1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the primary stateless implementation of the
10 // Alias Analysis interface that implements identities (two different
11 // globals cannot alias, etc), but does no stateful analysis.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/BasicAliasAnalysis.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/PhiValues.h"
30 #include "llvm/Analysis/TargetLibraryInfo.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/Argument.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GetElementPtrTypeIterator.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/Metadata.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/User.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/KnownBits.h"
59 #include <cassert>
60 #include <cstdint>
61 #include <cstdlib>
62 #include <utility>
63 
64 #define DEBUG_TYPE "basicaa"
65 
66 using namespace llvm;
67 
68 /// Enable analysis of recursive PHI nodes.
69 static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden,
70                                           cl::init(true));
71 
72 /// By default, even on 32-bit architectures we use 64-bit integers for
73 /// calculations. This will allow us to more-aggressively decompose indexing
74 /// expressions calculated using i64 values (e.g., long long in C) which is
75 /// common enough to worry about.
76 static cl::opt<bool> ForceAtLeast64Bits("basic-aa-force-at-least-64b",
77                                         cl::Hidden, cl::init(true));
78 static cl::opt<bool> DoubleCalcBits("basic-aa-double-calc-bits",
79                                     cl::Hidden, cl::init(false));
80 
81 /// SearchLimitReached / SearchTimes shows how often the limit of
82 /// to decompose GEPs is reached. It will affect the precision
83 /// of basic alias analysis.
84 STATISTIC(SearchLimitReached, "Number of times the limit to "
85                               "decompose GEPs is reached");
86 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
87 
88 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
89 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
90 /// careful with value equivalence. We use reachability to make sure a value
91 /// cannot be involved in a cycle.
92 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
93 
94 // The max limit of the search depth in DecomposeGEPExpression() and
95 // getUnderlyingObject(), both functions need to use the same search
96 // depth otherwise the algorithm in aliasGEP will assert.
97 static const unsigned MaxLookupSearchDepth = 6;
98 
99 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
100                                FunctionAnalysisManager::Invalidator &Inv) {
101   // We don't care if this analysis itself is preserved, it has no state. But
102   // we need to check that the analyses it depends on have been. Note that we
103   // may be created without handles to some analyses and in that case don't
104   // depend on them.
105   if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
106       (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) ||
107       (LI && Inv.invalidate<LoopAnalysis>(Fn, PA)) ||
108       (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA)))
109     return true;
110 
111   // Otherwise this analysis result remains valid.
112   return false;
113 }
114 
115 //===----------------------------------------------------------------------===//
116 // Useful predicates
117 //===----------------------------------------------------------------------===//
118 
119 /// Returns true if the pointer is one which would have been considered an
120 /// escape by isNonEscapingLocalObject.
121 static bool isEscapeSource(const Value *V) {
122   if (isa<CallBase>(V))
123     return true;
124 
125   if (isa<Argument>(V))
126     return true;
127 
128   // The load case works because isNonEscapingLocalObject considers all
129   // stores to be escapes (it passes true for the StoreCaptures argument
130   // to PointerMayBeCaptured).
131   if (isa<LoadInst>(V))
132     return true;
133 
134   return false;
135 }
136 
137 /// Returns the size of the object specified by V or UnknownSize if unknown.
138 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
139                               const TargetLibraryInfo &TLI,
140                               bool NullIsValidLoc,
141                               bool RoundToAlign = false) {
142   uint64_t Size;
143   ObjectSizeOpts Opts;
144   Opts.RoundToAlign = RoundToAlign;
145   Opts.NullIsUnknownSize = NullIsValidLoc;
146   if (getObjectSize(V, Size, DL, &TLI, Opts))
147     return Size;
148   return MemoryLocation::UnknownSize;
149 }
150 
151 /// Returns true if we can prove that the object specified by V is smaller than
152 /// Size.
153 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
154                                 const DataLayout &DL,
155                                 const TargetLibraryInfo &TLI,
156                                 bool NullIsValidLoc) {
157   // Note that the meanings of the "object" are slightly different in the
158   // following contexts:
159   //    c1: llvm::getObjectSize()
160   //    c2: llvm.objectsize() intrinsic
161   //    c3: isObjectSmallerThan()
162   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
163   // refers to the "entire object".
164   //
165   //  Consider this example:
166   //     char *p = (char*)malloc(100)
167   //     char *q = p+80;
168   //
169   //  In the context of c1 and c2, the "object" pointed by q refers to the
170   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
171   //
172   //  However, in the context of c3, the "object" refers to the chunk of memory
173   // being allocated. So, the "object" has 100 bytes, and q points to the middle
174   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
175   // parameter, before the llvm::getObjectSize() is called to get the size of
176   // entire object, we should:
177   //    - either rewind the pointer q to the base-address of the object in
178   //      question (in this case rewind to p), or
179   //    - just give up. It is up to caller to make sure the pointer is pointing
180   //      to the base address the object.
181   //
182   // We go for 2nd option for simplicity.
183   if (!isIdentifiedObject(V))
184     return false;
185 
186   // This function needs to use the aligned object size because we allow
187   // reads a bit past the end given sufficient alignment.
188   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
189                                       /*RoundToAlign*/ true);
190 
191   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
192 }
193 
194 /// Return the minimal extent from \p V to the end of the underlying object,
195 /// assuming the result is used in an aliasing query. E.g., we do use the query
196 /// location size and the fact that null pointers cannot alias here.
197 static uint64_t getMinimalExtentFrom(const Value &V,
198                                      const LocationSize &LocSize,
199                                      const DataLayout &DL,
200                                      bool NullIsValidLoc) {
201   // If we have dereferenceability information we know a lower bound for the
202   // extent as accesses for a lower offset would be valid. We need to exclude
203   // the "or null" part if null is a valid pointer.
204   bool CanBeNull;
205   uint64_t DerefBytes = V.getPointerDereferenceableBytes(DL, CanBeNull);
206   DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes;
207   // If queried with a precise location size, we assume that location size to be
208   // accessed, thus valid.
209   if (LocSize.isPrecise())
210     DerefBytes = std::max(DerefBytes, LocSize.getValue());
211   return DerefBytes;
212 }
213 
214 /// Returns true if we can prove that the object specified by V has size Size.
215 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
216                          const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
217   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc);
218   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
219 }
220 
221 //===----------------------------------------------------------------------===//
222 // GetElementPtr Instruction Decomposition and Analysis
223 //===----------------------------------------------------------------------===//
224 
225 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
226 /// B are constant integers.
227 ///
228 /// Returns the scale and offset values as APInts and return V as a Value*, and
229 /// return whether we looked through any sign or zero extends.  The incoming
230 /// Value is known to have IntegerType, and it may already be sign or zero
231 /// extended.
232 ///
233 /// Note that this looks through extends, so the high bits may not be
234 /// represented in the result.
235 /*static*/ const Value *BasicAAResult::GetLinearExpression(
236     const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
237     unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
238     AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
239   assert(V->getType()->isIntegerTy() && "Not an integer value");
240 
241   // Limit our recursion depth.
242   if (Depth == 6) {
243     Scale = 1;
244     Offset = 0;
245     return V;
246   }
247 
248   if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
249     // If it's a constant, just convert it to an offset and remove the variable.
250     // If we've been called recursively, the Offset bit width will be greater
251     // than the constant's (the Offset's always as wide as the outermost call),
252     // so we'll zext here and process any extension in the isa<SExtInst> &
253     // isa<ZExtInst> cases below.
254     Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
255     assert(Scale == 0 && "Constant values don't have a scale");
256     return V;
257   }
258 
259   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
260     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
261       // If we've been called recursively, then Offset and Scale will be wider
262       // than the BOp operands. We'll always zext it here as we'll process sign
263       // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
264       APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
265 
266       switch (BOp->getOpcode()) {
267       default:
268         // We don't understand this instruction, so we can't decompose it any
269         // further.
270         Scale = 1;
271         Offset = 0;
272         return V;
273       case Instruction::Or:
274         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
275         // analyze it.
276         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
277                                BOp, DT)) {
278           Scale = 1;
279           Offset = 0;
280           return V;
281         }
282         LLVM_FALLTHROUGH;
283       case Instruction::Add:
284         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
285                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
286         Offset += RHS;
287         break;
288       case Instruction::Sub:
289         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
290                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
291         Offset -= RHS;
292         break;
293       case Instruction::Mul:
294         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
295                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
296         Offset *= RHS;
297         Scale *= RHS;
298         break;
299       case Instruction::Shl:
300         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
301                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
302 
303         // We're trying to linearize an expression of the kind:
304         //   shl i8 -128, 36
305         // where the shift count exceeds the bitwidth of the type.
306         // We can't decompose this further (the expression would return
307         // a poison value).
