1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the primary stateless implementation of the
11 // Alias Analysis interface that implements identities (two different
12 // globals cannot alias, etc), but does no stateful analysis.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Analysis/BasicAliasAnalysis.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/CFG.h"
21 #include "llvm/Analysis/CaptureTracking.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include <algorithm>
40 
41 #define DEBUG_TYPE "basicaa"
42 
43 using namespace llvm;
44 
45 /// Enable analysis of recursive PHI nodes.
46 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden,
47                                           cl::init(false));
48 /// SearchLimitReached / SearchTimes shows how often the limit of
49 /// to decompose GEPs is reached. It will affect the precision
50 /// of basic alias analysis.
51 STATISTIC(SearchLimitReached, "Number of times the limit to "
52                               "decompose GEPs is reached");
53 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
54 
55 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
56 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
57 /// careful with value equivalence. We use reachability to make sure a value
58 /// cannot be involved in a cycle.
59 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
60 
61 // The max limit of the search depth in DecomposeGEPExpression() and
62 // GetUnderlyingObject(), both functions need to use the same search
63 // depth otherwise the algorithm in aliasGEP will assert.
64 static const unsigned MaxLookupSearchDepth = 6;
65 
66 //===----------------------------------------------------------------------===//
67 // Useful predicates
68 //===----------------------------------------------------------------------===//
69 
70 /// Returns true if the pointer is to a function-local object that never
71 /// escapes from the function.
72 static bool isNonEscapingLocalObject(const Value *V) {
73   // If this is a local allocation, check to see if it escapes.
74   if (isa<AllocaInst>(V) || isNoAliasCall(V))
75     // Set StoreCaptures to True so that we can assume in our callers that the
76     // pointer is not the result of a load instruction. Currently
77     // PointerMayBeCaptured doesn't have any special analysis for the
78     // StoreCaptures=false case; if it did, our callers could be refined to be
79     // more precise.
80     return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
81 
82   // If this is an argument that corresponds to a byval or noalias argument,
83   // then it has not escaped before entering the function.  Check if it escapes
84   // inside the function.
85   if (const Argument *A = dyn_cast<Argument>(V))
86     if (A->hasByValAttr() || A->hasNoAliasAttr())
87       // Note even if the argument is marked nocapture, we still need to check
88       // for copies made inside the function. The nocapture attribute only
89       // specifies that there are no copies made that outlive the function.
90       return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
91 
92   return false;
93 }
94 
95 /// Returns true if the pointer is one which would have been considered an
96 /// escape by isNonEscapingLocalObject.
97 static bool isEscapeSource(const Value *V) {
98   if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
99     return true;
100 
101   // The load case works because isNonEscapingLocalObject considers all
102   // stores to be escapes (it passes true for the StoreCaptures argument
103   // to PointerMayBeCaptured).
104   if (isa<LoadInst>(V))
105     return true;
106 
107   return false;
108 }
109 
110 /// Returns the size of the object specified by V or UnknownSize if unknown.
111 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
112                               const TargetLibraryInfo &TLI,
113                               bool RoundToAlign = false) {
114   uint64_t Size;
115   if (getObjectSize(V, Size, DL, &TLI, RoundToAlign))
116     return Size;
117   return MemoryLocation::UnknownSize;
118 }
119 
120 /// Returns true if we can prove that the object specified by V is smaller than
121 /// Size.
122 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
123                                 const DataLayout &DL,
124                                 const TargetLibraryInfo &TLI) {
125   // Note that the meanings of the "object" are slightly different in the
126   // following contexts:
127   //    c1: llvm::getObjectSize()
128   //    c2: llvm.objectsize() intrinsic
129   //    c3: isObjectSmallerThan()
130   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
131   // refers to the "entire object".
132   //
133   //  Consider this example:
134   //     char *p = (char*)malloc(100)
135   //     char *q = p+80;
136   //
137   //  In the context of c1 and c2, the "object" pointed by q refers to the
138   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
139   //
140   //  However, in the context of c3, the "object" refers to the chunk of memory
141   // being allocated. So, the "object" has 100 bytes, and q points to the middle
142   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
143   // parameter, before the llvm::getObjectSize() is called to get the size of
144   // entire object, we should:
145   //    - either rewind the pointer q to the base-address of the object in
146   //      question (in this case rewind to p), or
147   //    - just give up. It is up to caller to make sure the pointer is pointing
148   //      to the base address the object.
149   //
150   // We go for 2nd option for simplicity.
151   if (!isIdentifiedObject(V))
152     return false;
153 
154   // This function needs to use the aligned object size because we allow
155   // reads a bit past the end given sufficient alignment.
156   uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/ true);
157 
158   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
159 }
160 
161 /// Returns true if we can prove that the object specified by V has size Size.
162 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
163                          const TargetLibraryInfo &TLI) {
164   uint64_t ObjectSize = getObjectSize(V, DL, TLI);
165   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
166 }
167 
168 //===----------------------------------------------------------------------===//
169 // GetElementPtr Instruction Decomposition and Analysis
170 //===----------------------------------------------------------------------===//
171 
172 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
173 /// B are constant integers.
174 ///
175 /// Returns the scale and offset values as APInts and return V as a Value*, and
176 /// return whether we looked through any sign or zero extends.  The incoming
177 /// Value is known to have IntegerType, and it may already be sign or zero
178 /// extended.
179 ///
180 /// Note that this looks through extends, so the high bits may not be
181 /// represented in the result.
182 /*static*/ const Value *BasicAAResult::GetLinearExpression(
183     const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
184     unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
185     AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
186   assert(V->getType()->isIntegerTy() && "Not an integer value");
187 
188   // Limit our recursion depth.
189   if (Depth == 6) {
190     Scale = 1;
191     Offset = 0;
192     return V;
193   }
194 
195   if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
196     // If it's a constant, just convert it to an offset and remove the variable.
197     // If we've been called recursively, the Offset bit width will be greater
198     // than the constant's (the Offset's always as wide as the outermost call),
199     // so we'll zext here and process any extension in the isa<SExtInst> &
200     // isa<ZExtInst> cases below.
201     Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
202     assert(Scale == 0 && "Constant values don't have a scale");
203     return V;
204   }
205 
206   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
207     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
208 
209       // If we've been called recursively, then Offset and Scale will be wider
210       // than the BOp operands. We'll always zext it here as we'll process sign
211       // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
212       APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
213 
214       switch (BOp->getOpcode()) {
215       default:
216         // We don't understand this instruction, so we can't decompose it any
217         // further.
218         Scale = 1;
219         Offset = 0;
220         return V;
221       case Instruction::Or:
222         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
223         // analyze it.
224         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
225                                BOp, DT)) {
226           Scale = 1;
227           Offset = 0;
228           return V;
229         }
230       // FALL THROUGH.
231       case Instruction::Add:
232         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
233                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
234         Offset += RHS;
235         break;
236       case Instruction::Sub:
237         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
238                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
239         Offset -= RHS;
240         break;
241       case Instruction::Mul:
242         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
243                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
244         Offset *= RHS;
245         Scale *= RHS;
246         break;
247       case Instruction::Shl:
248         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
249                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
250         Offset <<= RHS.getLimitedValue();
251         Scale <<= RHS.getLimitedValue();
252         // the semantics of nsw and nuw for left shifts don't match those of
253         // multiplications, so we won't propagate them.
