1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the primary stateless implementation of the 11 // Alias Analysis interface that implements identities (two different 12 // globals cannot alias, etc), but does no stateful analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/BasicAliasAnalysis.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/CFG.h" 21 #include "llvm/Analysis/CaptureTracking.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include <algorithm> 40 41 #define DEBUG_TYPE "basicaa" 42 43 using namespace llvm; 44 45 /// Enable analysis of recursive PHI nodes. 46 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden, 47 cl::init(false)); 48 /// SearchLimitReached / SearchTimes shows how often the limit of 49 /// to decompose GEPs is reached. It will affect the precision 50 /// of basic alias analysis. 51 STATISTIC(SearchLimitReached, "Number of times the limit to " 52 "decompose GEPs is reached"); 53 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 54 55 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 56 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be 57 /// careful with value equivalence. We use reachability to make sure a value 58 /// cannot be involved in a cycle. 59 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 60 61 // The max limit of the search depth in DecomposeGEPExpression() and 62 // GetUnderlyingObject(), both functions need to use the same search 63 // depth otherwise the algorithm in aliasGEP will assert. 64 static const unsigned MaxLookupSearchDepth = 6; 65 66 //===----------------------------------------------------------------------===// 67 // Useful predicates 68 //===----------------------------------------------------------------------===// 69 70 /// Returns true if the pointer is to a function-local object that never 71 /// escapes from the function. 72 static bool isNonEscapingLocalObject(const Value *V) { 73 // If this is a local allocation, check to see if it escapes. 74 if (isa<AllocaInst>(V) || isNoAliasCall(V)) 75 // Set StoreCaptures to True so that we can assume in our callers that the 76 // pointer is not the result of a load instruction. Currently 77 // PointerMayBeCaptured doesn't have any special analysis for the 78 // StoreCaptures=false case; if it did, our callers could be refined to be 79 // more precise. 80 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 81 82 // If this is an argument that corresponds to a byval or noalias argument, 83 // then it has not escaped before entering the function. Check if it escapes 84 // inside the function. 85 if (const Argument *A = dyn_cast<Argument>(V)) 86 if (A->hasByValAttr() || A->hasNoAliasAttr()) 87 // Note even if the argument is marked nocapture, we still need to check 88 // for copies made inside the function. The nocapture attribute only 89 // specifies that there are no copies made that outlive the function. 90 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 91 92 return false; 93 } 94 95 /// Returns true if the pointer is one which would have been considered an 96 /// escape by isNonEscapingLocalObject. 97 static bool isEscapeSource(const Value *V) { 98 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V)) 99 return true; 100 101 // The load case works because isNonEscapingLocalObject considers all 102 // stores to be escapes (it passes true for the StoreCaptures argument 103 // to PointerMayBeCaptured). 104 if (isa<LoadInst>(V)) 105 return true; 106 107 return false; 108 } 109 110 /// Returns the size of the object specified by V or UnknownSize if unknown. 111 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 112 const TargetLibraryInfo &TLI, 113 bool RoundToAlign = false) { 114 uint64_t Size; 115 if (getObjectSize(V, Size, DL, &TLI, RoundToAlign)) 116 return Size; 117 return MemoryLocation::UnknownSize; 118 } 119 120 /// Returns true if we can prove that the object specified by V is smaller than 121 /// Size. 122 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 123 const DataLayout &DL, 124 const TargetLibraryInfo &TLI) { 125 // Note that the meanings of the "object" are slightly different in the 126 // following contexts: 127 // c1: llvm::getObjectSize() 128 // c2: llvm.objectsize() intrinsic 129 // c3: isObjectSmallerThan() 130 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 131 // refers to the "entire object". 132 // 133 // Consider this example: 134 // char *p = (char*)malloc(100) 135 // char *q = p+80; 136 // 137 // In the context of c1 and c2, the "object" pointed by q refers to the 138 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 139 // 140 // However, in the context of c3, the "object" refers to the chunk of memory 141 // being allocated. So, the "object" has 100 bytes, and q points to the middle 142 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 143 // parameter, before the llvm::getObjectSize() is called to get the size of 144 // entire object, we should: 145 // - either rewind the pointer q to the base-address of the object in 146 // question (in this case rewind to p), or 147 // - just give up. It is up to caller to make sure the pointer is pointing 148 // to the base address the object. 149 // 150 // We go for 2nd option for simplicity. 151 if (!isIdentifiedObject(V)) 152 return false; 153 154 // This function needs to use the aligned object size because we allow 155 // reads a bit past the end given sufficient alignment. 156 uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/ true); 157 158 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; 159 } 160 161 /// Returns true if we can prove that the object specified by V has size Size. 162 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, 163 const TargetLibraryInfo &TLI) { 164 uint64_t ObjectSize = getObjectSize(V, DL, TLI); 165 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; 166 } 167 168 //===----------------------------------------------------------------------===// 169 // GetElementPtr Instruction Decomposition and Analysis 170 //===----------------------------------------------------------------------===// 171 172 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 173 /// B are constant integers. 174 /// 175 /// Returns the scale and offset values as APInts and return V as a Value*, and 176 /// return whether we looked through any sign or zero extends. The incoming 177 /// Value is known to have IntegerType, and it may already be sign or zero 178 /// extended. 179 /// 180 /// Note that this looks through extends, so the high bits may not be 181 /// represented in the result. 182 /*static*/ const Value *BasicAAResult::GetLinearExpression( 183 const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits, 184 unsigned &SExtBits, const DataLayout &DL, unsigned Depth, 185 AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) { 186 assert(V->getType()->isIntegerTy() && "Not an integer value"); 187 188 // Limit our recursion depth. 189 if (Depth == 6) { 190 Scale = 1; 191 Offset = 0; 192 return V; 193 } 194 195 if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) { 196 // If it's a constant, just convert it to an offset and remove the variable. 197 // If we've been called recursively, the Offset bit width will be greater 198 // than the constant's (the Offset's always as wide as the outermost call), 199 // so we'll zext here and process any extension in the isa<SExtInst> & 200 // isa<ZExtInst> cases below. 201 Offset += Const->getValue().zextOrSelf(Offset.getBitWidth()); 202 assert(Scale == 0 && "Constant values don't have a scale"); 203 return V; 204 } 205 206 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 207 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 208 209 // If we've been called recursively, then Offset and Scale will be wider 210 // than the BOp operands. We'll always zext it here as we'll process sign 211 // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases). 212 APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth()); 213 214 switch (BOp->getOpcode()) { 215 default: 216 // We don't understand this instruction, so we can't decompose it any 217 // further. 