308         if (Offset.getBitWidth() < RHS.getLimitedValue() ||
309             Scale.getBitWidth() < RHS.getLimitedValue()) {
310           Scale = 1;
311           Offset = 0;
312           return V;
313         }
314 
315         Offset <<= RHS.getLimitedValue();
316         Scale <<= RHS.getLimitedValue();
317         // the semantics of nsw and nuw for left shifts don't match those of
318         // multiplications, so we won't propagate them.
319         NSW = NUW = false;
320         return V;
321       }
322 
323       if (isa<OverflowingBinaryOperator>(BOp)) {
324         NUW &= BOp->hasNoUnsignedWrap();
325         NSW &= BOp->hasNoSignedWrap();
326       }
327       return V;
328     }
329   }
330 
331   // Since GEP indices are sign extended anyway, we don't care about the high
332   // bits of a sign or zero extended value - just scales and offsets.  The
333   // extensions have to be consistent though.
334   if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
335     Value *CastOp = cast<CastInst>(V)->getOperand(0);
336     unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
337     unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
338     unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
339     const Value *Result =
340         GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
341                             Depth + 1, AC, DT, NSW, NUW);
342 
343     // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this
344     // by just incrementing the number of bits we've extended by.
345     unsigned ExtendedBy = NewWidth - SmallWidth;
346 
347     if (isa<SExtInst>(V) && ZExtBits == 0) {
348       // sext(sext(%x, a), b) == sext(%x, a + b)
349 
350       if (NSW) {
351         // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
352         // into sext(%x) + sext(c). We'll sext the Offset ourselves:
353         unsigned OldWidth = Offset.getBitWidth();
354         Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
355       } else {
356         // We may have signed-wrapped, so don't decompose sext(%x + c) into
357         // sext(%x) + sext(c)
358         Scale = 1;
359         Offset = 0;
360         Result = CastOp;
361         ZExtBits = OldZExtBits;
362         SExtBits = OldSExtBits;
363       }
364       SExtBits += ExtendedBy;
365     } else {
366       // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
367 
368       if (!NUW) {
369         // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
370         // zext(%x) + zext(c)
371         Scale = 1;
372         Offset = 0;
373         Result = CastOp;
374         ZExtBits = OldZExtBits;
375         SExtBits = OldSExtBits;
376       }
377       ZExtBits += ExtendedBy;
378     }
379 
380     return Result;
381   }
382 
383   Scale = 1;
384   Offset = 0;
385   return V;
386 }
387 
388 /// To ensure a pointer offset fits in an integer of size PointerSize
389 /// (in bits) when that size is smaller than the maximum pointer size. This is
390 /// an issue, for example, in particular for 32b pointers with negative indices
391 /// that rely on two's complement wrap-arounds for precise alias information
392 /// where the maximum pointer size is 64b.
393 static APInt adjustToPointerSize(const APInt &Offset, unsigned PointerSize) {
394   assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!");
395   unsigned ShiftBits = Offset.getBitWidth() - PointerSize;
396   return (Offset << ShiftBits).ashr(ShiftBits);
397 }
398 
399 static unsigned getMaxPointerSize(const DataLayout &DL) {
400   unsigned MaxPointerSize = DL.getMaxPointerSizeInBits();
401   if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64;
402   if (DoubleCalcBits) MaxPointerSize *= 2;
403 
404   return MaxPointerSize;
405 }
406 
407 /// If V is a symbolic pointer expression, decompose it into a base pointer
408 /// with a constant offset and a number of scaled symbolic offsets.
409 ///
410 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
411 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
412 /// specified amount, but which may have other unrepresented high bits. As
413 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
414 ///
415 /// This function is capable of analyzing everything that getUnderlyingObject
416 /// can look through. To be able to do that getUnderlyingObject and
417 /// DecomposeGEPExpression must use the same search depth
418 /// (MaxLookupSearchDepth).
419 BasicAAResult::DecomposedGEP
420 BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL,
421                                       AssumptionCache *AC, DominatorTree *DT) {
422   // Limit recursion depth to limit compile time in crazy cases.
423   unsigned MaxLookup = MaxLookupSearchDepth;
424   SearchTimes++;
425   const Instruction *CxtI = dyn_cast<Instruction>(V);
426 
427   unsigned MaxPointerSize = getMaxPointerSize(DL);
428   DecomposedGEP Decomposed;
429   Decomposed.Offset = APInt(MaxPointerSize, 0);
430   Decomposed.HasCompileTimeConstantScale = true;
431   do {
432     // See if this is a bitcast or GEP.
433     const Operator *Op = dyn_cast<Operator>(V);
434     if (!Op) {
435       // The only non-operator case we can handle are GlobalAliases.
436       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
437         if (!GA->isInterposable()) {
438           V = GA->getAliasee();
439           continue;
440         }
441       }
442       Decomposed.Base = V;
443       return Decomposed;
444     }
445 
446     if (Op->getOpcode() == Instruction::BitCast ||
447         Op->getOpcode() == Instruction::AddrSpaceCast) {
448       V = Op->getOperand(0);
449       continue;
450     }
451 
452     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
453     if (!GEPOp) {
454       if (const auto *PHI = dyn_cast<PHINode>(V)) {
455         // Look through single-arg phi nodes created by LCSSA.
456         if (PHI->getNumIncomingValues() == 1) {
457           V = PHI->getIncomingValue(0);
458           continue;
459         }
460       } else if (const auto *Call = dyn_cast<CallBase>(V)) {
461         // CaptureTracking can know about special capturing properties of some
462         // intrinsics like launder.invariant.group, that can't be expressed with
463         // the attributes, but have properties like returning aliasing pointer.
464         // Because some analysis may assume that nocaptured pointer is not
465         // returned from some special intrinsic (because function would have to
466         // be marked with returns attribute), it is crucial to use this function
467         // because it should be in sync with CaptureTracking. Not using it may
468         // cause weird miscompilations where 2 aliasing pointers are assumed to
469         // noalias.
470         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
471           V = RP;
472           continue;
473         }
474       }
475 
476       Decomposed.Base = V;
477       return Decomposed;
478     }
479 
480     // Don't attempt to analyze GEPs over unsized objects.
481     if (!GEPOp->getSourceElementType()->isSized()) {
482       Decomposed.Base = V;
483       return Decomposed;
484     }
485 
486     // Don't attempt to analyze GEPs if index scale is not a compile-time
487     // constant.
488     if (isa<ScalableVectorType>(GEPOp->getSourceElementType())) {
489       Decomposed.Base = V;
490       Decomposed.HasCompileTimeConstantScale = false;
491       return Decomposed;
492     }
493 
494     unsigned AS = GEPOp->getPointerAddressSpace();
495     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
496     gep_type_iterator GTI = gep_type_begin(GEPOp);
497     unsigned PointerSize = DL.getPointerSizeInBits(AS);
498     // Assume all GEP operands are constants until proven otherwise.
499     bool GepHasConstantOffset = true;
500     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
501          I != E; ++I, ++GTI) {
502       const Value *Index = *I;
503       // Compute the (potentially symbolic) offset in bytes for this index.
504       if (StructType *STy = GTI.getStructTypeOrNull()) {
505         // For a struct, add the member offset.
506         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
507         if (FieldNo == 0)
508           continue;
509 
510         Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo);
511         continue;
512       }
513 
514       // For an array/pointer, add the element offset, explicitly scaled.
515       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
516         if (CIdx->isZero())
517           continue;
518         Decomposed.Offset +=
519             DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize() *
520             CIdx->getValue().sextOrTrunc(MaxPointerSize);
521         continue;
522       }
523 
524       GepHasConstantOffset = false;
525 
526       APInt Scale(MaxPointerSize,
527                   DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize());
528       unsigned ZExtBits = 0, SExtBits = 0;
529 
530       // If the integer type is smaller than the pointer size, it is implicitly
531       // sign extended to pointer size.
532       unsigned Width = Index->getType()->getIntegerBitWidth();
533       if (PointerSize > Width)
534         SExtBits += PointerSize - Width;
535 
536       // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
537       APInt IndexScale(Width, 0), IndexOffset(Width, 0);
538       bool NSW = true, NUW = true;
539       const Value *OrigIndex = Index;
540       Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
541                                   SExtBits, DL, 0, AC, DT, NSW, NUW);
542 
543       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
544       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
545 
546       // It can be the case that, even through C1*V+C2 does not overflow for
547       // relevant values of V, (C2*Scale) can overflow. In that case, we cannot
548       // decompose the expression in this way.
549       //
550       // FIXME: C1*Scale and the other operations in the decomposed
551       // (C1*Scale)*V+C2*Scale can also overflow. We should check for this
552       // possibility.