254         NSW = NUW = false;
255         return V;
256       }
257 
258       if (isa<OverflowingBinaryOperator>(BOp)) {
259         NUW &= BOp->hasNoUnsignedWrap();
260         NSW &= BOp->hasNoSignedWrap();
261       }
262       return V;
263     }
264   }
265 
266   // Since GEP indices are sign extended anyway, we don't care about the high
267   // bits of a sign or zero extended value - just scales and offsets.  The
268   // extensions have to be consistent though.
269   if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
270     Value *CastOp = cast<CastInst>(V)->getOperand(0);
271     unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
272     unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
273     unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
274     const Value *Result =
275         GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
276                             Depth + 1, AC, DT, NSW, NUW);
277 
278     // zext(zext(%x)) == zext(%x), and similiarly for sext; we'll handle this
279     // by just incrementing the number of bits we've extended by.
280     unsigned ExtendedBy = NewWidth - SmallWidth;
281 
282     if (isa<SExtInst>(V) && ZExtBits == 0) {
283       // sext(sext(%x, a), b) == sext(%x, a + b)
284 
285       if (NSW) {
286         // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
287         // into sext(%x) + sext(c). We'll sext the Offset ourselves:
288         unsigned OldWidth = Offset.getBitWidth();
289         Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
290       } else {
291         // We may have signed-wrapped, so don't decompose sext(%x + c) into
292         // sext(%x) + sext(c)
293         Scale = 1;
294         Offset = 0;
295         Result = CastOp;
296         ZExtBits = OldZExtBits;
297         SExtBits = OldSExtBits;
298       }
299       SExtBits += ExtendedBy;
300     } else {
301       // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
302 
303       if (!NUW) {
304         // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
305         // zext(%x) + zext(c)
306         Scale = 1;
307         Offset = 0;
308         Result = CastOp;
309         ZExtBits = OldZExtBits;
310         SExtBits = OldSExtBits;
311       }
312       ZExtBits += ExtendedBy;
313     }
314 
315     return Result;
316   }
317 
318   Scale = 1;
319   Offset = 0;
320   return V;
321 }
322 
323 /// To ensure a pointer offset fits in an integer of size PointerSize
324 /// (in bits) when that size is smaller than 64. This is an issue in
325 /// particular for 32b programs with negative indices that rely on two's
326 /// complement wrap-arounds for precise alias information.
327 static int64_t adjustToPointerSize(int64_t Offset, unsigned PointerSize) {
328   assert(PointerSize <= 64 && "Invalid PointerSize!");
329   unsigned ShiftBits = 64 - PointerSize;
330   return (int64_t)((uint64_t)Offset << ShiftBits) >> ShiftBits;
331 }
332 
333 /// If V is a symbolic pointer expression, decompose it into a base pointer
334 /// with a constant offset and a number of scaled symbolic offsets.
335 ///
336 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
337 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
338 /// specified amount, but which may have other unrepresented high bits. As
339 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
340 ///
341 /// When DataLayout is around, this function is capable of analyzing everything
342 /// that GetUnderlyingObject can look through. To be able to do that
343 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search
344 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks
345 /// through pointer casts.
346 /*static*/ const Value *BasicAAResult::DecomposeGEPExpression(
347     const Value *V, int64_t &BaseOffs,
348     SmallVectorImpl<VariableGEPIndex> &VarIndices, bool &MaxLookupReached,
349     const DataLayout &DL, AssumptionCache *AC, DominatorTree *DT) {
350   // Limit recursion depth to limit compile time in crazy cases.
351   unsigned MaxLookup = MaxLookupSearchDepth;
352   MaxLookupReached = false;
353   SearchTimes++;
354 
355   BaseOffs = 0;
356   do {
357     // See if this is a bitcast or GEP.
358     const Operator *Op = dyn_cast<Operator>(V);
359     if (!Op) {
360       // The only non-operator case we can handle are GlobalAliases.
361       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
362         if (!GA->isInterposable()) {
363           V = GA->getAliasee();
364           continue;
365         }
366       }
367       return V;
368     }
369 
370     if (Op->getOpcode() == Instruction::BitCast ||
371         Op->getOpcode() == Instruction::AddrSpaceCast) {
372       V = Op->getOperand(0);
373       continue;
374     }
375 
376     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
377     if (!GEPOp) {
378       // If it's not a GEP, hand it off to SimplifyInstruction to see if it
379       // can come up with something. This matches what GetUnderlyingObject does.
380       if (const Instruction *I = dyn_cast<Instruction>(V))
381         // TODO: Get a DominatorTree and AssumptionCache and use them here
382         // (these are both now available in this function, but this should be
383         // updated when GetUnderlyingObject is updated). TLI should be
384         // provided also.
385         if (const Value *Simplified =
386                 SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
387           V = Simplified;
388           continue;
389         }
390 
391       return V;
392     }
393 
394     // Don't attempt to analyze GEPs over unsized objects.
395     if (!GEPOp->getSourceElementType()->isSized())
396       return V;
397 
398     unsigned AS = GEPOp->getPointerAddressSpace();
399     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
400     gep_type_iterator GTI = gep_type_begin(GEPOp);
401     unsigned PointerSize = DL.getPointerSizeInBits(AS);
402     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
403          I != E; ++I) {
404       const Value *Index = *I;
405       // Compute the (potentially symbolic) offset in bytes for this index.
406       if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
407         // For a struct, add the member offset.
408         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
409         if (FieldNo == 0)
410           continue;
411 
412         BaseOffs += DL.getStructLayout(STy)->getElementOffset(FieldNo);
413         continue;
414       }
415 
416       // For an array/pointer, add the element offset, explicitly scaled.
417       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
418         if (CIdx->isZero())
419           continue;
420         BaseOffs += DL.getTypeAllocSize(*GTI) * CIdx->getSExtValue();
421         continue;
422       }
423 
424       uint64_t Scale = DL.getTypeAllocSize(*GTI);
425       unsigned ZExtBits = 0, SExtBits = 0;
426 
427       // If the integer type is smaller than the pointer size, it is implicitly
428       // sign extended to pointer size.
429       unsigned Width = Index->getType()->getIntegerBitWidth();
430       if (PointerSize > Width)
431         SExtBits += PointerSize - Width;
432 
433       // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
434       APInt IndexScale(Width, 0), IndexOffset(Width, 0);
435       bool NSW = true, NUW = true;
436       Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
437                                   SExtBits, DL, 0, AC, DT, NSW, NUW);
438 
439       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
440       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
441       BaseOffs += IndexOffset.getSExtValue() * Scale;
442       Scale *= IndexScale.getSExtValue();
443 
444       // If we already had an occurrence of this index variable, merge this
445       // scale into it.  For example, we want to handle:
446       //   A[x][x] -> x*16 + x*4 -> x*20
447       // This also ensures that 'x' only appears in the index list once.
448       for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
449         if (VarIndices[i].V == Index && VarIndices[i].ZExtBits == ZExtBits &&
450             VarIndices[i].SExtBits == SExtBits) {
451           Scale += VarIndices[i].Scale;
452           VarIndices.erase(VarIndices.begin() + i);
453           break;
454         }
455       }
456 
457       // Make sure that we have a scale that makes sense for this target's
458       // pointer size.
