1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the primary stateless implementation of the 10 // Alias Analysis interface that implements identities (two different 11 // globals cannot alias, etc), but does no stateful analysis. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/BasicAliasAnalysis.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/CFG.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/MemoryBuiltins.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/PhiValues.h" 30 #include "llvm/Analysis/TargetLibraryInfo.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/IR/Argument.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GetElementPtrTypeIterator.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/Metadata.h" 49 #include "llvm/IR/Operator.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/User.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/KnownBits.h" 59 #include <cassert> 60 #include <cstdint> 61 #include <cstdlib> 62 #include <utility> 63 64 #define DEBUG_TYPE "basicaa" 65 66 using namespace llvm; 67 68 /// Enable analysis of recursive PHI nodes. 69 static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden, 70 cl::init(true)); 71 72 /// By default, even on 32-bit architectures we use 64-bit integers for 73 /// calculations. This will allow us to more-aggressively decompose indexing 74 /// expressions calculated using i64 values (e.g., long long in C) which is 75 /// common enough to worry about. 76 static cl::opt<bool> ForceAtLeast64Bits("basic-aa-force-at-least-64b", 77 cl::Hidden, cl::init(true)); 78 static cl::opt<bool> DoubleCalcBits("basic-aa-double-calc-bits", 79 cl::Hidden, cl::init(false)); 80 81 /// SearchLimitReached / SearchTimes shows how often the limit of 82 /// to decompose GEPs is reached. It will affect the precision 83 /// of basic alias analysis. 84 STATISTIC(SearchLimitReached, "Number of times the limit to " 85 "decompose GEPs is reached"); 86 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 87 88 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 89 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be 90 /// careful with value equivalence. We use reachability to make sure a value 91 /// cannot be involved in a cycle. 92 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 93 94 // The max limit of the search depth in DecomposeGEPExpression() and 95 // getUnderlyingObject(), both functions need to use the same search 96 // depth otherwise the algorithm in aliasGEP will assert. 97 static const unsigned MaxLookupSearchDepth = 6; 98 99 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA, 100 FunctionAnalysisManager::Invalidator &Inv) { 101 // We don't care if this analysis itself is preserved, it has no state. But 102 // we need to check that the analyses it depends on have been. Note that we 103 // may be created without handles to some analyses and in that case don't 104 // depend on them. 105 if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) || 106 (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) || 107 (LI && Inv.invalidate<LoopAnalysis>(Fn, PA)) || 108 (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA))) 109 return true; 110 111 // Otherwise this analysis result remains valid. 112 return false; 113 } 114 115 //===----------------------------------------------------------------------===// 116 // Useful predicates 117 //===----------------------------------------------------------------------===// 118 119 /// Returns true if the pointer is one which would have been considered an 120 /// escape by isNonEscapingLocalObject. 121 static bool isEscapeSource(const Value *V) { 122 if (isa<CallBase>(V)) 123 return true; 124 125 if (isa<Argument>(V)) 126 return true; 127 128 // The load case works because isNonEscapingLocalObject considers all 129 // stores to be escapes (it passes true for the StoreCaptures argument 130 // to PointerMayBeCaptured). 131 if (isa<LoadInst>(V)) 132 return true; 133 134 return false; 135 } 136 137 /// Returns the size of the object specified by V or UnknownSize if unknown. 138 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 139 const TargetLibraryInfo &TLI, 140 bool NullIsValidLoc, 141 bool RoundToAlign = false) { 142 uint64_t Size; 143 ObjectSizeOpts Opts; 144 Opts.RoundToAlign = RoundToAlign; 145 Opts.NullIsUnknownSize = NullIsValidLoc; 146 if (getObjectSize(V, Size, DL, &TLI, Opts)) 147 return Size; 148 return MemoryLocation::UnknownSize; 149 } 150 151 /// Returns true if we can prove that the object specified by V is smaller than 152 /// Size. 153 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 154 const DataLayout &DL, 155 const TargetLibraryInfo &TLI, 156 bool NullIsValidLoc) { 157 // Note that the meanings of the "object" are slightly different in the 158 // following contexts: 159 // c1: llvm::getObjectSize() 160 // c2: llvm.objectsize() intrinsic 161 // c3: isObjectSmallerThan() 162 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 163 // refers to the "entire object". 164 // 165 // Consider this example: 166 // char *p = (char*)malloc(100) 167 // char *q = p+80; 168 // 169 // In the context of c1 and c2, the "object" pointed by q refers to the 170 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 171 // 172 // However, in the context of c3, the "object" refers to the chunk of memory 173 // being allocated. So, the "object" has 100 bytes, and q points to the middle 174 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 175 // parameter, before the llvm::getObjectSize() is called to get the size of 176 // entire object, we should: 177 // - either rewind the pointer q to the base-address of the object in 178 // question (in this case rewind to p), or 179 // - just give up. It is up to caller to make sure the pointer is pointing 180 // to the base address the object. 181 // 182 // We go for 2nd option for simplicity. 183 if (!isIdentifiedObject(V)) 184 return false; 185 186 // This function needs to use the aligned object size because we allow 187 // reads a bit past the end given sufficient alignment. 188 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc, 189 /*RoundToAlign*/ true); 190 191 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; 192 } 193 194 /// Return the minimal extent from \p V to the end of the underlying object, 195 /// assuming the result is used in an aliasing query. E.g., we do use the query 196 /// location size and the fact that null pointers cannot alias here. 197 static uint64_t getMinimalExtentFrom(const Value &V, 198 const LocationSize &LocSize, 199 const DataLayout &DL, 200 bool NullIsValidLoc) { 201 // If we have dereferenceability information we know a lower bound for the 202 // extent as accesses for a lower offset would be valid. We need to exclude 203 // the "or null" part if null is a valid pointer. 204 bool CanBeNull; 205 uint64_t DerefBytes = V.getPointerDereferenceableBytes(DL, CanBeNull); 206 DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes; 207 // If queried with a precise location size, we assume that location size to be 208 // accessed, thus valid. 209 if (LocSize.isPrecise()) 210 DerefBytes = std::max(DerefBytes, LocSize.getValue()); 211 return DerefBytes; 212 } 213 214 /// Returns true if we can prove that the object specified by V has size Size. 215 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, 216 const TargetLibraryInfo &TLI, bool NullIsValidLoc) { 217 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc); 218 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; 219 } 220 221 //===----------------------------------------------------------------------===// 222 // GetElementPtr Instruction Decomposition and Analysis 223 //===----------------------------------------------------------------------===// 224 225 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 226 /// B are constant integers. 227 /// 228 /// Returns the scale and offset values as APInts and return V as a Value*, and 229 /// return whether we looked through any sign or zero extends. The incoming 230 /// Value is known to have IntegerType, and it may already be sign or zero 231 /// extended. 232 /// 233 /// Note that this looks through extends, so the high bits may not be 234 /// represented in the result. 235 /*static*/ const Value *BasicAAResult::GetLinearExpression( 236 const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits, 237 unsigned &SExtBits, const DataLayout &DL, unsigned Depth, 238 AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) { 239 assert(V->getType()->isIntegerTy() && "Not an integer value"); 240 241 // Limit our recursion depth. 242 if (Depth == 6) { 243 Scale = 1; 244 Offset = 0; 245 return V; 246 } 247 248 if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) { 249 // If it's a constant, just convert it to an offset and remove the variable. 250 // If we've been called recursively, the Offset bit width will be greater 251 // than the constant's (the Offset's always as wide as the outermost call), 252 // so we'll zext here and process any extension in the isa<SExtInst> & 253 // isa<ZExtInst> cases below. 