553       bool Overflow;
554       APInt ScaledOffset = IndexOffset.sextOrTrunc(MaxPointerSize)
555                            .smul_ov(Scale, Overflow);
556       if (Overflow) {
557         Index = OrigIndex;
558         IndexScale = 1;
559         IndexOffset = 0;
560 
561         ZExtBits = SExtBits = 0;
562         if (PointerSize > Width)
563           SExtBits += PointerSize - Width;
564       } else {
565         Decomposed.Offset += ScaledOffset;
566         Scale *= IndexScale.sextOrTrunc(MaxPointerSize);
567       }
568 
569       // If we already had an occurrence of this index variable, merge this
570       // scale into it.  For example, we want to handle:
571       //   A[x][x] -> x*16 + x*4 -> x*20
572       // This also ensures that 'x' only appears in the index list once.
573       for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
574         if (Decomposed.VarIndices[i].V == Index &&
575             Decomposed.VarIndices[i].ZExtBits == ZExtBits &&
576             Decomposed.VarIndices[i].SExtBits == SExtBits) {
577           Scale += Decomposed.VarIndices[i].Scale;
578           Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
579           break;
580         }
581       }
582 
583       // Make sure that we have a scale that makes sense for this target's
584       // pointer size.
585       Scale = adjustToPointerSize(Scale, PointerSize);
586 
587       if (!!Scale) {
588         VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, Scale, CxtI};
589         Decomposed.VarIndices.push_back(Entry);
590       }
591     }
592 
593     // Take care of wrap-arounds
594     if (GepHasConstantOffset)
595       Decomposed.Offset = adjustToPointerSize(Decomposed.Offset, PointerSize);
596 
597     // Analyze the base pointer next.
598     V = GEPOp->getOperand(0);
599   } while (--MaxLookup);
600 
601   // If the chain of expressions is too deep, just return early.
602   Decomposed.Base = V;
603   SearchLimitReached++;
604   return Decomposed;
605 }
606 
607 /// Returns whether the given pointer value points to memory that is local to
608 /// the function, with global constants being considered local to all
609 /// functions.
610 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
611                                            AAQueryInfo &AAQI, bool OrLocal) {
612   assert(Visited.empty() && "Visited must be cleared after use!");
613 
614   unsigned MaxLookup = 8;
615   SmallVector<const Value *, 16> Worklist;
616   Worklist.push_back(Loc.Ptr);
617   do {
618     const Value *V = getUnderlyingObject(Worklist.pop_back_val());
619     if (!Visited.insert(V).second) {
620       Visited.clear();
621       return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
622     }
623 
624     // An alloca instruction defines local memory.
625     if (OrLocal && isa<AllocaInst>(V))
626       continue;
627 
628     // A global constant counts as local memory for our purposes.
629     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
630       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
631       // global to be marked constant in some modules and non-constant in
632       // others.  GV may even be a declaration, not a definition.
633       if (!GV->isConstant()) {
634         Visited.clear();
635         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
636       }
637       continue;
638     }
639 
640     // If both select values point to local memory, then so does the select.
641     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
642       Worklist.push_back(SI->getTrueValue());
643       Worklist.push_back(SI->getFalseValue());
644       continue;
645     }
646 
647     // If all values incoming to a phi node point to local memory, then so does
648     // the phi.
649     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
650       // Don't bother inspecting phi nodes with many operands.
651       if (PN->getNumIncomingValues() > MaxLookup) {
652         Visited.clear();
653         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
654       }
655       for (Value *IncValue : PN->incoming_values())
656         Worklist.push_back(IncValue);
657       continue;
658     }
659 
660     // Otherwise be conservative.
661     Visited.clear();
662     return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
663   } while (!Worklist.empty() && --MaxLookup);
664 
665   Visited.clear();
666   return Worklist.empty();
667 }
668 
669 /// Returns the behavior when calling the given call site.
670 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) {
671   if (Call->doesNotAccessMemory())
672     // Can't do better than this.
673     return FMRB_DoesNotAccessMemory;
674 
675   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
676 
677   // If the callsite knows it only reads memory, don't return worse
678   // than that.
679   if (Call->onlyReadsMemory())
680     Min = FMRB_OnlyReadsMemory;
681   else if (Call->doesNotReadMemory())
682     Min = FMRB_OnlyWritesMemory;
683 
684   if (Call->onlyAccessesArgMemory())
685     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
686   else if (Call->onlyAccessesInaccessibleMemory())
687     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
688   else if (Call->onlyAccessesInaccessibleMemOrArgMem())
689     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
690 
691   // If the call has operand bundles then aliasing attributes from the function
692   // it calls do not directly apply to the call.  This can be made more precise
693   // in the future.
694   if (!Call->hasOperandBundles())
695     if (const Function *F = Call->getCalledFunction())
696       Min =
697           FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
698 
699   return Min;
700 }
701 
702 /// Returns the behavior when calling the given function. For use when the call
703 /// site is not known.
704 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
705   // If the function declares it doesn't access memory, we can't do better.
706   if (F->doesNotAccessMemory())
707     return FMRB_DoesNotAccessMemory;
708 
709   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
710 
711   // If the function declares it only reads memory, go with that.
712   if (F->onlyReadsMemory())
713     Min = FMRB_OnlyReadsMemory;
714   else if (F->doesNotReadMemory())
715     Min = FMRB_OnlyWritesMemory;
716 
717   if (F->onlyAccessesArgMemory())
718     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
719   else if (F->onlyAccessesInaccessibleMemory())
720     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
721   else if (F->onlyAccessesInaccessibleMemOrArgMem())
722     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
723 
724   return Min;
725 }
726 
727 /// Returns true if this is a writeonly (i.e Mod only) parameter.
728 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx,
729                              const TargetLibraryInfo &TLI) {
730   if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly))
731     return true;
732 
733   // We can bound the aliasing properties of memset_pattern16 just as we can
734   // for memcpy/memset.  This is particularly important because the
735   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
736   // whenever possible.
737   // FIXME Consider handling this in InferFunctionAttr.cpp together with other
738   // attributes.
739   LibFunc F;
740   if (Call->getCalledFunction() &&
741       TLI.getLibFunc(*Call->getCalledFunction(), F) &&
742       F == LibFunc_memset_pattern16 && TLI.has(F))
743     if (ArgIdx == 0)
744       return true;
745 
746   // TODO: memset_pattern4, memset_pattern8
747   // TODO: _chk variants
748   // TODO: strcmp, strcpy
749 
750   return false;
751 }
752 
753 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
754                                            unsigned ArgIdx) {
755   // Checking for known builtin intrinsics and target library functions.
756   if (isWriteOnlyParam(Call, ArgIdx, TLI))
757     return ModRefInfo::Mod;
758 
759   if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly))
760     return ModRefInfo::Ref;
761 
762   if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone))
763     return ModRefInfo::NoModRef;
764 
765   return AAResultBase::getArgModRefInfo(Call, ArgIdx);
766 }
767 
768 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
769   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
770   return II && II->getIntrinsicID() == IID;
771 }
772 
773 #ifndef NDEBUG
774 static const Function *getParent(const Value *V) {
775   if (const Instruction *inst = dyn_cast<Instruction>(V)) {
776     if (!inst->getParent())
777       return nullptr;
778     return inst->getParent()->getParent();
779   }
780 
781   if (const Argument *arg = dyn_cast<Argument>(V))
782     return arg->getParent();
783 
784   return nullptr;
785 }
786 
787 static bool notDifferentParent(const Value *O1, const Value *O2) {
788 
789   const Function *F1 = getParent(O1);
790   const Function *F2 = getParent(O2);
791 
792   return !F1 || !F2 || F1 == F2;
793 }
794 #endif
795 
796 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
797                                  const MemoryLocation &LocB,
798                                  AAQueryInfo &AAQI) {
799   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
800          "BasicAliasAnalysis doesn't support interprocedural queries.");
801   return aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr, LocB.Size,
802                     LocB.AATags, AAQI);
803 }
804 
805 /// Checks to see if the specified callsite can clobber the specified memory
806 /// object.
807 ///
808 /// Since we only look at local properties of this function, we really can't
809 /// say much about this query.  We do, however, use simple "address taken"
810 /// analysis on local objects.
811 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
812                                         const MemoryLocation &Loc,
813                                         AAQueryInfo &AAQI) {
814   assert(notDifferentParent(Call, Loc.Ptr) &&
815          "AliasAnalysis query involving multiple functions!");
816 
817   const Value *Object = getUnderlyingObject(Loc.Ptr);
818 
819   // Calls marked 'tail' cannot read or write allocas from the current frame
820   // because the current frame might be destroyed by the time they run. However,
821   // a tail call may use an alloca with byval. Calling with byval copies the
822   // contents of the alloca into argument registers or stack slots, so there is
823   // no lifetime issue.
