1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the primary stateless implementation of the 10 // Alias Analysis interface that implements identities (two different 11 // globals cannot alias, etc), but does no stateful analysis. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/BasicAliasAnalysis.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/CFG.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/MemoryBuiltins.h" 28 #include "llvm/Analysis/MemoryLocation.h" 29 #include "llvm/Analysis/PhiValues.h" 30 #include "llvm/Analysis/TargetLibraryInfo.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/IR/Argument.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GetElementPtrTypeIterator.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/Metadata.h" 49 #include "llvm/IR/Operator.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/User.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/KnownBits.h" 59 #include <cassert> 60 #include <cstdint> 61 #include <cstdlib> 62 #include <utility> 63 64 #define DEBUG_TYPE "basicaa" 65 66 using namespace llvm; 67 68 /// Enable analysis of recursive PHI nodes. 69 static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden, 70 cl::init(true)); 71 72 /// By default, even on 32-bit architectures we use 64-bit integers for 73 /// calculations. This will allow us to more-aggressively decompose indexing 74 /// expressions calculated using i64 values (e.g., long long in C) which is 75 /// common enough to worry about. 76 static cl::opt<bool> ForceAtLeast64Bits("basic-aa-force-at-least-64b", 77 cl::Hidden, cl::init(true)); 78 static cl::opt<bool> DoubleCalcBits("basic-aa-double-calc-bits", 79 cl::Hidden, cl::init(false)); 80 81 /// SearchLimitReached / SearchTimes shows how often the limit of 82 /// to decompose GEPs is reached. It will affect the precision 83 /// of basic alias analysis. 84 STATISTIC(SearchLimitReached, "Number of times the limit to " 85 "decompose GEPs is reached"); 86 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 87 88 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 89 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be 90 /// careful with value equivalence. We use reachability to make sure a value 91 /// cannot be involved in a cycle. 92 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 93 94 // The max limit of the search depth in DecomposeGEPExpression() and 95 // getUnderlyingObject(), both functions need to use the same search 96 // depth otherwise the algorithm in aliasGEP will assert. 97 static const unsigned MaxLookupSearchDepth = 6; 98 99 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA, 100 FunctionAnalysisManager::Invalidator &Inv) { 101 // We don't care if this analysis itself is preserved, it has no state. But 102 // we need to check that the analyses it depends on have been. Note that we 103 // may be created without handles to some analyses and in that case don't 104 // depend on them. 105 if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) || 106 (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) || 107 (LI && Inv.invalidate<LoopAnalysis>(Fn, PA)) || 108 (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA))) 109 return true; 110 111 // Otherwise this analysis result remains valid. 112 return false; 113 } 114 115 //===----------------------------------------------------------------------===// 116 // Useful predicates 117 //===----------------------------------------------------------------------===// 118 119 /// Returns true if the pointer is one which would have been considered an 120 /// escape by isNonEscapingLocalObject. 121 static bool isEscapeSource(const Value *V) { 122 if (isa<CallBase>(V)) 123 return true; 124 125 if (isa<Argument>(V)) 126 return true; 127 128 // The load case works because isNonEscapingLocalObject considers all 129 // stores to be escapes (it passes true for the StoreCaptures argument 130 // to PointerMayBeCaptured). 131 if (isa<LoadInst>(V)) 132 return true; 133 134 return false; 135 } 136 137 /// Returns the size of the object specified by V or UnknownSize if unknown. 138 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 139 const TargetLibraryInfo &TLI, 140 bool NullIsValidLoc, 141 bool RoundToAlign = false) { 142 uint64_t Size; 143 ObjectSizeOpts Opts; 144 Opts.RoundToAlign = RoundToAlign; 145 Opts.NullIsUnknownSize = NullIsValidLoc; 146 if (getObjectSize(V, Size, DL, &TLI, Opts)) 147 return Size; 148 return MemoryLocation::UnknownSize; 149 } 150 151 /// Returns true if we can prove that the object specified by V is smaller than 152 /// Size. 153 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 154 const DataLayout &DL, 155 const TargetLibraryInfo &TLI, 156 bool NullIsValidLoc) { 157 // Note that the meanings of the "object" are slightly different in the 158 // following contexts: 159 // c1: llvm::getObjectSize() 160 // c2: llvm.objectsize() intrinsic 161 // c3: isObjectSmallerThan() 162 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 163 // refers to the "entire object". 164 // 165 // Consider this example: 166 // char *p = (char*)malloc(100) 167 // char *q = p+80; 168 // 169 // In the context of c1 and c2, the "object" pointed by q refers to the 170 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 171 // 172 // However, in the context of c3, the "object" refers to the chunk of memory 173 // being allocated. So, the "object" has 100 bytes, and q points to the middle 174 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 175 // parameter, before the llvm::getObjectSize() is called to get the size of 176 // entire object, we should: 177 // - either rewind the pointer q to the base-address of the object in 178 // question (in this case rewind to p), or 179 // - just give up. It is up to caller to make sure the pointer is pointing 180 // to the base address the object. 181 // 182 // We go for 2nd option for simplicity. 183 if (!isIdentifiedObject(V)) 184 return false; 185 186 // This function needs to use the aligned object size because we allow 187 // reads a bit past the end given sufficient alignment. 188 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc, 189 /*RoundToAlign*/ true); 190 191 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; 192 } 193 194 /// Return the minimal extent from \p V to the end of the underlying object, 195 /// assuming the result is used in an aliasing query. E.g., we do use the query 196 /// location size and the fact that null pointers cannot alias here. 197 static uint64_t getMinimalExtentFrom(const Value &V, 198 const LocationSize &LocSize, 199 const DataLayout &DL, 200 bool NullIsValidLoc) { 201 // If we have dereferenceability information we know a lower bound for the 202 // extent as accesses for a lower offset would be valid. We need to exclude 203 // the "or null" part if null is a valid pointer. 204 bool CanBeNull; 205 uint64_t DerefBytes = V.getPointerDereferenceableBytes(DL, CanBeNull); 206 DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes; 207 // If queried with a precise location size, we assume that location size to be 208 // accessed, thus valid. 209 if (LocSize.isPrecise()) 210 DerefBytes = std::max(DerefBytes, LocSize.getValue()); 211 return DerefBytes; 212 } 213 214 /// Returns true if we can prove that the object specified by V has size Size. 215 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, 216 const TargetLibraryInfo &TLI, bool NullIsValidLoc) { 217 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc); 218 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; 219 } 220 221 //===----------------------------------------------------------------------===// 222 // GetElementPtr Instruction Decomposition and Analysis 223 //===----------------------------------------------------------------------===// 224 225 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 226 /// B are constant integers. 227 /// 228 /// Returns the scale and offset values as APInts and return V as a Value*, and 229 /// return whether we looked through any sign or zero extends. The incoming 230 /// Value is known to have IntegerType, and it may already be sign or zero 231 /// extended. 232 /// 233 /// Note that this looks through extends, so the high bits may not be 234 /// represented in the result. 235 /*static*/ const Value *BasicAAResult::GetLinearExpression( 236 const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits, 237 unsigned &SExtBits, const DataLayout &DL, unsigned Depth, 238 AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) { 239 assert(V->getType()->isIntegerTy() && "Not an integer value"); 240 241 // Limit our recursion depth. 