459       Scale = adjustToPointerSize(Scale, PointerSize);
460 
461       if (Scale) {
462         VariableGEPIndex Entry = {Index, ZExtBits, SExtBits,
463                                   static_cast<int64_t>(Scale)};
464         VarIndices.push_back(Entry);
465       }
466     }
467 
468     // Take care of wrap-arounds
469     BaseOffs = adjustToPointerSize(BaseOffs, PointerSize);
470 
471     // Analyze the base pointer next.
472     V = GEPOp->getOperand(0);
473   } while (--MaxLookup);
474 
475   // If the chain of expressions is too deep, just return early.
476   MaxLookupReached = true;
477   SearchLimitReached++;
478   return V;
479 }
480 
481 /// Returns whether the given pointer value points to memory that is local to
482 /// the function, with global constants being considered local to all
483 /// functions.
484 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
485                                            bool OrLocal) {
486   assert(Visited.empty() && "Visited must be cleared after use!");
487 
488   unsigned MaxLookup = 8;
489   SmallVector<const Value *, 16> Worklist;
490   Worklist.push_back(Loc.Ptr);
491   do {
492     const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
493     if (!Visited.insert(V).second) {
494       Visited.clear();
495       return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
496     }
497 
498     // An alloca instruction defines local memory.
499     if (OrLocal && isa<AllocaInst>(V))
500       continue;
501 
502     // A global constant counts as local memory for our purposes.
503     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
504       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
505       // global to be marked constant in some modules and non-constant in
506       // others.  GV may even be a declaration, not a definition.
507       if (!GV->isConstant()) {
508         Visited.clear();
509         return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
510       }
511       continue;
512     }
513 
514     // If both select values point to local memory, then so does the select.
515     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
516       Worklist.push_back(SI->getTrueValue());
517       Worklist.push_back(SI->getFalseValue());
518       continue;
519     }
520 
521     // If all values incoming to a phi node point to local memory, then so does
522     // the phi.
523     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
524       // Don't bother inspecting phi nodes with many operands.
525       if (PN->getNumIncomingValues() > MaxLookup) {
526         Visited.clear();
527         return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
528       }
529       for (Value *IncValue : PN->incoming_values())
530         Worklist.push_back(IncValue);
531       continue;
532     }
533 
534     // Otherwise be conservative.
535     Visited.clear();
536     return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
537 
538   } while (!Worklist.empty() && --MaxLookup);
539 
540   Visited.clear();
541   return Worklist.empty();
542 }
543 
544 // FIXME: This code is duplicated with MemoryLocation and should be hoisted to
545 // some common utility location.
546 static bool isMemsetPattern16(const Function *MS,
547                               const TargetLibraryInfo &TLI) {
548   if (TLI.has(LibFunc::memset_pattern16) &&
549       MS->getName() == "memset_pattern16") {
550     FunctionType *MemsetType = MS->getFunctionType();
551     if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 &&
552         isa<PointerType>(MemsetType->getParamType(0)) &&
553         isa<PointerType>(MemsetType->getParamType(1)) &&
554         isa<IntegerType>(MemsetType->getParamType(2)))
555       return true;
556   }
557   return false;
558 }
559 
560 /// Returns the behavior when calling the given call site.
561 FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) {
562   if (CS.doesNotAccessMemory())
563     // Can't do better than this.
564     return FMRB_DoesNotAccessMemory;
565 
566   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
567 
568   // If the callsite knows it only reads memory, don't return worse
569   // than that.
570   if (CS.onlyReadsMemory())
571     Min = FMRB_OnlyReadsMemory;
572 
573   if (CS.onlyAccessesArgMemory())
574     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
575 
576   // If CS has operand bundles then aliasing attributes from the function it
577   // calls do not directly apply to the CallSite.  This can be made more
578   // precise in the future.
579   if (!CS.hasOperandBundles())
580     if (const Function *F = CS.getCalledFunction())
581       Min =
582           FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
583 
584   return Min;
585 }
586 
587 /// Returns the behavior when calling the given function. For use when the call
588 /// site is not known.
589 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
590   // If the function declares it doesn't access memory, we can't do better.
591   if (F->doesNotAccessMemory())
592     return FMRB_DoesNotAccessMemory;
593 
594   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
595 
596   // If the function declares it only reads memory, go with that.
597   if (F->onlyReadsMemory())
598     Min = FMRB_OnlyReadsMemory;
599 
600   if (F->onlyAccessesArgMemory())
601     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
602 
603   return Min;
604 }
605 
606 /// Returns true if this is a writeonly (i.e Mod only) parameter.  Currently,
607 /// we don't have a writeonly attribute, so this only knows about builtin
608 /// intrinsics and target library functions.  We could consider adding a
609 /// writeonly attribute in the future and moving all of these facts to either
610 /// Intrinsics.td or InferFunctionAttr.cpp
611 static bool isWriteOnlyParam(ImmutableCallSite CS, unsigned ArgIdx,
612                              const TargetLibraryInfo &TLI) {
613   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()))
614     switch (II->getIntrinsicID()) {
615     default:
616       break;
617     case Intrinsic::memset:
618     case Intrinsic::memcpy:
619     case Intrinsic::memmove:
620       // We don't currently have a writeonly attribute.  All other properties
621       // of these intrinsics are nicely described via attributes in
622       // Intrinsics.td and handled generically.
623       if (ArgIdx == 0)
624         return true;
625     }
626 
627   // We can bound the aliasing properties of memset_pattern16 just as we can
628   // for memcpy/memset.  This is particularly important because the
629   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
630   // whenever possible.  Note that all but the missing writeonly attribute are
631   // handled via InferFunctionAttr.
632   if (CS.getCalledFunction() && isMemsetPattern16(CS.getCalledFunction(), TLI))
633     if (ArgIdx == 0)
634       return true;
635 
636   // TODO: memset_pattern4, memset_pattern8
637   // TODO: _chk variants
638   // TODO: strcmp, strcpy
639 
640   return false;
641 }
642 
643 ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS,
644                                            unsigned ArgIdx) {
645 
646   // Emulate the missing writeonly attribute by checking for known builtin
647   // intrinsics and target library functions.
648   if (isWriteOnlyParam(CS, ArgIdx, TLI))
649     return MRI_Mod;
650 
651   if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadOnly))
652     return MRI_Ref;
653 
654   if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadNone))
655     return MRI_NoModRef;
656 
657   return AAResultBase::getArgModRefInfo(CS, ArgIdx);
658 }
659 
660 static bool isAssumeIntrinsic(ImmutableCallSite CS) {
661   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
662   return II && II->getIntrinsicID() == Intrinsic::assume;
663 }
664 
665 #ifndef NDEBUG
666 static const Function *getParent(const Value *V) {
667   if (const Instruction *inst = dyn_cast<Instruction>(V))
668     return inst->getParent()->getParent();
669 
670   if (const Argument *arg = dyn_cast<Argument>(V))
671     return arg->getParent();
672 
673   return nullptr;
674 }
675 
676 static bool notDifferentParent(const Value *O1, const Value *O2) {
677 
678   const Function *F1 = getParent(O1);
679   const Function *F2 = getParent(O2);
680 
681   return !F1 || !F2 || F1 == F2;
682 }
683 #endif
684 
685 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
686                                  const MemoryLocation &LocB) {
687   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
688          "BasicAliasAnalysis doesn't support interprocedural queries.");
689 
690   // If we have a directly cached entry for these locations, we have recursed
691   // through this once, so just return the cached results. Notably, when this
692   // happens, we don't clear the cache.