824   if (isa<AllocaInst>(Object))
825     if (const CallInst *CI = dyn_cast<CallInst>(Call))
826       if (CI->isTailCall() &&
827           !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal))
828         return ModRefInfo::NoModRef;
829 
830   // Stack restore is able to modify unescaped dynamic allocas. Assume it may
831   // modify them even though the alloca is not escaped.
832   if (auto *AI = dyn_cast<AllocaInst>(Object))
833     if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore))
834       return ModRefInfo::Mod;
835 
836   // If the pointer is to a locally allocated object that does not escape,
837   // then the call can not mod/ref the pointer unless the call takes the pointer
838   // as an argument, and itself doesn't capture it.
839   if (!isa<Constant>(Object) && Call != Object &&
840       isNonEscapingLocalObject(Object, &AAQI.IsCapturedCache)) {
841 
842     // Optimistically assume that call doesn't touch Object and check this
843     // assumption in the following loop.
844     ModRefInfo Result = ModRefInfo::NoModRef;
845     bool IsMustAlias = true;
846 
847     unsigned OperandNo = 0;
848     for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
849          CI != CE; ++CI, ++OperandNo) {
850       // Only look at the no-capture or byval pointer arguments.  If this
851       // pointer were passed to arguments that were neither of these, then it
852       // couldn't be no-capture.
853       if (!(*CI)->getType()->isPointerTy() ||
854           (!Call->doesNotCapture(OperandNo) &&
855            OperandNo < Call->getNumArgOperands() &&
856            !Call->isByValArgument(OperandNo)))
857         continue;
858 
859       // Call doesn't access memory through this operand, so we don't care
860       // if it aliases with Object.
861       if (Call->doesNotAccessMemory(OperandNo))
862         continue;
863 
864       // If this is a no-capture pointer argument, see if we can tell that it
865       // is impossible to alias the pointer we're checking.
866       AliasResult AR = getBestAAResults().alias(
867           MemoryLocation::getBeforeOrAfter(*CI),
868           MemoryLocation::getBeforeOrAfter(Object), AAQI);
869       if (AR != MustAlias)
870         IsMustAlias = false;
871       // Operand doesn't alias 'Object', continue looking for other aliases
872       if (AR == NoAlias)
873         continue;
874       // Operand aliases 'Object', but call doesn't modify it. Strengthen
875       // initial assumption and keep looking in case if there are more aliases.
876       if (Call->onlyReadsMemory(OperandNo)) {
877         Result = setRef(Result);
878         continue;
879       }
880       // Operand aliases 'Object' but call only writes into it.
881       if (Call->doesNotReadMemory(OperandNo)) {
882         Result = setMod(Result);
883         continue;
884       }
885       // This operand aliases 'Object' and call reads and writes into it.
886       // Setting ModRef will not yield an early return below, MustAlias is not
887       // used further.
888       Result = ModRefInfo::ModRef;
889       break;
890     }
891 
892     // No operand aliases, reset Must bit. Add below if at least one aliases
893     // and all aliases found are MustAlias.
894     if (isNoModRef(Result))
895       IsMustAlias = false;
896 
897     // Early return if we improved mod ref information
898     if (!isModAndRefSet(Result)) {
899       if (isNoModRef(Result))
900         return ModRefInfo::NoModRef;
901       return IsMustAlias ? setMust(Result) : clearMust(Result);
902     }
903   }
904 
905   // If the call is malloc/calloc like, we can assume that it doesn't
906   // modify any IR visible value.  This is only valid because we assume these
907   // routines do not read values visible in the IR.  TODO: Consider special
908   // casing realloc and strdup routines which access only their arguments as
909   // well.  Or alternatively, replace all of this with inaccessiblememonly once
910   // that's implemented fully.
911   if (isMallocOrCallocLikeFn(Call, &TLI)) {
912     // Be conservative if the accessed pointer may alias the allocation -
913     // fallback to the generic handling below.
914     if (getBestAAResults().alias(MemoryLocation::getBeforeOrAfter(Call),
915                                  Loc, AAQI) == NoAlias)
916       return ModRefInfo::NoModRef;
917   }
918 
919   // The semantics of memcpy intrinsics either exactly overlap or do not
920   // overlap, i.e., source and destination of any given memcpy are either
921   // no-alias or must-alias.
922   if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) {
923     AliasResult SrcAA =
924         getBestAAResults().alias(MemoryLocation::getForSource(Inst), Loc, AAQI);
925     AliasResult DestAA =
926         getBestAAResults().alias(MemoryLocation::getForDest(Inst), Loc, AAQI);
927     // It's also possible for Loc to alias both src and dest, or neither.
928     ModRefInfo rv = ModRefInfo::NoModRef;
929     if (SrcAA != NoAlias)
930       rv = setRef(rv);
931     if (DestAA != NoAlias)
932       rv = setMod(rv);
933     return rv;
934   }
935 
936   // While the assume intrinsic is marked as arbitrarily writing so that
937   // proper control dependencies will be maintained, it never aliases any
938   // particular memory location.
939   if (isIntrinsicCall(Call, Intrinsic::assume))
940     return ModRefInfo::NoModRef;
941 
942   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
943   // that proper control dependencies are maintained but they never mods any
944   // particular memory location.
945   //
946   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
947   // heap state at the point the guard is issued needs to be consistent in case
948   // the guard invokes the "deopt" continuation.
949   if (isIntrinsicCall(Call, Intrinsic::experimental_guard))
950     return ModRefInfo::Ref;
951   // The same applies to deoptimize which is essentially a guard(false).
952   if (isIntrinsicCall(Call, Intrinsic::experimental_deoptimize))
953     return ModRefInfo::Ref;
954 
955   // Like assumes, invariant.start intrinsics were also marked as arbitrarily
956   // writing so that proper control dependencies are maintained but they never
957   // mod any particular memory location visible to the IR.
958   // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
959   // intrinsic is now modeled as reading memory. This prevents hoisting the
960   // invariant.start intrinsic over stores. Consider:
961   // *ptr = 40;
962   // *ptr = 50;
963   // invariant_start(ptr)
964   // int val = *ptr;
965   // print(val);
966   //
967   // This cannot be transformed to:
968   //
969   // *ptr = 40;
970   // invariant_start(ptr)
971   // *ptr = 50;
972   // int val = *ptr;
973   // print(val);
974   //
975   // The transformation will cause the second store to be ignored (based on
976   // rules of invariant.start)  and print 40, while the first program always
977   // prints 50.
978   if (isIntrinsicCall(Call, Intrinsic::invariant_start))
979     return ModRefInfo::Ref;
980 
981   // The AAResultBase base class has some smarts, lets use them.
982   return AAResultBase::getModRefInfo(Call, Loc, AAQI);
983 }
984 
985 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
986                                         const CallBase *Call2,
987                                         AAQueryInfo &AAQI) {
988   // While the assume intrinsic is marked as arbitrarily writing so that
989   // proper control dependencies will be maintained, it never aliases any
990   // particular memory location.
991   if (isIntrinsicCall(Call1, Intrinsic::assume) ||
992       isIntrinsicCall(Call2, Intrinsic::assume))
993     return ModRefInfo::NoModRef;
994 
995   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
996   // that proper control dependencies are maintained but they never mod any
997   // particular memory location.
998   //
999   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1000   // heap state at the point the guard is issued needs to be consistent in case
1001   // the guard invokes the "deopt" continuation.
1002 
1003   // NB! This function is *not* commutative, so we special case two
1004   // possibilities for guard intrinsics.
1005 
1006   if (isIntrinsicCall(Call1, Intrinsic::experimental_guard))
1007     return isModSet(createModRefInfo(getModRefBehavior(Call2)))
1008                ? ModRefInfo::Ref
1009                : ModRefInfo::NoModRef;
1010 
1011   if (isIntrinsicCall(Call2, Intrinsic::experimental_guard))
1012     return isModSet(createModRefInfo(getModRefBehavior(Call1)))
1013                ? ModRefInfo::Mod
1014                : ModRefInfo::NoModRef;
1015 
1016   // The AAResultBase base class has some smarts, lets use them.
1017   return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
1018 }
1019 
1020 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the
1021 // beginning of the object the GEP points would have a negative offset with
1022 // repsect to the alloca, that means the GEP can not alias pointer (b).
1023 // Note that the pointer based on the alloca may not be a GEP. For
1024 // example, it may be the alloca itself.
1025 // The same applies if (b) is based on a GlobalVariable. Note that just being
1026 // based on isIdentifiedObject() is not enough - we need an identified object
1027 // that does not permit access to negative offsets. For example, a negative
1028 // offset from a noalias argument or call can be inbounds w.r.t the actual
1029 // underlying object.