218 Scale = 1; 219 Offset = 0; 220 return V; 221 case Instruction::Or: 222 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 223 // analyze it. 224 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, 225 BOp, DT)) { 226 Scale = 1; 227 Offset = 0; 228 return V; 229 } 230 // FALL THROUGH. 231 case Instruction::Add: 232 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 233 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 234 Offset += RHS; 235 break; 236 case Instruction::Sub: 237 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 238 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 239 Offset -= RHS; 240 break; 241 case Instruction::Mul: 242 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 243 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 244 Offset *= RHS; 245 Scale *= RHS; 246 break; 247 case Instruction::Shl: 248 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 249 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 250 Offset <<= RHS.getLimitedValue(); 251 Scale <<= RHS.getLimitedValue(); 252 // the semantics of nsw and nuw for left shifts don't match those of 253 // multiplications, so we won't propagate them. 254 NSW = NUW = false; 255 return V; 256 } 257 258 if (isa<OverflowingBinaryOperator>(BOp)) { 259 NUW &= BOp->hasNoUnsignedWrap(); 260 NSW &= BOp->hasNoSignedWrap(); 261 } 262 return V; 263 } 264 } 265 266 // Since GEP indices are sign extended anyway, we don't care about the high 267 // bits of a sign or zero extended value - just scales and offsets. The 268 // extensions have to be consistent though. 269 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) { 270 Value *CastOp = cast<CastInst>(V)->getOperand(0); 271 unsigned NewWidth = V->getType()->getPrimitiveSizeInBits(); 272 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 273 unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits; 274 const Value *Result = 275 GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL, 276 Depth + 1, AC, DT, NSW, NUW); 277 278 // zext(zext(%x)) == zext(%x), and similiarly for sext; we'll handle this 279 // by just incrementing the number of bits we've extended by. 280 unsigned ExtendedBy = NewWidth - SmallWidth; 281 282 if (isa<SExtInst>(V) && ZExtBits == 0) { 283 // sext(sext(%x, a), b) == sext(%x, a + b) 284 285 if (NSW) { 286 // We haven't sign-wrapped, so it's valid to decompose sext(%x + c) 287 // into sext(%x) + sext(c). We'll sext the Offset ourselves: 288 unsigned OldWidth = Offset.getBitWidth(); 289 Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth); 290 } else { 291 // We may have signed-wrapped, so don't decompose sext(%x + c) into 292 // sext(%x) + sext(c) 293 Scale = 1; 294 Offset = 0; 295 Result = CastOp; 296 ZExtBits = OldZExtBits; 297 SExtBits = OldSExtBits; 298 } 299 SExtBits += ExtendedBy; 300 } else { 301 // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b) 302 303 if (!NUW) { 304 // We may have unsigned-wrapped, so don't decompose zext(%x + c) into 305 // zext(%x) + zext(c) 306 Scale = 1; 307 Offset = 0; 308 Result = CastOp; 309 ZExtBits = OldZExtBits; 310 SExtBits = OldSExtBits; 311 } 312 ZExtBits += ExtendedBy; 313 } 314 315 return Result; 316 } 317 318 Scale = 1; 319 Offset = 0; 320 return V; 321 } 322 323 /// To ensure a pointer offset fits in an integer of size PointerSize 324 /// (in bits) when that size is smaller than 64. This is an issue in 325 /// particular for 32b programs with negative indices that rely on two's 326 /// complement wrap-arounds for precise alias information. 327 static int64_t adjustToPointerSize(int64_t Offset, unsigned PointerSize) { 328 assert(PointerSize <= 64 && "Invalid PointerSize!"); 329 unsigned ShiftBits = 64 - PointerSize; 330 return (int64_t)((uint64_t)Offset << ShiftBits) >> ShiftBits; 331 } 332 333 /// If V is a symbolic pointer expression, decompose it into a base pointer 334 /// with a constant offset and a number of scaled symbolic offsets. 335 /// 336 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 337 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 338 /// specified amount, but which may have other unrepresented high bits. As 339 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 340 /// 341 /// When DataLayout is around, this function is capable of analyzing everything 342 /// that GetUnderlyingObject can look through. To be able to do that 343 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search 344 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks 345 /// through pointer casts. 346 /*static*/ const Value *BasicAAResult::DecomposeGEPExpression( 347 const Value *V, int64_t &BaseOffs, 348 SmallVectorImpl<VariableGEPIndex> &VarIndices, bool &MaxLookupReached, 349 const DataLayout &DL, AssumptionCache *AC, DominatorTree *DT) { 350 // Limit recursion depth to limit compile time in crazy cases. 351 unsigned MaxLookup = MaxLookupSearchDepth; 352 MaxLookupReached = false; 353 SearchTimes++; 354 355 BaseOffs = 0; 356 do { 357 // See if this is a bitcast or GEP. 358 const Operator *Op = dyn_cast<Operator>(V); 359 if (!Op) { 360 // The only non-operator case we can handle are GlobalAliases. 361 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 362 if (!GA->isInterposable()) { 363 V = GA->getAliasee(); 364 continue; 365 } 366 } 367 return V; 368 } 369 370 if (Op->getOpcode() == Instruction::BitCast || 371 Op->getOpcode() == Instruction::AddrSpaceCast) { 372 V = Op->getOperand(0); 373 continue; 374 } 375 376 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 377 if (!GEPOp) { 378 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 379 // can come up with something. This matches what GetUnderlyingObject does. 380 if (const Instruction *I = dyn_cast<Instruction>(V)) 381 // TODO: Get a DominatorTree and AssumptionCache and use them here 382 // (these are both now available in this function, but this should be 383 // updated when GetUnderlyingObject is updated). TLI should be 384 // provided also. 385 if (const Value *Simplified = 386 SimplifyInstruction(const_cast<Instruction *>(I), DL)) { 387 V = Simplified; 388 continue; 389 } 390 391 return V; 392 } 393 394 // Don't attempt to analyze GEPs over unsized objects. 395 if (!GEPOp->getSourceElementType()->isSized()) 396 return V; 397 398 unsigned AS = GEPOp->getPointerAddressSpace(); 399 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 400 gep_type_iterator GTI = gep_type_begin(GEPOp); 401 unsigned PointerSize = DL.getPointerSizeInBits(AS); 402 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 403 I != E; ++I) { 404 const Value *Index = *I; 405 // Compute the (potentially symbolic) offset in bytes for this index. 406 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 407 // For a struct, add the member offset. 408 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 409 if (FieldNo == 0) 410 continue; 411 412 BaseOffs += DL.getStructLayout(STy)->getElementOffset(FieldNo); 413 continue; 414 } 415 416 // For an array/pointer, add the element offset, explicitly scaled. 