693   auto CacheIt = AliasCache.find(LocPair(LocA, LocB));
694   if (CacheIt != AliasCache.end())
695     return CacheIt->second;
696 
697   AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
698                                  LocB.Size, LocB.AATags);
699   // AliasCache rarely has more than 1 or 2 elements, always use
700   // shrink_and_clear so it quickly returns to the inline capacity of the
701   // SmallDenseMap if it ever grows larger.
702   // FIXME: This should really be shrink_to_inline_capacity_and_clear().
703   AliasCache.shrink_and_clear();
704   VisitedPhiBBs.clear();
705   return Alias;
706 }
707 
708 /// Checks to see if the specified callsite can clobber the specified memory
709 /// object.
710 ///
711 /// Since we only look at local properties of this function, we really can't
712 /// say much about this query.  We do, however, use simple "address taken"
713 /// analysis on local objects.
714 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS,
715                                         const MemoryLocation &Loc) {
716   assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
717          "AliasAnalysis query involving multiple functions!");
718 
719   const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);
720 
721   // If this is a tail call and Loc.Ptr points to a stack location, we know that
722   // the tail call cannot access or modify the local stack.
723   // We cannot exclude byval arguments here; these belong to the caller of
724   // the current function not to the current function, and a tail callee
725   // may reference them.
726   if (isa<AllocaInst>(Object))
727     if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
728       if (CI->isTailCall())
729         return MRI_NoModRef;
730 
731   // If the pointer is to a locally allocated object that does not escape,
732   // then the call can not mod/ref the pointer unless the call takes the pointer
733   // as an argument, and itself doesn't capture it.
734   if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
735       isNonEscapingLocalObject(Object)) {
736     bool PassedAsArg = false;
737     unsigned OperandNo = 0;
738     for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end();
739          CI != CE; ++CI, ++OperandNo) {
740       // Only look at the no-capture or byval pointer arguments.  If this
741       // pointer were passed to arguments that were neither of these, then it
742       // couldn't be no-capture.
743       if (!(*CI)->getType()->isPointerTy() ||
744           (!CS.doesNotCapture(OperandNo) && !CS.isByValArgument(OperandNo)))
745         continue;
746 
747       // If this is a no-capture pointer argument, see if we can tell that it
748       // is impossible to alias the pointer we're checking.  If not, we have to
749       // assume that the call could touch the pointer, even though it doesn't
750       // escape.
751       AliasResult AR =
752           getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object));
753       if (AR) {
754         PassedAsArg = true;
755         break;
756       }
757     }
758 
759     if (!PassedAsArg)
760       return MRI_NoModRef;
761   }
762 
763   // If the CallSite is to malloc or calloc, we can assume that it doesn't
764   // modify any IR visible value.  This is only valid because we assume these
765   // routines do not read values visible in the IR.  TODO: Consider special
766   // casing realloc and strdup routines which access only their arguments as
767   // well.  Or alternatively, replace all of this with inaccessiblememonly once
768   // that's implemented fully.
769   auto *Inst = CS.getInstruction();
770   if (isMallocLikeFn(Inst, &TLI) || isCallocLikeFn(Inst, &TLI)) {
771     // Be conservative if the accessed pointer may alias the allocation -
772     // fallback to the generic handling below.
773     if (getBestAAResults().alias(MemoryLocation(Inst), Loc) == NoAlias)
774       return MRI_NoModRef;
775   }
776 
777   // While the assume intrinsic is marked as arbitrarily writing so that
778   // proper control dependencies will be maintained, it never aliases any
779   // particular memory location.
780   if (isAssumeIntrinsic(CS))
781     return MRI_NoModRef;
782 
783   // The AAResultBase base class has some smarts, lets use them.
784   return AAResultBase::getModRefInfo(CS, Loc);
785 }
786 
787 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1,
788                                         ImmutableCallSite CS2) {
789   // While the assume intrinsic is marked as arbitrarily writing so that
790   // proper control dependencies will be maintained, it never aliases any
791   // particular memory location.
792   if (isAssumeIntrinsic(CS1) || isAssumeIntrinsic(CS2))
793     return MRI_NoModRef;
794 
795   // The AAResultBase base class has some smarts, lets use them.
796   return AAResultBase::getModRefInfo(CS1, CS2);
797 }
798 
799 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
800 /// both having the exact same pointer operand.
801 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
802                                             uint64_t V1Size,
803                                             const GEPOperator *GEP2,
804                                             uint64_t V2Size,
805                                             const DataLayout &DL) {
806 
807   assert(GEP1->getPointerOperand() == GEP2->getPointerOperand() &&
808          "Expected GEPs with the same pointer operand");
809 
810   // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
811   // such that the struct field accesses provably cannot alias.
812   // We also need at least two indices (the pointer, and the struct field).
813   if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
814       GEP1->getNumIndices() < 2)
815     return MayAlias;
816 
817   // If we don't know the size of the accesses through both GEPs, we can't
818   // determine whether the struct fields accessed can't alias.
819   if (V1Size == MemoryLocation::UnknownSize ||
820       V2Size == MemoryLocation::UnknownSize)
821     return MayAlias;
822 
823   ConstantInt *C1 =
824       dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
825   ConstantInt *C2 =
826       dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
827 
828   // If the last (struct) indices are constants and are equal, the other indices
829   // might be also be dynamically equal, so the GEPs can alias.
830   if (C1 && C2 && C1 == C2)
831     return MayAlias;
832 
833   // Find the last-indexed type of the GEP, i.e., the type you'd get if
834   // you stripped the last index.
835   // On the way, look at each indexed type.  If there's something other
836   // than an array, different indices can lead to different final types.
837   SmallVector<Value *, 8> IntermediateIndices;
838 
839   // Insert the first index; we don't need to check the type indexed
840   // through it as it only drops the pointer indirection.
841   assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
842   IntermediateIndices.push_back(GEP1->getOperand(1));
843 
844   // Insert all the remaining indices but the last one.
845   // Also, check that they all index through arrays.
846   for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
847     if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
848             GEP1->getSourceElementType(), IntermediateIndices)))
849       return MayAlias;
850     IntermediateIndices.push_back(GEP1->getOperand(i + 1));
851   }
852 
853   auto *Ty = GetElementPtrInst::getIndexedType(
854     GEP1->getSourceElementType(), IntermediateIndices);
855   StructType *LastIndexedStruct = dyn_cast<StructType>(Ty);
856 
857   if (isa<SequentialType>(Ty)) {
858     // We know that:
859     // - both GEPs begin indexing from the exact same pointer;
860     // - the last indices in both GEPs are constants, indexing into a sequential
861     //   type (array or pointer);
862     // - both GEPs only index through arrays prior to that.
863     //
864     // Because array indices greater than the number of elements are valid in
865     // GEPs, unless we know the intermediate indices are identical between
866     // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
867     // partially overlap. We also need to check that the loaded size matches
868     // the element size, otherwise we could still have overlap.