1030 //
1031 // For example, consider:
1032 //
1033 //   struct { int f0, int f1, ...} foo;
1034 //   foo alloca;
1035 //   foo* random = bar(alloca);
1036 //   int *f0 = &alloca.f0
1037 //   int *f1 = &random->f1;
1038 //
1039 // Which is lowered, approximately, to:
1040 //
1041 //  %alloca = alloca %struct.foo
1042 //  %random = call %struct.foo* @random(%struct.foo* %alloca)
1043 //  %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0
1044 //  %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1
1045 //
1046 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated
1047 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also
1048 // point into the same object. But since %f0 points to the beginning of %alloca,
1049 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher
1050 // than (%alloca - 1), and so is not inbounds, a contradiction.
1051 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp,
1052       const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject,
1053       LocationSize MaybeObjectAccessSize) {
1054   // If the object access size is unknown, or the GEP isn't inbounds, bail.
1055   if (!MaybeObjectAccessSize.hasValue() || !GEPOp->isInBounds())
1056     return false;
1057 
1058   const uint64_t ObjectAccessSize = MaybeObjectAccessSize.getValue();
1059 
1060   // We need the object to be an alloca or a globalvariable, and want to know
1061   // the offset of the pointer from the object precisely, so no variable
1062   // indices are allowed.
1063   if (!(isa<AllocaInst>(DecompObject.Base) ||
1064         isa<GlobalVariable>(DecompObject.Base)) ||
1065       !DecompObject.VarIndices.empty())
1066     return false;
1067 
1068   // If the GEP has no variable indices, we know the precise offset
1069   // from the base, then use it. If the GEP has variable indices,
1070   // we can't get exact GEP offset to identify pointer alias. So return
1071   // false in that case.
1072   if (!DecompGEP.VarIndices.empty())
1073     return false;
1074 
1075   return DecompGEP.Offset.sge(DecompObject.Offset + (int64_t)ObjectAccessSize);
1076 }
1077 
1078 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1079 /// another pointer.
1080 ///
1081 /// We know that V1 is a GEP, but we don't know anything about V2.
1082 /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for
1083 /// V2.
1084 AliasResult BasicAAResult::aliasGEP(
1085     const GEPOperator *GEP1, LocationSize V1Size, const AAMDNodes &V1AAInfo,
1086     const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo,
1087     const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) {
1088   DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT);
1089   DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT);
1090 
1091   // Don't attempt to analyze the decomposed GEP if index scale is not a
1092   // compile-time constant.
1093   if (!DecompGEP1.HasCompileTimeConstantScale ||
1094       !DecompGEP2.HasCompileTimeConstantScale)
1095     return MayAlias;
1096 
1097   assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
1098          "DecomposeGEPExpression returned a result different from "
1099          "getUnderlyingObject");
1100 
1101   // If the GEP's offset relative to its base is such that the base would
1102   // fall below the start of the object underlying V2, then the GEP and V2
1103   // cannot alias.
1104   if (isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size))
1105     return NoAlias;
1106   // If we have two gep instructions with must-alias or not-alias'ing base
1107   // pointers, figure out if the indexes to the GEP tell us anything about the
1108   // derived pointer.
1109   if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
1110     // Check for the GEP base being at a negative offset, this time in the other
1111     // direction.
1112     if (isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size))
1113       return NoAlias;
1114     // Do the base pointers alias?
1115     AliasResult BaseAlias = getBestAAResults().alias(
1116         MemoryLocation::getBeforeOrAfter(UnderlyingV1),
1117         MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI);
1118 
1119     // For GEPs with identical offsets, we can preserve the size and AAInfo
1120     // when performing the alias check on the underlying objects.
1121     if (BaseAlias == MayAlias && DecompGEP1.Offset == DecompGEP2.Offset &&
1122         DecompGEP1.VarIndices == DecompGEP2.VarIndices) {
1123       AliasResult PreciseBaseAlias = getBestAAResults().alias(
1124           MemoryLocation(UnderlyingV1, V1Size, V1AAInfo),
1125           MemoryLocation(UnderlyingV2, V2Size, V2AAInfo), AAQI);
1126       if (PreciseBaseAlias == NoAlias)
1127         return NoAlias;
1128     }
1129 
1130     // If we get a No or May, then return it immediately, no amount of analysis
1131     // will improve this situation.
1132     if (BaseAlias != MustAlias) {
1133       assert(BaseAlias == NoAlias || BaseAlias == MayAlias);
1134       return BaseAlias;
1135     }
1136 
1137     // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1138     // symbolic difference.
1139     DecompGEP1.Offset -= DecompGEP2.Offset;
1140     GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);
1141 
1142   } else {
1143     // Check to see if these two pointers are related by the getelementptr
1144     // instruction.  If one pointer is a GEP with a non-zero index of the other
1145     // pointer, we know they cannot alias.
1146 
1147     // If both accesses are unknown size, we can't do anything useful here.
1148     if (!V1Size.hasValue() && !V2Size.hasValue())
1149       return MayAlias;
1150 
1151     AliasResult R = getBestAAResults().alias(
1152         MemoryLocation::getBeforeOrAfter(UnderlyingV1),
1153         MemoryLocation(V2, V2Size, V2AAInfo), AAQI);
1154     if (R != MustAlias) {
1155       // If V2 may alias GEP base pointer, conservatively returns MayAlias.
1156       // If V2 is known not to alias GEP base pointer, then the two values
1157       // cannot alias per GEP semantics: "Any memory access must be done through
1158       // a pointer value associated with an address range of the memory access,
1159       // otherwise the behavior is undefined.".
1160       assert(R == NoAlias || R == MayAlias);
1161       return R;
1162     }
1163   }
1164 
1165   // In the two GEP Case, if there is no difference in the offsets of the
1166   // computed pointers, the resultant pointers are a must alias.  This
1167   // happens when we have two lexically identical GEP's (for example).
1168   //
1169   // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
1170   // must aliases the GEP, the end result is a must alias also.
1171   if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty())
1172     return MustAlias;
1173 
1174   // If there is a constant difference between the pointers, but the difference
1175   // is less than the size of the associated memory object, then we know
1176   // that the objects are partially overlapping.  If the difference is
1177   // greater, we know they do not overlap.
1178   if (DecompGEP1.Offset != 0 && DecompGEP1.VarIndices.empty()) {
1179     if (DecompGEP1.Offset.sge(0)) {
1180       if (V2Size.hasValue()) {
1181         if (DecompGEP1.Offset.ult(V2Size.getValue()))
1182           return PartialAlias;
1183         return NoAlias;
1184       }
1185     } else {
1186       // We have the situation where:
1187       // +                +
1188       // | BaseOffset     |
1189       // ---------------->|
1190       // |-->V1Size       |-------> V2Size
1191       // GEP1             V2
1192       if (V1Size.hasValue()) {
1193         if ((-DecompGEP1.Offset).ult(V1Size.getValue()))
1194           return PartialAlias;
1195         return NoAlias;
1196       }
1197     }
1198   }
1199 
1200   if (!DecompGEP1.VarIndices.empty()) {
1201     APInt GCD;
1202     bool AllNonNegative = DecompGEP1.Offset.isNonNegative();
1203     bool AllNonPositive = DecompGEP1.Offset.isNonPositive();
1204     for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1205       const APInt &Scale = DecompGEP1.VarIndices[i].Scale;
1206       if (i == 0)
1207         GCD = Scale.abs();
1208       else
1209         GCD = APIntOps::GreatestCommonDivisor(GCD, Scale.abs());
1210 
1211       if (AllNonNegative || AllNonPositive) {
1212         // If the Value could change between cycles, then any reasoning about
1213         // the Value this cycle may not hold in the next cycle. We'll just
1214         // give up if we can't determine conditions that hold for every cycle:
1215         const Value *V = DecompGEP1.VarIndices[i].V;
1216         const Instruction *CxtI = DecompGEP1.VarIndices[i].CxtI;
1217 
1218         KnownBits Known = computeKnownBits(V, DL, 0, &AC, CxtI, DT);
1219         bool SignKnownZero = Known.isNonNegative();
1220         bool SignKnownOne = Known.isNegative();
1221 
1222         // Zero-extension widens the variable, and so forces the sign
1223         // bit to zero.
1224         bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
1225         SignKnownZero |= IsZExt;
1226         SignKnownOne &= !IsZExt;
1227 
1228         AllNonNegative &= (SignKnownZero && Scale.isNonNegative()) ||
1229                           (SignKnownOne && Scale.isNonPositive());
1230         AllNonPositive &= (SignKnownZero && Scale.isNonPositive()) ||
1231                           (SignKnownOne && Scale.isNonNegative());
1232       }
1233     }
1234 
1235     // We now have accesses at two offsets from the same base:
1236     //  1. (...)*GCD + DecompGEP1.Offset with size V1Size
1237     //  2. 0 with size V2Size
1238     // Using arithmetic modulo GCD, the accesses are at
1239     // [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits
1240     // into the range [V2Size..GCD), then we know they cannot overlap.
