Size. 176 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 177 const DataLayout &DL, 178 const TargetLibraryInfo &TLI, 179 bool NullIsValidLoc) { 180 // Note that the meanings of the "object" are slightly different in the 181 // following contexts: 182 // c1: llvm::getObjectSize() 183 // c2: llvm.objectsize() intrinsic 184 // c3: isObjectSmallerThan() 185 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 186 // refers to the "entire object". 187 // 188 // Consider this example: 189 // char *p = (char*)malloc(100) 190 // char *q = p+80; 191 // 192 // In the context of c1 and c2, the "object" pointed by q refers to the 193 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 194 // 195 // However, in the context of c3, the "object" refers to the chunk of memory 196 // being allocated. So, the "object" has 100 bytes, and q points to the middle 197 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 198 // parameter, before the llvm::getObjectSize() is called to get the size of 199 // entire object, we should: 200 // - either rewind the pointer q to the base-address of the object in 201 // question (in this case rewind to p), or 202 // - just give up. It is up to caller to make sure the pointer is pointing 203 // to the base address the object. 204 // 205 // We go for 2nd option for simplicity. 206 if (!isIdentifiedObject(V)) 207 return false; 208 209 // This function needs to use the aligned object size because we allow 210 // reads a bit past the end given sufficient alignment. 211 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc, 212 /*RoundToAlign*/ true); 213 214 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; 215 } 216 217 /// Returns true if we can prove that the object specified by V has size Size. 218 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, 219 const TargetLibraryInfo &TLI, bool NullIsValidLoc) { 220 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc); 221 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; 222 } 223 224 //===----------------------------------------------------------------------===// 225 // GetElementPtr Instruction Decomposition and Analysis 226 //===----------------------------------------------------------------------===// 227 228 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 229 /// B are constant integers. 230 /// 231 /// Returns the scale and offset values as APInts and return V as a Value*, and 232 /// return whether we looked through any sign or zero extends. The incoming 233 /// Value is known to have IntegerType, and it may already be sign or zero 234 /// extended. 235 /// 236 /// Note that this looks through extends, so the high bits may not be 237 /// represented in the result. 238 /*static*/ const Value *BasicAAResult::GetLinearExpression( 239 const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits, 240 unsigned &SExtBits, const DataLayout &DL, unsigned Depth, 241 AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) { 242 assert(V->getType()->isIntegerTy() && "Not an integer value"); 243 244 // Limit our recursion depth. 245 if (Depth == 6) { 246 Scale = 1; 247 Offset = 0; 248 return V; 249 } 250 251 if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) { 252 // If it's a constant, just convert it to an offset and remove the variable. 253 // If we've been called recursively, the Offset bit width will be greater 254 // than the constant's (the Offset's always as wide as the outermost call), 255 // so we'll zext here and process any extension in the isa<SExtInst> & 256 // isa<ZExtInst> cases below. 257 Offset += Const->getValue().zextOrSelf(Offset.getBitWidth()); 258 assert(Scale == 0 && "Constant values don't have a scale"); 259 return V; 260 } 261 262 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 263 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 264 // If we've been called recursively, then Offset and Scale will be wider 265 // than the BOp operands. We'll always zext it here as we'll process sign 266 // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases). 267 APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth()); 268 269 switch (BOp->getOpcode()) { 270 default: 271 // We don't understand this instruction, so we can't decompose it any 272 // further. 273 Scale = 1; 274 Offset = 0; 275 return V; 276 case Instruction::Or: 277 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 278 // analyze it. 279 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, 280 BOp, DT)) { 281 Scale = 1; 282 Offset = 0; 283 return V; 284 } 285 LLVM_FALLTHROUGH; 286 case Instruction::Add: 287 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 288 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 289 Offset += RHS; 290 break; 291 case Instruction::Sub: 292 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 293 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 294 Offset -= RHS; 295 break; 296 case Instruction::Mul: 297 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 298 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 299 Offset *= RHS; 300 Scale *= RHS; 301 break; 302 case Instruction::Shl: 303 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 304 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 305 306 // We're trying to linearize an expression of the kind: 307 // shl i8 -128, 36 308 // where the shift count exceeds the bitwidth of the type. 309 // We can't decompose this further (the expression would return 310 // a poison value). 311 if (Offset.getBitWidth() < RHS.getLimitedValue() || 312 Scale.getBitWidth() < RHS.getLimitedValue()) { 313 Scale = 1; 314 Offset = 0; 315 return V; 316 } 317 318 Offset <<= RHS.getLimitedValue(); 319 Scale <<= RHS.getLimitedValue(); 320 // the semantics of nsw and nuw for left shifts don't match those of 321 // multiplications, so we won't propagate them. 322 NSW = NUW = false; 323 return V; 324 } 325 326 if (isa<OverflowingBinaryOperator>(BOp)) { 327 NUW &= BOp->hasNoUnsignedWrap(); 328 NSW &= BOp->hasNoSignedWrap(); 329 } 330 return V; 331 } 332 } 333 334 // Since GEP indices are sign extended anyway, we don't care about the high 335 // bits of a sign or zero extended value - just scales and offsets. The 336 // extensions have to be consistent though. 337 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) { 338 Value *CastOp = cast<CastInst>(V)->getOperand(0); 339 unsigned NewWidth = V->getType()->getPrimitiveSizeInBits(); 340 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 341 unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits; 342 const Value *Result = 343 GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL, 344 Depth + 1, AC, DT, NSW, NUW); 345 346 // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this 347 // by just incrementing the number of bits we've extended by. 348 unsigned ExtendedBy = NewWidth - SmallWidth; 349 350 if (isa<SExtInst>(V) && ZExtBits == 0) { 351 // sext(sext(%x, a), b) == sext(%x, a + b) 352 353 if (NSW) { 354 // We haven't sign-wrapped, so it's valid to decompose sext(%x + c) 355 // into sext(%x) + sext(c). We'll sext the Offset ourselves: 356 unsigned OldWidth = Offset.getBitWidth(); 357 Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth); 358 } else { 359 // We may have signed-wrapped, so don't decompose sext(%x + c) into 360 // sext(%x) + sext(c) 361 Scale = 1; 362 Offset = 0; 363 Result = CastOp; 364 ZExtBits = OldZExtBits; 365 SExtBits = OldSExtBits; 366 } 367 SExtBits += ExtendedBy; 368 } else { 369 // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b) 370 371 if (!NUW) { 372 // We may have unsigned-wrapped, so don't decompose zext(%x + c) into 373 // zext(%x) + zext(c) 374 Scale = 1; 375 Offset = 0; 376 Result = CastOp; 377 ZExtBits = OldZExtBits; 378 SExtBits = OldSExtBits; 379 } 380 ZExtBits += ExtendedBy; 381 } 382 383 return Result; 384 } 385 386 Scale = 1; 387 Offset = 0; 388 return V; 389 } 390 391 /// To ensure a pointer offset fits in an integer of size PointerSize 392 /// (in bits) when that size is smaller than the maximum pointer size. This is 393 /// an issue, for example, in particular for 32b pointers with negative indices 394 /// that rely on two's complement wrap-arounds for precise alias information 395 /// where the maximum pointer size is 64b. 396 static APInt adjustToPointerSize(APInt Offset, unsigned PointerSize) { 397 assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!"); 398 unsigned ShiftBits = Offset.getBitWidth() - PointerSize; 399 return (Offset << ShiftBits).ashr(ShiftBits); 400 } 401 402 static unsigned getMaxPointerSize(const DataLayout &DL) { 403 unsigned MaxPointerSize = DL.getMaxPointerSizeInBits(); 404 if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64; 405 if (DoubleCalcBits) MaxPointerSize *= 2; 406 407 return MaxPointerSize; 408 } 409 410 /// If V is a symbolic pointer expression, decompose it into a base pointer 411 /// with a constant offset and a number of scaled symbolic offsets. 412 /// 413 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 414 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 415 /// specified amount, but which may have other unrepresented high bits. As 416 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 417 /// 418 /// When DataLayout is around, this function is capable of analyzing everything 419 /// that GetUnderlyingObject can look through. To be able to do that 420 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search 421 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks 422 /// through pointer casts. 