869     const uint64_t ElementSize =
870         DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType());
871     if (V1Size != ElementSize || V2Size != ElementSize)
872       return MayAlias;
873 
874     for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i)
875       if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1))
876         return MayAlias;
877 
878     // Now we know that the array/pointer that GEP1 indexes into and that
879     // that GEP2 indexes into must either precisely overlap or be disjoint.
880     // Because they cannot partially overlap and because fields in an array
881     // cannot overlap, if we can prove the final indices are different between
882     // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
883 
884     // If the last indices are constants, we've already checked they don't
885     // equal each other so we can exit early.
886     if (C1 && C2)
887       return NoAlias;
888     if (isKnownNonEqual(GEP1->getOperand(GEP1->getNumOperands() - 1),
889                         GEP2->getOperand(GEP2->getNumOperands() - 1),
890                         DL))
891       return NoAlias;
892     return MayAlias;
893   } else if (!LastIndexedStruct || !C1 || !C2) {
894     return MayAlias;
895   }
896 
897   // We know that:
898   // - both GEPs begin indexing from the exact same pointer;
899   // - the last indices in both GEPs are constants, indexing into a struct;
900   // - said indices are different, hence, the pointed-to fields are different;
901   // - both GEPs only index through arrays prior to that.
902   //
903   // This lets us determine that the struct that GEP1 indexes into and the
904   // struct that GEP2 indexes into must either precisely overlap or be
905   // completely disjoint.  Because they cannot partially overlap, indexing into
906   // different non-overlapping fields of the struct will never alias.
907 
908   // Therefore, the only remaining thing needed to show that both GEPs can't
909   // alias is that the fields are not overlapping.
910   const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
911   const uint64_t StructSize = SL->getSizeInBytes();
912   const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
913   const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
914 
915   auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
916                                       uint64_t V2Off, uint64_t V2Size) {
917     return V1Off < V2Off && V1Off + V1Size <= V2Off &&
918            ((V2Off + V2Size <= StructSize) ||
919             (V2Off + V2Size - StructSize <= V1Off));
920   };
921 
922   if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
923       EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
924     return NoAlias;
925 
926   return MayAlias;
927 }
928 
929 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
930 /// another pointer.
931 ///
932 /// We know that V1 is a GEP, but we don't know anything about V2.
933 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for
934 /// V2.
935 AliasResult BasicAAResult::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
936                                     const AAMDNodes &V1AAInfo, const Value *V2,
937                                     uint64_t V2Size, const AAMDNodes &V2AAInfo,
938                                     const Value *UnderlyingV1,
939                                     const Value *UnderlyingV2) {
940   int64_t GEP1BaseOffset;
941   bool GEP1MaxLookupReached;
942   SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
943 
944   // If we have two gep instructions with must-alias or not-alias'ing base
945   // pointers, figure out if the indexes to the GEP tell us anything about the
946   // derived pointer.
947   if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
948     // Do the base pointers alias?
949     AliasResult BaseAlias =
950         aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(),
951                    UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes());
952 
953     // Check for geps of non-aliasing underlying pointers where the offsets are
954     // identical.
955     if ((BaseAlias == MayAlias) && V1Size == V2Size) {
956       // Do the base pointers alias assuming type and size.
957       AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo,
958                                                 UnderlyingV2, V2Size, V2AAInfo);
959       if (PreciseBaseAlias == NoAlias) {
960         // See if the computed offset from the common pointer tells us about the
961         // relation of the resulting pointer.
962         int64_t GEP2BaseOffset;
963         bool GEP2MaxLookupReached;
964         SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
965         const Value *GEP2BasePtr =
966             DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
967                                    GEP2MaxLookupReached, DL, &AC, DT);
968         const Value *GEP1BasePtr =
969             DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
970                                    GEP1MaxLookupReached, DL, &AC, DT);
971         // DecomposeGEPExpression and GetUnderlyingObject should return the
972         // same result except when DecomposeGEPExpression has no DataLayout.
973         // FIXME: They always have a DataLayout, so this should become an
974         // assert.
975         if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
976           return MayAlias;
977         }
978         // If the max search depth is reached the result is undefined
979         if (GEP2MaxLookupReached || GEP1MaxLookupReached)
980           return MayAlias;
981 
982         // Same offsets.
983         if (GEP1BaseOffset == GEP2BaseOffset &&
984             GEP1VariableIndices == GEP2VariableIndices)
985           return NoAlias;
986         GEP1VariableIndices.clear();
987       }
988     }
989 
990     // If we get a No or May, then return it immediately, no amount of analysis
991     // will improve this situation.
992     if (BaseAlias != MustAlias)
993       return BaseAlias;
994 
995     // Otherwise, we have a MustAlias.  Since the base pointers alias each other
996     // exactly, see if the computed offset from the common pointer tells us
997     // about the relation of the resulting pointer.
998     const Value *GEP1BasePtr =
999         DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
1000                                GEP1MaxLookupReached, DL, &AC, DT);
1001 
1002     int64_t GEP2BaseOffset;
1003     bool GEP2MaxLookupReached;
1004     SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
1005     const Value *GEP2BasePtr =
1006         DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
1007                                GEP2MaxLookupReached, DL, &AC, DT);
1008 
1009     // DecomposeGEPExpression and GetUnderlyingObject should return the
1010     // same result except when DecomposeGEPExpression has no DataLayout.
1011     // FIXME: They always have a DataLayout, so this should become an assert.
1012     if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
1013       return MayAlias;
1014     }
1015 
1016     // If we know the two GEPs are based off of the exact same pointer (and not
1017     // just the same underlying object), see if that tells us anything about
1018     // the resulting pointers.
1019     if (GEP1->getPointerOperand() == GEP2->getPointerOperand()) {
1020       AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL);
1021       // If we couldn't find anything interesting, don't abandon just yet.
1022       if (R != MayAlias)
1023         return R;
1024     }
1025 
1026     // If the max search depth is reached, the result is undefined
1027     if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1028       return MayAlias;
1029 
1030     // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1031     // symbolic difference.
1032     GEP1BaseOffset -= GEP2BaseOffset;
1033     GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);
1034 
1035   } else {
1036     // Check to see if these two pointers are related by the getelementptr
1037     // instruction.  If one pointer is a GEP with a non-zero index of the other
1038     // pointer, we know they cannot alias.
1039 
1040     // If both accesses are unknown size, we can't do anything useful here.
1041     if (V1Size == MemoryLocation::UnknownSize &&
1042         V2Size == MemoryLocation::UnknownSize)
1043       return MayAlias;
1044 
1045     AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize,
1046                                AAMDNodes(), V2, V2Size, V2AAInfo);
1047     if (R != MustAlias)
1048       // If V2 may alias GEP base pointer, conservatively returns MayAlias.
1049       // If V2 is known not to alias GEP base pointer, then the two values
1050       // cannot alias per GEP semantics: "A pointer value formed from a
1051       // getelementptr instruction is associated with the addresses associated
1052       // with the first operand of the getelementptr".
1053       return R;
1054 
1055     const Value *GEP1BasePtr =
1056         DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
1057                                GEP1MaxLookupReached, DL, &AC, DT);
1058 
1059     // DecomposeGEPExpression and GetUnderlyingObject should return the
1060     // same result except when DecomposeGEPExpression has no DataLayout.