1241     APInt ModOffset = DecompGEP1.Offset.srem(GCD);
1242     if (ModOffset.isNegative())
1243       ModOffset += GCD; // We want mod, not rem.
1244     if (V1Size.hasValue() && V2Size.hasValue() &&
1245         ModOffset.uge(V2Size.getValue()) &&
1246         (GCD - ModOffset).uge(V1Size.getValue()))
1247       return NoAlias;
1248 
1249     // If we know all the variables are non-negative, then the total offset is
1250     // also non-negative and >= DecompGEP1.Offset. We have the following layout:
1251     // [0, V2Size) ... [TotalOffset, TotalOffer+V1Size]
1252     // If DecompGEP1.Offset >= V2Size, the accesses don't alias.
1253     if (AllNonNegative && V2Size.hasValue() &&
1254         DecompGEP1.Offset.uge(V2Size.getValue()))
1255       return NoAlias;
1256     // Similarly, if the variables are non-positive, then the total offset is
1257     // also non-positive and <= DecompGEP1.Offset. We have the following layout:
1258     // [TotalOffset, TotalOffset+V1Size) ... [0, V2Size)
1259     // If -DecompGEP1.Offset >= V1Size, the accesses don't alias.
1260     if (AllNonPositive && V1Size.hasValue() &&
1261         (-DecompGEP1.Offset).uge(V1Size.getValue()))
1262       return NoAlias;
1263 
1264     if (V1Size.hasValue() && V2Size.hasValue()) {
1265       // Try to determine whether abs(VarIndex) > 0.
1266       Optional<APInt> MinAbsVarIndex;
1267       if (DecompGEP1.VarIndices.size() == 1) {
1268         // VarIndex = Scale*V. If V != 0 then abs(VarIndex) >= abs(Scale).
1269         const VariableGEPIndex &Var = DecompGEP1.VarIndices[0];
1270         if (isKnownNonZero(Var.V, DL, 0, &AC, Var.CxtI, DT))
1271           MinAbsVarIndex = Var.Scale.abs();
1272       } else if (DecompGEP1.VarIndices.size() == 2) {
1273         // VarIndex = Scale*V0 + (-Scale)*V1.
1274         // If V0 != V1 then abs(VarIndex) >= abs(Scale).
1275         // Check that VisitedPhiBBs is empty, to avoid reasoning about
1276         // inequality of values across loop iterations.
1277         const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0];
1278         const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1];
1279         if (Var0.Scale == -Var1.Scale && Var0.ZExtBits == Var1.ZExtBits &&
1280             Var0.SExtBits == Var1.SExtBits && VisitedPhiBBs.empty() &&
1281             isKnownNonEqual(Var0.V, Var1.V, DL, &AC, /* CxtI */ nullptr, DT))
1282           MinAbsVarIndex = Var0.Scale.abs();
1283       }
1284 
1285       if (MinAbsVarIndex) {
1286         // The constant offset will have added at least +/-MinAbsVarIndex to it.
1287         APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex;
1288         APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex;
1289         // Check that an access at OffsetLo or lower, and an access at OffsetHi
1290         // or higher both do not alias.
1291         if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) &&
1292             OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue()))
1293           return NoAlias;
1294       }
1295     }
1296 
1297     if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
1298                                 DecompGEP1.Offset, &AC, DT))
1299       return NoAlias;
1300   }
1301 
1302   // Statically, we can see that the base objects are the same, but the
1303   // pointers have dynamic offsets which we can't resolve. And none of our
1304   // little tricks above worked.
1305   return MayAlias;
1306 }
1307 
1308 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1309   // If the results agree, take it.
1310   if (A == B)
1311     return A;
1312   // A mix of PartialAlias and MustAlias is PartialAlias.
1313   if ((A == PartialAlias && B == MustAlias) ||
1314       (B == PartialAlias && A == MustAlias))
1315     return PartialAlias;
1316   // Otherwise, we don't know anything.
1317   return MayAlias;
1318 }
1319 
1320 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1321 /// against another.
1322 AliasResult
1323 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize,
1324                            const AAMDNodes &SIAAInfo, const Value *V2,
1325                            LocationSize V2Size, const AAMDNodes &V2AAInfo,
1326                            AAQueryInfo &AAQI) {
1327   // If the values are Selects with the same condition, we can do a more precise
1328   // check: just check for aliases between the values on corresponding arms.
1329   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1330     if (SI->getCondition() == SI2->getCondition()) {
1331       AliasResult Alias = getBestAAResults().alias(
1332           MemoryLocation(SI->getTrueValue(), SISize, SIAAInfo),
1333           MemoryLocation(SI2->getTrueValue(), V2Size, V2AAInfo), AAQI);
1334       if (Alias == MayAlias)
1335         return MayAlias;
1336       AliasResult ThisAlias = getBestAAResults().alias(
1337           MemoryLocation(SI->getFalseValue(), SISize, SIAAInfo),
1338           MemoryLocation(SI2->getFalseValue(), V2Size, V2AAInfo), AAQI);
1339       return MergeAliasResults(ThisAlias, Alias);
1340     }
1341 
1342   // If both arms of the Select node NoAlias or MustAlias V2, then returns
1343   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1344   AliasResult Alias = getBestAAResults().alias(
1345       MemoryLocation(V2, V2Size, V2AAInfo),
1346       MemoryLocation(SI->getTrueValue(), SISize, SIAAInfo), AAQI);
1347   if (Alias == MayAlias)
1348     return MayAlias;
1349 
1350   AliasResult ThisAlias = getBestAAResults().alias(
1351       MemoryLocation(V2, V2Size, V2AAInfo),
1352       MemoryLocation(SI->getFalseValue(), SISize, SIAAInfo), AAQI);
1353   return MergeAliasResults(ThisAlias, Alias);
1354 }
1355 
1356 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1357 /// another.
1358 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
1359                                     const AAMDNodes &PNAAInfo, const Value *V2,
1360                                     LocationSize V2Size,
1361                                     const AAMDNodes &V2AAInfo,
1362                                     AAQueryInfo &AAQI) {
1363   // If the values are PHIs in the same block, we can do a more precise
1364   // as well as efficient check: just check for aliases between the values
1365   // on corresponding edges.
1366   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1367     if (PN2->getParent() == PN->getParent()) {
1368       Optional<AliasResult> Alias;
1369       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1370         AliasResult ThisAlias = getBestAAResults().alias(
1371             MemoryLocation(PN->getIncomingValue(i), PNSize, PNAAInfo),
1372             MemoryLocation(
1373                 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size,
1374                 V2AAInfo),
1375             AAQI);
1376         if (Alias)
1377           *Alias = MergeAliasResults(*Alias, ThisAlias);
1378         else
1379           Alias = ThisAlias;
1380         if (*Alias == MayAlias)
1381           break;
1382       }
1383       return *Alias;
1384     }
1385 
1386   SmallVector<Value *, 4> V1Srcs;
1387   // If a phi operand recurses back to the phi, we can still determine NoAlias
1388   // if we don't alias the underlying objects of the other phi operands, as we
1389   // know that the recursive phi needs to be based on them in some way.
1390   bool isRecursive = false;
1391   auto CheckForRecPhi = [&](Value *PV) {
1392     if (!EnableRecPhiAnalysis)
1393       return false;
1394     if (getUnderlyingObject(PV) == PN) {
1395       isRecursive = true;
1396       return true;
1397     }
1398     return false;
1399   };
1400 
1401   if (PV) {
1402     // If we have PhiValues then use it to get the underlying phi values.
1403     const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN);
1404     // If we have more phi values than the search depth then return MayAlias
1405     // conservatively to avoid compile time explosion. The worst possible case
1406     // is if both sides are PHI nodes. In which case, this is O(m x n) time
1407     // where 'm' and 'n' are the number of PHI sources.
1408     if (PhiValueSet.size() > MaxLookupSearchDepth)
1409       return MayAlias;
1410     // Add the values to V1Srcs
1411     for (Value *PV1 : PhiValueSet) {
1412       if (CheckForRecPhi(PV1))
1413         continue;
1414       V1Srcs.push_back(PV1);
1415     }
1416   } else {
1417     // If we don't have PhiInfo then just look at the operands of the phi itself
1418     // FIXME: Remove this once we can guarantee that we have PhiInfo always
1419     SmallPtrSet<Value *, 4> UniqueSrc;
1420     for (Value *PV1 : PN->incoming_values()) {
1421       if (isa<PHINode>(PV1))
1422         // If any of the source itself is a PHI, return MayAlias conservatively
1423         // to avoid compile time explosion. The worst possible case is if both
1424         // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1425         // and 'n' are the number of PHI sources.