423 bool BasicAAResult::DecomposeGEPExpression(const Value *V, 424 DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC, 425 DominatorTree *DT) { 426 // Limit recursion depth to limit compile time in crazy cases. 427 unsigned MaxLookup = MaxLookupSearchDepth; 428 SearchTimes++; 429 430 unsigned MaxPointerSize = getMaxPointerSize(DL); 431 Decomposed.VarIndices.clear(); 432 do { 433 // See if this is a bitcast or GEP. 434 const Operator *Op = dyn_cast<Operator>(V); 435 if (!Op) { 436 // The only non-operator case we can handle are GlobalAliases. 437 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 438 if (!GA->isInterposable()) { 439 V = GA->getAliasee(); 440 continue; 441 } 442 } 443 Decomposed.Base = V; 444 return false; 445 } 446 447 if (Op->getOpcode() == Instruction::BitCast || 448 Op->getOpcode() == Instruction::AddrSpaceCast) { 449 V = Op->getOperand(0); 450 continue; 451 } 452 453 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 454 if (!GEPOp) { 455 if (const auto *Call = dyn_cast<CallBase>(V)) { 456 // CaptureTracking can know about special capturing properties of some 457 // intrinsics like launder.invariant.group, that can't be expressed with 458 // the attributes, but have properties like returning aliasing pointer. 459 // Because some analysis may assume that nocaptured pointer is not 460 // returned from some special intrinsic (because function would have to 461 // be marked with returns attribute), it is crucial to use this function 462 // because it should be in sync with CaptureTracking. Not using it may 463 // cause weird miscompilations where 2 aliasing pointers are assumed to 464 // noalias. 465 if (auto *RP = getArgumentAliasingToReturnedPointer(Call)) { 466 V = RP; 467 continue; 468 } 469 } 470 471 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 472 // can come up with something. This matches what GetUnderlyingObject does. 473 if (const Instruction *I = dyn_cast<Instruction>(V)) 474 // TODO: Get a DominatorTree and AssumptionCache and use them here 475 // (these are both now available in this function, but this should be 476 // updated when GetUnderlyingObject is updated). TLI should be 477 // provided also. 478 if (const Value *Simplified = 479 SimplifyInstruction(const_cast<Instruction *>(I), DL)) { 480 V = Simplified; 481 continue; 482 } 483 484 Decomposed.Base = V; 485 return false; 486 } 487 488 // Don't attempt to analyze GEPs over unsized objects. 489 if (!GEPOp->getSourceElementType()->isSized()) { 490 Decomposed.Base = V; 491 return false; 492 } 493 494 unsigned AS = GEPOp->getPointerAddressSpace(); 495 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 496 gep_type_iterator GTI = gep_type_begin(GEPOp); 497 unsigned PointerSize = DL.getPointerSizeInBits(AS); 498 // Assume all GEP operands are constants until proven otherwise. 499 bool GepHasConstantOffset = true; 500 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 501 I != E; ++I, ++GTI) { 502 const Value *Index = *I; 503 // Compute the (potentially symbolic) offset in bytes for this index. 504 if (StructType *STy = GTI.getStructTypeOrNull()) { 505 // For a struct, add the member offset. 506 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 507 if (FieldNo == 0) 508 continue; 509 510 Decomposed.StructOffset += 511 DL.getStructLayout(STy)->getElementOffset(FieldNo); 512 continue; 513 } 514 515 // For an array/pointer, add the element offset, explicitly scaled. 516 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 517 if (CIdx->isZero()) 518 continue; 519 Decomposed.OtherOffset += 520 (DL.getTypeAllocSize(GTI.getIndexedType()) * 521 CIdx->getValue().sextOrSelf(MaxPointerSize)) 522 .sextOrTrunc(MaxPointerSize); 523 continue; 524 } 525 526 GepHasConstantOffset = false; 527 528 APInt Scale(MaxPointerSize, DL.getTypeAllocSize(GTI.getIndexedType())); 529 unsigned ZExtBits = 0, SExtBits = 0; 530 531 // If the integer type is smaller than the pointer size, it is implicitly 532 // sign extended to pointer size. 533 unsigned Width = Index->getType()->getIntegerBitWidth(); 534 if (PointerSize > Width) 535 SExtBits += PointerSize - Width; 536 537 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 538 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 539 bool NSW = true, NUW = true; 540 const Value *OrigIndex = Index; 541 Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits, 542 SExtBits, DL, 0, AC, DT, NSW, NUW); 543 544 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 545 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 546 547 // It can be the case that, even through C1*V+C2 does not overflow for 548 // relevant values of V, (C2*Scale) can overflow. In that case, we cannot 549 // decompose the expression in this way. 550 // 551 // FIXME: C1*Scale and the other operations in the decomposed 552 // (C1*Scale)*V+C2*Scale can also overflow. We should check for this 553 // possibility. 554 APInt WideScaledOffset = IndexOffset.sextOrTrunc(MaxPointerSize*2) * 555 Scale.sext(MaxPointerSize*2); 556 if (WideScaledOffset.getMinSignedBits() > MaxPointerSize) { 557 Index = OrigIndex; 558 IndexScale = 1; 559 IndexOffset = 0; 560 561 ZExtBits = SExtBits = 0; 562 if (PointerSize > Width) 563 SExtBits += PointerSize - Width; 564 } else { 565 Decomposed.OtherOffset += IndexOffset.sextOrTrunc(MaxPointerSize) * Scale; 566 Scale *= IndexScale.sextOrTrunc(MaxPointerSize); 567 } 568 569 // If we already had an occurrence of this index variable, merge this 570 // scale into it. For example, we want to handle: 571 // A[x][x] -> x*16 + x*4 -> x*20 572 // This also ensures that 'x' only appears in the index list once. 573 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { 574 if (Decomposed.VarIndices[i].V == Index && 575 Decomposed.VarIndices[i].ZExtBits == ZExtBits && 576 Decomposed.VarIndices[i].SExtBits == SExtBits) { 577 Scale += Decomposed.VarIndices[i].Scale; 578 Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i); 579 break; 580 } 581 } 582 583 // Make sure that we have a scale that makes sense for this target's 584 // pointer size. 585 Scale = adjustToPointerSize(Scale, PointerSize); 586 587 if (!!Scale) { 588 VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, Scale}; 589 Decomposed.VarIndices.push_back(Entry); 590 } 591 } 592 593 // Take care of wrap-arounds 594 if (GepHasConstantOffset) { 595 Decomposed.StructOffset = 596 adjustToPointerSize(Decomposed.StructOffset, PointerSize); 597 Decomposed.OtherOffset = 598 adjustToPointerSize(Decomposed.OtherOffset, PointerSize); 599 } 600 601 // Analyze the base pointer next. 602 V = GEPOp->getOperand(0); 603 } while (--MaxLookup); 604 605 // If the chain of expressions is too deep, just return early. 606 Decomposed.Base = V; 607 SearchLimitReached++; 608 return true; 609 } 610 611 /// Returns whether the given pointer value points to memory that is local to 612 /// the function, with global constants being considered local to all 613 /// functions. 614 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc, 615 bool OrLocal) { 616 assert(Visited.empty() && "Visited must be cleared after use!"); 617 618 unsigned MaxLookup = 8; 619 SmallVector<const Value *, 16> Worklist; 620 Worklist.push_back(Loc.Ptr); 621 do { 622 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL); 623 if (!Visited.insert(V).second) { 624 Visited.clear(); 625 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 626 } 627 628 // An alloca instruction defines local memory. 629 if (OrLocal && isa<AllocaInst>(V)) 630 continue; 631 632 // A global constant counts as local memory for our purposes. 633 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 634 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 635 // global to be marked constant in some modules and non-constant in 636 // others. GV may even be a declaration, not a definition. 637 if (!GV->isConstant()) { 638 Visited.clear(); 639 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 640 } 641 continue; 642 } 643 644 // If both select values point to local memory, then so does the select. 645 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 646 Worklist.push_back(SI->getTrueValue()); 647 Worklist.push_back(SI->getFalseValue()); 648 continue; 649 } 650 651 // If all values incoming to a phi node point to local memory, then so does 652 // the phi. 653 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 654 // Don't bother inspecting phi nodes with many operands. 655 if (PN->getNumIncomingValues() > MaxLookup) { 656 Visited.clear(); 657 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 658 } 659 for (Value *IncValue : PN->incoming_values()) 660 Worklist.push_back(IncValue); 661 continue; 662 } 663 664 // Otherwise be conservative. 