254 Offset += Const->getValue().zextOrSelf(Offset.getBitWidth()); 255 assert(Scale == 0 && "Constant values don't have a scale"); 256 return V; 257 } 258 259 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 260 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 261 // If we've been called recursively, then Offset and Scale will be wider 262 // than the BOp operands. We'll always zext it here as we'll process sign 263 // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases). 264 APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth()); 265 266 switch (BOp->getOpcode()) { 267 default: 268 // We don't understand this instruction, so we can't decompose it any 269 // further. 270 Scale = 1; 271 Offset = 0; 272 return V; 273 case Instruction::Or: 274 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 275 // analyze it. 276 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, 277 BOp, DT)) { 278 Scale = 1; 279 Offset = 0; 280 return V; 281 } 282 LLVM_FALLTHROUGH; 283 case Instruction::Add: 284 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 285 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 286 Offset += RHS; 287 break; 288 case Instruction::Sub: 289 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 290 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 291 Offset -= RHS; 292 break; 293 case Instruction::Mul: 294 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 295 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 296 Offset *= RHS; 297 Scale *= RHS; 298 break; 299 case Instruction::Shl: 300 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 301 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 302 303 // We're trying to linearize an expression of the kind: 304 // shl i8 -128, 36 305 // where the shift count exceeds the bitwidth of the type. 306 // We can't decompose this further (the expression would return 307 // a poison value). 308 if (Offset.getBitWidth() < RHS.getLimitedValue() || 309 Scale.getBitWidth() < RHS.getLimitedValue()) { 310 Scale = 1; 311 Offset = 0; 312 return V; 313 } 314 315 Offset <<= RHS.getLimitedValue(); 316 Scale <<= RHS.getLimitedValue(); 317 // the semantics of nsw and nuw for left shifts don't match those of 318 // multiplications, so we won't propagate them. 319 NSW = NUW = false; 320 return V; 321 } 322 323 if (isa<OverflowingBinaryOperator>(BOp)) { 324 NUW &= BOp->hasNoUnsignedWrap(); 325 NSW &= BOp->hasNoSignedWrap(); 326 } 327 return V; 328 } 329 } 330 331 // Since GEP indices are sign extended anyway, we don't care about the high 332 // bits of a sign or zero extended value - just scales and offsets. The 333 // extensions have to be consistent though. 334 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) { 335 Value *CastOp = cast<CastInst>(V)->getOperand(0); 336 unsigned NewWidth = V->getType()->getPrimitiveSizeInBits(); 337 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 338 unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits; 339 const Value *Result = 340 GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL, 341 Depth + 1, AC, DT, NSW, NUW); 342 343 // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this 344 // by just incrementing the number of bits we've extended by. 345 unsigned ExtendedBy = NewWidth - SmallWidth; 346 347 if (isa<SExtInst>(V) && ZExtBits == 0) { 348 // sext(sext(%x, a), b) == sext(%x, a + b) 349 350 if (NSW) { 351 // We haven't sign-wrapped, so it's valid to decompose sext(%x + c) 352 // into sext(%x) + sext(c). We'll sext the Offset ourselves: 353 unsigned OldWidth = Offset.getBitWidth(); 354 Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth); 355 } else { 356 // We may have signed-wrapped, so don't decompose sext(%x + c) into 357 // sext(%x) + sext(c) 358 Scale = 1; 359 Offset = 0; 360 Result = CastOp; 361 ZExtBits = OldZExtBits; 362 SExtBits = OldSExtBits; 363 } 364 SExtBits += ExtendedBy; 365 } else { 366 // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b) 367 368 if (!NUW) { 369 // We may have unsigned-wrapped, so don't decompose zext(%x + c) into 370 // zext(%x) + zext(c) 371 Scale = 1; 372 Offset = 0; 373 Result = CastOp; 374 ZExtBits = OldZExtBits; 375 SExtBits = OldSExtBits; 376 } 377 ZExtBits += ExtendedBy; 378 } 379 380 return Result; 381 } 382 383 Scale = 1; 384 Offset = 0; 385 return V; 386 } 387 388 /// To ensure a pointer offset fits in an integer of size PointerSize 389 /// (in bits) when that size is smaller than the maximum pointer size. This is 390 /// an issue, for example, in particular for 32b pointers with negative indices 391 /// that rely on two's complement wrap-arounds for precise alias information 392 /// where the maximum pointer size is 64b. 393 static APInt adjustToPointerSize(const APInt &Offset, unsigned PointerSize) { 394 assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!"); 395 unsigned ShiftBits = Offset.getBitWidth() - PointerSize; 396 return (Offset << ShiftBits).ashr(ShiftBits); 397 } 398 399 static unsigned getMaxPointerSize(const DataLayout &DL) { 400 unsigned MaxPointerSize = DL.getMaxPointerSizeInBits(); 401 if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64; 402 if (DoubleCalcBits) MaxPointerSize *= 2; 403 404 return MaxPointerSize; 405 } 406 407 /// If V is a symbolic pointer expression, decompose it into a base pointer 408 /// with a constant offset and a number of scaled symbolic offsets. 409 /// 410 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 411 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 412 /// specified amount, but which may have other unrepresented high bits. As 413 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 414 /// 415 /// This function is capable of analyzing everything that getUnderlyingObject 416 /// can look through. To be able to do that getUnderlyingObject and 417 /// DecomposeGEPExpression must use the same search depth 418 /// (MaxLookupSearchDepth). 419 BasicAAResult::DecomposedGEP 420 BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL, 421 AssumptionCache *AC, DominatorTree *DT) { 422 // Limit recursion depth to limit compile time in crazy cases. 423 unsigned MaxLookup = MaxLookupSearchDepth; 424 SearchTimes++; 425 const Instruction *CxtI = dyn_cast<Instruction>(V); 426 427 unsigned MaxPointerSize = getMaxPointerSize(DL); 428 DecomposedGEP Decomposed; 429 Decomposed.Offset = APInt(MaxPointerSize, 0); 430 Decomposed.HasCompileTimeConstantScale = true; 431 do { 432 // See if this is a bitcast or GEP. 433 const Operator *Op = dyn_cast<Operator>(V); 434 if (!Op) { 435 // The only non-operator case we can handle are GlobalAliases. 436 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 437 if (!GA->isInterposable()) { 438 V = GA->getAliasee(); 439 continue; 440 } 441 } 442 Decomposed.Base = V; 443 return Decomposed; 444 } 445 446 if (Op->getOpcode() == Instruction::BitCast || 447 Op->getOpcode() == Instruction::AddrSpaceCast) { 448 V = Op->getOperand(0); 449 continue; 450 } 451 452 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 453 if (!GEPOp) { 454 if (const auto *PHI = dyn_cast<PHINode>(V)) { 455 // Look through single-arg phi nodes created by LCSSA. 456 if (PHI->getNumIncomingValues() == 1) { 457 V = PHI->getIncomingValue(0); 458 continue; 459 } 460 } else if (const auto *Call = dyn_cast<CallBase>(V)) { 461 // CaptureTracking can know about special capturing properties of some 462 // intrinsics like launder.invariant.group, that can't be expressed with 463 // the attributes, but have properties like returning aliasing pointer. 464 // Because some analysis may assume that nocaptured pointer is not 465 // returned from some special intrinsic (because function would have to 466 // be marked with returns attribute), it is crucial to use this function 467 // because it should be in sync with CaptureTracking. Not using it may 468 // cause weird miscompilations where 2 aliasing pointers are assumed to 469 // noalias. 470 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 471 V = RP; 472 continue; 473 } 474 } 475 476 Decomposed.Base = V; 477 return Decomposed; 478 } 479 480 // Don't attempt to analyze GEPs over unsized objects. 481 if (!GEPOp->getSourceElementType()->isSized()) { 482 Decomposed.Base = V; 483 return Decomposed; 484 } 485 486 // Don't attempt to analyze GEPs if index scale is not a compile-time 487 // constant. 488 if (isa<ScalableVectorType>(GEPOp->getSourceElementType())) { 489 Decomposed.Base = V; 490 Decomposed.HasCompileTimeConstantScale = false; 491 return Decomposed; 492 } 493 494 unsigned AS = GEPOp->getPointerAddressSpace(); 495 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 496 gep_type_iterator GTI = gep_type_begin(GEPOp); 497 unsigned PointerSize = DL.getPointerSizeInBits(AS); 498 // Assume all GEP operands are constants until proven otherwise. 499 bool GepHasConstantOffset = true; 500 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 501 I != E; ++I, ++GTI) { 502 const Value *Index = *I; 503 // Compute the (potentially symbolic) offset in bytes for this index. 504 if (StructType *STy = GTI.getStructTypeOrNull()) { 505 // For a struct, add the member offset. 506 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 507 if (FieldNo == 0) 508 continue; 509 510 Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo); 511 continue; 512 } 513 514 // For an array/pointer, add the element offset, explicitly scaled. 