242 if (Depth == 6) { 243 Scale = 1; 244 Offset = 0; 245 return V; 246 } 247 248 if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) { 249 // If it's a constant, just convert it to an offset and remove the variable. 250 // If we've been called recursively, the Offset bit width will be greater 251 // than the constant's (the Offset's always as wide as the outermost call), 252 // so we'll zext here and process any extension in the isa<SExtInst> & 253 // isa<ZExtInst> cases below. 254 Offset += Const->getValue().zextOrSelf(Offset.getBitWidth()); 255 assert(Scale == 0 && "Constant values don't have a scale"); 256 return V; 257 } 258 259 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 260 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 261 // If we've been called recursively, then Offset and Scale will be wider 262 // than the BOp operands. We'll always zext it here as we'll process sign 263 // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases). 264 APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth()); 265 266 switch (BOp->getOpcode()) { 267 default: 268 // We don't understand this instruction, so we can't decompose it any 269 // further. 270 Scale = 1; 271 Offset = 0; 272 return V; 273 case Instruction::Or: 274 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 275 // analyze it. 276 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, 277 BOp, DT)) { 278 Scale = 1; 279 Offset = 0; 280 return V; 281 } 282 LLVM_FALLTHROUGH; 283 case Instruction::Add: 284 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 285 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 286 Offset += RHS; 287 break; 288 case Instruction::Sub: 289 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 290 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 291 Offset -= RHS; 292 break; 293 case Instruction::Mul: 294 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 295 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 296 Offset *= RHS; 297 Scale *= RHS; 298 break; 299 case Instruction::Shl: 300 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 301 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 302 303 // We're trying to linearize an expression of the kind: 304 // shl i8 -128, 36 305 // where the shift count exceeds the bitwidth of the type. 306 // We can't decompose this further (the expression would return 307 // a poison value). 308 if (Offset.getBitWidth() < RHS.getLimitedValue() || 309 Scale.getBitWidth() < RHS.getLimitedValue()) { 310 Scale = 1; 311 Offset = 0; 312 return V; 313 } 314 315 Offset <<= RHS.getLimitedValue(); 316 Scale <<= RHS.getLimitedValue(); 317 // the semantics of nsw and nuw for left shifts don't match those of 318 // multiplications, so we won't propagate them. 319 NSW = NUW = false; 320 return V; 321 } 322 323 if (isa<OverflowingBinaryOperator>(BOp)) { 324 NUW &= BOp->hasNoUnsignedWrap(); 325 NSW &= BOp->hasNoSignedWrap(); 326 } 327 return V; 328 } 329 } 330 331 // Since GEP indices are sign extended anyway, we don't care about the high 332 // bits of a sign or zero extended value - just scales and offsets. The 333 // extensions have to be consistent though. 334 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) { 335 Value *CastOp = cast<CastInst>(V)->getOperand(0); 336 unsigned NewWidth = V->getType()->getPrimitiveSizeInBits(); 337 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 338 unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits; 339 const Value *Result = 340 GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL, 341 Depth + 1, AC, DT, NSW, NUW); 342 343 // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this 344 // by just incrementing the number of bits we've extended by. 345 unsigned ExtendedBy = NewWidth - SmallWidth; 346 347 if (isa<SExtInst>(V) && ZExtBits == 0) { 348 // sext(sext(%x, a), b) == sext(%x, a + b) 349 350 if (NSW) { 351 // We haven't sign-wrapped, so it's valid to decompose sext(%x + c) 352 // into sext(%x) + sext(c). We'll sext the Offset ourselves: 353 unsigned OldWidth = Offset.getBitWidth(); 354 Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth); 355 } else { 356 // We may have signed-wrapped, so don't decompose sext(%x + c) into 357 // sext(%x) + sext(c) 358 Scale = 1; 359 Offset = 0; 360 Result = CastOp; 361 ZExtBits = OldZExtBits; 362 SExtBits = OldSExtBits; 363 } 364 SExtBits += ExtendedBy; 365 } else { 366 // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b) 367 368 if (!NUW) { 369 // We may have unsigned-wrapped, so don't decompose zext(%x + c) into 370 // zext(%x) + zext(c) 371 Scale = 1; 372 Offset = 0; 373 Result = CastOp; 374 ZExtBits = OldZExtBits; 375 SExtBits = OldSExtBits; 376 } 377 ZExtBits += ExtendedBy; 378 } 379 380 return Result; 381 } 382 383 Scale = 1; 384 Offset = 0; 385 return V; 386 } 387 388 /// To ensure a pointer offset fits in an integer of size PointerSize 389 /// (in bits) when that size is smaller than the maximum pointer size. This is 390 /// an issue, for example, in particular for 32b pointers with negative indices 391 /// that rely on two's complement wrap-arounds for precise alias information 392 /// where the maximum pointer size is 64b. 393 static APInt adjustToPointerSize(const APInt &Offset, unsigned PointerSize) { 394 assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!"); 395 unsigned ShiftBits = Offset.getBitWidth() - PointerSize; 396 return (Offset << ShiftBits).ashr(ShiftBits); 397 } 398 399 static unsigned getMaxPointerSize(const DataLayout &DL) { 400 unsigned MaxPointerSize = DL.getMaxPointerSizeInBits(); 401 if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64; 402 if (DoubleCalcBits) MaxPointerSize *= 2; 403 404 return MaxPointerSize; 405 } 406 407 /// If V is a symbolic pointer expression, decompose it into a base pointer 408 /// with a constant offset and a number of scaled symbolic offsets. 409 /// 410 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 411 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 412 /// specified amount, but which may have other unrepresented high bits. As 413 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 414 /// 415 /// This function is capable of analyzing everything that getUnderlyingObject 416 /// can look through. To be able to do that getUnderlyingObject and 417 /// DecomposeGEPExpression must use the same search depth 418 /// (MaxLookupSearchDepth). 419 BasicAAResult::DecomposedGEP 420 BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL, 421 AssumptionCache *AC, DominatorTree *DT) { 422 // Limit recursion depth to limit compile time in crazy cases. 423 unsigned MaxLookup = MaxLookupSearchDepth; 424 SearchTimes++; 425 426 unsigned MaxPointerSize = getMaxPointerSize(DL); 427 DecomposedGEP Decomposed; 428 Decomposed.Offset = APInt(MaxPointerSize, 0); 429 Decomposed.HasCompileTimeConstantScale = true; 430 do { 431 // See if this is a bitcast or GEP. 432 const Operator *Op = dyn_cast<Operator>(V); 433 if (!Op) { 434 // The only non-operator case we can handle are GlobalAliases. 435 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 436 if (!GA->isInterposable()) { 437 V = GA->getAliasee(); 438 continue; 439 } 440 } 441 Decomposed.Base = V; 442 return Decomposed; 443 } 444 445 if (Op->getOpcode() == Instruction::BitCast || 446 Op->getOpcode() == Instruction::AddrSpaceCast) { 447 V = Op->getOperand(0); 448 continue; 449 } 450 451 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 452 if (!GEPOp) { 453 if (const auto *PHI = dyn_cast<PHINode>(V)) { 454 // Look through single-arg phi nodes created by LCSSA. 455 if (PHI->getNumIncomingValues() == 1) { 456 V = PHI->getIncomingValue(0); 457 continue; 458 } 459 } else if (const auto *Call = dyn_cast<CallBase>(V)) { 460 // CaptureTracking can know about special capturing properties of some 461 // intrinsics like launder.invariant.group, that can't be expressed with 462 // the attributes, but have properties like returning aliasing pointer. 463 // Because some analysis may assume that nocaptured pointer is not 464 // returned from some special intrinsic (because function would have to 465 // be marked with returns attribute), it is crucial to use this function 466 // because it should be in sync with CaptureTracking. Not using it may 467 // cause weird miscompilations where 2 aliasing pointers are assumed to 468 // noalias. 