665 Visited.clear(); 666 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 667 } while (!Worklist.empty() && --MaxLookup); 668 669 Visited.clear(); 670 return Worklist.empty(); 671 } 672 673 /// Returns the behavior when calling the given call site. 674 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) { 675 if (Call->doesNotAccessMemory()) 676 // Can't do better than this. 677 return FMRB_DoesNotAccessMemory; 678 679 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 680 681 // If the callsite knows it only reads memory, don't return worse 682 // than that. 683 if (Call->onlyReadsMemory()) 684 Min = FMRB_OnlyReadsMemory; 685 else if (Call->doesNotReadMemory()) 686 Min = FMRB_DoesNotReadMemory; 687 688 if (Call->onlyAccessesArgMemory()) 689 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 690 else if (Call->onlyAccessesInaccessibleMemory()) 691 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 692 else if (Call->onlyAccessesInaccessibleMemOrArgMem()) 693 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 694 695 // If the call has operand bundles then aliasing attributes from the function 696 // it calls do not directly apply to the call. This can be made more precise 697 // in the future. 698 if (!Call->hasOperandBundles()) 699 if (const Function *F = Call->getCalledFunction()) 700 Min = 701 FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F)); 702 703 return Min; 704 } 705 706 /// Returns the behavior when calling the given function. For use when the call 707 /// site is not known. 708 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) { 709 // If the function declares it doesn't access memory, we can't do better. 710 if (F->doesNotAccessMemory()) 711 return FMRB_DoesNotAccessMemory; 712 713 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 714 715 // If the function declares it only reads memory, go with that. 716 if (F->onlyReadsMemory()) 717 Min = FMRB_OnlyReadsMemory; 718 else if (F->doesNotReadMemory()) 719 Min = FMRB_DoesNotReadMemory; 720 721 if (F->onlyAccessesArgMemory()) 722 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 723 else if (F->onlyAccessesInaccessibleMemory()) 724 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 725 else if (F->onlyAccessesInaccessibleMemOrArgMem()) 726 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 727 728 return Min; 729 } 730 731 /// Returns true if this is a writeonly (i.e Mod only) parameter. 732 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx, 733 const TargetLibraryInfo &TLI) { 734 if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly)) 735 return true; 736 737 // We can bound the aliasing properties of memset_pattern16 just as we can 738 // for memcpy/memset. This is particularly important because the 739 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 740 // whenever possible. 741 // FIXME Consider handling this in InferFunctionAttr.cpp together with other 742 // attributes. 743 LibFunc F; 744 if (Call->getCalledFunction() && 745 TLI.getLibFunc(*Call->getCalledFunction(), F) && 746 F == LibFunc_memset_pattern16 && TLI.has(F)) 747 if (ArgIdx == 0) 748 return true; 749 750 // TODO: memset_pattern4, memset_pattern8 751 // TODO: _chk variants 752 // TODO: strcmp, strcpy 753 754 return false; 755 } 756 757 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call, 758 unsigned ArgIdx) { 759 // Checking for known builtin intrinsics and target library functions. 760 if (isWriteOnlyParam(Call, ArgIdx, TLI)) 761 return ModRefInfo::Mod; 762 763 if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly)) 764 return ModRefInfo::Ref; 765 766 if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone)) 767 return ModRefInfo::NoModRef; 768 769 return AAResultBase::getArgModRefInfo(Call, ArgIdx); 770 } 771 772 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) { 773 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call); 774 return II && II->getIntrinsicID() == IID; 775 } 776 777 #ifndef NDEBUG 778 static const Function *getParent(const Value *V) { 779 if (const Instruction *inst = dyn_cast<Instruction>(V)) { 780 if (!inst->getParent()) 781 return nullptr; 782 return inst->getParent()->getParent(); 783 } 784 785 if (const Argument *arg = dyn_cast<Argument>(V)) 786 return arg->getParent(); 787 788 return nullptr; 789 } 790 791 static bool notDifferentParent(const Value *O1, const Value *O2) { 792 793 const Function *F1 = getParent(O1); 794 const Function *F2 = getParent(O2); 795 796 return !F1 || !F2 || F1 == F2; 797 } 798 #endif 799 800 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 801 const MemoryLocation &LocB) { 802 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 803 "BasicAliasAnalysis doesn't support interprocedural queries."); 804 805 // If we have a directly cached entry for these locations, we have recursed 806 // through this once, so just return the cached results. Notably, when this 807 // happens, we don't clear the cache. 808 auto CacheIt = AliasCache.find(LocPair(LocA, LocB)); 809 if (CacheIt != AliasCache.end()) 810 return CacheIt->second; 811 812 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr, 813 LocB.Size, LocB.AATags); 814 // AliasCache rarely has more than 1 or 2 elements, always use 815 // shrink_and_clear so it quickly returns to the inline capacity of the 816 // SmallDenseMap if it ever grows larger. 817 // FIXME: This should really be shrink_to_inline_capacity_and_clear(). 818 AliasCache.shrink_and_clear(); 819 VisitedPhiBBs.clear(); 820 return Alias; 821 } 822 823 /// Checks to see if the specified callsite can clobber the specified memory 824 /// object. 825 /// 826 /// Since we only look at local properties of this function, we really can't 827 /// say much about this query. We do, however, use simple "address taken" 828 /// analysis on local objects. 829 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call, 830 const MemoryLocation &Loc) { 831 assert(notDifferentParent(Call, Loc.Ptr) && 832 "AliasAnalysis query involving multiple functions!"); 833 834 const Value *Object = GetUnderlyingObject(Loc.Ptr, DL); 835 836 // Calls marked 'tail' cannot read or write allocas from the current frame 837 // because the current frame might be destroyed by the time they run. However, 838 // a tail call may use an alloca with byval. Calling with byval copies the 839 // contents of the alloca into argument registers or stack slots, so there is 840 // no lifetime issue. 841 if (isa<AllocaInst>(Object)) 842 if (const CallInst *CI = dyn_cast<CallInst>(Call)) 843 if (CI->isTailCall() && 844 !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal)) 845 return ModRefInfo::NoModRef; 846 847 // Stack restore is able to modify unescaped dynamic allocas. Assume it may 848 // modify them even though the alloca is not escaped. 849 if (auto *AI = dyn_cast<AllocaInst>(Object)) 850 if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore)) 851 return ModRefInfo::Mod; 852 853 // If the pointer is to a locally allocated object that does not escape, 854 // then the call can not mod/ref the pointer unless the call takes the pointer 855 // as an argument, and itself doesn't capture it. 856 if (!isa<Constant>(Object) && Call != Object && 857 isNonEscapingLocalObject(Object)) { 858 859 // Optimistically assume that call doesn't touch Object and check this 860 // assumption in the following loop. 861 ModRefInfo Result = ModRefInfo::NoModRef; 862 bool IsMustAlias = true; 863 864 unsigned OperandNo = 0; 865 for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end(); 866 CI != CE; ++CI, ++OperandNo) { 867 // Only look at the no-capture or byval pointer arguments. If this 868 // pointer were passed to arguments that were neither of these, then it 869 // couldn't be no-capture. 870 if (!(*CI)->getType()->isPointerTy() || 871 (!Call->doesNotCapture(OperandNo) && 872 OperandNo < Call->getNumArgOperands() && 873 !Call->isByValArgument(OperandNo))) 874 continue; 875 876 // Call doesn't access memory through this operand, so we don't care 877 // if it aliases with Object. 878 if (Call->doesNotAccessMemory(OperandNo)) 879 continue; 880 881 // If this is a no-capture pointer argument, see if we can tell that it 882 // is impossible to alias the pointer we're checking. 883 AliasResult AR = 884 getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object)); 885 if (AR != MustAlias) 886 IsMustAlias = false; 887 // Operand doesnt alias 'Object', continue looking for other aliases 888 if (AR == NoAlias) 889 continue; 890 // Operand aliases 'Object', but call doesn't modify it. Strengthen 891 // initial assumption and keep looking in case if there are more aliases. 892 if (Call->onlyReadsMemory(OperandNo)) { 893 Result = setRef(Result); 894 continue; 895 } 896 // Operand aliases 'Object' but call only writes into it. 897 if (Call->doesNotReadMemory(OperandNo)) { 898 Result = setMod(Result); 899 continue; 900 } 901 // This operand aliases 'Object' and call reads and writes into it. 902 // Setting ModRef will not yield an early return below, MustAlias is not 903 // used further. 904 Result = ModRefInfo::ModRef; 905 break; 906 } 907 908 // No operand aliases, reset Must bit. Add below if at least one aliases 909 // and all aliases found are MustAlias. 