1061     // FIXME: They always have a DataLayout, so this should become an assert.
1062     if (GEP1BasePtr != UnderlyingV1) {
1063       return MayAlias;
1064     }
1065     // If the max search depth is reached the result is undefined
1066     if (GEP1MaxLookupReached)
1067       return MayAlias;
1068   }
1069 
1070   // In the two GEP Case, if there is no difference in the offsets of the
1071   // computed pointers, the resultant pointers are a must alias.  This
1072   // happens when we have two lexically identical GEP's (for example).
1073   //
1074   // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
1075   // must aliases the GEP, the end result is a must alias also.
1076   if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
1077     return MustAlias;
1078 
1079   // If there is a constant difference between the pointers, but the difference
1080   // is less than the size of the associated memory object, then we know
1081   // that the objects are partially overlapping.  If the difference is
1082   // greater, we know they do not overlap.
1083   if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) {
1084     if (GEP1BaseOffset >= 0) {
1085       if (V2Size != MemoryLocation::UnknownSize) {
1086         if ((uint64_t)GEP1BaseOffset < V2Size)
1087           return PartialAlias;
1088         return NoAlias;
1089       }
1090     } else {
1091       // We have the situation where:
1092       // +                +
1093       // | BaseOffset     |
1094       // ---------------->|
1095       // |-->V1Size       |-------> V2Size
1096       // GEP1             V2
1097       // We need to know that V2Size is not unknown, otherwise we might have
1098       // stripped a gep with negative index ('gep <ptr>, -1, ...).
1099       if (V1Size != MemoryLocation::UnknownSize &&
1100           V2Size != MemoryLocation::UnknownSize) {
1101         if (-(uint64_t)GEP1BaseOffset < V1Size)
1102           return PartialAlias;
1103         return NoAlias;
1104       }
1105     }
1106   }
1107 
1108   if (!GEP1VariableIndices.empty()) {
1109     uint64_t Modulo = 0;
1110     bool AllPositive = true;
1111     for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) {
1112 
1113       // Try to distinguish something like &A[i][1] against &A[42][0].
1114       // Grab the least significant bit set in any of the scales. We
1115       // don't need std::abs here (even if the scale's negative) as we'll
1116       // be ^'ing Modulo with itself later.
1117       Modulo |= (uint64_t)GEP1VariableIndices[i].Scale;
1118 
1119       if (AllPositive) {
1120         // If the Value could change between cycles, then any reasoning about
1121         // the Value this cycle may not hold in the next cycle. We'll just
1122         // give up if we can't determine conditions that hold for every cycle:
1123         const Value *V = GEP1VariableIndices[i].V;
1124 
1125         bool SignKnownZero, SignKnownOne;
1126         ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, DL,
1127                        0, &AC, nullptr, DT);
1128 
1129         // Zero-extension widens the variable, and so forces the sign
1130         // bit to zero.
1131         bool IsZExt = GEP1VariableIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
1132         SignKnownZero |= IsZExt;
1133         SignKnownOne &= !IsZExt;
1134 
1135         // If the variable begins with a zero then we know it's
1136         // positive, regardless of whether the value is signed or
1137         // unsigned.
1138         int64_t Scale = GEP1VariableIndices[i].Scale;
1139         AllPositive =
1140             (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0);
1141       }
1142     }
1143 
1144     Modulo = Modulo ^ (Modulo & (Modulo - 1));
1145 
1146     // We can compute the difference between the two addresses
1147     // mod Modulo. Check whether that difference guarantees that the
1148     // two locations do not alias.
1149     uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
1150     if (V1Size != MemoryLocation::UnknownSize &&
1151         V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size &&
1152         V1Size <= Modulo - ModOffset)
1153       return NoAlias;
1154 
1155     // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
1156     // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
1157     // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
1158     if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset)
1159       return NoAlias;
1160 
1161     if (constantOffsetHeuristic(GEP1VariableIndices, V1Size, V2Size,
1162                                 GEP1BaseOffset, &AC, DT))
1163       return NoAlias;
1164   }
1165 
1166   // Statically, we can see that the base objects are the same, but the
1167   // pointers have dynamic offsets which we can't resolve. And none of our
1168   // little tricks above worked.
1169   //
1170   // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
1171   // practical effect of this is protecting TBAA in the case of dynamic
1172   // indices into arrays of unions or malloc'd memory.
1173   return PartialAlias;
1174 }
1175 
1176 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1177   // If the results agree, take it.
1178   if (A == B)
1179     return A;
1180   // A mix of PartialAlias and MustAlias is PartialAlias.
1181   if ((A == PartialAlias && B == MustAlias) ||
1182       (B == PartialAlias && A == MustAlias))
1183     return PartialAlias;
1184   // Otherwise, we don't know anything.
1185   return MayAlias;
1186 }
1187 
1188 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1189 /// against another.
1190 AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, uint64_t SISize,
1191                                        const AAMDNodes &SIAAInfo,
1192                                        const Value *V2, uint64_t V2Size,
1193                                        const AAMDNodes &V2AAInfo) {
1194   // If the values are Selects with the same condition, we can do a more precise
1195   // check: just check for aliases between the values on corresponding arms.
1196   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1197     if (SI->getCondition() == SI2->getCondition()) {
1198       AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo,
1199                                      SI2->getTrueValue(), V2Size, V2AAInfo);
1200       if (Alias == MayAlias)
1201         return MayAlias;
1202       AliasResult ThisAlias =
1203           aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
1204                      SI2->getFalseValue(), V2Size, V2AAInfo);
1205       return MergeAliasResults(ThisAlias, Alias);
1206     }
1207 
1208   // If both arms of the Select node NoAlias or MustAlias V2, then returns
1209   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1210   AliasResult Alias =
1211       aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), SISize, SIAAInfo);
1212   if (Alias == MayAlias)
1213     return MayAlias;
1214 
1215   AliasResult ThisAlias =
1216       aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo);
1217   return MergeAliasResults(ThisAlias, Alias);
1218 }
1219 
1220 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1221 /// another.
1222 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, uint64_t PNSize,
1223                                     const AAMDNodes &PNAAInfo, const Value *V2,
1224                                     uint64_t V2Size,
1225                                     const AAMDNodes &V2AAInfo) {
1226   // Track phi nodes we have visited. We use this information when we determine
1227   // value equivalence.
1228   VisitedPhiBBs.insert(PN->getParent());
1229 
1230   // If the values are PHIs in the same block, we can do a more precise
1231   // as well as efficient check: just check for aliases between the values
1232   // on corresponding edges.
1233   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1234     if (PN2->getParent() == PN->getParent()) {
1235       LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
1236                    MemoryLocation(V2, V2Size, V2AAInfo));
1237       if (PN > V2)
1238         std::swap(Locs.first, Locs.second);
1239       // Analyse the PHIs' inputs under the assumption that the PHIs are
1240       // NoAlias.
1241       // If the PHIs are May/MustAlias there must be (recursively) an input
1242       // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1243       // there must be an operation on the PHIs within the PHIs' value cycle
1244       // that causes a MayAlias.
1245       // Pretend the phis do not alias.