469 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 470 V = RP; 471 continue; 472 } 473 } 474 475 Decomposed.Base = V; 476 return Decomposed; 477 } 478 479 // Don't attempt to analyze GEPs over unsized objects. 480 if (!GEPOp->getSourceElementType()->isSized()) { 481 Decomposed.Base = V; 482 return Decomposed; 483 } 484 485 // Don't attempt to analyze GEPs if index scale is not a compile-time 486 // constant. 487 if (isa<ScalableVectorType>(GEPOp->getSourceElementType())) { 488 Decomposed.Base = V; 489 Decomposed.HasCompileTimeConstantScale = false; 490 return Decomposed; 491 } 492 493 unsigned AS = GEPOp->getPointerAddressSpace(); 494 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 495 gep_type_iterator GTI = gep_type_begin(GEPOp); 496 unsigned PointerSize = DL.getPointerSizeInBits(AS); 497 // Assume all GEP operands are constants until proven otherwise. 498 bool GepHasConstantOffset = true; 499 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 500 I != E; ++I, ++GTI) { 501 const Value *Index = *I; 502 // Compute the (potentially symbolic) offset in bytes for this index. 503 if (StructType *STy = GTI.getStructTypeOrNull()) { 504 // For a struct, add the member offset. 505 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 506 if (FieldNo == 0) 507 continue; 508 509 Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo); 510 continue; 511 } 512 513 // For an array/pointer, add the element offset, explicitly scaled. 514 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 515 if (CIdx->isZero()) 516 continue; 517 Decomposed.Offset += 518 DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize() * 519 CIdx->getValue().sextOrTrunc(MaxPointerSize); 520 continue; 521 } 522 523 GepHasConstantOffset = false; 524 525 APInt Scale(MaxPointerSize, 526 DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize()); 527 unsigned ZExtBits = 0, SExtBits = 0; 528 529 // If the integer type is smaller than the pointer size, it is implicitly 530 // sign extended to pointer size. 531 unsigned Width = Index->getType()->getIntegerBitWidth(); 532 if (PointerSize > Width) 533 SExtBits += PointerSize - Width; 534 535 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 536 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 537 bool NSW = true, NUW = true; 538 const Value *OrigIndex = Index; 539 Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits, 540 SExtBits, DL, 0, AC, DT, NSW, NUW); 541 542 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 543 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 544 545 // It can be the case that, even through C1*V+C2 does not overflow for 546 // relevant values of V, (C2*Scale) can overflow. In that case, we cannot 547 // decompose the expression in this way. 548 // 549 // FIXME: C1*Scale and the other operations in the decomposed 550 // (C1*Scale)*V+C2*Scale can also overflow. We should check for this 551 // possibility. 552 bool Overflow; 553 APInt ScaledOffset = IndexOffset.sextOrTrunc(MaxPointerSize) 554 .smul_ov(Scale, Overflow); 555 if (Overflow) { 556 Index = OrigIndex; 557 IndexScale = 1; 558 IndexOffset = 0; 559 560 ZExtBits = SExtBits = 0; 561 if (PointerSize > Width) 562 SExtBits += PointerSize - Width; 563 } else { 564 Decomposed.Offset += ScaledOffset; 565 Scale *= IndexScale.sextOrTrunc(MaxPointerSize); 566 } 567 568 // If we already had an occurrence of this index variable, merge this 569 // scale into it. For example, we want to handle: 570 // A[x][x] -> x*16 + x*4 -> x*20 571 // This also ensures that 'x' only appears in the index list once. 572 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { 573 if (Decomposed.VarIndices[i].V == Index && 574 Decomposed.VarIndices[i].ZExtBits == ZExtBits && 575 Decomposed.VarIndices[i].SExtBits == SExtBits) { 576 Scale += Decomposed.VarIndices[i].Scale; 577 Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i); 578 break; 579 } 580 } 581 582 // Make sure that we have a scale that makes sense for this target's 583 // pointer size. 584 Scale = adjustToPointerSize(Scale, PointerSize); 585 586 if (!!Scale) { 587 VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, Scale}; 588 Decomposed.VarIndices.push_back(Entry); 589 } 590 } 591 592 // Take care of wrap-arounds 593 if (GepHasConstantOffset) 594 Decomposed.Offset = adjustToPointerSize(Decomposed.Offset, PointerSize); 595 596 // Analyze the base pointer next. 597 V = GEPOp->getOperand(0); 598 } while (--MaxLookup); 599 600 // If the chain of expressions is too deep, just return early. 601 Decomposed.Base = V; 602 SearchLimitReached++; 603 return Decomposed; 604 } 605 606 /// Returns whether the given pointer value points to memory that is local to 607 /// the function, with global constants being considered local to all 608 /// functions. 609 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc, 610 AAQueryInfo &AAQI, bool OrLocal) { 611 assert(Visited.empty() && "Visited must be cleared after use!"); 612 613 unsigned MaxLookup = 8; 614 SmallVector<const Value *, 16> Worklist; 615 Worklist.push_back(Loc.Ptr); 616 do { 617 const Value *V = getUnderlyingObject(Worklist.pop_back_val()); 618 if (!Visited.insert(V).second) { 619 Visited.clear(); 620 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 621 } 622 623 // An alloca instruction defines local memory. 624 if (OrLocal && isa<AllocaInst>(V)) 625 continue; 626 627 // A global constant counts as local memory for our purposes. 628 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 629 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 630 // global to be marked constant in some modules and non-constant in 631 // others. GV may even be a declaration, not a definition. 632 if (!GV->isConstant()) { 633 Visited.clear(); 634 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 635 } 636 continue; 637 } 638 639 // If both select values point to local memory, then so does the select. 640 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 641 Worklist.push_back(SI->getTrueValue()); 642 Worklist.push_back(SI->getFalseValue()); 643 continue; 644 } 645 646 // If all values incoming to a phi node point to local memory, then so does 647 // the phi. 648 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 649 // Don't bother inspecting phi nodes with many operands. 650 if (PN->getNumIncomingValues() > MaxLookup) { 651 Visited.clear(); 652 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 653 } 654 for (Value *IncValue : PN->incoming_values()) 655 Worklist.push_back(IncValue); 656 continue; 657 } 658 659 // Otherwise be conservative. 660 Visited.clear(); 661 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 662 } while (!Worklist.empty() && --MaxLookup); 663 664 Visited.clear(); 665 return Worklist.empty(); 666 } 667 668 /// Returns the behavior when calling the given call site. 669 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) { 670 if (Call->doesNotAccessMemory()) 671 // Can't do better than this. 672 return FMRB_DoesNotAccessMemory; 673 674 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 675 676 // If the callsite knows it only reads memory, don't return worse 677 // than that. 678 if (Call->onlyReadsMemory()) 679 Min = FMRB_OnlyReadsMemory; 680 else if (Call->doesNotReadMemory()) 681 Min = FMRB_OnlyWritesMemory; 682 683 if (Call->onlyAccessesArgMemory()) 684 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 685 else if (Call->onlyAccessesInaccessibleMemory()) 686 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 687 else if (Call->onlyAccessesInaccessibleMemOrArgMem()) 688 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 689 690 // If the call has operand bundles then aliasing attributes from the function 691 // it calls do not directly apply to the call. This can be made more precise 692 // in the future. 693 if (!Call->hasOperandBundles()) 694 if (const Function *F = Call->getCalledFunction()) 695 Min = 696 FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F)); 697 698 return Min; 699 } 700 701 /// Returns the behavior when calling the given function. For use when the call 702 /// site is not known. 703 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) { 704 // If the function declares it doesn't access memory, we can't do better. 