515 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 516 if (CIdx->isZero()) 517 continue; 518 Decomposed.Offset += 519 DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize() * 520 CIdx->getValue().sextOrTrunc(MaxPointerSize); 521 continue; 522 } 523 524 GepHasConstantOffset = false; 525 526 APInt Scale(MaxPointerSize, 527 DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize()); 528 unsigned ZExtBits = 0, SExtBits = 0; 529 530 // If the integer type is smaller than the pointer size, it is implicitly 531 // sign extended to pointer size. 532 unsigned Width = Index->getType()->getIntegerBitWidth(); 533 if (PointerSize > Width) 534 SExtBits += PointerSize - Width; 535 536 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 537 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 538 bool NSW = true, NUW = true; 539 const Value *OrigIndex = Index; 540 Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits, 541 SExtBits, DL, 0, AC, DT, NSW, NUW); 542 543 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 544 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 545 546 // It can be the case that, even through C1*V+C2 does not overflow for 547 // relevant values of V, (C2*Scale) can overflow. In that case, we cannot 548 // decompose the expression in this way. 549 // 550 // FIXME: C1*Scale and the other operations in the decomposed 551 // (C1*Scale)*V+C2*Scale can also overflow. We should check for this 552 // possibility. 553 bool Overflow; 554 APInt ScaledOffset = IndexOffset.sextOrTrunc(MaxPointerSize) 555 .smul_ov(Scale, Overflow); 556 if (Overflow) { 557 Index = OrigIndex; 558 IndexScale = 1; 559 IndexOffset = 0; 560 561 ZExtBits = SExtBits = 0; 562 if (PointerSize > Width) 563 SExtBits += PointerSize - Width; 564 } else { 565 Decomposed.Offset += ScaledOffset; 566 Scale *= IndexScale.sextOrTrunc(MaxPointerSize); 567 } 568 569 // If we already had an occurrence of this index variable, merge this 570 // scale into it. For example, we want to handle: 571 // A[x][x] -> x*16 + x*4 -> x*20 572 // This also ensures that 'x' only appears in the index list once. 573 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { 574 if (Decomposed.VarIndices[i].V == Index && 575 Decomposed.VarIndices[i].ZExtBits == ZExtBits && 576 Decomposed.VarIndices[i].SExtBits == SExtBits) { 577 Scale += Decomposed.VarIndices[i].Scale; 578 Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i); 579 break; 580 } 581 } 582 583 // Make sure that we have a scale that makes sense for this target's 584 // pointer size. 585 Scale = adjustToPointerSize(Scale, PointerSize); 586 587 if (!!Scale) { 588 VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, Scale, CxtI}; 589 Decomposed.VarIndices.push_back(Entry); 590 } 591 } 592 593 // Take care of wrap-arounds 594 if (GepHasConstantOffset) 595 Decomposed.Offset = adjustToPointerSize(Decomposed.Offset, PointerSize); 596 597 // Analyze the base pointer next. 598 V = GEPOp->getOperand(0); 599 } while (--MaxLookup); 600 601 // If the chain of expressions is too deep, just return early. 602 Decomposed.Base = V; 603 SearchLimitReached++; 604 return Decomposed; 605 } 606 607 /// Returns whether the given pointer value points to memory that is local to 608 /// the function, with global constants being considered local to all 609 /// functions. 610 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc, 611 AAQueryInfo &AAQI, bool OrLocal) { 612 assert(Visited.empty() && "Visited must be cleared after use!"); 613 614 unsigned MaxLookup = 8; 615 SmallVector<const Value *, 16> Worklist; 616 Worklist.push_back(Loc.Ptr); 617 do { 618 const Value *V = getUnderlyingObject(Worklist.pop_back_val()); 619 if (!Visited.insert(V).second) { 620 Visited.clear(); 621 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 622 } 623 624 // An alloca instruction defines local memory. 625 if (OrLocal && isa<AllocaInst>(V)) 626 continue; 627 628 // A global constant counts as local memory for our purposes. 629 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 630 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 631 // global to be marked constant in some modules and non-constant in 632 // others. GV may even be a declaration, not a definition. 633 if (!GV->isConstant()) { 634 Visited.clear(); 635 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 636 } 637 continue; 638 } 639 640 // If both select values point to local memory, then so does the select. 641 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 642 Worklist.push_back(SI->getTrueValue()); 643 Worklist.push_back(SI->getFalseValue()); 644 continue; 645 } 646 647 // If all values incoming to a phi node point to local memory, then so does 648 // the phi. 649 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 650 // Don't bother inspecting phi nodes with many operands. 651 if (PN->getNumIncomingValues() > MaxLookup) { 652 Visited.clear(); 653 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 654 } 655 for (Value *IncValue : PN->incoming_values()) 656 Worklist.push_back(IncValue); 657 continue; 658 } 659 660 // Otherwise be conservative. 661 Visited.clear(); 662 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 663 } while (!Worklist.empty() && --MaxLookup); 664 665 Visited.clear(); 666 return Worklist.empty(); 667 } 668 669 /// Returns the behavior when calling the given call site. 670 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) { 671 if (Call->doesNotAccessMemory()) 672 // Can't do better than this. 673 return FMRB_DoesNotAccessMemory; 674 675 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 676 677 // If the callsite knows it only reads memory, don't return worse 678 // than that. 679 if (Call->onlyReadsMemory()) 680 Min = FMRB_OnlyReadsMemory; 681 else if (Call->doesNotReadMemory()) 682 Min = FMRB_OnlyWritesMemory; 683 684 if (Call->onlyAccessesArgMemory()) 685 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 686 else if (Call->onlyAccessesInaccessibleMemory()) 687 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 688 else if (Call->onlyAccessesInaccessibleMemOrArgMem()) 689 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 690 691 // If the call has operand bundles then aliasing attributes from the function 692 // it calls do not directly apply to the call. This can be made more precise 693 // in the future. 694 if (!Call->hasOperandBundles()) 695 if (const Function *F = Call->getCalledFunction()) 696 Min = 697 FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F)); 698 699 return Min; 700 } 701 702 /// Returns the behavior when calling the given function. For use when the call 703 /// site is not known. 704 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) { 705 // If the function declares it doesn't access memory, we can't do better. 706 if (F->doesNotAccessMemory()) 707 return FMRB_DoesNotAccessMemory; 708 709 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 710 711 // If the function declares it only reads memory, go with that. 712 if (F->onlyReadsMemory()) 713 Min = FMRB_OnlyReadsMemory; 714 else if (F->doesNotReadMemory()) 715 Min = FMRB_OnlyWritesMemory; 716 717 if (F->onlyAccessesArgMemory()) 718 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 719 else if (F->onlyAccessesInaccessibleMemory()) 720 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 721 else if (F->onlyAccessesInaccessibleMemOrArgMem()) 722 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 723 724 return Min; 725 } 726 727 /// Returns true if this is a writeonly (i.e Mod only) parameter. 728 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx, 729 const TargetLibraryInfo &TLI) { 730 if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly)) 731 return true; 732 733 // We can bound the aliasing properties of memset_pattern16 just as we can 734 // for memcpy/memset. This is particularly important because the 735 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 736 // whenever possible. 737 // FIXME Consider handling this in InferFunctionAttr.cpp together with other 738 // attributes. 739 LibFunc F; 740 if (Call->getCalledFunction() && 741 TLI.getLibFunc(*Call->getCalledFunction(), F) && 742 F == LibFunc_memset_pattern16 && TLI.has(F)) 743 if (ArgIdx == 0) 744 return true; 745 746 // TODO: memset_pattern4, memset_pattern8 747 // TODO: _chk variants 748 // TODO: strcmp, strcpy 749 750 return false; 751 } 752 753 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call, 754 unsigned ArgIdx) { 755 // Checking for known builtin intrinsics and target library functions. 