1246       AliasResult Alias = NoAlias;
1247       assert(AliasCache.count(Locs) &&
1248              "There must exist an entry for the phi node");
1249       AliasResult OrigAliasResult = AliasCache[Locs];
1250       AliasCache[Locs] = NoAlias;
1251 
1252       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1253         AliasResult ThisAlias =
1254             aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
1255                        PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1256                        V2Size, V2AAInfo);
1257         Alias = MergeAliasResults(ThisAlias, Alias);
1258         if (Alias == MayAlias)
1259           break;
1260       }
1261 
1262       // Reset if speculation failed.
1263       if (Alias != NoAlias)
1264         AliasCache[Locs] = OrigAliasResult;
1265 
1266       return Alias;
1267     }
1268 
1269   SmallPtrSet<Value *, 4> UniqueSrc;
1270   SmallVector<Value *, 4> V1Srcs;
1271   bool isRecursive = false;
1272   for (Value *PV1 : PN->incoming_values()) {
1273     if (isa<PHINode>(PV1))
1274       // If any of the source itself is a PHI, return MayAlias conservatively
1275       // to avoid compile time explosion. The worst possible case is if both
1276       // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1277       // and 'n' are the number of PHI sources.
1278       return MayAlias;
1279 
1280     if (EnableRecPhiAnalysis)
1281       if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
1282         // Check whether the incoming value is a GEP that advances the pointer
1283         // result of this PHI node (e.g. in a loop). If this is the case, we
1284         // would recurse and always get a MayAlias. Handle this case specially
1285         // below.
1286         if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
1287             isa<ConstantInt>(PV1GEP->idx_begin())) {
1288           isRecursive = true;
1289           continue;
1290         }
1291       }
1292 
1293     if (UniqueSrc.insert(PV1).second)
1294       V1Srcs.push_back(PV1);
1295   }
1296 
1297   // If this PHI node is recursive, set the size of the accessed memory to
1298   // unknown to represent all the possible values the GEP could advance the
1299   // pointer to.
1300   if (isRecursive)
1301     PNSize = MemoryLocation::UnknownSize;
1302 
1303   AliasResult Alias =
1304       aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize, PNAAInfo);
1305 
1306   // Early exit if the check of the first PHI source against V2 is MayAlias.
1307   // Other results are not possible.
1308   if (Alias == MayAlias)
1309     return MayAlias;
1310 
1311   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1312   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1313   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1314     Value *V = V1Srcs[i];
1315 
1316     AliasResult ThisAlias =
1317         aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo);
1318     Alias = MergeAliasResults(ThisAlias, Alias);
1319     if (Alias == MayAlias)
1320       break;
1321   }
1322 
1323   return Alias;
1324 }
1325 
1326 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1327 /// array references.
1328 AliasResult BasicAAResult::aliasCheck(const Value *V1, uint64_t V1Size,
1329                                       AAMDNodes V1AAInfo, const Value *V2,
1330                                       uint64_t V2Size, AAMDNodes V2AAInfo) {
1331   // If either of the memory references is empty, it doesn't matter what the
1332   // pointer values are.
1333   if (V1Size == 0 || V2Size == 0)
1334     return NoAlias;
1335 
1336   // Strip off any casts if they exist.
1337   V1 = V1->stripPointerCasts();
1338   V2 = V2->stripPointerCasts();
1339 
1340   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1341   // value for undef that aliases nothing in the program.
1342   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1343     return NoAlias;
1344 
1345   // Are we checking for alias of the same value?
1346   // Because we look 'through' phi nodes, we could look at "Value" pointers from
1347   // different iterations. We must therefore make sure that this is not the
1348   // case. The function isValueEqualInPotentialCycles ensures that this cannot
1349   // happen by looking at the visited phi nodes and making sure they cannot
1350   // reach the value.
1351   if (isValueEqualInPotentialCycles(V1, V2))
1352     return MustAlias;
1353 
1354   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1355     return NoAlias; // Scalars cannot alias each other
1356 
1357   // Figure out what objects these things are pointing to if we can.
1358   const Value *O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
1359   const Value *O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);
1360 
1361   // Null values in the default address space don't point to any object, so they
1362   // don't alias any other pointer.
1363   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1364     if (CPN->getType()->getAddressSpace() == 0)
1365       return NoAlias;
1366   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1367     if (CPN->getType()->getAddressSpace() == 0)
1368       return NoAlias;
1369 
1370   if (O1 != O2) {
1371     // If V1/V2 point to two different objects, we know that we have no alias.
1372     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1373       return NoAlias;
1374 
1375     // Constant pointers can't alias with non-const isIdentifiedObject objects.
1376     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1377         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1378       return NoAlias;
1379 
1380     // Function arguments can't alias with things that are known to be
1381     // unambigously identified at the function level.
1382     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1383         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1384       return NoAlias;
1385 
1386     // Most objects can't alias null.
1387     if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
1388         (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
1389       return NoAlias;
1390 
1391     // If one pointer is the result of a call/invoke or load and the other is a
1392     // non-escaping local object within the same function, then we know the
1393     // object couldn't escape to a point where the call could return it.
1394     //
1395     // Note that if the pointers are in different functions, there are a
1396     // variety of complications. A call with a nocapture argument may still
1397     // temporary store the nocapture argument's value in a temporary memory
1398     // location if that memory location doesn't escape. Or it may pass a
1399     // nocapture value to other functions as long as they don't capture it.
1400     if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
1401       return NoAlias;
1402     if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
1403       return NoAlias;
1404   }
1405 
1406   // If the size of one access is larger than the entire object on the other
1407   // side, then we know such behavior is undefined and can assume no alias.
1408   if ((V1Size != MemoryLocation::UnknownSize &&
1409        isObjectSmallerThan(O2, V1Size, DL, TLI)) ||
1410       (V2Size != MemoryLocation::UnknownSize &&
1411        isObjectSmallerThan(O1, V2Size, DL, TLI)))
1412     return NoAlias;
1413 
1414   // Check the cache before climbing up use-def chains. This also terminates
1415   // otherwise infinitely recursive queries.
1416   LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
1417                MemoryLocation(V2, V2Size, V2AAInfo));
1418   if (V1 > V2)
1419     std::swap(Locs.first, Locs.second);
1420   std::pair<AliasCacheTy::iterator, bool> Pair =
1421       AliasCache.insert(std::make_pair(Locs, MayAlias));
1422   if (!Pair.second)
1423     return Pair.first->second;
1424 
1425   // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1426   // GEP can't simplify, we don't even look at the PHI cases.
1427   if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1428     std::swap(V1, V2);
1429     std::swap(V1Size, V2Size);
1430     std::swap(O1, O2);
1431     std::swap(V1AAInfo, V2AAInfo);
1432   }
1433   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1434     AliasResult Result =
1435         aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2);
1436     if (Result != MayAlias)
1437       return AliasCache[Locs] = Result;
1438   }
1439 
1440   if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1441     std::swap(V1, V2);
1442     std::swap(V1Size, V2Size);
1443     std::swap(V1AAInfo, V2AAInfo);
1444   }
1445   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1446     AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo);
1447     if (Result != MayAlias)
1448       return AliasCache[Locs] = Result;
1449   }
1450 
1451   if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1452     std::swap(V1, V2);
1453     std::swap(V1Size, V2Size);
1454     std::swap(V1AAInfo, V2AAInfo);
1455   }
1456   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1457     AliasResult Result =
1458         aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo);
1459     if (Result != MayAlias)
1460       return AliasCache[Locs] = Result;
1461   }
1462 
1463   // If both pointers are pointing into the same object and one of them
1464   // accesses the entire object, then the accesses must overlap in some way.