705 if (F->doesNotAccessMemory()) 706 return FMRB_DoesNotAccessMemory; 707 708 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 709 710 // If the function declares it only reads memory, go with that. 711 if (F->onlyReadsMemory()) 712 Min = FMRB_OnlyReadsMemory; 713 else if (F->doesNotReadMemory()) 714 Min = FMRB_OnlyWritesMemory; 715 716 if (F->onlyAccessesArgMemory()) 717 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 718 else if (F->onlyAccessesInaccessibleMemory()) 719 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 720 else if (F->onlyAccessesInaccessibleMemOrArgMem()) 721 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 722 723 return Min; 724 } 725 726 /// Returns true if this is a writeonly (i.e Mod only) parameter. 727 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx, 728 const TargetLibraryInfo &TLI) { 729 if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly)) 730 return true; 731 732 // We can bound the aliasing properties of memset_pattern16 just as we can 733 // for memcpy/memset. This is particularly important because the 734 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 735 // whenever possible. 736 // FIXME Consider handling this in InferFunctionAttr.cpp together with other 737 // attributes. 738 LibFunc F; 739 if (Call->getCalledFunction() && 740 TLI.getLibFunc(*Call->getCalledFunction(), F) && 741 F == LibFunc_memset_pattern16 && TLI.has(F)) 742 if (ArgIdx == 0) 743 return true; 744 745 // TODO: memset_pattern4, memset_pattern8 746 // TODO: _chk variants 747 // TODO: strcmp, strcpy 748 749 return false; 750 } 751 752 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call, 753 unsigned ArgIdx) { 754 // Checking for known builtin intrinsics and target library functions. 755 if (isWriteOnlyParam(Call, ArgIdx, TLI)) 756 return ModRefInfo::Mod; 757 758 if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly)) 759 return ModRefInfo::Ref; 760 761 if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone)) 762 return ModRefInfo::NoModRef; 763 764 return AAResultBase::getArgModRefInfo(Call, ArgIdx); 765 } 766 767 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) { 768 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call); 769 return II && II->getIntrinsicID() == IID; 770 } 771 772 #ifndef NDEBUG 773 static const Function *getParent(const Value *V) { 774 if (const Instruction *inst = dyn_cast<Instruction>(V)) { 775 if (!inst->getParent()) 776 return nullptr; 777 return inst->getParent()->getParent(); 778 } 779 780 if (const Argument *arg = dyn_cast<Argument>(V)) 781 return arg->getParent(); 782 783 return nullptr; 784 } 785 786 static bool notDifferentParent(const Value *O1, const Value *O2) { 787 788 const Function *F1 = getParent(O1); 789 const Function *F2 = getParent(O2); 790 791 return !F1 || !F2 || F1 == F2; 792 } 793 #endif 794 795 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 796 const MemoryLocation &LocB, 797 AAQueryInfo &AAQI) { 798 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 799 "BasicAliasAnalysis doesn't support interprocedural queries."); 800 801 // If we have a directly cached entry for these locations, we have recursed 802 // through this once, so just return the cached results. Notably, when this 803 // happens, we don't clear the cache. 804 AAQueryInfo::LocPair Locs(LocA, LocB); 805 if (Locs.first.Ptr > Locs.second.Ptr) 806 std::swap(Locs.first, Locs.second); 807 auto CacheIt = AAQI.AliasCache.find(Locs); 808 if (CacheIt != AAQI.AliasCache.end()) 809 return CacheIt->second; 810 811 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr, 812 LocB.Size, LocB.AATags, AAQI); 813 814 assert(VisitedPhiBBs.empty()); 815 return Alias; 816 } 817 818 /// Checks to see if the specified callsite can clobber the specified memory 819 /// object. 820 /// 821 /// Since we only look at local properties of this function, we really can't 822 /// say much about this query. We do, however, use simple "address taken" 823 /// analysis on local objects. 824 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call, 825 const MemoryLocation &Loc, 826 AAQueryInfo &AAQI) { 827 assert(notDifferentParent(Call, Loc.Ptr) && 828 "AliasAnalysis query involving multiple functions!"); 829 830 const Value *Object = getUnderlyingObject(Loc.Ptr); 831 832 // Calls marked 'tail' cannot read or write allocas from the current frame 833 // because the current frame might be destroyed by the time they run. However, 834 // a tail call may use an alloca with byval. Calling with byval copies the 835 // contents of the alloca into argument registers or stack slots, so there is 836 // no lifetime issue. 837 if (isa<AllocaInst>(Object)) 838 if (const CallInst *CI = dyn_cast<CallInst>(Call)) 839 if (CI->isTailCall() && 840 !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal)) 841 return ModRefInfo::NoModRef; 842 843 // Stack restore is able to modify unescaped dynamic allocas. Assume it may 844 // modify them even though the alloca is not escaped. 845 if (auto *AI = dyn_cast<AllocaInst>(Object)) 846 if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore)) 847 return ModRefInfo::Mod; 848 849 // If the pointer is to a locally allocated object that does not escape, 850 // then the call can not mod/ref the pointer unless the call takes the pointer 851 // as an argument, and itself doesn't capture it. 852 if (!isa<Constant>(Object) && Call != Object && 853 isNonEscapingLocalObject(Object, &AAQI.IsCapturedCache)) { 854 855 // Optimistically assume that call doesn't touch Object and check this 856 // assumption in the following loop. 857 ModRefInfo Result = ModRefInfo::NoModRef; 858 bool IsMustAlias = true; 859 860 unsigned OperandNo = 0; 861 for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end(); 862 CI != CE; ++CI, ++OperandNo) { 863 // Only look at the no-capture or byval pointer arguments. If this 864 // pointer were passed to arguments that were neither of these, then it 865 // couldn't be no-capture. 866 if (!(*CI)->getType()->isPointerTy() || 867 (!Call->doesNotCapture(OperandNo) && 868 OperandNo < Call->getNumArgOperands() && 869 !Call->isByValArgument(OperandNo))) 870 continue; 871 872 // Call doesn't access memory through this operand, so we don't care 873 // if it aliases with Object. 874 if (Call->doesNotAccessMemory(OperandNo)) 875 continue; 876 877 // If this is a no-capture pointer argument, see if we can tell that it 878 // is impossible to alias the pointer we're checking. 879 AliasResult AR = getBestAAResults().alias( 880 MemoryLocation::getBeforeOrAfter(*CI), 881 MemoryLocation::getBeforeOrAfter(Object), AAQI); 882 if (AR != MustAlias) 883 IsMustAlias = false; 884 // Operand doesn't alias 'Object', continue looking for other aliases 885 if (AR == NoAlias) 886 continue; 887 // Operand aliases 'Object', but call doesn't modify it. Strengthen 888 // initial assumption and keep looking in case if there are more aliases. 889 if (Call->onlyReadsMemory(OperandNo)) { 890 Result = setRef(Result); 891 continue; 892 } 893 // Operand aliases 'Object' but call only writes into it. 894 if (Call->doesNotReadMemory(OperandNo)) { 895 Result = setMod(Result); 896 continue; 897 } 898 // This operand aliases 'Object' and call reads and writes into it. 899 // Setting ModRef will not yield an early return below, MustAlias is not 900 // used further. 901 Result = ModRefInfo::ModRef; 902 break; 903 } 904 905 // No operand aliases, reset Must bit. Add below if at least one aliases 906 // and all aliases found are MustAlias. 907 if (isNoModRef(Result)) 908 IsMustAlias = false; 909 910 // Early return if we improved mod ref information 911 if (!isModAndRefSet(Result)) { 912 if (isNoModRef(Result)) 913 return ModRefInfo::NoModRef; 914 return IsMustAlias ? setMust(Result) : clearMust(Result); 915 } 916 } 917 918 // If the call is malloc/calloc like, we can assume that it doesn't 919 // modify any IR visible value. This is only valid because we assume these 920 // routines do not read values visible in the IR. TODO: Consider special 921 // casing realloc and strdup routines which access only their arguments as 922 // well. Or alternatively, replace all of this with inaccessiblememonly once 923 // that's implemented fully. 924 if (isMallocOrCallocLikeFn(Call, &TLI)) { 925 // Be conservative if the accessed pointer may alias the allocation - 926 // fallback to the generic handling below. 927 if (getBestAAResults().alias(MemoryLocation::getBeforeOrAfter(Call), 928 Loc, AAQI) == NoAlias) 929 return ModRefInfo::NoModRef; 930 } 931 932 // The semantics of memcpy intrinsics either exactly overlap or do not 933 // overlap, i.e., source and destination of any given memcpy are either 934 // no-alias or must-alias. 