756 if (isWriteOnlyParam(Call, ArgIdx, TLI)) 757 return ModRefInfo::Mod; 758 759 if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly)) 760 return ModRefInfo::Ref; 761 762 if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone)) 763 return ModRefInfo::NoModRef; 764 765 return AAResultBase::getArgModRefInfo(Call, ArgIdx); 766 } 767 768 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) { 769 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call); 770 return II && II->getIntrinsicID() == IID; 771 } 772 773 #ifndef NDEBUG 774 static const Function *getParent(const Value *V) { 775 if (const Instruction *inst = dyn_cast<Instruction>(V)) { 776 if (!inst->getParent()) 777 return nullptr; 778 return inst->getParent()->getParent(); 779 } 780 781 if (const Argument *arg = dyn_cast<Argument>(V)) 782 return arg->getParent(); 783 784 return nullptr; 785 } 786 787 static bool notDifferentParent(const Value *O1, const Value *O2) { 788 789 const Function *F1 = getParent(O1); 790 const Function *F2 = getParent(O2); 791 792 return !F1 || !F2 || F1 == F2; 793 } 794 #endif 795 796 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 797 const MemoryLocation &LocB, 798 AAQueryInfo &AAQI) { 799 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 800 "BasicAliasAnalysis doesn't support interprocedural queries."); 801 return aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr, LocB.Size, 802 LocB.AATags, AAQI); 803 } 804 805 /// Checks to see if the specified callsite can clobber the specified memory 806 /// object. 807 /// 808 /// Since we only look at local properties of this function, we really can't 809 /// say much about this query. We do, however, use simple "address taken" 810 /// analysis on local objects. 811 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call, 812 const MemoryLocation &Loc, 813 AAQueryInfo &AAQI) { 814 assert(notDifferentParent(Call, Loc.Ptr) && 815 "AliasAnalysis query involving multiple functions!"); 816 817 const Value *Object = getUnderlyingObject(Loc.Ptr); 818 819 // Calls marked 'tail' cannot read or write allocas from the current frame 820 // because the current frame might be destroyed by the time they run. However, 821 // a tail call may use an alloca with byval. Calling with byval copies the 822 // contents of the alloca into argument registers or stack slots, so there is 823 // no lifetime issue. 824 if (isa<AllocaInst>(Object)) 825 if (const CallInst *CI = dyn_cast<CallInst>(Call)) 826 if (CI->isTailCall() && 827 !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal)) 828 return ModRefInfo::NoModRef; 829 830 // Stack restore is able to modify unescaped dynamic allocas. Assume it may 831 // modify them even though the alloca is not escaped. 832 if (auto *AI = dyn_cast<AllocaInst>(Object)) 833 if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore)) 834 return ModRefInfo::Mod; 835 836 // If the pointer is to a locally allocated object that does not escape, 837 // then the call can not mod/ref the pointer unless the call takes the pointer 838 // as an argument, and itself doesn't capture it. 839 if (!isa<Constant>(Object) && Call != Object && 840 isNonEscapingLocalObject(Object, &AAQI.IsCapturedCache)) { 841 842 // Optimistically assume that call doesn't touch Object and check this 843 // assumption in the following loop. 844 ModRefInfo Result = ModRefInfo::NoModRef; 845 bool IsMustAlias = true; 846 847 unsigned OperandNo = 0; 848 for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end(); 849 CI != CE; ++CI, ++OperandNo) { 850 // Only look at the no-capture or byval pointer arguments. If this 851 // pointer were passed to arguments that were neither of these, then it 852 // couldn't be no-capture. 853 if (!(*CI)->getType()->isPointerTy() || 854 (!Call->doesNotCapture(OperandNo) && 855 OperandNo < Call->getNumArgOperands() && 856 !Call->isByValArgument(OperandNo))) 857 continue; 858 859 // Call doesn't access memory through this operand, so we don't care 860 // if it aliases with Object. 861 if (Call->doesNotAccessMemory(OperandNo)) 862 continue; 863 864 // If this is a no-capture pointer argument, see if we can tell that it 865 // is impossible to alias the pointer we're checking. 866 AliasResult AR = getBestAAResults().alias( 867 MemoryLocation::getBeforeOrAfter(*CI), 868 MemoryLocation::getBeforeOrAfter(Object), AAQI); 869 if (AR != MustAlias) 870 IsMustAlias = false; 871 // Operand doesn't alias 'Object', continue looking for other aliases 872 if (AR == NoAlias) 873 continue; 874 // Operand aliases 'Object', but call doesn't modify it. Strengthen 875 // initial assumption and keep looking in case if there are more aliases. 876 if (Call->onlyReadsMemory(OperandNo)) { 877 Result = setRef(Result); 878 continue; 879 } 880 // Operand aliases 'Object' but call only writes into it. 881 if (Call->doesNotReadMemory(OperandNo)) { 882 Result = setMod(Result); 883 continue; 884 } 885 // This operand aliases 'Object' and call reads and writes into it. 886 // Setting ModRef will not yield an early return below, MustAlias is not 887 // used further. 888 Result = ModRefInfo::ModRef; 889 break; 890 } 891 892 // No operand aliases, reset Must bit. Add below if at least one aliases 893 // and all aliases found are MustAlias. 894 if (isNoModRef(Result)) 895 IsMustAlias = false; 896 897 // Early return if we improved mod ref information 898 if (!isModAndRefSet(Result)) { 899 if (isNoModRef(Result)) 900 return ModRefInfo::NoModRef; 901 return IsMustAlias ? setMust(Result) : clearMust(Result); 902 } 903 } 904 905 // If the call is malloc/calloc like, we can assume that it doesn't 906 // modify any IR visible value. This is only valid because we assume these 907 // routines do not read values visible in the IR. TODO: Consider special 908 // casing realloc and strdup routines which access only their arguments as 909 // well. Or alternatively, replace all of this with inaccessiblememonly once 910 // that's implemented fully. 911 if (isMallocOrCallocLikeFn(Call, &TLI)) { 912 // Be conservative if the accessed pointer may alias the allocation - 913 // fallback to the generic handling below. 914 if (getBestAAResults().alias(MemoryLocation::getBeforeOrAfter(Call), 915 Loc, AAQI) == NoAlias) 916 return ModRefInfo::NoModRef; 917 } 918 919 // The semantics of memcpy intrinsics either exactly overlap or do not 920 // overlap, i.e., source and destination of any given memcpy are either 921 // no-alias or must-alias. 922 if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) { 923 AliasResult SrcAA = 924 getBestAAResults().alias(MemoryLocation::getForSource(Inst), Loc, AAQI); 925 AliasResult DestAA = 926 getBestAAResults().alias(MemoryLocation::getForDest(Inst), Loc, AAQI); 927 // It's also possible for Loc to alias both src and dest, or neither. 928 ModRefInfo rv = ModRefInfo::NoModRef; 929 if (SrcAA != NoAlias) 930 rv = setRef(rv); 931 if (DestAA != NoAlias) 932 rv = setMod(rv); 933 return rv; 934 } 935 936 // While the assume intrinsic is marked as arbitrarily writing so that 937 // proper control dependencies will be maintained, it never aliases any 938 // particular memory location. 939 if (isIntrinsicCall(Call, Intrinsic::assume)) 940 return ModRefInfo::NoModRef; 941 942 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 943 // that proper control dependencies are maintained but they never mods any 944 // particular memory location. 945 // 946 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 947 // heap state at the point the guard is issued needs to be consistent in case 948 // the guard invokes the "deopt" continuation. 949 if (isIntrinsicCall(Call, Intrinsic::experimental_guard)) 950 return ModRefInfo::Ref; 951 // The same applies to deoptimize which is essentially a guard(false). 952 if (isIntrinsicCall(Call, Intrinsic::experimental_deoptimize)) 953 return ModRefInfo::Ref; 954 955 // Like assumes, invariant.start intrinsics were also marked as arbitrarily 956 // writing so that proper control dependencies are maintained but they never 957 // mod any particular memory location visible to the IR. 958 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start 959 // intrinsic is now modeled as reading memory. This prevents hoisting the 960 // invariant.start intrinsic over stores. Consider: 961 // *ptr = 40; 962 // *ptr = 50; 963 // invariant_start(ptr) 964 // int val = *ptr; 965 // print(val); 966 // 967 // This cannot be transformed to: 968 // 969 // *ptr = 40; 970 // invariant_start(ptr) 971 // *ptr = 50; 972 // int val = *ptr; 973 // print(val); 974 // 975 // The transformation will cause the second store to be ignored (based on 976 // rules of invariant.start) and print 40, while the first program always 977 // prints 50. 978 if (isIntrinsicCall(Call, Intrinsic::invariant_start)) 979 return ModRefInfo::Ref; 980 981 // The AAResultBase base class has some smarts, lets use them. 982 return AAResultBase::getModRefInfo(Call, Loc, AAQI); 983 } 984 985 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1, 986 const CallBase *Call2, 987 AAQueryInfo &AAQI) { 988 // While the assume intrinsic is marked as arbitrarily writing so that 989 // proper control dependencies will be maintained, it never aliases any 990 // particular memory location. 991 if (isIntrinsicCall(Call1, Intrinsic::assume) || 992 isIntrinsicCall(Call2, Intrinsic::assume)) 993 return ModRefInfo::NoModRef; 994 995 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 996 // that proper control dependencies are maintained but they never mod any 997 // particular memory location. 998 // 999 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 1000 // heap state at the point the guard is issued needs to be consistent in case 1001 // the guard invokes the "deopt" continuation. 1002 1003 // NB! This function is *not* commutative, so we special case two 1004 // possibilities for guard intrinsics. 