910 if (isNoModRef(Result)) 911 IsMustAlias = false; 912 913 // Early return if we improved mod ref information 914 if (!isModAndRefSet(Result)) { 915 if (isNoModRef(Result)) 916 return ModRefInfo::NoModRef; 917 return IsMustAlias ? setMust(Result) : clearMust(Result); 918 } 919 } 920 921 // If the call is to malloc or calloc, we can assume that it doesn't 922 // modify any IR visible value. This is only valid because we assume these 923 // routines do not read values visible in the IR. TODO: Consider special 924 // casing realloc and strdup routines which access only their arguments as 925 // well. Or alternatively, replace all of this with inaccessiblememonly once 926 // that's implemented fully. 927 if (isMallocOrCallocLikeFn(Call, &TLI)) { 928 // Be conservative if the accessed pointer may alias the allocation - 929 // fallback to the generic handling below. 930 if (getBestAAResults().alias(MemoryLocation(Call), Loc) == NoAlias) 931 return ModRefInfo::NoModRef; 932 } 933 934 // The semantics of memcpy intrinsics forbid overlap between their respective 935 // operands, i.e., source and destination of any given memcpy must no-alias. 936 // If Loc must-aliases either one of these two locations, then it necessarily 937 // no-aliases the other. 938 if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) { 939 AliasResult SrcAA, DestAA; 940 941 if ((SrcAA = getBestAAResults().alias(MemoryLocation::getForSource(Inst), 942 Loc)) == MustAlias) 943 // Loc is exactly the memcpy source thus disjoint from memcpy dest. 944 return ModRefInfo::Ref; 945 if ((DestAA = getBestAAResults().alias(MemoryLocation::getForDest(Inst), 946 Loc)) == MustAlias) 947 // The converse case. 948 return ModRefInfo::Mod; 949 950 // It's also possible for Loc to alias both src and dest, or neither. 951 ModRefInfo rv = ModRefInfo::NoModRef; 952 if (SrcAA != NoAlias) 953 rv = setRef(rv); 954 if (DestAA != NoAlias) 955 rv = setMod(rv); 956 return rv; 957 } 958 959 // While the assume intrinsic is marked as arbitrarily writing so that 960 // proper control dependencies will be maintained, it never aliases any 961 // particular memory location. 962 if (isIntrinsicCall(Call, Intrinsic::assume)) 963 return ModRefInfo::NoModRef; 964 965 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 966 // that proper control dependencies are maintained but they never mods any 967 // particular memory location. 968 // 969 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 970 // heap state at the point the guard is issued needs to be consistent in case 971 // the guard invokes the "deopt" continuation. 972 if (isIntrinsicCall(Call, Intrinsic::experimental_guard)) 973 return ModRefInfo::Ref; 974 975 // Like assumes, invariant.start intrinsics were also marked as arbitrarily 976 // writing so that proper control dependencies are maintained but they never 977 // mod any particular memory location visible to the IR. 978 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start 979 // intrinsic is now modeled as reading memory. This prevents hoisting the 980 // invariant.start intrinsic over stores. Consider: 981 // *ptr = 40; 982 // *ptr = 50; 983 // invariant_start(ptr) 984 // int val = *ptr; 985 // print(val); 986 // 987 // This cannot be transformed to: 988 // 989 // *ptr = 40; 990 // invariant_start(ptr) 991 // *ptr = 50; 992 // int val = *ptr; 993 // print(val); 994 // 995 // The transformation will cause the second store to be ignored (based on 996 // rules of invariant.start) and print 40, while the first program always 997 // prints 50. 998 if (isIntrinsicCall(Call, Intrinsic::invariant_start)) 999 return ModRefInfo::Ref; 1000 1001 // The AAResultBase base class has some smarts, lets use them. 1002 return AAResultBase::getModRefInfo(Call, Loc); 1003 } 1004 1005 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1, 1006 const CallBase *Call2) { 1007 // While the assume intrinsic is marked as arbitrarily writing so that 1008 // proper control dependencies will be maintained, it never aliases any 1009 // particular memory location. 1010 if (isIntrinsicCall(Call1, Intrinsic::assume) || 1011 isIntrinsicCall(Call2, Intrinsic::assume)) 1012 return ModRefInfo::NoModRef; 1013 1014 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 1015 // that proper control dependencies are maintained but they never mod any 1016 // particular memory location. 1017 // 1018 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 1019 // heap state at the point the guard is issued needs to be consistent in case 1020 // the guard invokes the "deopt" continuation. 1021 1022 // NB! This function is *not* commutative, so we specical case two 1023 // possibilities for guard intrinsics. 1024 1025 if (isIntrinsicCall(Call1, Intrinsic::experimental_guard)) 1026 return isModSet(createModRefInfo(getModRefBehavior(Call2))) 1027 ? ModRefInfo::Ref 1028 : ModRefInfo::NoModRef; 1029 1030 if (isIntrinsicCall(Call2, Intrinsic::experimental_guard)) 1031 return isModSet(createModRefInfo(getModRefBehavior(Call1))) 1032 ? ModRefInfo::Mod 1033 : ModRefInfo::NoModRef; 1034 1035 // The AAResultBase base class has some smarts, lets use them. 1036 return AAResultBase::getModRefInfo(Call1, Call2); 1037 } 1038 1039 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators, 1040 /// both having the exact same pointer operand. 1041 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1, 1042 LocationSize MaybeV1Size, 1043 const GEPOperator *GEP2, 1044 LocationSize MaybeV2Size, 1045 const DataLayout &DL) { 1046 assert(GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() == 1047 GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() && 1048 GEP1->getPointerOperandType() == GEP2->getPointerOperandType() && 1049 "Expected GEPs with the same pointer operand"); 1050 1051 // Try to determine whether GEP1 and GEP2 index through arrays, into structs, 1052 // such that the struct field accesses provably cannot alias. 1053 // We also need at least two indices (the pointer, and the struct field). 1054 if (GEP1->getNumIndices() != GEP2->getNumIndices() || 1055 GEP1->getNumIndices() < 2) 1056 return MayAlias; 1057 1058 // If we don't know the size of the accesses through both GEPs, we can't 1059 // determine whether the struct fields accessed can't alias. 1060 if (MaybeV1Size == LocationSize::unknown() || 1061 MaybeV2Size == LocationSize::unknown()) 1062 return MayAlias; 1063 1064 const uint64_t V1Size = MaybeV1Size.getValue(); 1065 const uint64_t V2Size = MaybeV2Size.getValue(); 1066 1067 ConstantInt *C1 = 1068 dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1)); 1069 ConstantInt *C2 = 1070 dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1)); 1071 1072 // If the last (struct) indices are constants and are equal, the other indices 1073 // might be also be dynamically equal, so the GEPs can alias. 1074 if (C1 && C2) { 1075 unsigned BitWidth = std::max(C1->getBitWidth(), C2->getBitWidth()); 1076 if (C1->getValue().sextOrSelf(BitWidth) == 1077 C2->getValue().sextOrSelf(BitWidth)) 1078 return MayAlias; 1079 } 1080 1081 // Find the last-indexed type of the GEP, i.e., the type you'd get if 1082 // you stripped the last index. 1083 // On the way, look at each indexed type. If there's something other 1084 // than an array, different indices can lead to different final types. 1085 SmallVector<Value *, 8> IntermediateIndices; 1086 1087 // Insert the first index; we don't need to check the type indexed 1088 // through it as it only drops the pointer indirection. 1089 assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine"); 1090 IntermediateIndices.push_back(GEP1->getOperand(1)); 1091 1092 // Insert all the remaining indices but the last one. 1093 // Also, check that they all index through arrays. 1094 for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) { 1095 if (!isa<ArrayType>(GetElementPtrInst::getIndexedType( 1096 GEP1->getSourceElementType(), IntermediateIndices))) 1097 return MayAlias; 1098 IntermediateIndices.push_back(GEP1->getOperand(i + 1)); 1099 } 1100 1101 auto *Ty = GetElementPtrInst::getIndexedType( 1102 GEP1->getSourceElementType(), IntermediateIndices); 1103 StructType *LastIndexedStruct = dyn_cast<StructType>(Ty); 1104 1105 if (isa<SequentialType>(Ty)) { 1106 // We know that: 1107 // - both GEPs begin indexing from the exact same pointer; 1108 // - the last indices in both GEPs are constants, indexing into a sequential 1109 // type (array or pointer); 1110 // - both GEPs only index through arrays prior to that. 1111 // 1112 // Because array indices greater than the number of elements are valid in 1113 // GEPs, unless we know the intermediate indices are identical between 1114 // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't 1115 // partially overlap. We also need to check that the loaded size matches 1116 // the element size, otherwise we could still have overlap. 1117 const uint64_t ElementSize = 1118 DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType()); 1119 if (V1Size != ElementSize || V2Size != ElementSize) 1120 return MayAlias; 1121 1122 for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i) 1123 if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1)) 1124 return MayAlias; 1125 1126 // Now we know that the array/pointer that GEP1 indexes into and that 1127 // that GEP2 indexes into must either precisely overlap or be disjoint. 1128 // Because they cannot partially overlap and because fields in an array 1129 // cannot overlap, if we can prove the final indices are different between 1130 // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias. 1131 1132 // If the last indices are constants, we've already checked they don't 1133 // equal each other so we can exit early. 