935 if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) { 936 AliasResult SrcAA = 937 getBestAAResults().alias(MemoryLocation::getForSource(Inst), Loc, AAQI); 938 AliasResult DestAA = 939 getBestAAResults().alias(MemoryLocation::getForDest(Inst), Loc, AAQI); 940 // It's also possible for Loc to alias both src and dest, or neither. 941 ModRefInfo rv = ModRefInfo::NoModRef; 942 if (SrcAA != NoAlias) 943 rv = setRef(rv); 944 if (DestAA != NoAlias) 945 rv = setMod(rv); 946 return rv; 947 } 948 949 // While the assume intrinsic is marked as arbitrarily writing so that 950 // proper control dependencies will be maintained, it never aliases any 951 // particular memory location. 952 if (isIntrinsicCall(Call, Intrinsic::assume)) 953 return ModRefInfo::NoModRef; 954 955 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 956 // that proper control dependencies are maintained but they never mods any 957 // particular memory location. 958 // 959 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 960 // heap state at the point the guard is issued needs to be consistent in case 961 // the guard invokes the "deopt" continuation. 962 if (isIntrinsicCall(Call, Intrinsic::experimental_guard)) 963 return ModRefInfo::Ref; 964 // The same applies to deoptimize which is essentially a guard(false). 965 if (isIntrinsicCall(Call, Intrinsic::experimental_deoptimize)) 966 return ModRefInfo::Ref; 967 968 // Like assumes, invariant.start intrinsics were also marked as arbitrarily 969 // writing so that proper control dependencies are maintained but they never 970 // mod any particular memory location visible to the IR. 971 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start 972 // intrinsic is now modeled as reading memory. This prevents hoisting the 973 // invariant.start intrinsic over stores. Consider: 974 // *ptr = 40; 975 // *ptr = 50; 976 // invariant_start(ptr) 977 // int val = *ptr; 978 // print(val); 979 // 980 // This cannot be transformed to: 981 // 982 // *ptr = 40; 983 // invariant_start(ptr) 984 // *ptr = 50; 985 // int val = *ptr; 986 // print(val); 987 // 988 // The transformation will cause the second store to be ignored (based on 989 // rules of invariant.start) and print 40, while the first program always 990 // prints 50. 991 if (isIntrinsicCall(Call, Intrinsic::invariant_start)) 992 return ModRefInfo::Ref; 993 994 // The AAResultBase base class has some smarts, lets use them. 995 return AAResultBase::getModRefInfo(Call, Loc, AAQI); 996 } 997 998 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1, 999 const CallBase *Call2, 1000 AAQueryInfo &AAQI) { 1001 // While the assume intrinsic is marked as arbitrarily writing so that 1002 // proper control dependencies will be maintained, it never aliases any 1003 // particular memory location. 1004 if (isIntrinsicCall(Call1, Intrinsic::assume) || 1005 isIntrinsicCall(Call2, Intrinsic::assume)) 1006 return ModRefInfo::NoModRef; 1007 1008 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 1009 // that proper control dependencies are maintained but they never mod any 1010 // particular memory location. 1011 // 1012 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 1013 // heap state at the point the guard is issued needs to be consistent in case 1014 // the guard invokes the "deopt" continuation. 1015 1016 // NB! This function is *not* commutative, so we special case two 1017 // possibilities for guard intrinsics. 1018 1019 if (isIntrinsicCall(Call1, Intrinsic::experimental_guard)) 1020 return isModSet(createModRefInfo(getModRefBehavior(Call2))) 1021 ? ModRefInfo::Ref 1022 : ModRefInfo::NoModRef; 1023 1024 if (isIntrinsicCall(Call2, Intrinsic::experimental_guard)) 1025 return isModSet(createModRefInfo(getModRefBehavior(Call1))) 1026 ? ModRefInfo::Mod 1027 : ModRefInfo::NoModRef; 1028 1029 // The AAResultBase base class has some smarts, lets use them. 1030 return AAResultBase::getModRefInfo(Call1, Call2, AAQI); 1031 } 1032 1033 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the 1034 // beginning of the object the GEP points would have a negative offset with 1035 // repsect to the alloca, that means the GEP can not alias pointer (b). 1036 // Note that the pointer based on the alloca may not be a GEP. For 1037 // example, it may be the alloca itself. 1038 // The same applies if (b) is based on a GlobalVariable. Note that just being 1039 // based on isIdentifiedObject() is not enough - we need an identified object 1040 // that does not permit access to negative offsets. For example, a negative 1041 // offset from a noalias argument or call can be inbounds w.r.t the actual 1042 // underlying object. 1043 // 1044 // For example, consider: 1045 // 1046 // struct { int f0, int f1, ...} foo; 1047 // foo alloca; 1048 // foo* random = bar(alloca); 1049 // int *f0 = &alloca.f0 1050 // int *f1 = &random->f1; 1051 // 1052 // Which is lowered, approximately, to: 1053 // 1054 // %alloca = alloca %struct.foo 1055 // %random = call %struct.foo* @random(%struct.foo* %alloca) 1056 // %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0 1057 // %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1 1058 // 1059 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated 1060 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also 1061 // point into the same object. But since %f0 points to the beginning of %alloca, 1062 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher 1063 // than (%alloca - 1), and so is not inbounds, a contradiction. 1064 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp, 1065 const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject, 1066 LocationSize MaybeObjectAccessSize) { 1067 // If the object access size is unknown, or the GEP isn't inbounds, bail. 1068 if (!MaybeObjectAccessSize.hasValue() || !GEPOp->isInBounds()) 1069 return false; 1070 1071 const uint64_t ObjectAccessSize = MaybeObjectAccessSize.getValue(); 1072 1073 // We need the object to be an alloca or a globalvariable, and want to know 1074 // the offset of the pointer from the object precisely, so no variable 1075 // indices are allowed. 1076 if (!(isa<AllocaInst>(DecompObject.Base) || 1077 isa<GlobalVariable>(DecompObject.Base)) || 1078 !DecompObject.VarIndices.empty()) 1079 return false; 1080 1081 // If the GEP has no variable indices, we know the precise offset 1082 // from the base, then use it. If the GEP has variable indices, 1083 // we can't get exact GEP offset to identify pointer alias. So return 1084 // false in that case. 1085 if (!DecompGEP.VarIndices.empty()) 1086 return false; 1087 1088 return DecompGEP.Offset.sge(DecompObject.Offset + (int64_t)ObjectAccessSize); 1089 } 1090 1091 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 1092 /// another pointer. 1093 /// 1094 /// We know that V1 is a GEP, but we don't know anything about V2. 1095 /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for 1096 /// V2. 1097 AliasResult BasicAAResult::aliasGEP( 1098 const GEPOperator *GEP1, LocationSize V1Size, const AAMDNodes &V1AAInfo, 1099 const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo, 1100 const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) { 1101 DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT); 1102 DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT); 1103 1104 // Don't attempt to analyze the decomposed GEP if index scale is not a 1105 // compile-time constant. 1106 if (!DecompGEP1.HasCompileTimeConstantScale || 1107 !DecompGEP2.HasCompileTimeConstantScale) 1108 return MayAlias; 1109 1110 assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 && 1111 "DecomposeGEPExpression returned a result different from " 1112 "getUnderlyingObject"); 1113 1114 // If the GEP's offset relative to its base is such that the base would 1115 // fall below the start of the object underlying V2, then the GEP and V2 1116 // cannot alias. 1117 if (isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size)) 1118 return NoAlias; 1119 // If we have two gep instructions with must-alias or not-alias'ing base 1120 // pointers, figure out if the indexes to the GEP tell us anything about the 1121 // derived pointer. 1122 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 1123 // Check for the GEP base being at a negative offset, this time in the other 1124 // direction. 1125 if (isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size)) 1126 return NoAlias; 1127 // Do the base pointers alias? 