417 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 418 if (CIdx->isZero()) 419 continue; 420 BaseOffs += DL.getTypeAllocSize(*GTI) * CIdx->getSExtValue(); 421 continue; 422 } 423 424 uint64_t Scale = DL.getTypeAllocSize(*GTI); 425 unsigned ZExtBits = 0, SExtBits = 0; 426 427 // If the integer type is smaller than the pointer size, it is implicitly 428 // sign extended to pointer size. 429 unsigned Width = Index->getType()->getIntegerBitWidth(); 430 if (PointerSize > Width) 431 SExtBits += PointerSize - Width; 432 433 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 434 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 435 bool NSW = true, NUW = true; 436 Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits, 437 SExtBits, DL, 0, AC, DT, NSW, NUW); 438 439 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 440 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 441 BaseOffs += IndexOffset.getSExtValue() * Scale; 442 Scale *= IndexScale.getSExtValue(); 443 444 // If we already had an occurrence of this index variable, merge this 445 // scale into it. For example, we want to handle: 446 // A[x][x] -> x*16 + x*4 -> x*20 447 // This also ensures that 'x' only appears in the index list once. 448 for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) { 449 if (VarIndices[i].V == Index && VarIndices[i].ZExtBits == ZExtBits && 450 VarIndices[i].SExtBits == SExtBits) { 451 Scale += VarIndices[i].Scale; 452 VarIndices.erase(VarIndices.begin() + i); 453 break; 454 } 455 } 456 457 // Make sure that we have a scale that makes sense for this target's 458 // pointer size. 459 Scale = adjustToPointerSize(Scale, PointerSize); 460 461 if (Scale) { 462 VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, 463 static_cast<int64_t>(Scale)}; 464 VarIndices.push_back(Entry); 465 } 466 } 467 468 // Take care of wrap-arounds 469 BaseOffs = adjustToPointerSize(BaseOffs, PointerSize); 470 471 // Analyze the base pointer next. 472 V = GEPOp->getOperand(0); 473 } while (--MaxLookup); 474 475 // If the chain of expressions is too deep, just return early. 476 MaxLookupReached = true; 477 SearchLimitReached++; 478 return V; 479 } 480 481 /// Returns whether the given pointer value points to memory that is local to 482 /// the function, with global constants being considered local to all 483 /// functions. 484 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc, 485 bool OrLocal) { 486 assert(Visited.empty() && "Visited must be cleared after use!"); 487 488 unsigned MaxLookup = 8; 489 SmallVector<const Value *, 16> Worklist; 490 Worklist.push_back(Loc.Ptr); 491 do { 492 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL); 493 if (!Visited.insert(V).second) { 494 Visited.clear(); 495 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 496 } 497 498 // An alloca instruction defines local memory. 499 if (OrLocal && isa<AllocaInst>(V)) 500 continue; 501 502 // A global constant counts as local memory for our purposes. 503 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 504 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 505 // global to be marked constant in some modules and non-constant in 506 // others. GV may even be a declaration, not a definition. 507 if (!GV->isConstant()) { 508 Visited.clear(); 509 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 510 } 511 continue; 512 } 513 514 // If both select values point to local memory, then so does the select. 515 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 516 Worklist.push_back(SI->getTrueValue()); 517 Worklist.push_back(SI->getFalseValue()); 518 continue; 519 } 520 521 // If all values incoming to a phi node point to local memory, then so does 522 // the phi. 523 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 524 // Don't bother inspecting phi nodes with many operands. 525 if (PN->getNumIncomingValues() > MaxLookup) { 526 Visited.clear(); 527 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 528 } 529 for (Value *IncValue : PN->incoming_values()) 530 Worklist.push_back(IncValue); 531 continue; 532 } 533 534 // Otherwise be conservative. 535 Visited.clear(); 536 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 537 538 } while (!Worklist.empty() && --MaxLookup); 539 540 Visited.clear(); 541 return Worklist.empty(); 542 } 543 544 // FIXME: This code is duplicated with MemoryLocation and should be hoisted to 545 // some common utility location. 546 static bool isMemsetPattern16(const Function *MS, 547 const TargetLibraryInfo &TLI) { 548 if (TLI.has(LibFunc::memset_pattern16) && 549 MS->getName() == "memset_pattern16") { 550 FunctionType *MemsetType = MS->getFunctionType(); 551 if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 && 552 isa<PointerType>(MemsetType->getParamType(0)) && 553 isa<PointerType>(MemsetType->getParamType(1)) && 554 isa<IntegerType>(MemsetType->getParamType(2))) 555 return true; 556 } 557 return false; 558 } 559 560 /// Returns the behavior when calling the given call site. 561 FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) { 562 if (CS.doesNotAccessMemory()) 563 // Can't do better than this. 564 return FMRB_DoesNotAccessMemory; 565 566 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 567 568 // If the callsite knows it only reads memory, don't return worse 569 // than that. 570 if (CS.onlyReadsMemory()) 571 Min = FMRB_OnlyReadsMemory; 572 573 if (CS.onlyAccessesArgMemory()) 574 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 575 576 // If CS has operand bundles then aliasing attributes from the function it 577 // calls do not directly apply to the CallSite. This can be made more 578 // precise in the future. 579 if (!CS.hasOperandBundles()) 580 if (const Function *F = CS.getCalledFunction()) 581 Min = 582 FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F)); 583 584 return Min; 585 } 586 587 /// Returns the behavior when calling the given function. For use when the call 588 /// site is not known. 589 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) { 590 // If the function declares it doesn't access memory, we can't do better. 591 if (F->doesNotAccessMemory()) 592 return FMRB_DoesNotAccessMemory; 593 594 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 595 596 // If the function declares it only reads memory, go with that. 597 if (F->onlyReadsMemory()) 598 Min = FMRB_OnlyReadsMemory; 599 600 if (F->onlyAccessesArgMemory()) 601 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 602 603 return Min; 604 } 605 606 /// Returns true if this is a writeonly (i.e Mod only) parameter. Currently, 607 /// we don't have a writeonly attribute, so this only knows about builtin 608 /// intrinsics and target library functions. We could consider adding a 609 /// writeonly attribute in the future and moving all of these facts to either 610 /// Intrinsics.td or InferFunctionAttr.cpp 611 static bool isWriteOnlyParam(ImmutableCallSite CS, unsigned ArgIdx, 612 const TargetLibraryInfo &TLI) { 613 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) 614 switch (II->getIntrinsicID()) { 615 default: 616 break; 617 case Intrinsic::memset: 618 case Intrinsic::memcpy: 619 case Intrinsic::memmove: 620 // We don't currently have a writeonly attribute. All other properties 621 // of these intrinsics are nicely described via attributes in 622 // Intrinsics.td and handled generically. 623 if (ArgIdx == 0) 624 return true; 625 } 626 627 // We can bound the aliasing properties of memset_pattern16 just as we can 628 // for memcpy/memset. This is particularly important because the 629 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 630 // whenever possible. Note that all but the missing writeonly attribute are 631 // handled via InferFunctionAttr. 632 if (CS.getCalledFunction() && isMemsetPattern16(CS.getCalledFunction(), TLI)) 633 if (ArgIdx == 0) 634 return true; 635 636 // TODO: memset_pattern4, memset_pattern8 637 // TODO: _chk variants 638 // TODO: strcmp, strcpy 639 640 return false; 641 } 642 643 ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS, 644 unsigned ArgIdx) { 645 646 // Emulate the missing writeonly attribute by checking for known builtin 647 // intrinsics and target library functions. 648 if (isWriteOnlyParam(CS, ArgIdx, TLI)) 649 return MRI_Mod; 650 651 if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadOnly)) 652 return MRI_Ref; 653 654 if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadNone)) 655 return MRI_NoModRef; 656 657 return AAResultBase::getArgModRefInfo(CS, ArgIdx); 658 } 659 660 static bool isAssumeIntrinsic(ImmutableCallSite CS) { 661 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 662 return II && II->getIntrinsicID() == Intrinsic::assume; 663 } 664 665 #ifndef NDEBUG 666 static const Function *getParent(const Value *V) { 667 if (const Instruction *inst = dyn_cast<Instruction>(V)) 668 return inst->getParent()->getParent(); 669 670 if (const Argument *arg = dyn_cast<Argument>(V)) 671 return arg->getParent(); 672 673 return nullptr; 674 } 675 676 static bool notDifferentParent(const Value *O1, const Value *O2) { 677 678 const Function *F1 = getParent(O1); 679 const Function *F2 = getParent(O2); 680 681 return !F1 || !F2 || F1 == F2; 682 } 683 #endif 684 685 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 686 const MemoryLocation &LocB) { 687 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 688 "BasicAliasAnalysis doesn't support interprocedural queries."); 689 690 // If we have a directly cached entry for these locations, we have recursed 691 // through this once, so just return the cached results. Notably, when this 692 // happens, we don't clear the cache. 