1134 if (C1 && C2) 1135 return NoAlias; 1136 { 1137 Value *GEP1LastIdx = GEP1->getOperand(GEP1->getNumOperands() - 1); 1138 Value *GEP2LastIdx = GEP2->getOperand(GEP2->getNumOperands() - 1); 1139 if (isa<PHINode>(GEP1LastIdx) || isa<PHINode>(GEP2LastIdx)) { 1140 // If one of the indices is a PHI node, be safe and only use 1141 // computeKnownBits so we don't make any assumptions about the 1142 // relationships between the two indices. This is important if we're 1143 // asking about values from different loop iterations. See PR32314. 1144 // TODO: We may be able to change the check so we only do this when 1145 // we definitely looked through a PHINode. 1146 if (GEP1LastIdx != GEP2LastIdx && 1147 GEP1LastIdx->getType() == GEP2LastIdx->getType()) { 1148 KnownBits Known1 = computeKnownBits(GEP1LastIdx, DL); 1149 KnownBits Known2 = computeKnownBits(GEP2LastIdx, DL); 1150 if (Known1.Zero.intersects(Known2.One) || 1151 Known1.One.intersects(Known2.Zero)) 1152 return NoAlias; 1153 } 1154 } else if (isKnownNonEqual(GEP1LastIdx, GEP2LastIdx, DL)) 1155 return NoAlias; 1156 } 1157 return MayAlias; 1158 } else if (!LastIndexedStruct || !C1 || !C2) { 1159 return MayAlias; 1160 } 1161 1162 if (C1->getValue().getActiveBits() > 64 || 1163 C2->getValue().getActiveBits() > 64) 1164 return MayAlias; 1165 1166 // We know that: 1167 // - both GEPs begin indexing from the exact same pointer; 1168 // - the last indices in both GEPs are constants, indexing into a struct; 1169 // - said indices are different, hence, the pointed-to fields are different; 1170 // - both GEPs only index through arrays prior to that. 1171 // 1172 // This lets us determine that the struct that GEP1 indexes into and the 1173 // struct that GEP2 indexes into must either precisely overlap or be 1174 // completely disjoint. Because they cannot partially overlap, indexing into 1175 // different non-overlapping fields of the struct will never alias. 1176 1177 // Therefore, the only remaining thing needed to show that both GEPs can't 1178 // alias is that the fields are not overlapping. 1179 const StructLayout *SL = DL.getStructLayout(LastIndexedStruct); 1180 const uint64_t StructSize = SL->getSizeInBytes(); 1181 const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue()); 1182 const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue()); 1183 1184 auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size, 1185 uint64_t V2Off, uint64_t V2Size) { 1186 return V1Off < V2Off && V1Off + V1Size <= V2Off && 1187 ((V2Off + V2Size <= StructSize) || 1188 (V2Off + V2Size - StructSize <= V1Off)); 1189 }; 1190 1191 if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) || 1192 EltsDontOverlap(V2Off, V2Size, V1Off, V1Size)) 1193 return NoAlias; 1194 1195 return MayAlias; 1196 } 1197 1198 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the 1199 // beginning of the object the GEP points would have a negative offset with 1200 // repsect to the alloca, that means the GEP can not alias pointer (b). 1201 // Note that the pointer based on the alloca may not be a GEP. For 1202 // example, it may be the alloca itself. 1203 // The same applies if (b) is based on a GlobalVariable. Note that just being 1204 // based on isIdentifiedObject() is not enough - we need an identified object 1205 // that does not permit access to negative offsets. For example, a negative 1206 // offset from a noalias argument or call can be inbounds w.r.t the actual 1207 // underlying object. 1208 // 1209 // For example, consider: 1210 // 1211 // struct { int f0, int f1, ...} foo; 1212 // foo alloca; 1213 // foo* random = bar(alloca); 1214 // int *f0 = &alloca.f0 1215 // int *f1 = &random->f1; 1216 // 1217 // Which is lowered, approximately, to: 1218 // 1219 // %alloca = alloca %struct.foo 1220 // %random = call %struct.foo* @random(%struct.foo* %alloca) 1221 // %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0 1222 // %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1 1223 // 1224 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated 1225 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also 1226 // point into the same object. But since %f0 points to the beginning of %alloca, 1227 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher 1228 // than (%alloca - 1), and so is not inbounds, a contradiction. 1229 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp, 1230 const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject, 1231 LocationSize MaybeObjectAccessSize) { 1232 // If the object access size is unknown, or the GEP isn't inbounds, bail. 1233 if (MaybeObjectAccessSize == LocationSize::unknown() || !GEPOp->isInBounds()) 1234 return false; 1235 1236 const uint64_t ObjectAccessSize = MaybeObjectAccessSize.getValue(); 1237 1238 // We need the object to be an alloca or a globalvariable, and want to know 1239 // the offset of the pointer from the object precisely, so no variable 1240 // indices are allowed. 1241 if (!(isa<AllocaInst>(DecompObject.Base) || 1242 isa<GlobalVariable>(DecompObject.Base)) || 1243 !DecompObject.VarIndices.empty()) 1244 return false; 1245 1246 APInt ObjectBaseOffset = DecompObject.StructOffset + 1247 DecompObject.OtherOffset; 1248 1249 // If the GEP has no variable indices, we know the precise offset 1250 // from the base, then use it. If the GEP has variable indices, 1251 // we can't get exact GEP offset to identify pointer alias. So return 1252 // false in that case. 1253 if (!DecompGEP.VarIndices.empty()) 1254 return false; 1255 1256 APInt GEPBaseOffset = DecompGEP.StructOffset; 1257 GEPBaseOffset += DecompGEP.OtherOffset; 1258 1259 return GEPBaseOffset.sge(ObjectBaseOffset + (int64_t)ObjectAccessSize); 1260 } 1261 1262 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 1263 /// another pointer. 1264 /// 1265 /// We know that V1 is a GEP, but we don't know anything about V2. 1266 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for 1267 /// V2. 1268 AliasResult 1269 BasicAAResult::aliasGEP(const GEPOperator *GEP1, LocationSize V1Size, 1270 const AAMDNodes &V1AAInfo, const Value *V2, 1271 LocationSize V2Size, const AAMDNodes &V2AAInfo, 1272 const Value *UnderlyingV1, const Value *UnderlyingV2) { 1273 DecomposedGEP DecompGEP1, DecompGEP2; 1274 unsigned MaxPointerSize = getMaxPointerSize(DL); 1275 DecompGEP1.StructOffset = DecompGEP1.OtherOffset = APInt(MaxPointerSize, 0); 1276 DecompGEP2.StructOffset = DecompGEP2.OtherOffset = APInt(MaxPointerSize, 0); 1277 1278 bool GEP1MaxLookupReached = 1279 DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT); 1280 bool GEP2MaxLookupReached = 1281 DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT); 1282 1283 APInt GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset; 1284 APInt GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset; 1285 1286 assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 && 1287 "DecomposeGEPExpression returned a result different from " 1288 "GetUnderlyingObject"); 1289 1290 // If the GEP's offset relative to its base is such that the base would 1291 // fall below the start of the object underlying V2, then the GEP and V2 1292 // cannot alias. 1293 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1294 isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size)) 1295 return NoAlias; 1296 // If we have two gep instructions with must-alias or not-alias'ing base 1297 // pointers, figure out if the indexes to the GEP tell us anything about the 1298 // derived pointer. 1299 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 1300 // Check for the GEP base being at a negative offset, this time in the other 1301 // direction. 1302 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1303 isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size)) 1304 return NoAlias; 1305 // Do the base pointers alias? 1306 AliasResult BaseAlias = 1307 aliasCheck(UnderlyingV1, LocationSize::unknown(), AAMDNodes(), 1308 UnderlyingV2, LocationSize::unknown(), AAMDNodes()); 1309 1310 // Check for geps of non-aliasing underlying pointers where the offsets are 1311 // identical. 1312 if ((BaseAlias == MayAlias) && V1Size == V2Size) { 1313 // Do the base pointers alias assuming type and size. 1314 AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo, 1315 UnderlyingV2, V2Size, V2AAInfo); 1316 if (PreciseBaseAlias == NoAlias) { 1317 // See if the computed offset from the common pointer tells us about the 1318 // relation of the resulting pointer. 1319 // If the max search depth is reached the result is undefined 1320 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1321 return MayAlias; 1322 1323 // Same offsets. 1324 if (GEP1BaseOffset == GEP2BaseOffset && 1325 DecompGEP1.VarIndices == DecompGEP2.VarIndices) 1326 return NoAlias; 1327 } 1328 } 1329 1330 // If we get a No or May, then return it immediately, no amount of analysis 1331 // will improve this situation. 1332 if (BaseAlias != MustAlias) { 1333 assert(BaseAlias == NoAlias || BaseAlias == MayAlias); 1334 return BaseAlias; 1335 } 1336 1337 // Otherwise, we have a MustAlias. Since the base pointers alias each other 1338 // exactly, see if the computed offset from the common pointer tells us 1339 // about the relation of the resulting pointer. 