1128 AliasResult BaseAlias = aliasCheck( 1129 UnderlyingV1, LocationSize::beforeOrAfterPointer(), AAMDNodes(), 1130 UnderlyingV2, LocationSize::beforeOrAfterPointer(), AAMDNodes(), AAQI); 1131 1132 // For GEPs with identical offsets, we can preserve the size and AAInfo 1133 // when performing the alias check on the underlying objects. 1134 if (BaseAlias == MayAlias && DecompGEP1.Offset == DecompGEP2.Offset && 1135 DecompGEP1.VarIndices == DecompGEP2.VarIndices) { 1136 AliasResult PreciseBaseAlias = aliasCheck( 1137 UnderlyingV1, V1Size, V1AAInfo, UnderlyingV2, V2Size, V2AAInfo, AAQI); 1138 if (PreciseBaseAlias == NoAlias) 1139 return NoAlias; 1140 } 1141 1142 // If we get a No or May, then return it immediately, no amount of analysis 1143 // will improve this situation. 1144 if (BaseAlias != MustAlias) { 1145 assert(BaseAlias == NoAlias || BaseAlias == MayAlias); 1146 return BaseAlias; 1147 } 1148 1149 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1150 // symbolic difference. 1151 DecompGEP1.Offset -= DecompGEP2.Offset; 1152 GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices); 1153 1154 } else { 1155 // Check to see if these two pointers are related by the getelementptr 1156 // instruction. If one pointer is a GEP with a non-zero index of the other 1157 // pointer, we know they cannot alias. 1158 1159 // If both accesses are unknown size, we can't do anything useful here. 1160 if (!V1Size.hasValue() && !V2Size.hasValue()) 1161 return MayAlias; 1162 1163 AliasResult R = aliasCheck( 1164 UnderlyingV1, LocationSize::beforeOrAfterPointer(), AAMDNodes(), 1165 V2, V2Size, V2AAInfo, AAQI, nullptr, UnderlyingV2); 1166 if (R != MustAlias) { 1167 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 1168 // If V2 is known not to alias GEP base pointer, then the two values 1169 // cannot alias per GEP semantics: "Any memory access must be done through 1170 // a pointer value associated with an address range of the memory access, 1171 // otherwise the behavior is undefined.". 1172 assert(R == NoAlias || R == MayAlias); 1173 return R; 1174 } 1175 } 1176 1177 // In the two GEP Case, if there is no difference in the offsets of the 1178 // computed pointers, the resultant pointers are a must alias. This 1179 // happens when we have two lexically identical GEP's (for example). 1180 // 1181 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 1182 // must aliases the GEP, the end result is a must alias also. 1183 if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty()) 1184 return MustAlias; 1185 1186 // If there is a constant difference between the pointers, but the difference 1187 // is less than the size of the associated memory object, then we know 1188 // that the objects are partially overlapping. If the difference is 1189 // greater, we know they do not overlap. 1190 if (DecompGEP1.Offset != 0 && DecompGEP1.VarIndices.empty()) { 1191 if (DecompGEP1.Offset.sge(0)) { 1192 if (V2Size.hasValue()) { 1193 if (DecompGEP1.Offset.ult(V2Size.getValue())) 1194 return PartialAlias; 1195 return NoAlias; 1196 } 1197 } else { 1198 // We have the situation where: 1199 // + + 1200 // | BaseOffset | 1201 // ---------------->| 1202 // |-->V1Size |-------> V2Size 1203 // GEP1 V2 1204 if (V1Size.hasValue()) { 1205 if ((-DecompGEP1.Offset).ult(V1Size.getValue())) 1206 return PartialAlias; 1207 return NoAlias; 1208 } 1209 } 1210 } 1211 1212 if (!DecompGEP1.VarIndices.empty()) { 1213 APInt GCD; 1214 bool AllNonNegative = DecompGEP1.Offset.isNonNegative(); 1215 bool AllNonPositive = DecompGEP1.Offset.isNonPositive(); 1216 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { 1217 const APInt &Scale = DecompGEP1.VarIndices[i].Scale; 1218 if (i == 0) 1219 GCD = Scale.abs(); 1220 else 1221 GCD = APIntOps::GreatestCommonDivisor(GCD, Scale.abs()); 1222 1223 if (AllNonNegative || AllNonPositive) { 1224 // If the Value could change between cycles, then any reasoning about 1225 // the Value this cycle may not hold in the next cycle. We'll just 1226 // give up if we can't determine conditions that hold for every cycle: 1227 const Value *V = DecompGEP1.VarIndices[i].V; 1228 1229 KnownBits Known = 1230 computeKnownBits(V, DL, 0, &AC, dyn_cast<Instruction>(GEP1), DT); 1231 bool SignKnownZero = Known.isNonNegative(); 1232 bool SignKnownOne = Known.isNegative(); 1233 1234 // Zero-extension widens the variable, and so forces the sign 1235 // bit to zero. 1236 bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V); 1237 SignKnownZero |= IsZExt; 1238 SignKnownOne &= !IsZExt; 1239 1240 AllNonNegative &= (SignKnownZero && Scale.isNonNegative()) || 1241 (SignKnownOne && Scale.isNonPositive()); 1242 AllNonPositive &= (SignKnownZero && Scale.isNonPositive()) || 1243 (SignKnownOne && Scale.isNonNegative()); 1244 } 1245 } 1246 1247 // We now have accesses at two offsets from the same base: 1248 // 1. (...)*GCD + DecompGEP1.Offset with size V1Size 1249 // 2. 0 with size V2Size 1250 // Using arithmetic modulo GCD, the accesses are at 1251 // [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits 1252 // into the range [V2Size..GCD), then we know they cannot overlap. 1253 APInt ModOffset = DecompGEP1.Offset.srem(GCD); 1254 if (ModOffset.isNegative()) 1255 ModOffset += GCD; // We want mod, not rem. 1256 if (V1Size.hasValue() && V2Size.hasValue() && 1257 ModOffset.uge(V2Size.getValue()) && 1258 (GCD - ModOffset).uge(V1Size.getValue())) 1259 return NoAlias; 1260 1261 // If we know all the variables are non-negative, then the total offset is 1262 // also non-negative and >= DecompGEP1.Offset. We have the following layout: 1263 // [0, V2Size) ... [TotalOffset, TotalOffer+V1Size] 1264 // If DecompGEP1.Offset >= V2Size, the accesses don't alias. 1265 if (AllNonNegative && V2Size.hasValue() && 1266 DecompGEP1.Offset.uge(V2Size.getValue())) 1267 return NoAlias; 1268 // Similarly, if the variables are non-positive, then the total offset is 1269 // also non-positive and <= DecompGEP1.Offset. We have the following layout: 1270 // [TotalOffset, TotalOffset+V1Size) ... [0, V2Size) 1271 // If -DecompGEP1.Offset >= V1Size, the accesses don't alias. 1272 if (AllNonPositive && V1Size.hasValue() && 1273 (-DecompGEP1.Offset).uge(V1Size.getValue())) 1274 return NoAlias; 1275 1276 // Try to determine whether the variable part of the GEP is non-zero, in 1277 // which case we can add/subtract a minimum scale from the offset. 1278 // TODO: Currently this handles the case of Scale*V0-Scale*V1 where V0!=V1. 1279 // We could also handle Scale*V0 where V0!=0. 1280 if (V1Size.hasValue() && V2Size.hasValue() && 1281 DecompGEP1.VarIndices.size() == 2) { 1282 const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0]; 1283 const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1]; 1284 // Check that VisitedPhiBBs is empty, to avoid reasoning about inequality 1285 // of values across loop iterations. 1286 if (Var0.Scale == -Var1.Scale && Var0.ZExtBits == Var1.ZExtBits && 1287 Var0.SExtBits == Var1.SExtBits && VisitedPhiBBs.empty() && 1288 isKnownNonEqual(Var0.V, Var1.V, DL)) { 1289 // If the indexes are not equal, the actual offset will have at least 1290 // Scale or -Scale added to it. 1291 APInt Scale = Var0.Scale.abs(); 1292 APInt OffsetLo = DecompGEP1.Offset - Scale; 1293 APInt OffsetHi = DecompGEP1.Offset + Scale; 1294 // Check that an access at OffsetLo or lower, and an access at OffsetHi 1295 // or higher both do not alias. 1296 if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) && 1297 OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue())) 1298 return NoAlias; 1299 } 1300 } 1301 1302 if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size, 1303 DecompGEP1.Offset, &AC, DT)) 1304 return NoAlias; 1305 } 1306 1307 // Statically, we can see that the base objects are the same, but the 1308 // pointers have dynamic offsets which we can't resolve. And none of our 1309 // little tricks above worked. 1310 return MayAlias; 1311 } 1312 1313 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1314 // If the results agree, take it. 1315 if (A == B) 1316 return A; 1317 // A mix of PartialAlias and MustAlias is PartialAlias. 1318 if ((A == PartialAlias && B == MustAlias) || 1319 (B == PartialAlias && A == MustAlias)) 1320 return PartialAlias; 1321 // Otherwise, we don't know anything. 1322 return MayAlias; 1323 } 1324 1325 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1326 /// against another. 