1005 1006 if (isIntrinsicCall(Call1, Intrinsic::experimental_guard)) 1007 return isModSet(createModRefInfo(getModRefBehavior(Call2))) 1008 ? ModRefInfo::Ref 1009 : ModRefInfo::NoModRef; 1010 1011 if (isIntrinsicCall(Call2, Intrinsic::experimental_guard)) 1012 return isModSet(createModRefInfo(getModRefBehavior(Call1))) 1013 ? ModRefInfo::Mod 1014 : ModRefInfo::NoModRef; 1015 1016 // The AAResultBase base class has some smarts, lets use them. 1017 return AAResultBase::getModRefInfo(Call1, Call2, AAQI); 1018 } 1019 1020 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the 1021 // beginning of the object the GEP points would have a negative offset with 1022 // repsect to the alloca, that means the GEP can not alias pointer (b). 1023 // Note that the pointer based on the alloca may not be a GEP. For 1024 // example, it may be the alloca itself. 1025 // The same applies if (b) is based on a GlobalVariable. Note that just being 1026 // based on isIdentifiedObject() is not enough - we need an identified object 1027 // that does not permit access to negative offsets. For example, a negative 1028 // offset from a noalias argument or call can be inbounds w.r.t the actual 1029 // underlying object. 1030 // 1031 // For example, consider: 1032 // 1033 // struct { int f0, int f1, ...} foo; 1034 // foo alloca; 1035 // foo* random = bar(alloca); 1036 // int *f0 = &alloca.f0 1037 // int *f1 = &random->f1; 1038 // 1039 // Which is lowered, approximately, to: 1040 // 1041 // %alloca = alloca %struct.foo 1042 // %random = call %struct.foo* @random(%struct.foo* %alloca) 1043 // %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0 1044 // %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1 1045 // 1046 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated 1047 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also 1048 // point into the same object. But since %f0 points to the beginning of %alloca, 1049 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher 1050 // than (%alloca - 1), and so is not inbounds, a contradiction. 1051 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp, 1052 const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject, 1053 LocationSize MaybeObjectAccessSize) { 1054 // If the object access size is unknown, or the GEP isn't inbounds, bail. 1055 if (!MaybeObjectAccessSize.hasValue() || !GEPOp->isInBounds()) 1056 return false; 1057 1058 const uint64_t ObjectAccessSize = MaybeObjectAccessSize.getValue(); 1059 1060 // We need the object to be an alloca or a globalvariable, and want to know 1061 // the offset of the pointer from the object precisely, so no variable 1062 // indices are allowed. 1063 if (!(isa<AllocaInst>(DecompObject.Base) || 1064 isa<GlobalVariable>(DecompObject.Base)) || 1065 !DecompObject.VarIndices.empty()) 1066 return false; 1067 1068 // If the GEP has no variable indices, we know the precise offset 1069 // from the base, then use it. If the GEP has variable indices, 1070 // we can't get exact GEP offset to identify pointer alias. So return 1071 // false in that case. 1072 if (!DecompGEP.VarIndices.empty()) 1073 return false; 1074 1075 return DecompGEP.Offset.sge(DecompObject.Offset + (int64_t)ObjectAccessSize); 1076 } 1077 1078 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 1079 /// another pointer. 1080 /// 1081 /// We know that V1 is a GEP, but we don't know anything about V2. 1082 /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for 1083 /// V2. 1084 AliasResult BasicAAResult::aliasGEP( 1085 const GEPOperator *GEP1, LocationSize V1Size, const AAMDNodes &V1AAInfo, 1086 const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo, 1087 const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) { 1088 DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT); 1089 DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT); 1090 1091 // Don't attempt to analyze the decomposed GEP if index scale is not a 1092 // compile-time constant. 1093 if (!DecompGEP1.HasCompileTimeConstantScale || 1094 !DecompGEP2.HasCompileTimeConstantScale) 1095 return MayAlias; 1096 1097 assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 && 1098 "DecomposeGEPExpression returned a result different from " 1099 "getUnderlyingObject"); 1100 1101 // If the GEP's offset relative to its base is such that the base would 1102 // fall below the start of the object underlying V2, then the GEP and V2 1103 // cannot alias. 1104 if (isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size)) 1105 return NoAlias; 1106 // If we have two gep instructions with must-alias or not-alias'ing base 1107 // pointers, figure out if the indexes to the GEP tell us anything about the 1108 // derived pointer. 1109 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 1110 // Check for the GEP base being at a negative offset, this time in the other 1111 // direction. 1112 if (isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size)) 1113 return NoAlias; 1114 // Do the base pointers alias? 1115 AliasResult BaseAlias = getBestAAResults().alias( 1116 MemoryLocation::getBeforeOrAfter(UnderlyingV1), 1117 MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI); 1118 1119 // For GEPs with identical offsets, we can preserve the size and AAInfo 1120 // when performing the alias check on the underlying objects. 1121 if (BaseAlias == MayAlias && DecompGEP1.Offset == DecompGEP2.Offset && 1122 DecompGEP1.VarIndices == DecompGEP2.VarIndices) { 1123 AliasResult PreciseBaseAlias = getBestAAResults().alias( 1124 MemoryLocation(UnderlyingV1, V1Size, V1AAInfo), 1125 MemoryLocation(UnderlyingV2, V2Size, V2AAInfo), AAQI); 1126 if (PreciseBaseAlias == NoAlias) 1127 return NoAlias; 1128 } 1129 1130 // If we get a No or May, then return it immediately, no amount of analysis 1131 // will improve this situation. 1132 if (BaseAlias != MustAlias) { 1133 assert(BaseAlias == NoAlias || BaseAlias == MayAlias); 1134 return BaseAlias; 1135 } 1136 1137 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1138 // symbolic difference. 1139 DecompGEP1.Offset -= DecompGEP2.Offset; 1140 GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices); 1141 1142 } else { 1143 // Check to see if these two pointers are related by the getelementptr 1144 // instruction. If one pointer is a GEP with a non-zero index of the other 1145 // pointer, we know they cannot alias. 1146 1147 // If both accesses are unknown size, we can't do anything useful here. 1148 if (!V1Size.hasValue() && !V2Size.hasValue()) 1149 return MayAlias; 1150 1151 AliasResult R = getBestAAResults().alias( 1152 MemoryLocation::getBeforeOrAfter(UnderlyingV1), 1153 MemoryLocation(V2, V2Size, V2AAInfo), AAQI); 1154 if (R != MustAlias) { 1155 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 1156 // If V2 is known not to alias GEP base pointer, then the two values 1157 // cannot alias per GEP semantics: "Any memory access must be done through 1158 // a pointer value associated with an address range of the memory access, 1159 // otherwise the behavior is undefined.". 1160 assert(R == NoAlias || R == MayAlias); 1161 return R; 1162 } 1163 } 1164 1165 // In the two GEP Case, if there is no difference in the offsets of the 1166 // computed pointers, the resultant pointers are a must alias. This 1167 // happens when we have two lexically identical GEP's (for example). 1168 // 1169 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 1170 // must aliases the GEP, the end result is a must alias also. 1171 if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty()) 1172 return MustAlias; 1173 1174 // If there is a constant difference between the pointers, but the difference 1175 // is less than the size of the associated memory object, then we know 1176 // that the objects are partially overlapping. If the difference is 1177 // greater, we know they do not overlap. 1178 if (DecompGEP1.Offset != 0 && DecompGEP1.VarIndices.empty()) { 1179 if (DecompGEP1.Offset.sge(0)) { 1180 if (V2Size.hasValue()) { 1181 if (DecompGEP1.Offset.ult(V2Size.getValue())) 1182 return PartialAlias; 1183 return NoAlias; 1184 } 1185 } else { 1186 // We have the situation where: 1187 // + + 1188 // | BaseOffset | 1189 // ---------------->| 1190 // |-->V1Size |-------> V2Size 1191 // GEP1 V2 1192 if (V1Size.hasValue()) { 1193 if ((-DecompGEP1.Offset).ult(V1Size.getValue())) 1194 return PartialAlias; 1195 return NoAlias; 1196 } 1197 } 1198 } 1199 1200 if (!DecompGEP1.VarIndices.empty()) { 1201 APInt GCD; 1202 bool AllNonNegative = DecompGEP1.Offset.isNonNegative(); 1203 bool AllNonPositive = DecompGEP1.Offset.isNonPositive(); 1204 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { 1205 const APInt &Scale = DecompGEP1.VarIndices[i].Scale; 1206 if (i == 0) 1207 GCD = Scale.abs(); 1208 else 1209 GCD = APIntOps::GreatestCommonDivisor(GCD, Scale.abs()); 1210 1211 if (AllNonNegative || AllNonPositive) { 1212 // If the Value could change between cycles, then any reasoning about 1213 // the Value this cycle may not hold in the next cycle. We'll just 1214 // give up if we can't determine conditions that hold for every cycle: 1215 const Value *V = DecompGEP1.VarIndices[i].V; 1216 const Instruction *CxtI = DecompGEP1.VarIndices[i].CxtI; 1217 1218 KnownBits Known = computeKnownBits(V, DL, 0, &AC, CxtI, DT); 1219 bool SignKnownZero = Known.isNonNegative(); 1220 bool SignKnownOne = Known.isNegative(); 1221 1222 // Zero-extension widens the variable, and so forces the sign 1223 // bit to zero. 1224 bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V); 1225 SignKnownZero |= IsZExt; 1226 SignKnownOne &= !IsZExt; 1227 1228 AllNonNegative &= (SignKnownZero && Scale.isNonNegative()) || 1229 (SignKnownOne && Scale.isNonPositive()); 1230 AllNonPositive &= (SignKnownZero && Scale.isNonPositive()) || 1231 (SignKnownOne && Scale.isNonNegative()); 1232 } 1233 } 1234 1235 // We now have accesses at two offsets from the same base: 1236 // 1. (...)