1426         return MayAlias;
1427 
1428       if (CheckForRecPhi(PV1))
1429         continue;
1430 
1431       if (UniqueSrc.insert(PV1).second)
1432         V1Srcs.push_back(PV1);
1433     }
1434   }
1435 
1436   // If V1Srcs is empty then that means that the phi has no underlying non-phi
1437   // value. This should only be possible in blocks unreachable from the entry
1438   // block, but return MayAlias just in case.
1439   if (V1Srcs.empty())
1440     return MayAlias;
1441 
1442   // If this PHI node is recursive, indicate that the pointer may be moved
1443   // across iterations. We can only prove NoAlias if different underlying
1444   // objects are involved.
1445   if (isRecursive)
1446     PNSize = LocationSize::beforeOrAfterPointer();
1447 
1448   // In the recursive alias queries below, we may compare values from two
1449   // different loop iterations. Keep track of visited phi blocks, which will
1450   // be used when determining value equivalence.
1451   bool BlockInserted = VisitedPhiBBs.insert(PN->getParent()).second;
1452   auto _ = make_scope_exit([&]() {
1453     if (BlockInserted)
1454       VisitedPhiBBs.erase(PN->getParent());
1455   });
1456 
1457   // If we inserted a block into VisitedPhiBBs, alias analysis results that
1458   // have been cached earlier may no longer be valid. Perform recursive queries
1459   // with a new AAQueryInfo.
1460   AAQueryInfo NewAAQI;
1461   AAQueryInfo *UseAAQI = BlockInserted ? &NewAAQI : &AAQI;
1462 
1463   AliasResult Alias = getBestAAResults().alias(
1464       MemoryLocation(V2, V2Size, V2AAInfo),
1465       MemoryLocation(V1Srcs[0], PNSize, PNAAInfo), *UseAAQI);
1466 
1467   // Early exit if the check of the first PHI source against V2 is MayAlias.
1468   // Other results are not possible.
1469   if (Alias == MayAlias)
1470     return MayAlias;
1471   // With recursive phis we cannot guarantee that MustAlias/PartialAlias will
1472   // remain valid to all elements and needs to conservatively return MayAlias.
1473   if (isRecursive && Alias != NoAlias)
1474     return MayAlias;
1475 
1476   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1477   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1478   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1479     Value *V = V1Srcs[i];
1480 
1481     AliasResult ThisAlias = getBestAAResults().alias(
1482         MemoryLocation(V2, V2Size, V2AAInfo),
1483         MemoryLocation(V, PNSize, PNAAInfo), *UseAAQI);
1484     Alias = MergeAliasResults(ThisAlias, Alias);
1485     if (Alias == MayAlias)
1486       break;
1487   }
1488 
1489   return Alias;
1490 }
1491 
1492 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1493 /// array references.
1494 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
1495                                       const AAMDNodes &V1AAInfo,
1496                                       const Value *V2, LocationSize V2Size,
1497                                       const AAMDNodes &V2AAInfo,
1498                                       AAQueryInfo &AAQI) {
1499   // If either of the memory references is empty, it doesn't matter what the
1500   // pointer values are.
1501   if (V1Size.isZero() || V2Size.isZero())
1502     return NoAlias;
1503 
1504   // Strip off any casts if they exist.
1505   V1 = V1->stripPointerCastsAndInvariantGroups();
1506   V2 = V2->stripPointerCastsAndInvariantGroups();
1507 
1508   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1509   // value for undef that aliases nothing in the program.
1510   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1511     return NoAlias;
1512 
1513   // Are we checking for alias of the same value?
1514   // Because we look 'through' phi nodes, we could look at "Value" pointers from
1515   // different iterations. We must therefore make sure that this is not the
1516   // case. The function isValueEqualInPotentialCycles ensures that this cannot
1517   // happen by looking at the visited phi nodes and making sure they cannot
1518   // reach the value.
1519   if (isValueEqualInPotentialCycles(V1, V2))
1520     return MustAlias;
1521 
1522   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1523     return NoAlias; // Scalars cannot alias each other
1524 
1525   // Figure out what objects these things are pointing to if we can.
1526   const Value *O1 = getUnderlyingObject(V1, MaxLookupSearchDepth);
1527   const Value *O2 = getUnderlyingObject(V2, MaxLookupSearchDepth);
1528 
1529   // Null values in the default address space don't point to any object, so they
1530   // don't alias any other pointer.
1531   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1532     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1533       return NoAlias;
1534   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1535     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1536       return NoAlias;
1537 
1538   if (O1 != O2) {
1539     // If V1/V2 point to two different objects, we know that we have no alias.
1540     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1541       return NoAlias;
1542 
1543     // Constant pointers can't alias with non-const isIdentifiedObject objects.
1544     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1545         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1546       return NoAlias;
1547 
1548     // Function arguments can't alias with things that are known to be
1549     // unambigously identified at the function level.
1550     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1551         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1552       return NoAlias;
1553 
1554     // If one pointer is the result of a call/invoke or load and the other is a
1555     // non-escaping local object within the same function, then we know the
1556     // object couldn't escape to a point where the call could return it.
1557     //
1558     // Note that if the pointers are in different functions, there are a
1559     // variety of complications. A call with a nocapture argument may still
1560     // temporary store the nocapture argument's value in a temporary memory
1561     // location if that memory location doesn't escape. Or it may pass a
1562     // nocapture value to other functions as long as they don't capture it.
1563     if (isEscapeSource(O1) &&
1564         isNonEscapingLocalObject(O2, &AAQI.IsCapturedCache))
1565       return NoAlias;
1566     if (isEscapeSource(O2) &&
1567         isNonEscapingLocalObject(O1, &AAQI.IsCapturedCache))
1568       return NoAlias;
1569   }
1570 
1571   // If the size of one access is larger than the entire object on the other
1572   // side, then we know such behavior is undefined and can assume no alias.
1573   bool NullIsValidLocation = NullPointerIsDefined(&F);
1574   if ((isObjectSmallerThan(
1575           O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL,
1576           TLI, NullIsValidLocation)) ||
1577       (isObjectSmallerThan(
1578           O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL,
1579           TLI, NullIsValidLocation)))
1580     return NoAlias;
1581 
1582   // If one the accesses may be before the accessed pointer, canonicalize this
1583   // by using unknown after-pointer sizes for both accesses. This is
1584   // equivalent, because regardless of which pointer is lower, one of them
1585   // will always came after the other, as long as the underlying objects aren't
1586   // disjoint. We do this so that the rest of BasicAA does not have to deal
1587   // with accesses before the base pointer, and to improve cache utilization by
1588   // merging equivalent states.
1589   if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) {
1590     V1Size = LocationSize::afterPointer();
1591     V2Size = LocationSize::afterPointer();
1592   }
1593 
1594   // Check the cache before climbing up use-def chains. This also terminates
1595   // otherwise infinitely recursive queries.
1596   AAQueryInfo::LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
1597                             MemoryLocation(V2, V2Size, V2AAInfo));
1598   if (V1 > V2)
1599     std::swap(Locs.first, Locs.second);
1600   const auto &Pair = AAQI.AliasCache.try_emplace(
1601       Locs, AAQueryInfo::CacheEntry{NoAlias, 0});
1602   if (!Pair.second) {
1603     auto &Entry = Pair.first->second;
1604     if (!Entry.isDefinitive()) {
1605       // Remember that we used an assumption.
1606       ++Entry.NumAssumptionUses;
1607       ++AAQI.NumAssumptionUses;
1608     }
1609     return Entry.Result;
1610   }
1611 
1612   int OrigNumAssumptionUses = AAQI.NumAssumptionUses;
1613   unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size();
1614   AliasResult Result = aliasCheckRecursive(V1, V1Size, V1AAInfo, V2, V2Size,
1615                                            V2AAInfo, AAQI, O1, O2);
1616 
1617   auto It = AAQI.AliasCache.find(Locs);
1618   assert(It != AAQI.AliasCache.end() && "Must be in cache");
1619   auto &Entry = It->second;
1620 
1621   // Check whether a NoAlias assumption has been used, but disproven.
1622   bool AssumptionDisproven = Entry.NumAssumptionUses > 0 && Result != NoAlias;
1623   if (AssumptionDisproven)
1624     Result = MayAlias;
1625 
1626   // This is a definitive result now, when considered as a root query.
1627   AAQI.NumAssumptionUses -= Entry.NumAssumptionUses;
1628   Entry.Result = Result;
1629   Entry.NumAssumptionUses = -1;
1630 
1631   // If the assumption has been disproven, remove any results that may have
1632   // been based on this assumption. Do this after the Entry updates above to
1633   // avoid iterator invalidation.
1634   if (AssumptionDisproven)
1635     while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults)
1636       AAQI.AliasCache.erase(AAQI.AssumptionBasedResults.pop_back_val());
1637 
1638   // The result may still be based on assumptions higher up in the chain.