1327 AliasResult 1328 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize, 1329 const AAMDNodes &SIAAInfo, const Value *V2, 1330 LocationSize V2Size, const AAMDNodes &V2AAInfo, 1331 const Value *UnderV2, AAQueryInfo &AAQI) { 1332 // If the values are Selects with the same condition, we can do a more precise 1333 // check: just check for aliases between the values on corresponding arms. 1334 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1335 if (SI->getCondition() == SI2->getCondition()) { 1336 AliasResult Alias = 1337 aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, SI2->getTrueValue(), 1338 V2Size, V2AAInfo, AAQI); 1339 if (Alias == MayAlias) 1340 return MayAlias; 1341 AliasResult ThisAlias = 1342 aliasCheck(SI->getFalseValue(), SISize, SIAAInfo, 1343 SI2->getFalseValue(), V2Size, V2AAInfo, AAQI); 1344 return MergeAliasResults(ThisAlias, Alias); 1345 } 1346 1347 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1348 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1349 AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), 1350 SISize, SIAAInfo, AAQI, UnderV2); 1351 if (Alias == MayAlias) 1352 return MayAlias; 1353 1354 AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), 1355 SISize, SIAAInfo, AAQI, UnderV2); 1356 return MergeAliasResults(ThisAlias, Alias); 1357 } 1358 1359 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1360 /// another. 1361 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize, 1362 const AAMDNodes &PNAAInfo, const Value *V2, 1363 LocationSize V2Size, 1364 const AAMDNodes &V2AAInfo, 1365 const Value *UnderV2, AAQueryInfo &AAQI) { 1366 // If the values are PHIs in the same block, we can do a more precise 1367 // as well as efficient check: just check for aliases between the values 1368 // on corresponding edges. 1369 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1370 if (PN2->getParent() == PN->getParent()) { 1371 AAQueryInfo::LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo), 1372 MemoryLocation(V2, V2Size, V2AAInfo)); 1373 if (PN > V2) 1374 std::swap(Locs.first, Locs.second); 1375 // Analyse the PHIs' inputs under the assumption that the PHIs are 1376 // NoAlias. 1377 // If the PHIs are May/MustAlias there must be (recursively) an input 1378 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1379 // there must be an operation on the PHIs within the PHIs' value cycle 1380 // that causes a MayAlias. 1381 // Pretend the phis do not alias. 1382 AliasResult Alias = NoAlias; 1383 AliasResult OrigAliasResult; 1384 { 1385 // Limited lifetime iterator invalidated by the aliasCheck call below. 1386 auto CacheIt = AAQI.AliasCache.find(Locs); 1387 assert((CacheIt != AAQI.AliasCache.end()) && 1388 "There must exist an entry for the phi node"); 1389 OrigAliasResult = CacheIt->second; 1390 CacheIt->second = NoAlias; 1391 } 1392 1393 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1394 AliasResult ThisAlias = 1395 aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo, 1396 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1397 V2Size, V2AAInfo, AAQI); 1398 Alias = MergeAliasResults(ThisAlias, Alias); 1399 if (Alias == MayAlias) 1400 break; 1401 } 1402 1403 // Reset if speculation failed. 1404 if (Alias != NoAlias) 1405 AAQI.updateResult(Locs, OrigAliasResult); 1406 return Alias; 1407 } 1408 1409 SmallVector<Value *, 4> V1Srcs; 1410 // If a phi operand recurses back to the phi, we can still determine NoAlias 1411 // if we don't alias the underlying objects of the other phi operands, as we 1412 // know that the recursive phi needs to be based on them in some way. 1413 bool isRecursive = false; 1414 auto CheckForRecPhi = [&](Value *PV) { 1415 if (!EnableRecPhiAnalysis) 1416 return false; 1417 if (getUnderlyingObject(PV) == PN) { 1418 isRecursive = true; 1419 return true; 1420 } 1421 return false; 1422 }; 1423 1424 if (PV) { 1425 // If we have PhiValues then use it to get the underlying phi values. 1426 const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN); 1427 // If we have more phi values than the search depth then return MayAlias 1428 // conservatively to avoid compile time explosion. The worst possible case 1429 // is if both sides are PHI nodes. In which case, this is O(m x n) time 1430 // where 'm' and 'n' are the number of PHI sources. 1431 if (PhiValueSet.size() > MaxLookupSearchDepth) 1432 return MayAlias; 1433 // Add the values to V1Srcs 1434 for (Value *PV1 : PhiValueSet) { 1435 if (CheckForRecPhi(PV1)) 1436 continue; 1437 V1Srcs.push_back(PV1); 1438 } 1439 } else { 1440 // If we don't have PhiInfo then just look at the operands of the phi itself 1441 // FIXME: Remove this once we can guarantee that we have PhiInfo always 1442 SmallPtrSet<Value *, 4> UniqueSrc; 1443 for (Value *PV1 : PN->incoming_values()) { 1444 if (isa<PHINode>(PV1)) 1445 // If any of the source itself is a PHI, return MayAlias conservatively 1446 // to avoid compile time explosion. The worst possible case is if both 1447 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1448 // and 'n' are the number of PHI sources. 1449 return MayAlias; 1450 1451 if (CheckForRecPhi(PV1)) 1452 continue; 1453 1454 if (UniqueSrc.insert(PV1).second) 1455 V1Srcs.push_back(PV1); 1456 } 1457 } 1458 1459 // If V1Srcs is empty then that means that the phi has no underlying non-phi 1460 // value. This should only be possible in blocks unreachable from the entry 1461 // block, but return MayAlias just in case. 1462 if (V1Srcs.empty()) 1463 return MayAlias; 1464 1465 // If this PHI node is recursive, indicate that the pointer may be moved 1466 // across iterations. We can only prove NoAlias if different underlying 1467 // objects are involved. 1468 if (isRecursive) 1469 PNSize = LocationSize::beforeOrAfterPointer(); 1470 1471 // In the recursive alias queries below, we may compare values from two 1472 // different loop iterations. Keep track of visited phi blocks, which will 1473 // be used when determining value equivalence. 1474 bool BlockInserted = VisitedPhiBBs.insert(PN->getParent()).second; 1475 auto _ = make_scope_exit([&]() { 1476 if (BlockInserted) 1477 VisitedPhiBBs.erase(PN->getParent()); 1478 }); 1479 1480 // If we inserted a block into VisitedPhiBBs, alias analysis results that 1481 // have been cached earlier may no longer be valid. Perform recursive queries 1482 // with a new AAQueryInfo. 1483 AAQueryInfo NewAAQI; 1484 AAQueryInfo *UseAAQI = BlockInserted ? &NewAAQI : &AAQI; 1485 1486 AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize, 1487 PNAAInfo, *UseAAQI, UnderV2); 1488 1489 // Early exit if the check of the first PHI source against V2 is MayAlias. 1490 // Other results are not possible. 1491 if (Alias == MayAlias) 1492 return MayAlias; 1493 // With recursive phis we cannot guarantee that MustAlias/PartialAlias will 1494 // remain valid to all elements and needs to conservatively return MayAlias. 1495 if (isRecursive && Alias != NoAlias) 1496 return MayAlias; 1497 1498 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1499 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1500 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1501 Value *V = V1Srcs[i]; 1502 1503 AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, 1504 PNAAInfo, *UseAAQI, UnderV2); 1505 Alias = MergeAliasResults(ThisAlias, Alias); 1506 if (Alias == MayAlias) 1507 break; 1508 } 1509 1510 return Alias; 1511 } 1512 1513 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1514 /// array references. 1515 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size, 1516 const AAMDNodes &V1AAInfo, 1517 const Value *V2, LocationSize V2Size, 1518 const AAMDNodes &V2AAInfo, 1519 AAQueryInfo &AAQI, const Value *O1, 1520 const Value *O2) { 1521 // If either of the memory references is empty, it doesn't matter what the 1522 // pointer values are. 1523 if (V1Size.isZero() || V2Size.isZero()) 1524 return NoAlias; 1525 1526 // Strip off any casts if they exist. 1527 V1 = V1->stripPointerCastsAndInvariantGroups(); 1528 V2 = V2->stripPointerCastsAndInvariantGroups(); 1529 1530 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1531 // value for undef that aliases nothing in the program. 1532 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1533 return NoAlias; 1534 1535 // Are we checking for alias of the same value? 1536 // Because we look 'through' phi nodes, we could look at "Value" pointers from 1537 // different iterations. We must therefore make sure that this is not the 1538 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1539 // happen by looking at the visited phi nodes and making sure they cannot 1540 // reach the value. 