*GCD + DecompGEP1.Offset with size V1Size 1237 // 2. 0 with size V2Size 1238 // Using arithmetic modulo GCD, the accesses are at 1239 // [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits 1240 // into the range [V2Size..GCD), then we know they cannot overlap. 1241 APInt ModOffset = DecompGEP1.Offset.srem(GCD); 1242 if (ModOffset.isNegative()) 1243 ModOffset += GCD; // We want mod, not rem. 1244 if (V1Size.hasValue() && V2Size.hasValue() && 1245 ModOffset.uge(V2Size.getValue()) && 1246 (GCD - ModOffset).uge(V1Size.getValue())) 1247 return NoAlias; 1248 1249 // If we know all the variables are non-negative, then the total offset is 1250 // also non-negative and >= DecompGEP1.Offset. We have the following layout: 1251 // [0, V2Size) ... [TotalOffset, TotalOffer+V1Size] 1252 // If DecompGEP1.Offset >= V2Size, the accesses don't alias. 1253 if (AllNonNegative && V2Size.hasValue() && 1254 DecompGEP1.Offset.uge(V2Size.getValue())) 1255 return NoAlias; 1256 // Similarly, if the variables are non-positive, then the total offset is 1257 // also non-positive and <= DecompGEP1.Offset. We have the following layout: 1258 // [TotalOffset, TotalOffset+V1Size) ... [0, V2Size) 1259 // If -DecompGEP1.Offset >= V1Size, the accesses don't alias. 1260 if (AllNonPositive && V1Size.hasValue() && 1261 (-DecompGEP1.Offset).uge(V1Size.getValue())) 1262 return NoAlias; 1263 1264 if (V1Size.hasValue() && V2Size.hasValue()) { 1265 // Try to determine whether abs(VarIndex) > 0. 1266 Optional<APInt> MinAbsVarIndex; 1267 if (DecompGEP1.VarIndices.size() == 1) { 1268 // VarIndex = Scale*V. If V != 0 then abs(VarIndex) >= abs(Scale). 1269 const VariableGEPIndex &Var = DecompGEP1.VarIndices[0]; 1270 if (isKnownNonZero(Var.V, DL, 0, &AC, Var.CxtI, DT)) 1271 MinAbsVarIndex = Var.Scale.abs(); 1272 } else if (DecompGEP1.VarIndices.size() == 2) { 1273 // VarIndex = Scale*V0 + (-Scale)*V1. 1274 // If V0 != V1 then abs(VarIndex) >= abs(Scale). 1275 // Check that VisitedPhiBBs is empty, to avoid reasoning about 1276 // inequality of values across loop iterations. 1277 const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0]; 1278 const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1]; 1279 if (Var0.Scale == -Var1.Scale && Var0.ZExtBits == Var1.ZExtBits && 1280 Var0.SExtBits == Var1.SExtBits && VisitedPhiBBs.empty() && 1281 isKnownNonEqual(Var0.V, Var1.V, DL, &AC, /* CxtI */ nullptr, DT)) 1282 MinAbsVarIndex = Var0.Scale.abs(); 1283 } 1284 1285 if (MinAbsVarIndex) { 1286 // The constant offset will have added at least +/-MinAbsVarIndex to it. 1287 APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex; 1288 APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex; 1289 // Check that an access at OffsetLo or lower, and an access at OffsetHi 1290 // or higher both do not alias. 1291 if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) && 1292 OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue())) 1293 return NoAlias; 1294 } 1295 } 1296 1297 if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size, 1298 DecompGEP1.Offset, &AC, DT)) 1299 return NoAlias; 1300 } 1301 1302 // Statically, we can see that the base objects are the same, but the 1303 // pointers have dynamic offsets which we can't resolve. And none of our 1304 // little tricks above worked. 1305 return MayAlias; 1306 } 1307 1308 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1309 // If the results agree, take it. 1310 if (A == B) 1311 return A; 1312 // A mix of PartialAlias and MustAlias is PartialAlias. 1313 if ((A == PartialAlias && B == MustAlias) || 1314 (B == PartialAlias && A == MustAlias)) 1315 return PartialAlias; 1316 // Otherwise, we don't know anything. 1317 return MayAlias; 1318 } 1319 1320 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1321 /// against another. 1322 AliasResult 1323 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize, 1324 const AAMDNodes &SIAAInfo, const Value *V2, 1325 LocationSize V2Size, const AAMDNodes &V2AAInfo, 1326 AAQueryInfo &AAQI) { 1327 // If the values are Selects with the same condition, we can do a more precise 1328 // check: just check for aliases between the values on corresponding arms. 1329 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1330 if (SI->getCondition() == SI2->getCondition()) { 1331 AliasResult Alias = getBestAAResults().alias( 1332 MemoryLocation(SI->getTrueValue(), SISize, SIAAInfo), 1333 MemoryLocation(SI2->getTrueValue(), V2Size, V2AAInfo), AAQI); 1334 if (Alias == MayAlias) 1335 return MayAlias; 1336 AliasResult ThisAlias = getBestAAResults().alias( 1337 MemoryLocation(SI->getFalseValue(), SISize, SIAAInfo), 1338 MemoryLocation(SI2->getFalseValue(), V2Size, V2AAInfo), AAQI); 1339 return MergeAliasResults(ThisAlias, Alias); 1340 } 1341 1342 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1343 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1344 AliasResult Alias = getBestAAResults().alias( 1345 MemoryLocation(V2, V2Size, V2AAInfo), 1346 MemoryLocation(SI->getTrueValue(), SISize, SIAAInfo), AAQI); 1347 if (Alias == MayAlias) 1348 return MayAlias; 1349 1350 AliasResult ThisAlias = getBestAAResults().alias( 1351 MemoryLocation(V2, V2Size, V2AAInfo), 1352 MemoryLocation(SI->getFalseValue(), SISize, SIAAInfo), AAQI); 1353 return MergeAliasResults(ThisAlias, Alias); 1354 } 1355 1356 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1357 /// another. 1358 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize, 1359 const AAMDNodes &PNAAInfo, const Value *V2, 1360 LocationSize V2Size, 1361 const AAMDNodes &V2AAInfo, 1362 AAQueryInfo &AAQI) { 1363 // If the values are PHIs in the same block, we can do a more precise 1364 // as well as efficient check: just check for aliases between the values 1365 // on corresponding edges. 1366 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1367 if (PN2->getParent() == PN->getParent()) { 1368 Optional<AliasResult> Alias; 1369 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1370 AliasResult ThisAlias = getBestAAResults().alias( 1371 MemoryLocation(PN->getIncomingValue(i), PNSize, PNAAInfo), 1372 MemoryLocation( 1373 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size, 1374 V2AAInfo), 1375 AAQI); 1376 if (Alias) 1377 *Alias = MergeAliasResults(*Alias, ThisAlias); 1378 else 1379 Alias = ThisAlias; 1380 if (*Alias == MayAlias) 1381 break; 1382 } 1383 return *Alias; 1384 } 1385 1386 SmallVector<Value *, 4> V1Srcs; 1387 // If a phi operand recurses back to the phi, we can still determine NoAlias 1388 // if we don't alias the underlying objects of the other phi operands, as we 1389 // know that the recursive phi needs to be based on them in some way. 1390 bool isRecursive = false; 1391 auto CheckForRecPhi = [&](Value *PV) { 1392 if (!EnableRecPhiAnalysis) 1393 return false; 1394 if (getUnderlyingObject(PV) == PN) { 1395 isRecursive = true; 1396 return true; 1397 } 1398 return false; 1399 }; 1400 1401 if (PV) { 1402 // If we have PhiValues then use it to get the underlying phi values. 1403 const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN); 1404 // If we have more phi values than the search depth then return MayAlias 1405 // conservatively to avoid compile time explosion. The worst possible case 1406 // is if both sides are PHI nodes. In which case, this is O(m x n) time 1407 // where 'm' and 'n' are the number of PHI sources. 1408 if (PhiValueSet.size() > MaxLookupSearchDepth) 1409 return MayAlias; 1410 // Add the values to V1Srcs 1411 for (Value *PV1 : PhiValueSet) { 1412 if (CheckForRecPhi(PV1)) 1413 continue; 1414 V1Srcs.push_back(PV1); 1415 } 1416 } else { 1417 // If we don't have PhiInfo then just look at the operands of the phi itself 1418 // FIXME: Remove this once we can guarantee that we have PhiInfo always 1419 SmallPtrSet<Value *, 4> UniqueSrc; 1420 for (Value *PV1 : PN->incoming_values()) { 1421 if (isa<PHINode>(PV1)) 1422 // If any of the source itself is a PHI, return MayAlias conservatively 1423 // to avoid compile time explosion. The worst possible case is if both 1424 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1425 // and 'n' are the number of PHI sources. 1426 return MayAlias; 1427 1428 if (CheckForRecPhi(PV1)) 1429 continue; 1430 1431 if (UniqueSrc.insert(PV1).second) 1432 V1Srcs.push_back(PV1); 1433 } 1434 } 1435 1436 // If V1Srcs is empty then that means that the phi has no underlying non-phi 1437 // value. This should only be possible in blocks unreachable from the entry 1438 // block, but return MayAlias just in case. 1439 if (V1Srcs.empty()) 1440 return MayAlias; 1441 1442 // If this PHI node is recursive, indicate that the pointer may be moved 1443 // across iterations. We can only prove NoAlias if different underlying 1444 // objects are involved. 