1340 // If we know the two GEPs are based off of the exact same pointer (and not 1341 // just the same underlying object), see if that tells us anything about 1342 // the resulting pointers. 1343 if (GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() == 1344 GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() && 1345 GEP1->getPointerOperandType() == GEP2->getPointerOperandType()) { 1346 AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL); 1347 // If we couldn't find anything interesting, don't abandon just yet. 1348 if (R != MayAlias) 1349 return R; 1350 } 1351 1352 // If the max search depth is reached, the result is undefined 1353 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1354 return MayAlias; 1355 1356 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1357 // symbolic difference. 1358 GEP1BaseOffset -= GEP2BaseOffset; 1359 GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices); 1360 1361 } else { 1362 // Check to see if these two pointers are related by the getelementptr 1363 // instruction. If one pointer is a GEP with a non-zero index of the other 1364 // pointer, we know they cannot alias. 1365 1366 // If both accesses are unknown size, we can't do anything useful here. 1367 if (V1Size == LocationSize::unknown() && V2Size == LocationSize::unknown()) 1368 return MayAlias; 1369 1370 AliasResult R = 1371 aliasCheck(UnderlyingV1, LocationSize::unknown(), AAMDNodes(), V2, 1372 LocationSize::unknown(), V2AAInfo, nullptr, UnderlyingV2); 1373 if (R != MustAlias) { 1374 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 1375 // If V2 is known not to alias GEP base pointer, then the two values 1376 // cannot alias per GEP semantics: "Any memory access must be done through 1377 // a pointer value associated with an address range of the memory access, 1378 // otherwise the behavior is undefined.". 1379 assert(R == NoAlias || R == MayAlias); 1380 return R; 1381 } 1382 1383 // If the max search depth is reached the result is undefined 1384 if (GEP1MaxLookupReached) 1385 return MayAlias; 1386 } 1387 1388 // In the two GEP Case, if there is no difference in the offsets of the 1389 // computed pointers, the resultant pointers are a must alias. This 1390 // happens when we have two lexically identical GEP's (for example). 1391 // 1392 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 1393 // must aliases the GEP, the end result is a must alias also. 1394 if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty()) 1395 return MustAlias; 1396 1397 // If there is a constant difference between the pointers, but the difference 1398 // is less than the size of the associated memory object, then we know 1399 // that the objects are partially overlapping. If the difference is 1400 // greater, we know they do not overlap. 1401 if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) { 1402 if (GEP1BaseOffset.sge(0)) { 1403 if (V2Size != LocationSize::unknown()) { 1404 if (GEP1BaseOffset.ult(V2Size.getValue())) 1405 return PartialAlias; 1406 return NoAlias; 1407 } 1408 } else { 1409 // We have the situation where: 1410 // + + 1411 // | BaseOffset | 1412 // ---------------->| 1413 // |-->V1Size |-------> V2Size 1414 // GEP1 V2 1415 // We need to know that V2Size is not unknown, otherwise we might have 1416 // stripped a gep with negative index ('gep <ptr>, -1, ...). 1417 if (V1Size != LocationSize::unknown() && 1418 V2Size != LocationSize::unknown()) { 1419 if ((-GEP1BaseOffset).ult(V1Size.getValue())) 1420 return PartialAlias; 1421 return NoAlias; 1422 } 1423 } 1424 } 1425 1426 if (!DecompGEP1.VarIndices.empty()) { 1427 APInt Modulo(MaxPointerSize, 0); 1428 bool AllPositive = true; 1429 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { 1430 1431 // Try to distinguish something like &A[i][1] against &A[42][0]. 1432 // Grab the least significant bit set in any of the scales. We 1433 // don't need std::abs here (even if the scale's negative) as we'll 1434 // be ^'ing Modulo with itself later. 1435 Modulo |= DecompGEP1.VarIndices[i].Scale; 1436 1437 if (AllPositive) { 1438 // If the Value could change between cycles, then any reasoning about 1439 // the Value this cycle may not hold in the next cycle. We'll just 1440 // give up if we can't determine conditions that hold for every cycle: 1441 const Value *V = DecompGEP1.VarIndices[i].V; 1442 1443 KnownBits Known = computeKnownBits(V, DL, 0, &AC, nullptr, DT); 1444 bool SignKnownZero = Known.isNonNegative(); 1445 bool SignKnownOne = Known.isNegative(); 1446 1447 // Zero-extension widens the variable, and so forces the sign 1448 // bit to zero. 1449 bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V); 1450 SignKnownZero |= IsZExt; 1451 SignKnownOne &= !IsZExt; 1452 1453 // If the variable begins with a zero then we know it's 1454 // positive, regardless of whether the value is signed or 1455 // unsigned. 1456 APInt Scale = DecompGEP1.VarIndices[i].Scale; 1457 AllPositive = 1458 (SignKnownZero && Scale.sge(0)) || (SignKnownOne && Scale.slt(0)); 1459 } 1460 } 1461 1462 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1463 1464 // We can compute the difference between the two addresses 1465 // mod Modulo. Check whether that difference guarantees that the 1466 // two locations do not alias. 1467 APInt ModOffset = GEP1BaseOffset & (Modulo - 1); 1468 if (V1Size != LocationSize::unknown() && 1469 V2Size != LocationSize::unknown() && ModOffset.uge(V2Size.getValue()) && 1470 (Modulo - ModOffset).uge(V1Size.getValue())) 1471 return NoAlias; 1472 1473 // If we know all the variables are positive, then GEP1 >= GEP1BasePtr. 1474 // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers 1475 // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr. 1476 if (AllPositive && GEP1BaseOffset.sgt(0) && 1477 V2Size != LocationSize::unknown() && 1478 GEP1BaseOffset.uge(V2Size.getValue())) 1479 return NoAlias; 1480 1481 if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size, 1482 GEP1BaseOffset, &AC, DT)) 1483 return NoAlias; 1484 } 1485 1486 // Statically, we can see that the base objects are the same, but the 1487 // pointers have dynamic offsets which we can't resolve. And none of our 1488 // little tricks above worked. 1489 return MayAlias; 1490 } 1491 1492 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1493 // If the results agree, take it. 1494 if (A == B) 1495 return A; 1496 // A mix of PartialAlias and MustAlias is PartialAlias. 1497 if ((A == PartialAlias && B == MustAlias) || 1498 (B == PartialAlias && A == MustAlias)) 1499 return PartialAlias; 1500 // Otherwise, we don't know anything. 1501 return MayAlias; 1502 } 1503 1504 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1505 /// against another. 1506 AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, 1507 LocationSize SISize, 1508 const AAMDNodes &SIAAInfo, 1509 const Value *V2, LocationSize V2Size, 1510 const AAMDNodes &V2AAInfo, 1511 const Value *UnderV2) { 1512 // If the values are Selects with the same condition, we can do a more precise 1513 // check: just check for aliases between the values on corresponding arms. 1514 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1515 if (SI->getCondition() == SI2->getCondition()) { 1516 AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, 1517 SI2->getTrueValue(), V2Size, V2AAInfo); 1518 if (Alias == MayAlias) 1519 return MayAlias; 1520 AliasResult ThisAlias = 1521 aliasCheck(SI->getFalseValue(), SISize, SIAAInfo, 1522 SI2->getFalseValue(), V2Size, V2AAInfo); 1523 return MergeAliasResults(ThisAlias, Alias); 1524 } 1525 1526 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1527 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1528 AliasResult Alias = 1529 aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), 1530 SISize, SIAAInfo, UnderV2); 1531 if (Alias == MayAlias) 1532 return MayAlias; 1533 1534 AliasResult ThisAlias = 1535 aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo, 1536 UnderV2); 1537 return MergeAliasResults(ThisAlias, Alias); 1538 } 1539 1540 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1541 /// another. 1542 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize, 1543 const AAMDNodes &PNAAInfo, const Value *V2, 1544 LocationSize V2Size, 1545 const AAMDNodes &V2AAInfo, 1546 const Value *UnderV2) { 1547 // Track phi nodes we have visited. We use this information when we determine 1548 // value equivalence. 1549 VisitedPhiBBs.insert(PN->getParent()); 1550 1551 // If the values are PHIs in the same block, we can do a more precise 1552 // as well as efficient check: just check for aliases between the values 1553 // on corresponding edges. 1554 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1555 if (PN2->getParent() == PN->getParent()) { 1556 LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo), 1557 MemoryLocation(V2, V2Size, V2AAInfo)); 1558 if (PN > V2) 1559 std::swap(Locs.first, Locs.second); 1560 // Analyse the PHIs' inputs under the assumption that the PHIs are 1561 // NoAlias. 1562 // If the PHIs are May/MustAlias there must be (recursively) an input 1563 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1564 // there must be an operation on the PHIs within the PHIs' value cycle 1565 // that causes a MayAlias. 