1465   if (O1 == O2)
1466     if ((V1Size != MemoryLocation::UnknownSize &&
1467          isObjectSize(O1, V1Size, DL, TLI)) ||
1468         (V2Size != MemoryLocation::UnknownSize &&
1469          isObjectSize(O2, V2Size, DL, TLI)))
1470       return AliasCache[Locs] = PartialAlias;
1471 
1472   // Recurse back into the best AA results we have, potentially with refined
1473   // memory locations. We have already ensured that BasicAA has a MayAlias
1474   // cache result for these, so any recursion back into BasicAA won't loop.
1475   AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second);
1476   return AliasCache[Locs] = Result;
1477 }
1478 
1479 /// Check whether two Values can be considered equivalent.
1480 ///
1481 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1482 /// they can not be part of a cycle in the value graph by looking at all
1483 /// visited phi nodes an making sure that the phis cannot reach the value. We
1484 /// have to do this because we are looking through phi nodes (That is we say
1485 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1486 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1487                                                   const Value *V2) {
1488   if (V != V2)
1489     return false;
1490 
1491   const Instruction *Inst = dyn_cast<Instruction>(V);
1492   if (!Inst)
1493     return true;
1494 
1495   if (VisitedPhiBBs.empty())
1496     return true;
1497 
1498   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1499     return false;
1500 
1501   // Make sure that the visited phis cannot reach the Value. This ensures that
1502   // the Values cannot come from different iterations of a potential cycle the
1503   // phi nodes could be involved in.
1504   for (auto *P : VisitedPhiBBs)
1505     if (isPotentiallyReachable(&P->front(), Inst, DT, LI))
1506       return false;
1507 
1508   return true;
1509 }
1510 
1511 /// Computes the symbolic difference between two de-composed GEPs.
1512 ///
1513 /// Dest and Src are the variable indices from two decomposed GetElementPtr
1514 /// instructions GEP1 and GEP2 which have common base pointers.
1515 void BasicAAResult::GetIndexDifference(
1516     SmallVectorImpl<VariableGEPIndex> &Dest,
1517     const SmallVectorImpl<VariableGEPIndex> &Src) {
1518   if (Src.empty())
1519     return;
1520 
1521   for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1522     const Value *V = Src[i].V;
1523     unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
1524     int64_t Scale = Src[i].Scale;
1525 
1526     // Find V in Dest.  This is N^2, but pointer indices almost never have more
1527     // than a few variable indexes.
1528     for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1529       if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1530           Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
1531         continue;
1532 
1533       // If we found it, subtract off Scale V's from the entry in Dest.  If it
1534       // goes to zero, remove the entry.
1535       if (Dest[j].Scale != Scale)
1536         Dest[j].Scale -= Scale;
1537       else
1538         Dest.erase(Dest.begin() + j);
1539       Scale = 0;
1540       break;
1541     }
1542 
1543     // If we didn't consume this entry, add it to the end of the Dest list.
1544     if (Scale) {
1545       VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale};
1546       Dest.push_back(Entry);
1547     }
1548   }
1549 }
1550 
1551 bool BasicAAResult::constantOffsetHeuristic(
1552     const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size,
1553     uint64_t V2Size, int64_t BaseOffset, AssumptionCache *AC,
1554     DominatorTree *DT) {
1555   if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize ||
1556       V2Size == MemoryLocation::UnknownSize)
1557     return false;
1558 
1559   const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
1560 
1561   if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
1562       Var0.Scale != -Var1.Scale)
1563     return false;
1564 
1565   unsigned Width = Var1.V->getType()->getIntegerBitWidth();
1566 
1567   // We'll strip off the Extensions of Var0 and Var1 and do another round
1568   // of GetLinearExpression decomposition. In the example above, if Var0
1569   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1570 
1571   APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
1572       V1Offset(Width, 0);
1573   bool NSW = true, NUW = true;
1574   unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
1575   const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
1576                                         V0SExtBits, DL, 0, AC, DT, NSW, NUW);
1577   NSW = true;
1578   NUW = true;
1579   const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
1580                                         V1SExtBits, DL, 0, AC, DT, NSW, NUW);
1581 
1582   if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
1583       V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
1584     return false;
1585 
1586   // We have a hit - Var0 and Var1 only differ by a constant offset!
1587 
1588   // If we've been sext'ed then zext'd the maximum difference between Var0 and
1589   // Var1 is possible to calculate, but we're just interested in the absolute
1590   // minimum difference between the two. The minimum distance may occur due to
1591   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1592   // the minimum distance between %i and %i + 5 is 3.
1593   APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
1594   MinDiff = APIntOps::umin(MinDiff, Wrapped);
1595   uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale);
1596 
1597   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
1598   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
1599   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
1600   // V2Size can fit in the MinDiffBytes gap.
1601   return V1Size + std::abs(BaseOffset) <= MinDiffBytes &&
1602          V2Size + std::abs(BaseOffset) <= MinDiffBytes;
1603 }
1604 
1605 //===----------------------------------------------------------------------===//
1606 // BasicAliasAnalysis Pass
1607 //===----------------------------------------------------------------------===//
1608 
1609 char BasicAA::PassID;
1610 
1611 BasicAAResult BasicAA::run(Function &F, AnalysisManager<Function> &AM) {
1612   return BasicAAResult(F.getParent()->getDataLayout(),
1613                        AM.getResult<TargetLibraryAnalysis>(F),
1614                        AM.getResult<AssumptionAnalysis>(F),
1615                        &AM.getResult<DominatorTreeAnalysis>(F),
1616                        AM.getCachedResult<LoopAnalysis>(F));
1617 }
1618 
1619 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
1620     initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
1621 }
1622 
1623 char BasicAAWrapperPass::ID = 0;
1624 void BasicAAWrapperPass::anchor() {}
1625 
1626 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa",
1627                       "Basic Alias Analysis (stateless AA impl)", true, true)
1628 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1629 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1630 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1631 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa",
1632                     "Basic Alias Analysis (stateless AA impl)", true, true)
1633 
1634 FunctionPass *llvm::createBasicAAWrapperPass() {
1635   return new BasicAAWrapperPass();
1636 }
1637 
1638 bool BasicAAWrapperPass::runOnFunction(Function &F) {
1639   auto &ACT = getAnalysis<AssumptionCacheTracker>();
1640   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
1641   auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
1642   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
1643 
1644   Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), TLIWP.getTLI(),
1645                                  ACT.getAssumptionCache(F), &DTWP.getDomTree(),
1646                                  LIWP ? &LIWP->getLoopInfo() : nullptr));
1647 
1648   return false;
1649 }
1650 
1651 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1652   AU.setPreservesAll();
1653   AU.addRequired<AssumptionCacheTracker>();
1654   AU.addRequired<DominatorTreeWrapperPass>();
1655   AU.addRequired<TargetLibraryInfoWrapperPass>();
1656 }
1657 
1658 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
1659   return BasicAAResult(
1660       F.getParent()->getDataLayout(),
1661       P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
1662       P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
1663 }
1664