1445 if (isRecursive) 1446 PNSize = LocationSize::beforeOrAfterPointer(); 1447 1448 // In the recursive alias queries below, we may compare values from two 1449 // different loop iterations. Keep track of visited phi blocks, which will 1450 // be used when determining value equivalence. 1451 bool BlockInserted = VisitedPhiBBs.insert(PN->getParent()).second; 1452 auto _ = make_scope_exit([&]() { 1453 if (BlockInserted) 1454 VisitedPhiBBs.erase(PN->getParent()); 1455 }); 1456 1457 // If we inserted a block into VisitedPhiBBs, alias analysis results that 1458 // have been cached earlier may no longer be valid. Perform recursive queries 1459 // with a new AAQueryInfo. 1460 AAQueryInfo NewAAQI; 1461 AAQueryInfo *UseAAQI = BlockInserted ? &NewAAQI : &AAQI; 1462 1463 AliasResult Alias = getBestAAResults().alias( 1464 MemoryLocation(V2, V2Size, V2AAInfo), 1465 MemoryLocation(V1Srcs[0], PNSize, PNAAInfo), *UseAAQI); 1466 1467 // Early exit if the check of the first PHI source against V2 is MayAlias. 1468 // Other results are not possible. 1469 if (Alias == MayAlias) 1470 return MayAlias; 1471 // With recursive phis we cannot guarantee that MustAlias/PartialAlias will 1472 // remain valid to all elements and needs to conservatively return MayAlias. 1473 if (isRecursive && Alias != NoAlias) 1474 return MayAlias; 1475 1476 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1477 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1478 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1479 Value *V = V1Srcs[i]; 1480 1481 AliasResult ThisAlias = getBestAAResults().alias( 1482 MemoryLocation(V2, V2Size, V2AAInfo), 1483 MemoryLocation(V, PNSize, PNAAInfo), *UseAAQI); 1484 Alias = MergeAliasResults(ThisAlias, Alias); 1485 if (Alias == MayAlias) 1486 break; 1487 } 1488 1489 return Alias; 1490 } 1491 1492 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1493 /// array references. 1494 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size, 1495 const AAMDNodes &V1AAInfo, 1496 const Value *V2, LocationSize V2Size, 1497 const AAMDNodes &V2AAInfo, 1498 AAQueryInfo &AAQI) { 1499 // If either of the memory references is empty, it doesn't matter what the 1500 // pointer values are. 1501 if (V1Size.isZero() || V2Size.isZero()) 1502 return NoAlias; 1503 1504 // Strip off any casts if they exist. 1505 V1 = V1->stripPointerCastsAndInvariantGroups(); 1506 V2 = V2->stripPointerCastsAndInvariantGroups(); 1507 1508 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1509 // value for undef that aliases nothing in the program. 1510 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1511 return NoAlias; 1512 1513 // Are we checking for alias of the same value? 1514 // Because we look 'through' phi nodes, we could look at "Value" pointers from 1515 // different iterations. We must therefore make sure that this is not the 1516 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1517 // happen by looking at the visited phi nodes and making sure they cannot 1518 // reach the value. 1519 if (isValueEqualInPotentialCycles(V1, V2)) 1520 return MustAlias; 1521 1522 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1523 return NoAlias; // Scalars cannot alias each other 1524 1525 // Figure out what objects these things are pointing to if we can. 1526 const Value *O1 = getUnderlyingObject(V1, MaxLookupSearchDepth); 1527 const Value *O2 = getUnderlyingObject(V2, MaxLookupSearchDepth); 1528 1529 // Null values in the default address space don't point to any object, so they 1530 // don't alias any other pointer. 1531 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1532 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1533 return NoAlias; 1534 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1535 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1536 return NoAlias; 1537 1538 if (O1 != O2) { 1539 // If V1/V2 point to two different objects, we know that we have no alias. 1540 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1541 return NoAlias; 1542 1543 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1544 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1545 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1546 return NoAlias; 1547 1548 // Function arguments can't alias with things that are known to be 1549 // unambigously identified at the function level. 1550 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1551 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1552 return NoAlias; 1553 1554 // If one pointer is the result of a call/invoke or load and the other is a 1555 // non-escaping local object within the same function, then we know the 1556 // object couldn't escape to a point where the call could return it. 1557 // 1558 // Note that if the pointers are in different functions, there are a 1559 // variety of complications. A call with a nocapture argument may still 1560 // temporary store the nocapture argument's value in a temporary memory 1561 // location if that memory location doesn't escape. Or it may pass a 1562 // nocapture value to other functions as long as they don't capture it. 1563 if (isEscapeSource(O1) && 1564 isNonEscapingLocalObject(O2, &AAQI.IsCapturedCache)) 1565 return NoAlias; 1566 if (isEscapeSource(O2) && 1567 isNonEscapingLocalObject(O1, &AAQI.IsCapturedCache)) 1568 return NoAlias; 1569 } 1570 1571 // If the size of one access is larger than the entire object on the other 1572 // side, then we know such behavior is undefined and can assume no alias. 1573 bool NullIsValidLocation = NullPointerIsDefined(&F); 1574 if ((isObjectSmallerThan( 1575 O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL, 1576 TLI, NullIsValidLocation)) || 1577 (isObjectSmallerThan( 1578 O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL, 1579 TLI, NullIsValidLocation))) 1580 return NoAlias; 1581 1582 // If one the accesses may be before the accessed pointer, canonicalize this 1583 // by using unknown after-pointer sizes for both accesses. This is 1584 // equivalent, because regardless of which pointer is lower, one of them 1585 // will always came after the other, as long as the underlying objects aren't 1586 // disjoint. We do this so that the rest of BasicAA does not have to deal 1587 // with accesses before the base pointer, and to improve cache utilization by 1588 // merging equivalent states. 1589 if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) { 1590 V1Size = LocationSize::afterPointer(); 1591 V2Size = LocationSize::afterPointer(); 1592 } 1593 1594 // Check the cache before climbing up use-def chains. This also terminates 1595 // otherwise infinitely recursive queries. 1596 AAQueryInfo::LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo), 1597 MemoryLocation(V2, V2Size, V2AAInfo)); 1598 if (V1 > V2) 1599 std::swap(Locs.first, Locs.second); 1600 const auto &Pair = AAQI.AliasCache.try_emplace( 1601 Locs, AAQueryInfo::CacheEntry{NoAlias, 0}); 1602 if (!Pair.second) { 1603 auto &Entry = Pair.first->second; 1604 if (!Entry.isDefinitive()) { 1605 // Remember that we used an assumption. 1606 ++Entry.NumAssumptionUses; 1607 ++AAQI.NumAssumptionUses; 1608 } 1609 return Entry.Result; 1610 } 1611 1612 int OrigNumAssumptionUses = AAQI.NumAssumptionUses; 1613 unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size(); 1614 AliasResult Result = aliasCheckRecursive(V1, V1Size, V1AAInfo, V2, V2Size, 1615 V2AAInfo, AAQI, O1, O2); 1616 1617 auto It = AAQI.AliasCache.find(Locs); 1618 assert(It != AAQI.AliasCache.end() && "Must be in cache"); 1619 auto &Entry = It->second; 1620 1621 // Check whether a NoAlias assumption has been used, but disproven. 1622 bool AssumptionDisproven = Entry.NumAssumptionUses > 0 && Result != NoAlias; 1623 if (AssumptionDisproven) 1624 Result = MayAlias; 1625 1626 // This is a definitive result now, when considered as a root query. 1627 AAQI.NumAssumptionUses -= Entry.NumAssumptionUses; 1628 Entry.Result = Result; 1629 Entry.NumAssumptionUses = -1; 1630 1631 // If the assumption has been disproven, remove any results that may have 1632 // been based on this assumption. Do this after the Entry updates above to 1633 // avoid iterator invalidation. 1634 if (AssumptionDisproven) 1635 while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults) 1636 AAQI.AliasCache.erase(AAQI.AssumptionBasedResults.pop_back_val()); 1637 1638 // The result may still be based on assumptions higher up in the chain. 1639 // Remember it, so it can be purged from the cache later. 