1566 // Pretend the phis do not alias. 1567 AliasResult Alias = NoAlias; 1568 assert(AliasCache.count(Locs) && 1569 "There must exist an entry for the phi node"); 1570 AliasResult OrigAliasResult = AliasCache[Locs]; 1571 AliasCache[Locs] = NoAlias; 1572 1573 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1574 AliasResult ThisAlias = 1575 aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo, 1576 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1577 V2Size, V2AAInfo); 1578 Alias = MergeAliasResults(ThisAlias, Alias); 1579 if (Alias == MayAlias) 1580 break; 1581 } 1582 1583 // Reset if speculation failed. 1584 if (Alias != NoAlias) 1585 AliasCache[Locs] = OrigAliasResult; 1586 1587 return Alias; 1588 } 1589 1590 SmallVector<Value *, 4> V1Srcs; 1591 bool isRecursive = false; 1592 if (PV) { 1593 // If we have PhiValues then use it to get the underlying phi values. 1594 const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN); 1595 // If we have more phi values than the search depth then return MayAlias 1596 // conservatively to avoid compile time explosion. The worst possible case 1597 // is if both sides are PHI nodes. In which case, this is O(m x n) time 1598 // where 'm' and 'n' are the number of PHI sources. 1599 if (PhiValueSet.size() > MaxLookupSearchDepth) 1600 return MayAlias; 1601 // Add the values to V1Srcs 1602 for (Value *PV1 : PhiValueSet) { 1603 if (EnableRecPhiAnalysis) { 1604 if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) { 1605 // Check whether the incoming value is a GEP that advances the pointer 1606 // result of this PHI node (e.g. in a loop). If this is the case, we 1607 // would recurse and always get a MayAlias. Handle this case specially 1608 // below. 1609 if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 && 1610 isa<ConstantInt>(PV1GEP->idx_begin())) { 1611 isRecursive = true; 1612 continue; 1613 } 1614 } 1615 } 1616 V1Srcs.push_back(PV1); 1617 } 1618 } else { 1619 // If we don't have PhiInfo then just look at the operands of the phi itself 1620 // FIXME: Remove this once we can guarantee that we have PhiInfo always 1621 SmallPtrSet<Value *, 4> UniqueSrc; 1622 for (Value *PV1 : PN->incoming_values()) { 1623 if (isa<PHINode>(PV1)) 1624 // If any of the source itself is a PHI, return MayAlias conservatively 1625 // to avoid compile time explosion. The worst possible case is if both 1626 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1627 // and 'n' are the number of PHI sources. 1628 return MayAlias; 1629 1630 if (EnableRecPhiAnalysis) 1631 if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) { 1632 // Check whether the incoming value is a GEP that advances the pointer 1633 // result of this PHI node (e.g. in a loop). If this is the case, we 1634 // would recurse and always get a MayAlias. Handle this case specially 1635 // below. 1636 if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 && 1637 isa<ConstantInt>(PV1GEP->idx_begin())) { 1638 isRecursive = true; 1639 continue; 1640 } 1641 } 1642 1643 if (UniqueSrc.insert(PV1).second) 1644 V1Srcs.push_back(PV1); 1645 } 1646 } 1647 1648 // If V1Srcs is empty then that means that the phi has no underlying non-phi 1649 // value. This should only be possible in blocks unreachable from the entry 1650 // block, but return MayAlias just in case. 1651 if (V1Srcs.empty()) 1652 return MayAlias; 1653 1654 // If this PHI node is recursive, set the size of the accessed memory to 1655 // unknown to represent all the possible values the GEP could advance the 1656 // pointer to. 1657 if (isRecursive) 1658 PNSize = LocationSize::unknown(); 1659 1660 AliasResult Alias = 1661 aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], 1662 PNSize, PNAAInfo, UnderV2); 1663 1664 // Early exit if the check of the first PHI source against V2 is MayAlias. 1665 // Other results are not possible. 1666 if (Alias == MayAlias) 1667 return MayAlias; 1668 1669 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1670 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1671 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1672 Value *V = V1Srcs[i]; 1673 1674 AliasResult ThisAlias = 1675 aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, UnderV2); 1676 Alias = MergeAliasResults(ThisAlias, Alias); 1677 if (Alias == MayAlias) 1678 break; 1679 } 1680 1681 return Alias; 1682 } 1683 1684 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1685 /// array references. 1686 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size, 1687 AAMDNodes V1AAInfo, const Value *V2, 1688 LocationSize V2Size, AAMDNodes V2AAInfo, 1689 const Value *O1, const Value *O2) { 1690 // If either of the memory references is empty, it doesn't matter what the 1691 // pointer values are. 1692 if (V1Size.isZero() || V2Size.isZero()) 1693 return NoAlias; 1694 1695 // Strip off any casts if they exist. 1696 V1 = V1->stripPointerCastsAndInvariantGroups(); 1697 V2 = V2->stripPointerCastsAndInvariantGroups(); 1698 1699 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1700 // value for undef that aliases nothing in the program. 1701 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1702 return NoAlias; 1703 1704 // Are we checking for alias of the same value? 1705 // Because we look 'through' phi nodes, we could look at "Value" pointers from 1706 // different iterations. We must therefore make sure that this is not the 1707 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1708 // happen by looking at the visited phi nodes and making sure they cannot 1709 // reach the value. 1710 if (isValueEqualInPotentialCycles(V1, V2)) 1711 return MustAlias; 1712 1713 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1714 return NoAlias; // Scalars cannot alias each other 1715 1716 // Figure out what objects these things are pointing to if we can. 1717 if (O1 == nullptr) 1718 O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth); 1719 1720 if (O2 == nullptr) 1721 O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth); 1722 1723 // Null values in the default address space don't point to any object, so they 1724 // don't alias any other pointer. 1725 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1726 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1727 return NoAlias; 1728 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1729 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1730 return NoAlias; 1731 1732 if (O1 != O2) { 1733 // If V1/V2 point to two different objects, we know that we have no alias. 1734 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1735 return NoAlias; 1736 1737 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1738 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1739 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1740 return NoAlias; 1741 1742 // Function arguments can't alias with things that are known to be 1743 // unambigously identified at the function level. 1744 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1745 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1746 return NoAlias; 1747 1748 // If one pointer is the result of a call/invoke or load and the other is a 1749 // non-escaping local object within the same function, then we know the 1750 // object couldn't escape to a point where the call could return it. 1751 // 1752 // Note that if the pointers are in different functions, there are a 1753 // variety of complications. A call with a nocapture argument may still 1754 // temporary store the nocapture argument's value in a temporary memory 1755 // location if that memory location doesn't escape. Or it may pass a 1756 // nocapture value to other functions as long as they don't capture it. 1757 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) 1758 return NoAlias; 1759 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) 1760 return NoAlias; 1761 } 1762 1763 // If the size of one access is larger than the entire object on the other 1764 // side, then we know such behavior is undefined and can assume no alias. 1765 bool NullIsValidLocation = NullPointerIsDefined(&F); 1766 if ((V1Size.isPrecise() && isObjectSmallerThan(O2, V1Size.getValue(), DL, TLI, 1767 NullIsValidLocation)) || 1768 (V2Size.isPrecise() && isObjectSmallerThan(O1, V2Size.getValue(), DL, TLI, 1769 NullIsValidLocation))) 1770 return NoAlias; 1771 1772 // Check the cache before climbing up use-def chains. This also terminates 1773 // otherwise infinitely recursive queries. 1774 LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo), 1775 MemoryLocation(V2, V2Size, V2AAInfo)); 1776 if (V1 > V2) 1777 std::swap(Locs.first, Locs.second); 1778 std::pair<AliasCacheTy::iterator, bool> Pair = 1779 AliasCache.insert(std::make_pair(Locs, MayAlias)); 1780 if (!Pair.second) 1781 return Pair.first->second; 1782 1783 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1784 // GEP can't simplify, we don't even look at the PHI cases. 