693 auto CacheIt = AliasCache.find(LocPair(LocA, LocB)); 694 if (CacheIt != AliasCache.end()) 695 return CacheIt->second; 696 697 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr, 698 LocB.Size, LocB.AATags); 699 // AliasCache rarely has more than 1 or 2 elements, always use 700 // shrink_and_clear so it quickly returns to the inline capacity of the 701 // SmallDenseMap if it ever grows larger. 702 // FIXME: This should really be shrink_to_inline_capacity_and_clear(). 703 AliasCache.shrink_and_clear(); 704 VisitedPhiBBs.clear(); 705 return Alias; 706 } 707 708 /// Checks to see if the specified callsite can clobber the specified memory 709 /// object. 710 /// 711 /// Since we only look at local properties of this function, we really can't 712 /// say much about this query. We do, however, use simple "address taken" 713 /// analysis on local objects. 714 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS, 715 const MemoryLocation &Loc) { 716 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && 717 "AliasAnalysis query involving multiple functions!"); 718 719 const Value *Object = GetUnderlyingObject(Loc.Ptr, DL); 720 721 // If this is a tail call and Loc.Ptr points to a stack location, we know that 722 // the tail call cannot access or modify the local stack. 723 // We cannot exclude byval arguments here; these belong to the caller of 724 // the current function not to the current function, and a tail callee 725 // may reference them. 726 if (isa<AllocaInst>(Object)) 727 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) 728 if (CI->isTailCall()) 729 return MRI_NoModRef; 730 731 // If the pointer is to a locally allocated object that does not escape, 732 // then the call can not mod/ref the pointer unless the call takes the pointer 733 // as an argument, and itself doesn't capture it. 734 if (!isa<Constant>(Object) && CS.getInstruction() != Object && 735 isNonEscapingLocalObject(Object)) { 736 bool PassedAsArg = false; 737 unsigned OperandNo = 0; 738 for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end(); 739 CI != CE; ++CI, ++OperandNo) { 740 // Only look at the no-capture or byval pointer arguments. If this 741 // pointer were passed to arguments that were neither of these, then it 742 // couldn't be no-capture. 743 if (!(*CI)->getType()->isPointerTy() || 744 (!CS.doesNotCapture(OperandNo) && !CS.isByValArgument(OperandNo))) 745 continue; 746 747 // If this is a no-capture pointer argument, see if we can tell that it 748 // is impossible to alias the pointer we're checking. If not, we have to 749 // assume that the call could touch the pointer, even though it doesn't 750 // escape. 751 AliasResult AR = 752 getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object)); 753 if (AR) { 754 PassedAsArg = true; 755 break; 756 } 757 } 758 759 if (!PassedAsArg) 760 return MRI_NoModRef; 761 } 762 763 // If the CallSite is to malloc or calloc, we can assume that it doesn't 764 // modify any IR visible value. This is only valid because we assume these 765 // routines do not read values visible in the IR. TODO: Consider special 766 // casing realloc and strdup routines which access only their arguments as 767 // well. Or alternatively, replace all of this with inaccessiblememonly once 768 // that's implemented fully. 769 auto *Inst = CS.getInstruction(); 770 if (isMallocLikeFn(Inst, &TLI) || isCallocLikeFn(Inst, &TLI)) { 771 // Be conservative if the accessed pointer may alias the allocation - 772 // fallback to the generic handling below. 773 if (getBestAAResults().alias(MemoryLocation(Inst), Loc) == NoAlias) 774 return MRI_NoModRef; 775 } 776 777 // While the assume intrinsic is marked as arbitrarily writing so that 778 // proper control dependencies will be maintained, it never aliases any 779 // particular memory location. 780 if (isAssumeIntrinsic(CS)) 781 return MRI_NoModRef; 782 783 // The AAResultBase base class has some smarts, lets use them. 784 return AAResultBase::getModRefInfo(CS, Loc); 785 } 786 787 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1, 788 ImmutableCallSite CS2) { 789 // While the assume intrinsic is marked as arbitrarily writing so that 790 // proper control dependencies will be maintained, it never aliases any 791 // particular memory location. 792 if (isAssumeIntrinsic(CS1) || isAssumeIntrinsic(CS2)) 793 return MRI_NoModRef; 794 795 // The AAResultBase base class has some smarts, lets use them. 796 return AAResultBase::getModRefInfo(CS1, CS2); 797 } 798 799 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators, 800 /// both having the exact same pointer operand. 801 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1, 802 uint64_t V1Size, 803 const GEPOperator *GEP2, 804 uint64_t V2Size, 805 const DataLayout &DL) { 806 807 assert(GEP1->getPointerOperand() == GEP2->getPointerOperand() && 808 "Expected GEPs with the same pointer operand"); 809 810 // Try to determine whether GEP1 and GEP2 index through arrays, into structs, 811 // such that the struct field accesses provably cannot alias. 812 // We also need at least two indices (the pointer, and the struct field). 813 if (GEP1->getNumIndices() != GEP2->getNumIndices() || 814 GEP1->getNumIndices() < 2) 815 return MayAlias; 816 817 // If we don't know the size of the accesses through both GEPs, we can't 818 // determine whether the struct fields accessed can't alias. 819 if (V1Size == MemoryLocation::UnknownSize || 820 V2Size == MemoryLocation::UnknownSize) 821 return MayAlias; 822 823 ConstantInt *C1 = 824 dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1)); 825 ConstantInt *C2 = 826 dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1)); 827 828 // If the last (struct) indices are constants and are equal, the other indices 829 // might be also be dynamically equal, so the GEPs can alias. 830 if (C1 && C2 && C1 == C2) 831 return MayAlias; 832 833 // Find the last-indexed type of the GEP, i.e., the type you'd get if 834 // you stripped the last index. 835 // On the way, look at each indexed type. If there's something other 836 // than an array, different indices can lead to different final types. 837 SmallVector<Value *, 8> IntermediateIndices; 838 839 // Insert the first index; we don't need to check the type indexed 840 // through it as it only drops the pointer indirection. 841 assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine"); 842 IntermediateIndices.push_back(GEP1->getOperand(1)); 843 844 // Insert all the remaining indices but the last one. 845 // Also, check that they all index through arrays. 846 for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) { 847 if (!isa<ArrayType>(GetElementPtrInst::getIndexedType( 848 GEP1->getSourceElementType(), IntermediateIndices))) 849 return MayAlias; 850 IntermediateIndices.push_back(GEP1->getOperand(i + 1)); 851 } 852 853 auto *Ty = GetElementPtrInst::getIndexedType( 854 GEP1->getSourceElementType(), IntermediateIndices); 855 StructType *LastIndexedStruct = dyn_cast<StructType>(Ty); 856 857 if (isa<SequentialType>(Ty)) { 858 // We know that: 859 // - both GEPs begin indexing from the exact same pointer; 860 // - the last indices in both GEPs are constants, indexing into a sequential 861 // type (array or pointer); 862 // - both GEPs only index through arrays prior to that. 863 // 864 // Because array indices greater than the number of elements are valid in 865 // GEPs, unless we know the intermediate indices are identical between 866 // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't 867 // partially overlap. We also need to check that the loaded size matches 868 // the element size, otherwise we could still have overlap. 