1640 if (OrigNumAssumptionUses != AAQI.NumAssumptionUses && Result != MayAlias) 1641 AAQI.AssumptionBasedResults.push_back(Locs); 1642 return Result; 1643 } 1644 1645 AliasResult BasicAAResult::aliasCheckRecursive( 1646 const Value *V1, LocationSize V1Size, const AAMDNodes &V1AAInfo, 1647 const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo, 1648 AAQueryInfo &AAQI, const Value *O1, const Value *O2) { 1649 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1650 AliasResult Result = 1651 aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2, AAQI); 1652 if (Result != MayAlias) 1653 return Result; 1654 } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) { 1655 AliasResult Result = 1656 aliasGEP(GV2, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, O2, O1, AAQI); 1657 if (Result != MayAlias) 1658 return Result; 1659 } 1660 1661 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1662 AliasResult Result = 1663 aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, AAQI); 1664 if (Result != MayAlias) 1665 return Result; 1666 } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) { 1667 AliasResult Result = 1668 aliasPHI(PN, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, AAQI); 1669 if (Result != MayAlias) 1670 return Result; 1671 } 1672 1673 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1674 AliasResult Result = 1675 aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, AAQI); 1676 if (Result != MayAlias) 1677 return Result; 1678 } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) { 1679 AliasResult Result = 1680 aliasSelect(S2, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, AAQI); 1681 if (Result != MayAlias) 1682 return Result; 1683 } 1684 1685 // If both pointers are pointing into the same object and one of them 1686 // accesses the entire object, then the accesses must overlap in some way. 1687 if (O1 == O2) { 1688 bool NullIsValidLocation = NullPointerIsDefined(&F); 1689 if (V1Size.isPrecise() && V2Size.isPrecise() && 1690 (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) || 1691 isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation))) 1692 return PartialAlias; 1693 } 1694 1695 return MayAlias; 1696 } 1697 1698 /// Check whether two Values can be considered equivalent. 1699 /// 1700 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether 1701 /// they can not be part of a cycle in the value graph by looking at all 1702 /// visited phi nodes an making sure that the phis cannot reach the value. We 1703 /// have to do this because we are looking through phi nodes (That is we say 1704 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1705 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1706 const Value *V2) { 1707 if (V != V2) 1708 return false; 1709 1710 const Instruction *Inst = dyn_cast<Instruction>(V); 1711 if (!Inst) 1712 return true; 1713 1714 if (VisitedPhiBBs.empty()) 1715 return true; 1716 1717 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1718 return false; 1719 1720 // Make sure that the visited phis cannot reach the Value. This ensures that 1721 // the Values cannot come from different iterations of a potential cycle the 1722 // phi nodes could be involved in. 1723 for (auto *P : VisitedPhiBBs) 1724 if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT, LI)) 1725 return false; 1726 1727 return true; 1728 } 1729 1730 /// Computes the symbolic difference between two de-composed GEPs. 1731 /// 1732 /// Dest and Src are the variable indices from two decomposed GetElementPtr 1733 /// instructions GEP1 and GEP2 which have common base pointers. 1734 void BasicAAResult::GetIndexDifference( 1735 SmallVectorImpl<VariableGEPIndex> &Dest, 1736 const SmallVectorImpl<VariableGEPIndex> &Src) { 1737 if (Src.empty()) 1738 return; 1739 1740 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1741 const Value *V = Src[i].V; 1742 unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits; 1743 APInt Scale = Src[i].Scale; 1744 1745 // Find V in Dest. This is N^2, but pointer indices almost never have more 1746 // than a few variable indexes. 1747 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1748 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1749 Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits) 1750 continue; 1751 1752 // If we found it, subtract off Scale V's from the entry in Dest. If it 1753 // goes to zero, remove the entry. 1754 if (Dest[j].Scale != Scale) 1755 Dest[j].Scale -= Scale; 1756 else 1757 Dest.erase(Dest.begin() + j); 1758 Scale = 0; 1759 break; 1760 } 1761 1762 // If we didn't consume this entry, add it to the end of the Dest list. 1763 if (!!Scale) { 1764 VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale, Src[i].CxtI}; 1765 Dest.push_back(Entry); 1766 } 1767 } 1768 } 1769 1770 bool BasicAAResult::constantOffsetHeuristic( 1771 const SmallVectorImpl<VariableGEPIndex> &VarIndices, 1772 LocationSize MaybeV1Size, LocationSize MaybeV2Size, const APInt &BaseOffset, 1773 AssumptionCache *AC, DominatorTree *DT) { 1774 if (VarIndices.size() != 2 || !MaybeV1Size.hasValue() || 1775 !MaybeV2Size.hasValue()) 1776 return false; 1777 1778 const uint64_t V1Size = MaybeV1Size.getValue(); 1779 const uint64_t V2Size = MaybeV2Size.getValue(); 1780 1781 const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1]; 1782 1783 if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits || 1784 Var0.Scale != -Var1.Scale) 1785 return false; 1786 1787 unsigned Width = Var1.V->getType()->getIntegerBitWidth(); 1788 1789 // We'll strip off the Extensions of Var0 and Var1 and do another round 1790 // of GetLinearExpression decomposition. In the example above, if Var0 1791 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 1792 1793 APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0), 1794 V1Offset(Width, 0); 1795 bool NSW = true, NUW = true; 1796 unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0; 1797 const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits, 1798 V0SExtBits, DL, 0, AC, DT, NSW, NUW); 1799 NSW = true; 1800 NUW = true; 1801 const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits, 1802 V1SExtBits, DL, 0, AC, DT, NSW, NUW); 1803 1804 if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits || 1805 V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1)) 1806 return false; 1807 1808 // We have a hit - Var0 and Var1 only differ by a constant offset! 1809 1810 // If we've been sext'ed then zext'd the maximum difference between Var0 and 1811 // Var1 is possible to calculate, but we're just interested in the absolute 1812 // minimum difference between the two. The minimum distance may occur due to 1813 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 1814 // the minimum distance between %i and %i + 5 is 3. 1815 APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff; 1816 MinDiff = APIntOps::umin(MinDiff, Wrapped); 1817 APInt MinDiffBytes = 1818 MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs(); 1819 1820 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 1821 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 1822 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 1823 // V2Size can fit in the MinDiffBytes gap. 1824 return MinDiffBytes.uge(V1Size + BaseOffset.abs()) && 1825 MinDiffBytes.uge(V2Size + BaseOffset.abs()); 1826 } 1827 1828 //===----------------------------------------------------------------------===// 1829 // BasicAliasAnalysis Pass 1830 //===----------------------------------------------------------------------===// 1831 1832 AnalysisKey BasicAA::Key; 1833 1834 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) { 1835 return BasicAAResult(F.getParent()->getDataLayout(), 1836 F, 1837 AM.getResult<TargetLibraryAnalysis>(F), 1838 AM.getResult<AssumptionAnalysis>(F), 1839 &AM.getResult<DominatorTreeAnalysis>(F), 1840 AM.getCachedResult<LoopAnalysis>(F), 1841 AM.getCachedResult<PhiValuesAnalysis>(F)); 1842 } 1843 1844 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 1845 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1846 } 1847 1848 char BasicAAWrapperPass::ID = 0; 1849 1850 void BasicAAWrapperPass::anchor() {} 1851 1852 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa", 1853 "Basic Alias Analysis (stateless AA impl)", true, true) 1854 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1855 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1856 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1857 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass) 1858 INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa", 1859 "Basic Alias Analysis (stateless AA impl)", true, true) 1860 1861 FunctionPass *llvm::createBasicAAWrapperPass() { 1862 return new BasicAAWrapperPass(); 1863 } 1864 1865 bool BasicAAWrapperPass::runOnFunction(Function &F) { 1866 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 1867 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 1868 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); 1869 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 1870 auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>(); 1871 1872 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F, 1873 TLIWP.getTLI(F), ACT.getAssumptionCache(F), 1874 &DTWP.getDomTree(), 1875 LIWP ? &LIWP->getLoopInfo() : nullptr, 1876 PVWP ? &PVWP->getResult() : nullptr)); 1877 1878 return false; 1879 } 1880 1881 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1882 AU.setPreservesAll(); 1883 AU.addRequiredTransitive<AssumptionCacheTracker>(); 1884 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 1885 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 1886 AU.addUsedIfAvailable<PhiValuesWrapperPass>(); 1887 } 1888 1889 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { 1890 return BasicAAResult( 1891 F.getParent()->getDataLayout(), F, 1892 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 1893 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 1894 } 1895