1785 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1786 std::swap(V1, V2); 1787 std::swap(V1Size, V2Size); 1788 std::swap(O1, O2); 1789 std::swap(V1AAInfo, V2AAInfo); 1790 } 1791 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1792 AliasResult Result = 1793 aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2); 1794 if (Result != MayAlias) 1795 return AliasCache[Locs] = Result; 1796 } 1797 1798 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1799 std::swap(V1, V2); 1800 std::swap(O1, O2); 1801 std::swap(V1Size, V2Size); 1802 std::swap(V1AAInfo, V2AAInfo); 1803 } 1804 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1805 AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, 1806 V2, V2Size, V2AAInfo, O2); 1807 if (Result != MayAlias) 1808 return AliasCache[Locs] = Result; 1809 } 1810 1811 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1812 std::swap(V1, V2); 1813 std::swap(O1, O2); 1814 std::swap(V1Size, V2Size); 1815 std::swap(V1AAInfo, V2AAInfo); 1816 } 1817 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1818 AliasResult Result = 1819 aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2); 1820 if (Result != MayAlias) 1821 return AliasCache[Locs] = Result; 1822 } 1823 1824 // If both pointers are pointing into the same object and one of them 1825 // accesses the entire object, then the accesses must overlap in some way. 1826 if (O1 == O2) 1827 if (V1Size.isPrecise() && V2Size.isPrecise() && 1828 (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) || 1829 isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation))) 1830 return AliasCache[Locs] = PartialAlias; 1831 1832 // Recurse back into the best AA results we have, potentially with refined 1833 // memory locations. We have already ensured that BasicAA has a MayAlias 1834 // cache result for these, so any recursion back into BasicAA won't loop. 1835 AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second); 1836 return AliasCache[Locs] = Result; 1837 } 1838 1839 /// Check whether two Values can be considered equivalent. 1840 /// 1841 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether 1842 /// they can not be part of a cycle in the value graph by looking at all 1843 /// visited phi nodes an making sure that the phis cannot reach the value. We 1844 /// have to do this because we are looking through phi nodes (That is we say 1845 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1846 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1847 const Value *V2) { 1848 if (V != V2) 1849 return false; 1850 1851 const Instruction *Inst = dyn_cast<Instruction>(V); 1852 if (!Inst) 1853 return true; 1854 1855 if (VisitedPhiBBs.empty()) 1856 return true; 1857 1858 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1859 return false; 1860 1861 // Make sure that the visited phis cannot reach the Value. This ensures that 1862 // the Values cannot come from different iterations of a potential cycle the 1863 // phi nodes could be involved in. 1864 for (auto *P : VisitedPhiBBs) 1865 if (isPotentiallyReachable(&P->front(), Inst, DT, LI)) 1866 return false; 1867 1868 return true; 1869 } 1870 1871 /// Computes the symbolic difference between two de-composed GEPs. 1872 /// 1873 /// Dest and Src are the variable indices from two decomposed GetElementPtr 1874 /// instructions GEP1 and GEP2 which have common base pointers. 1875 void BasicAAResult::GetIndexDifference( 1876 SmallVectorImpl<VariableGEPIndex> &Dest, 1877 const SmallVectorImpl<VariableGEPIndex> &Src) { 1878 if (Src.empty()) 1879 return; 1880 1881 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1882 const Value *V = Src[i].V; 1883 unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits; 1884 APInt Scale = Src[i].Scale; 1885 1886 // Find V in Dest. This is N^2, but pointer indices almost never have more 1887 // than a few variable indexes. 1888 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1889 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1890 Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits) 1891 continue; 1892 1893 // If we found it, subtract off Scale V's from the entry in Dest. If it 1894 // goes to zero, remove the entry. 1895 if (Dest[j].Scale != Scale) 1896 Dest[j].Scale -= Scale; 1897 else 1898 Dest.erase(Dest.begin() + j); 1899 Scale = 0; 1900 break; 1901 } 1902 1903 // If we didn't consume this entry, add it to the end of the Dest list. 1904 if (!!Scale) { 1905 VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale}; 1906 Dest.push_back(Entry); 1907 } 1908 } 1909 } 1910 1911 bool BasicAAResult::constantOffsetHeuristic( 1912 const SmallVectorImpl<VariableGEPIndex> &VarIndices, 1913 LocationSize MaybeV1Size, LocationSize MaybeV2Size, APInt BaseOffset, 1914 AssumptionCache *AC, DominatorTree *DT) { 1915 if (VarIndices.size() != 2 || MaybeV1Size == LocationSize::unknown() || 1916 MaybeV2Size == LocationSize::unknown()) 1917 return false; 1918 1919 const uint64_t V1Size = MaybeV1Size.getValue(); 1920 const uint64_t V2Size = MaybeV2Size.getValue(); 1921 1922 const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1]; 1923 1924 if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits || 1925 Var0.Scale != -Var1.Scale) 1926 return false; 1927 1928 unsigned Width = Var1.V->getType()->getIntegerBitWidth(); 1929 1930 // We'll strip off the Extensions of Var0 and Var1 and do another round 1931 // of GetLinearExpression decomposition. In the example above, if Var0 1932 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 1933 1934 APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0), 1935 V1Offset(Width, 0); 1936 bool NSW = true, NUW = true; 1937 unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0; 1938 const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits, 1939 V0SExtBits, DL, 0, AC, DT, NSW, NUW); 1940 NSW = true; 1941 NUW = true; 1942 const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits, 1943 V1SExtBits, DL, 0, AC, DT, NSW, NUW); 1944 1945 if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits || 1946 V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1)) 1947 return false; 1948 1949 // We have a hit - Var0 and Var1 only differ by a constant offset! 1950 1951 // If we've been sext'ed then zext'd the maximum difference between Var0 and 1952 // Var1 is possible to calculate, but we're just interested in the absolute 1953 // minimum difference between the two. The minimum distance may occur due to 1954 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 1955 // the minimum distance between %i and %i + 5 is 3. 1956 APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff; 1957 MinDiff = APIntOps::umin(MinDiff, Wrapped); 1958 APInt MinDiffBytes = 1959 MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs(); 1960 1961 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 1962 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 1963 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 1964 // V2Size can fit in the MinDiffBytes gap. 1965 return MinDiffBytes.uge(V1Size + BaseOffset.abs()) && 1966 MinDiffBytes.uge(V2Size + BaseOffset.abs()); 1967 } 1968 1969 //===----------------------------------------------------------------------===// 1970 // BasicAliasAnalysis Pass 1971 //===----------------------------------------------------------------------===// 1972 1973 AnalysisKey BasicAA::Key; 1974 1975 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) { 1976 return BasicAAResult(F.getParent()->getDataLayout(), 1977 F, 1978 AM.getResult<TargetLibraryAnalysis>(F), 1979 AM.getResult<AssumptionAnalysis>(F), 1980 &AM.getResult<DominatorTreeAnalysis>(F), 1981 AM.getCachedResult<LoopAnalysis>(F), 1982 AM.getCachedResult<PhiValuesAnalysis>(F)); 1983 } 1984 1985 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 1986 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1987 } 1988 1989 char BasicAAWrapperPass::ID = 0; 1990 1991 void BasicAAWrapperPass::anchor() {} 1992 1993 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa", 1994 "Basic Alias Analysis (stateless AA impl)", false, true) 1995 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1996 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1997 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1998 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa", 1999 "Basic Alias Analysis (stateless AA impl)", false, true) 2000 2001 FunctionPass *llvm::createBasicAAWrapperPass() { 2002 return new BasicAAWrapperPass(); 2003 } 2004 2005 bool BasicAAWrapperPass::runOnFunction(Function &F) { 2006 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 2007 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 2008 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); 2009 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 2010 auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>(); 2011 2012 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F, TLIWP.getTLI(), 2013 ACT.getAssumptionCache(F), &DTWP.getDomTree(), 2014 LIWP ? &LIWP->getLoopInfo() : nullptr, 2015 PVWP ? &PVWP->getResult() : nullptr)); 2016 2017 return false; 2018 } 2019 2020 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 2021 AU.setPreservesAll(); 2022 AU.addRequired<AssumptionCacheTracker>(); 2023 AU.addRequired<DominatorTreeWrapperPass>(); 2024 AU.addRequired<TargetLibraryInfoWrapperPass>(); 2025 AU.addUsedIfAvailable<PhiValuesWrapperPass>(); 2026 } 2027 2028 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { 2029 return BasicAAResult( 2030 F.getParent()->getDataLayout(), 2031 F, 2032 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 2033 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 2034 } 2035