869 const uint64_t ElementSize = 870 DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType()); 871 if (V1Size != ElementSize || V2Size != ElementSize) 872 return MayAlias; 873 874 for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i) 875 if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1)) 876 return MayAlias; 877 878 // Now we know that the array/pointer that GEP1 indexes into and that 879 // that GEP2 indexes into must either precisely overlap or be disjoint. 880 // Because they cannot partially overlap and because fields in an array 881 // cannot overlap, if we can prove the final indices are different between 882 // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias. 883 884 // If the last indices are constants, we've already checked they don't 885 // equal each other so we can exit early. 886 if (C1 && C2) 887 return NoAlias; 888 if (isKnownNonEqual(GEP1->getOperand(GEP1->getNumOperands() - 1), 889 GEP2->getOperand(GEP2->getNumOperands() - 1), 890 DL)) 891 return NoAlias; 892 return MayAlias; 893 } else if (!LastIndexedStruct || !C1 || !C2) { 894 return MayAlias; 895 } 896 897 // We know that: 898 // - both GEPs begin indexing from the exact same pointer; 899 // - the last indices in both GEPs are constants, indexing into a struct; 900 // - said indices are different, hence, the pointed-to fields are different; 901 // - both GEPs only index through arrays prior to that. 902 // 903 // This lets us determine that the struct that GEP1 indexes into and the 904 // struct that GEP2 indexes into must either precisely overlap or be 905 // completely disjoint. Because they cannot partially overlap, indexing into 906 // different non-overlapping fields of the struct will never alias. 907 908 // Therefore, the only remaining thing needed to show that both GEPs can't 909 // alias is that the fields are not overlapping. 910 const StructLayout *SL = DL.getStructLayout(LastIndexedStruct); 911 const uint64_t StructSize = SL->getSizeInBytes(); 912 const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue()); 913 const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue()); 914 915 auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size, 916 uint64_t V2Off, uint64_t V2Size) { 917 return V1Off < V2Off && V1Off + V1Size <= V2Off && 918 ((V2Off + V2Size <= StructSize) || 919 (V2Off + V2Size - StructSize <= V1Off)); 920 }; 921 922 if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) || 923 EltsDontOverlap(V2Off, V2Size, V1Off, V1Size)) 924 return NoAlias; 925 926 return MayAlias; 927 } 928 929 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 930 /// another pointer. 931 /// 932 /// We know that V1 is a GEP, but we don't know anything about V2. 933 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for 934 /// V2. 935 AliasResult BasicAAResult::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, 936 const AAMDNodes &V1AAInfo, const Value *V2, 937 uint64_t V2Size, const AAMDNodes &V2AAInfo, 938 const Value *UnderlyingV1, 939 const Value *UnderlyingV2) { 940 int64_t GEP1BaseOffset; 941 bool GEP1MaxLookupReached; 942 SmallVector<VariableGEPIndex, 4> GEP1VariableIndices; 943 944 // If we have two gep instructions with must-alias or not-alias'ing base 945 // pointers, figure out if the indexes to the GEP tell us anything about the 946 // derived pointer. 947 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 948 // Do the base pointers alias? 949 AliasResult BaseAlias = 950 aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(), 951 UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes()); 952 953 // Check for geps of non-aliasing underlying pointers where the offsets are 954 // identical. 955 if ((BaseAlias == MayAlias) && V1Size == V2Size) { 956 // Do the base pointers alias assuming type and size. 957 AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo, 958 UnderlyingV2, V2Size, V2AAInfo); 959 if (PreciseBaseAlias == NoAlias) { 960 // See if the computed offset from the common pointer tells us about the 961 // relation of the resulting pointer. 962 int64_t GEP2BaseOffset; 963 bool GEP2MaxLookupReached; 964 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 965 const Value *GEP2BasePtr = 966 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, 967 GEP2MaxLookupReached, DL, &AC, DT); 968 const Value *GEP1BasePtr = 969 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 970 GEP1MaxLookupReached, DL, &AC, DT); 971 // DecomposeGEPExpression and GetUnderlyingObject should return the 972 // same result except when DecomposeGEPExpression has no DataLayout. 973 // FIXME: They always have a DataLayout, so this should become an 974 // assert. 975 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 976 return MayAlias; 977 } 978 // If the max search depth is reached the result is undefined 979 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 980 return MayAlias; 981 982 // Same offsets. 983 if (GEP1BaseOffset == GEP2BaseOffset && 984 GEP1VariableIndices == GEP2VariableIndices) 985 return NoAlias; 986 GEP1VariableIndices.clear(); 987 } 988 } 989 990 // If we get a No or May, then return it immediately, no amount of analysis 991 // will improve this situation. 992 if (BaseAlias != MustAlias) 993 return BaseAlias; 994 995 // Otherwise, we have a MustAlias. Since the base pointers alias each other 996 // exactly, see if the computed offset from the common pointer tells us 997 // about the relation of the resulting pointer. 998 const Value *GEP1BasePtr = 999 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 1000 GEP1MaxLookupReached, DL, &AC, DT); 1001 1002 int64_t GEP2BaseOffset; 1003 bool GEP2MaxLookupReached; 1004 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 1005 const Value *GEP2BasePtr = 1006 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, 1007 GEP2MaxLookupReached, DL, &AC, DT); 1008 1009 // DecomposeGEPExpression and GetUnderlyingObject should return the 1010 // same result except when DecomposeGEPExpression has no DataLayout. 1011 // FIXME: They always have a DataLayout, so this should become an assert. 1012 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 1013 return MayAlias; 1014 } 1015 1016 // If we know the two GEPs are based off of the exact same pointer (and not 1017 // just the same underlying object), see if that tells us anything about 1018 // the resulting pointers. 1019 if (GEP1->getPointerOperand() == GEP2->getPointerOperand()) { 1020 AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL); 1021 // If we couldn't find anything interesting, don't abandon just yet. 1022 if (R != MayAlias) 1023 return R; 1024 } 1025 1026 // If the max search depth is reached, the result is undefined 1027 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1028 return MayAlias; 1029 1030 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1031 // symbolic difference. 1032 GEP1BaseOffset -= GEP2BaseOffset; 1033 GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices); 1034 1035 } else { 1036 // Check to see if these two pointers are related by the getelementptr 1037 // instruction. If one pointer is a GEP with a non-zero index of the other 1038 // pointer, we know they cannot alias. 1039 1040 // If both accesses are unknown size, we can't do anything useful here. 1041 if (V1Size == MemoryLocation::UnknownSize && 1042 V2Size == MemoryLocation::UnknownSize) 1043 return MayAlias; 1044 1045 AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, 1046 AAMDNodes(), V2, V2Size, V2AAInfo); 1047 if (R != MustAlias) 1048 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 1049 // If V2 is known not to alias GEP base pointer, then the two values 1050 // cannot alias per GEP semantics: "A pointer value formed from a 1051 // getelementptr instruction is associated with the addresses associated 1052 // with the first operand of the getelementptr". 