1639   // Remember it, so it can be purged from the cache later.
1640   if (OrigNumAssumptionUses != AAQI.NumAssumptionUses && Result != MayAlias)
1641     AAQI.AssumptionBasedResults.push_back(Locs);
1642   return Result;
1643 }
1644 
1645 AliasResult BasicAAResult::aliasCheckRecursive(
1646     const Value *V1, LocationSize V1Size, const AAMDNodes &V1AAInfo,
1647     const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo,
1648     AAQueryInfo &AAQI, const Value *O1, const Value *O2) {
1649   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1650     AliasResult Result =
1651         aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2, AAQI);
1652     if (Result != MayAlias)
1653       return Result;
1654   } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) {
1655     AliasResult Result =
1656         aliasGEP(GV2, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, O2, O1, AAQI);
1657     if (Result != MayAlias)
1658       return Result;
1659   }
1660 
1661   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1662     AliasResult Result =
1663         aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, AAQI);
1664     if (Result != MayAlias)
1665       return Result;
1666   } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) {
1667     AliasResult Result =
1668         aliasPHI(PN, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, AAQI);
1669     if (Result != MayAlias)
1670       return Result;
1671   }
1672 
1673   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1674     AliasResult Result =
1675         aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, AAQI);
1676     if (Result != MayAlias)
1677       return Result;
1678   } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) {
1679     AliasResult Result =
1680         aliasSelect(S2, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, AAQI);
1681     if (Result != MayAlias)
1682       return Result;
1683   }
1684 
1685   // If both pointers are pointing into the same object and one of them
1686   // accesses the entire object, then the accesses must overlap in some way.
1687   if (O1 == O2) {
1688     bool NullIsValidLocation = NullPointerIsDefined(&F);
1689     if (V1Size.isPrecise() && V2Size.isPrecise() &&
1690         (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
1691          isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation)))
1692       return PartialAlias;
1693   }
1694 
1695   return MayAlias;
1696 }
1697 
1698 /// Check whether two Values can be considered equivalent.
1699 ///
1700 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1701 /// they can not be part of a cycle in the value graph by looking at all
1702 /// visited phi nodes an making sure that the phis cannot reach the value. We
1703 /// have to do this because we are looking through phi nodes (That is we say
1704 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1705 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1706                                                   const Value *V2) {
1707   if (V != V2)
1708     return false;
1709 
1710   const Instruction *Inst = dyn_cast<Instruction>(V);
1711   if (!Inst)
1712     return true;
1713 
1714   if (VisitedPhiBBs.empty())
1715     return true;
1716 
1717   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1718     return false;
1719 
1720   // Make sure that the visited phis cannot reach the Value. This ensures that
1721   // the Values cannot come from different iterations of a potential cycle the
1722   // phi nodes could be involved in.
1723   for (auto *P : VisitedPhiBBs)
1724     if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT, LI))
1725       return false;
1726 
1727   return true;
1728 }
1729 
1730 /// Computes the symbolic difference between two de-composed GEPs.
1731 ///
1732 /// Dest and Src are the variable indices from two decomposed GetElementPtr
1733 /// instructions GEP1 and GEP2 which have common base pointers.
1734 void BasicAAResult::GetIndexDifference(
1735     SmallVectorImpl<VariableGEPIndex> &Dest,
1736     const SmallVectorImpl<VariableGEPIndex> &Src) {
1737   if (Src.empty())
1738     return;
1739 
1740   for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1741     const Value *V = Src[i].V;
1742     unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
1743     APInt Scale = Src[i].Scale;
1744 
1745     // Find V in Dest.  This is N^2, but pointer indices almost never have more
1746     // than a few variable indexes.
1747     for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1748       if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1749           Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
1750         continue;
1751 
1752       // If we found it, subtract off Scale V's from the entry in Dest.  If it
1753       // goes to zero, remove the entry.
1754       if (Dest[j].Scale != Scale)
1755         Dest[j].Scale -= Scale;
1756       else
1757         Dest.erase(Dest.begin() + j);
1758       Scale = 0;
1759       break;
1760     }
1761 
1762     // If we didn't consume this entry, add it to the end of the Dest list.
1763     if (!!Scale) {
1764       VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale, Src[i].CxtI};
1765       Dest.push_back(Entry);
1766     }
1767   }
1768 }
1769 
1770 bool BasicAAResult::constantOffsetHeuristic(
1771     const SmallVectorImpl<VariableGEPIndex> &VarIndices,
1772     LocationSize MaybeV1Size, LocationSize MaybeV2Size, const APInt &BaseOffset,
1773     AssumptionCache *AC, DominatorTree *DT) {
1774   if (VarIndices.size() != 2 || !MaybeV1Size.hasValue() ||
1775       !MaybeV2Size.hasValue())
1776     return false;
1777 
1778   const uint64_t V1Size = MaybeV1Size.getValue();
1779   const uint64_t V2Size = MaybeV2Size.getValue();
1780 
1781   const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
1782 
1783   if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
1784       Var0.Scale != -Var1.Scale)
1785     return false;
1786 
1787   unsigned Width = Var1.V->getType()->getIntegerBitWidth();
1788 
1789   // We'll strip off the Extensions of Var0 and Var1 and do another round
1790   // of GetLinearExpression decomposition. In the example above, if Var0
1791   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1792 
1793   APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
1794       V1Offset(Width, 0);
1795   bool NSW = true, NUW = true;
1796   unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
1797   const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
1798                                         V0SExtBits, DL, 0, AC, DT, NSW, NUW);
1799   NSW = true;
1800   NUW = true;
1801   const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
1802                                         V1SExtBits, DL, 0, AC, DT, NSW, NUW);
1803 
1804   if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
1805       V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
1806     return false;
1807 
1808   // We have a hit - Var0 and Var1 only differ by a constant offset!
1809 
1810   // If we've been sext'ed then zext'd the maximum difference between Var0 and
1811   // Var1 is possible to calculate, but we're just interested in the absolute
1812   // minimum difference between the two. The minimum distance may occur due to
1813   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1814   // the minimum distance between %i and %i + 5 is 3.
1815   APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
1816   MinDiff = APIntOps::umin(MinDiff, Wrapped);
1817   APInt MinDiffBytes =
1818     MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs();
1819 
1820   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
1821   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
1822   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
1823   // V2Size can fit in the MinDiffBytes gap.
1824   return MinDiffBytes.uge(V1Size + BaseOffset.abs()) &&
1825          MinDiffBytes.uge(V2Size + BaseOffset.abs());
1826 }
1827 
1828 //===----------------------------------------------------------------------===//
1829 // BasicAliasAnalysis Pass
1830 //===----------------------------------------------------------------------===//
1831 
1832 AnalysisKey BasicAA::Key;
1833 
1834 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
1835   return BasicAAResult(F.getParent()->getDataLayout(),
1836                        F,
1837                        AM.getResult<TargetLibraryAnalysis>(F),
1838                        AM.getResult<AssumptionAnalysis>(F),
1839                        &AM.getResult<DominatorTreeAnalysis>(F),
1840                        AM.getCachedResult<LoopAnalysis>(F),
1841                        AM.getCachedResult<PhiValuesAnalysis>(F));
1842 }
1843 
1844 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
1845   initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
1846 }
1847 
1848 char BasicAAWrapperPass::ID = 0;
1849 
1850 void BasicAAWrapperPass::anchor() {}
1851 
1852 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa",
1853                       "Basic Alias Analysis (stateless AA impl)", true, true)
1854 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1855 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1856 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1857 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
1858 INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa",
1859                     "Basic Alias Analysis (stateless AA impl)", true, true)
1860 
1861 FunctionPass *llvm::createBasicAAWrapperPass() {
1862   return new BasicAAWrapperPass();
1863 }
1864 
1865 bool BasicAAWrapperPass::runOnFunction(Function &F) {
1866   auto &ACT = getAnalysis<AssumptionCacheTracker>();
1867   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
1868   auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
1869   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
1870   auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>();
1871 
1872   Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F,
1873                                  TLIWP.getTLI(F), ACT.getAssumptionCache(F),
1874                                  &DTWP.getDomTree(),
1875                                  LIWP ? &LIWP->getLoopInfo() : nullptr,
1876                                  PVWP ? &PVWP->getResult() : nullptr));
1877 
1878   return false;
1879 }
1880 
1881 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1882   AU.setPreservesAll();
1883   AU.addRequiredTransitive<AssumptionCacheTracker>();
1884   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
1885   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1886   AU.addUsedIfAvailable<PhiValuesWrapperPass>();
1887 }
1888 
1889 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
1890   return BasicAAResult(
1891       F.getParent()->getDataLayout(), F,
1892       P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
1893       P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
1894 }
1895