1053 return R; 1054 1055 const Value *GEP1BasePtr = 1056 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 1057 GEP1MaxLookupReached, DL, &AC, DT); 1058 1059 // DecomposeGEPExpression and GetUnderlyingObject should return the 1060 // same result except when DecomposeGEPExpression has no DataLayout. 1061 // FIXME: They always have a DataLayout, so this should become an assert. 1062 if (GEP1BasePtr != UnderlyingV1) { 1063 return MayAlias; 1064 } 1065 // If the max search depth is reached the result is undefined 1066 if (GEP1MaxLookupReached) 1067 return MayAlias; 1068 } 1069 1070 // In the two GEP Case, if there is no difference in the offsets of the 1071 // computed pointers, the resultant pointers are a must alias. This 1072 // happens when we have two lexically identical GEP's (for example). 1073 // 1074 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 1075 // must aliases the GEP, the end result is a must alias also. 1076 if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty()) 1077 return MustAlias; 1078 1079 // If there is a constant difference between the pointers, but the difference 1080 // is less than the size of the associated memory object, then we know 1081 // that the objects are partially overlapping. If the difference is 1082 // greater, we know they do not overlap. 1083 if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) { 1084 if (GEP1BaseOffset >= 0) { 1085 if (V2Size != MemoryLocation::UnknownSize) { 1086 if ((uint64_t)GEP1BaseOffset < V2Size) 1087 return PartialAlias; 1088 return NoAlias; 1089 } 1090 } else { 1091 // We have the situation where: 1092 // + + 1093 // | BaseOffset | 1094 // ---------------->| 1095 // |-->V1Size |-------> V2Size 1096 // GEP1 V2 1097 // We need to know that V2Size is not unknown, otherwise we might have 1098 // stripped a gep with negative index ('gep <ptr>, -1, ...). 1099 if (V1Size != MemoryLocation::UnknownSize && 1100 V2Size != MemoryLocation::UnknownSize) { 1101 if (-(uint64_t)GEP1BaseOffset < V1Size) 1102 return PartialAlias; 1103 return NoAlias; 1104 } 1105 } 1106 } 1107 1108 if (!GEP1VariableIndices.empty()) { 1109 uint64_t Modulo = 0; 1110 bool AllPositive = true; 1111 for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) { 1112 1113 // Try to distinguish something like &A[i][1] against &A[42][0]. 1114 // Grab the least significant bit set in any of the scales. We 1115 // don't need std::abs here (even if the scale's negative) as we'll 1116 // be ^'ing Modulo with itself later. 1117 Modulo |= (uint64_t)GEP1VariableIndices[i].Scale; 1118 1119 if (AllPositive) { 1120 // If the Value could change between cycles, then any reasoning about 1121 // the Value this cycle may not hold in the next cycle. We'll just 1122 // give up if we can't determine conditions that hold for every cycle: 1123 const Value *V = GEP1VariableIndices[i].V; 1124 1125 bool SignKnownZero, SignKnownOne; 1126 ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, DL, 1127 0, &AC, nullptr, DT); 1128 1129 // Zero-extension widens the variable, and so forces the sign 1130 // bit to zero. 1131 bool IsZExt = GEP1VariableIndices[i].ZExtBits > 0 || isa<ZExtInst>(V); 1132 SignKnownZero |= IsZExt; 1133 SignKnownOne &= !IsZExt; 1134 1135 // If the variable begins with a zero then we know it's 1136 // positive, regardless of whether the value is signed or 1137 // unsigned. 1138 int64_t Scale = GEP1VariableIndices[i].Scale; 1139 AllPositive = 1140 (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0); 1141 } 1142 } 1143 1144 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1145 1146 // We can compute the difference between the two addresses 1147 // mod Modulo. Check whether that difference guarantees that the 1148 // two locations do not alias. 1149 uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1); 1150 if (V1Size != MemoryLocation::UnknownSize && 1151 V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size && 1152 V1Size <= Modulo - ModOffset) 1153 return NoAlias; 1154 1155 // If we know all the variables are positive, then GEP1 >= GEP1BasePtr. 1156 // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers 1157 // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr. 1158 if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset) 1159 return NoAlias; 1160 1161 if (constantOffsetHeuristic(GEP1VariableIndices, V1Size, V2Size, 1162 GEP1BaseOffset, &AC, DT)) 1163 return NoAlias; 1164 } 1165 1166 // Statically, we can see that the base objects are the same, but the 1167 // pointers have dynamic offsets which we can't resolve. And none of our 1168 // little tricks above worked. 1169 // 1170 // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the 1171 // practical effect of this is protecting TBAA in the case of dynamic 1172 // indices into arrays of unions or malloc'd memory. 1173 return PartialAlias; 1174 } 1175 1176 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1177 // If the results agree, take it. 1178 if (A == B) 1179 return A; 1180 // A mix of PartialAlias and MustAlias is PartialAlias. 1181 if ((A == PartialAlias && B == MustAlias) || 1182 (B == PartialAlias && A == MustAlias)) 1183 return PartialAlias; 1184 // Otherwise, we don't know anything. 1185 return MayAlias; 1186 } 1187 1188 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1189 /// against another. 1190 AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, uint64_t SISize, 1191 const AAMDNodes &SIAAInfo, 1192 const Value *V2, uint64_t V2Size, 1193 const AAMDNodes &V2AAInfo) { 1194 // If the values are Selects with the same condition, we can do a more precise 1195 // check: just check for aliases between the values on corresponding arms. 1196 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1197 if (SI->getCondition() == SI2->getCondition()) { 1198 AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, 1199 SI2->getTrueValue(), V2Size, V2AAInfo); 1200 if (Alias == MayAlias) 1201 return MayAlias; 1202 AliasResult ThisAlias = 1203 aliasCheck(SI->getFalseValue(), SISize, SIAAInfo, 1204 SI2->getFalseValue(), V2Size, V2AAInfo); 1205 return MergeAliasResults(ThisAlias, Alias); 1206 } 1207 1208 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1209 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1210 AliasResult Alias = 1211 aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), SISize, SIAAInfo); 1212 if (Alias == MayAlias) 1213 return MayAlias; 1214 1215 AliasResult ThisAlias = 1216 aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo); 1217 return MergeAliasResults(ThisAlias, Alias); 1218 } 1219 1220 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1221 /// another. 1222 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, uint64_t PNSize, 1223 const AAMDNodes &PNAAInfo, const Value *V2, 1224 uint64_t V2Size, 1225 const AAMDNodes &V2AAInfo) { 1226 // Track phi nodes we have visited. We use this information when we determine 1227 // value equivalence. 1228 VisitedPhiBBs.insert(PN->getParent()); 1229 1230 // If the values are PHIs in the same block, we can do a more precise 1231 // as well as efficient check: just check for aliases between the values 1232 // on corresponding edges. 1233 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1234 if (PN2->getParent() == PN->getParent()) { 1235 LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo), 1236 MemoryLocation(V2, V2Size, V2AAInfo)); 1237 if (PN > V2) 1238 std::swap(Locs.first, Locs.second); 1239 // Analyse the PHIs' inputs under the assumption that the PHIs are 1240 // NoAlias. 1241 // If the PHIs are May/MustAlias there must be (recursively) an input 1242 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1243 // there must be an operation on the PHIs within the PHIs' value cycle 1244 // that causes a MayAlias. 1245 // Pretend the phis do not alias. 1246 AliasResult Alias = NoAlias; 1247 assert(AliasCache.count(Locs) && 1248 "There must exist an entry for the phi node"); 1249 AliasResult OrigAliasResult = AliasCache[Locs]; 1250 AliasCache[Locs] = NoAlias; 1251 1252 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1253 AliasResult ThisAlias = 1254 aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo, 1255 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1256 V2Size, V2AAInfo); 1257 Alias = MergeAliasResults(ThisAlias, Alias); 1258 if (Alias == MayAlias) 1259 break; 1260 } 1261 1262 // Reset if speculation failed. 1263 if (Alias != NoAlias) 1264 AliasCache[Locs] = OrigAliasResult; 1265 1266 return Alias; 1267 } 1268 1269 SmallPtrSet<Value *, 4> UniqueSrc; 1270 SmallVector<Value *, 4> V1Srcs; 1271 bool isRecursive = false; 1272 for (Value *PV1 : PN->incoming_values()) { 1273 if (isa<PHINode>(PV1)) 1274 // If any of the source itself is a PHI, return MayAlias conservatively 1275 // to avoid compile time explosion. The worst possible case is if both 1276 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1277 // and 'n' are the number of PHI sources. 1278 return MayAlias; 1279 1280 if (EnableRecPhiAnalysis) 1281 if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) { 1282 // Check whether the incoming value is a GEP that advances the pointer 1283 // result of this PHI node (e.g. in a loop). If this is the case, we 1284 // would recurse and always get a MayAlias. Handle this case specially 1285 // below. 1286 if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 && 1287 isa<ConstantInt>(PV1GEP->idx_begin())) { 1288 isRecursive = true; 1289 continue; 1290 } 1291 } 1292 1293 if (UniqueSrc.insert(PV1).second) 1294 V1Srcs.push_back(PV1); 1295 } 1296 1297 // If this PHI node is recursive, set the size of the accessed memory to 1298 // unknown to represent all the possible values the GEP could advance the 1299 // pointer to. 1300 if (isRecursive) 1301 PNSize = MemoryLocation::UnknownSize; 1302 1303 AliasResult Alias = 1304 aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize, PNAAInfo); 1305 1306 // Early exit if the check of the first PHI source against V2 is MayAlias. 1307 // Other results are not possible. 1308 if (Alias == MayAlias) 1309 return MayAlias; 1310 1311 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1312 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1313 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1314 Value *V = V1Srcs[i]; 1315 1316 AliasResult ThisAlias = 1317 aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo); 1318 Alias = MergeAliasResults(ThisAlias, Alias); 1319 if (Alias == MayAlias) 1320 break; 1321 } 1322 1323 return Alias; 1324 } 1325 1326 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1327 /// array references. 1328 AliasResult BasicAAResult::aliasCheck(const Value *V1, uint64_t V1Size, 1329 AAMDNodes V1AAInfo, const Value *V2, 1330 uint64_t V2Size, AAMDNodes V2AAInfo) { 1331 // If either of the memory references is empty, it doesn't matter what the 1332 // pointer values are. 1333 if (V1Size == 0 || V2Size == 0) 1334 return NoAlias; 1335 1336 // Strip off any casts if they exist. 1337 V1 = V1->stripPointerCasts(); 1338 V2 = V2->stripPointerCasts(); 1339 1340 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1341 // value for undef that aliases nothing in the program. 1342 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1343 return NoAlias; 1344 1345 // Are we checking for alias of the same value? 1346 // Because we look 'through' phi nodes, we could look at "Value" pointers from 1347 // different iterations. We must therefore make sure that this is not the 1348 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1349 // happen by looking at the visited phi nodes and making sure they cannot 1350 // reach the value. 1351 if (isValueEqualInPotentialCycles(V1, V2)) 1352 return MustAlias; 1353 1354 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1355 return NoAlias; // Scalars cannot alias each other 1356 1357 // Figure out what objects these things are pointing to if we can. 1358 const Value *O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth); 1359 const Value *O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth); 1360 1361 // Null values in the default address space don't point to any object, so they 1362 // don't alias any other pointer. 1363 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1364 if (CPN->getType()->getAddressSpace() == 0) 1365 return NoAlias; 1366 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1367 if (CPN->getType()->getAddressSpace() == 0) 1368 return NoAlias; 1369 1370 if (O1 != O2) { 1371 // If V1/V2 point to two different objects, we know that we have no alias. 1372 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1373 return NoAlias; 1374 1375 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1376 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1377 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1378 return NoAlias; 1379 1380 // Function arguments can't alias with things that are known to be 1381 // unambigously identified at the function level. 1382 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1383 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1384 return NoAlias; 1385 1386 // Most objects can't alias null. 1387 if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) || 1388 (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2))) 1389 return NoAlias; 1390 1391 // If one pointer is the result of a call/invoke or load and the other is a 1392 // non-escaping local object within the same function, then we know the 1393 // object couldn't escape to a point where the call could return it. 1394 // 1395 // Note that if the pointers are in different functions, there are a 1396 // variety of complications. A call with a nocapture argument may still 1397 // temporary store the nocapture argument's value in a temporary memory 1398 // location if that memory location doesn't escape. Or it may pass a 1399 // nocapture value to other functions as long as they don't capture it. 1400 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) 1401 return NoAlias; 1402 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) 1403 return NoAlias; 1404 } 1405 1406 // If the size of one access is larger than the entire object on the other 1407 // side, then we know such behavior is undefined and can assume no alias. 1408 if ((V1Size != MemoryLocation::UnknownSize && 1409 isObjectSmallerThan(O2, V1Size, DL, TLI)) || 1410 (V2Size != MemoryLocation::UnknownSize && 1411 isObjectSmallerThan(O1, V2Size, DL, TLI))) 1412 return NoAlias; 1413 1414 // Check the cache before climbing up use-def chains. This also terminates 1415 // otherwise infinitely recursive queries. 1416 LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo), 1417 MemoryLocation(V2, V2Size, V2AAInfo)); 1418 if (V1 > V2) 1419 std::swap(Locs.first, Locs.second); 1420 std::pair<AliasCacheTy::iterator, bool> Pair = 1421 AliasCache.insert(std::make_pair(Locs, MayAlias)); 1422 if (!Pair.second) 1423 return Pair.first->second; 1424 1425 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1426 // GEP can't simplify, we don't even look at the PHI cases. 1427 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1428 std::swap(V1, V2); 1429 std::swap(V1Size, V2Size); 1430 std::swap(O1, O2); 1431 std::swap(V1AAInfo, V2AAInfo); 1432 } 1433 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1434 AliasResult Result = 1435 aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2); 1436 if (Result != MayAlias) 1437 return AliasCache[Locs] = Result; 1438 } 1439 1440 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1441 std::swap(V1, V2); 1442 std::swap(V1Size, V2Size); 1443 std::swap(V1AAInfo, V2AAInfo); 1444 } 1445 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1446 AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo); 1447 if (Result != MayAlias) 1448 return AliasCache[Locs] = Result; 1449 } 1450 1451 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1452 std::swap(V1, V2); 1453 std::swap(V1Size, V2Size); 1454 std::swap(V1AAInfo, V2AAInfo); 1455 } 1456 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1457 AliasResult Result = 1458 aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo); 1459 if (Result != MayAlias) 1460 return AliasCache[Locs] = Result; 1461 } 1462 1463 // If both pointers are pointing into the same object and one of them 1464 // accesses the entire object, then the accesses must overlap in some way. 1465 if (O1 == O2) 1466 if ((V1Size != MemoryLocation::UnknownSize && 1467 isObjectSize(O1, V1Size, DL, TLI)) || 1468 (V2Size != MemoryLocation::UnknownSize && 1469 isObjectSize(O2, V2Size, DL, TLI))) 1470 return AliasCache[Locs] = PartialAlias; 1471 1472 // Recurse back into the best AA results we have, potentially with refined 1473 // memory locations. We have already ensured that BasicAA has a MayAlias 1474 // cache result for these, so any recursion back into BasicAA won't loop. 1475 AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second); 1476 return AliasCache[Locs] = Result; 1477 } 1478 1479 /// Check whether two Values can be considered equivalent. 1480 /// 1481 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether 1482 /// they can not be part of a cycle in the value graph by looking at all 1483 /// visited phi nodes an making sure that the phis cannot reach the value. We 1484 /// have to do this because we are looking through phi nodes (That is we say 1485 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1486 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1487 const Value *V2) { 1488 if (V != V2) 1489 return false; 1490 1491 const Instruction *Inst = dyn_cast<Instruction>(V); 1492 if (!Inst) 1493 return true; 1494 1495 if (VisitedPhiBBs.empty()) 1496 return true; 1497 1498 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1499 return false; 1500 1501 // Make sure that the visited phis cannot reach the Value. This ensures that 1502 // the Values cannot come from different iterations of a potential cycle the 1503 // phi nodes could be involved in. 1504 for (auto *P : VisitedPhiBBs) 1505 if (isPotentiallyReachable(&P->front(), Inst, DT, LI)) 1506 return false; 1507 1508 return true; 1509 } 1510 1511 /// Computes the symbolic difference between two de-composed GEPs. 1512 /// 1513 /// Dest and Src are the variable indices from two decomposed GetElementPtr 1514 /// instructions GEP1 and GEP2 which have common base pointers. 1515 void BasicAAResult::GetIndexDifference( 1516 SmallVectorImpl<VariableGEPIndex> &Dest, 1517 const SmallVectorImpl<VariableGEPIndex> &Src) { 1518 if (Src.empty()) 1519 return; 1520 1521 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1522 const Value *V = Src[i].V; 1523 unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits; 1524 int64_t Scale = Src[i].Scale; 1525 1526 // Find V in Dest. This is N^2, but pointer indices almost never have more 1527 // than a few variable indexes. 1528 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1529 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1530 Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits) 1531 continue; 1532 1533 // If we found it, subtract off Scale V's from the entry in Dest. If it 1534 // goes to zero, remove the entry. 1535 if (Dest[j].Scale != Scale) 1536 Dest[j].Scale -= Scale; 1537 else 1538 Dest.erase(Dest.begin() + j); 1539 Scale = 0; 1540 break; 1541 } 1542 1543 // If we didn't consume this entry, add it to the end of the Dest list. 1544 if (Scale) { 1545 VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale}; 1546 Dest.push_back(Entry); 1547 } 1548 } 1549 } 1550 1551 bool BasicAAResult::constantOffsetHeuristic( 1552 const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size, 1553 uint64_t V2Size, int64_t BaseOffset, AssumptionCache *AC, 1554 DominatorTree *DT) { 1555 if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize || 1556 V2Size == MemoryLocation::UnknownSize) 1557 return false; 1558 1559 const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1]; 1560 1561 if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits || 1562 Var0.Scale != -Var1.Scale) 1563 return false; 1564 1565 unsigned Width = Var1.V->getType()->getIntegerBitWidth(); 1566 1567 // We'll strip off the Extensions of Var0 and Var1 and do another round 1568 // of GetLinearExpression decomposition. In the example above, if Var0 1569 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 1570 1571 APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0), 1572 V1Offset(Width, 0); 1573 bool NSW = true, NUW = true; 1574 unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0; 1575 const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits, 1576 V0SExtBits, DL, 0, AC, DT, NSW, NUW); 1577 NSW = true; 1578 NUW = true; 1579 const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits, 1580 V1SExtBits, DL, 0, AC, DT, NSW, NUW); 1581 1582 if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits || 1583 V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1)) 1584 return false; 1585 1586 // We have a hit - Var0 and Var1 only differ by a constant offset! 1587 1588 // If we've been sext'ed then zext'd the maximum difference between Var0 and 1589 // Var1 is possible to calculate, but we're just interested in the absolute 1590 // minimum difference between the two. The minimum distance may occur due to 1591 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 1592 // the minimum distance between %i and %i + 5 is 3. 1593 APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff; 1594 MinDiff = APIntOps::umin(MinDiff, Wrapped); 1595 uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale); 1596 1597 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 1598 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 1599 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 1600 // V2Size can fit in the MinDiffBytes gap. 1601 return V1Size + std::abs(BaseOffset) <= MinDiffBytes && 1602 V2Size + std::abs(BaseOffset) <= MinDiffBytes; 1603 } 1604 1605 //===----------------------------------------------------------------------===// 1606 // BasicAliasAnalysis Pass 1607 //===----------------------------------------------------------------------===// 1608 1609 char BasicAA::PassID; 1610 1611 BasicAAResult BasicAA::run(Function &F, AnalysisManager<Function> &AM) { 1612 return BasicAAResult(F.getParent()->getDataLayout(), 1613 AM.getResult<TargetLibraryAnalysis>(F), 1614 AM.getResult<AssumptionAnalysis>(F), 1615 &AM.getResult<DominatorTreeAnalysis>(F), 1616 AM.getCachedResult<LoopAnalysis>(F)); 1617 } 1618 1619 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 1620 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1621 } 1622 1623 char BasicAAWrapperPass::ID = 0; 1624 void BasicAAWrapperPass::anchor() {} 1625 1626 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa", 1627 "Basic Alias Analysis (stateless AA impl)", true, true) 1628 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1629 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1630 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1631 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa", 1632 "Basic Alias Analysis (stateless AA impl)", true, true) 1633 1634 FunctionPass *llvm::createBasicAAWrapperPass() { 1635 return new BasicAAWrapperPass(); 1636 } 1637 1638 bool BasicAAWrapperPass::runOnFunction(Function &F) { 1639 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 1640 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 1641 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); 1642 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 1643 1644 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), TLIWP.getTLI(), 1645 ACT.getAssumptionCache(F), &DTWP.getDomTree(), 1646 LIWP ? &LIWP->getLoopInfo() : nullptr)); 1647 1648 return false; 1649 } 1650 1651 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1652 AU.setPreservesAll(); 1653 AU.addRequired<AssumptionCacheTracker>(); 1654 AU.addRequired<DominatorTreeWrapperPass>(); 1655 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1656 } 1657 1658 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { 1659 return BasicAAResult( 1660 F.getParent()->getDataLayout(), 1661 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 1662 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 1663 } 1664