1541 if (isValueEqualInPotentialCycles(V1, V2)) 1542 return MustAlias; 1543 1544 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1545 return NoAlias; // Scalars cannot alias each other 1546 1547 // Figure out what objects these things are pointing to if we can. 1548 if (O1 == nullptr) 1549 O1 = getUnderlyingObject(V1, MaxLookupSearchDepth); 1550 1551 if (O2 == nullptr) 1552 O2 = getUnderlyingObject(V2, MaxLookupSearchDepth); 1553 1554 // Null values in the default address space don't point to any object, so they 1555 // don't alias any other pointer. 1556 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1557 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1558 return NoAlias; 1559 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1560 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1561 return NoAlias; 1562 1563 if (O1 != O2) { 1564 // If V1/V2 point to two different objects, we know that we have no alias. 1565 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1566 return NoAlias; 1567 1568 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1569 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1570 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1571 return NoAlias; 1572 1573 // Function arguments can't alias with things that are known to be 1574 // unambigously identified at the function level. 1575 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1576 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1577 return NoAlias; 1578 1579 // If one pointer is the result of a call/invoke or load and the other is a 1580 // non-escaping local object within the same function, then we know the 1581 // object couldn't escape to a point where the call could return it. 1582 // 1583 // Note that if the pointers are in different functions, there are a 1584 // variety of complications. A call with a nocapture argument may still 1585 // temporary store the nocapture argument's value in a temporary memory 1586 // location if that memory location doesn't escape. Or it may pass a 1587 // nocapture value to other functions as long as they don't capture it. 1588 if (isEscapeSource(O1) && 1589 isNonEscapingLocalObject(O2, &AAQI.IsCapturedCache)) 1590 return NoAlias; 1591 if (isEscapeSource(O2) && 1592 isNonEscapingLocalObject(O1, &AAQI.IsCapturedCache)) 1593 return NoAlias; 1594 } 1595 1596 // If the size of one access is larger than the entire object on the other 1597 // side, then we know such behavior is undefined and can assume no alias. 1598 bool NullIsValidLocation = NullPointerIsDefined(&F); 1599 if ((isObjectSmallerThan( 1600 O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL, 1601 TLI, NullIsValidLocation)) || 1602 (isObjectSmallerThan( 1603 O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL, 1604 TLI, NullIsValidLocation))) 1605 return NoAlias; 1606 1607 // If one the accesses may be before the accessed pointer, canonicalize this 1608 // by using unknown after-pointer sizes for both accesses. This is 1609 // equivalent, because regardless of which pointer is lower, one of them 1610 // will always came after the other, as long as the underlying objects aren't 1611 // disjoint. We do this so that the rest of BasicAA does not have to deal 1612 // with accesses before the base pointer, and to improve cache utilization by 1613 // merging equivalent states. 1614 if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) { 1615 V1Size = LocationSize::afterPointer(); 1616 V2Size = LocationSize::afterPointer(); 1617 } 1618 1619 // Check the cache before climbing up use-def chains. This also terminates 1620 // otherwise infinitely recursive queries. 1621 AAQueryInfo::LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo), 1622 MemoryLocation(V2, V2Size, V2AAInfo)); 1623 if (V1 > V2) 1624 std::swap(Locs.first, Locs.second); 1625 std::pair<AAQueryInfo::AliasCacheT::iterator, bool> Pair = 1626 AAQI.AliasCache.try_emplace(Locs, MayAlias); 1627 if (!Pair.second) 1628 return Pair.first->second; 1629 1630 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1631 AliasResult Result = 1632 aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2, AAQI); 1633 if (Result != MayAlias) 1634 return AAQI.updateResult(Locs, Result); 1635 } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) { 1636 AliasResult Result = 1637 aliasGEP(GV2, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, O2, O1, AAQI); 1638 if (Result != MayAlias) 1639 return AAQI.updateResult(Locs, Result); 1640 } 1641 1642 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1643 AliasResult Result = 1644 aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI); 1645 if (Result != MayAlias) 1646 return AAQI.updateResult(Locs, Result); 1647 } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) { 1648 AliasResult Result = 1649 aliasPHI(PN, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, O1, AAQI); 1650 if (Result != MayAlias) 1651 return AAQI.updateResult(Locs, Result); 1652 } 1653 1654 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1655 AliasResult Result = 1656 aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI); 1657 if (Result != MayAlias) 1658 return AAQI.updateResult(Locs, Result); 1659 } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) { 1660 AliasResult Result = 1661 aliasSelect(S2, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, O1, AAQI); 1662 if (Result != MayAlias) 1663 return AAQI.updateResult(Locs, Result); 1664 } 1665 1666 // If both pointers are pointing into the same object and one of them 1667 // accesses the entire object, then the accesses must overlap in some way. 1668 if (O1 == O2) 1669 if (V1Size.isPrecise() && V2Size.isPrecise() && 1670 (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) || 1671 isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation))) 1672 return AAQI.updateResult(Locs, PartialAlias); 1673 1674 // Recurse back into the best AA results we have, potentially with refined 1675 // memory locations. We have already ensured that BasicAA has a MayAlias 1676 // cache result for these, so any recursion back into BasicAA won't loop. 1677 AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second, AAQI); 1678 if (Result != MayAlias) 1679 return AAQI.updateResult(Locs, Result); 1680 1681 // MayAlias is already in the cache. 1682 return MayAlias; 1683 } 1684 1685 /// Check whether two Values can be considered equivalent. 1686 /// 1687 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether 1688 /// they can not be part of a cycle in the value graph by looking at all 1689 /// visited phi nodes an making sure that the phis cannot reach the value. We 1690 /// have to do this because we are looking through phi nodes (That is we say 1691 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1692 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1693 const Value *V2) { 1694 if (V != V2) 1695 return false; 1696 1697 const Instruction *Inst = dyn_cast<Instruction>(V); 1698 if (!Inst) 1699 return true; 1700 1701 if (VisitedPhiBBs.empty()) 1702 return true; 1703 1704 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1705 return false; 1706 1707 // Make sure that the visited phis cannot reach the Value. This ensures that 1708 // the Values cannot come from different iterations of a potential cycle the 1709 // phi nodes could be involved in. 1710 for (auto *P : VisitedPhiBBs) 1711 if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT, LI)) 1712 return false; 1713 1714 return true; 1715 } 1716 1717 /// Computes the symbolic difference between two de-composed GEPs. 1718 /// 1719 /// Dest and Src are the variable indices from two decomposed GetElementPtr 1720 /// instructions GEP1 and GEP2 which have common base pointers. 1721 void BasicAAResult::GetIndexDifference( 1722 SmallVectorImpl<VariableGEPIndex> &Dest, 1723 const SmallVectorImpl<VariableGEPIndex> &Src) { 1724 if (Src.empty()) 1725 return; 1726 1727 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1728 const Value *V = Src[i].V; 1729 unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits; 1730 APInt Scale = Src[i].Scale; 1731 1732 // Find V in Dest. This is N^2, but pointer indices almost never have more 1733 // than a few variable indexes. 1734 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1735 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1736 Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits) 1737 continue; 1738 1739 // If we found it, subtract off Scale V's from the entry in Dest. If it 1740 // goes to zero, remove the entry. 1741 if (Dest[j].Scale != Scale) 1742 Dest[j].Scale -= Scale; 1743 else 1744 Dest.erase(Dest.begin() + j); 1745 Scale = 0; 1746 break; 1747 } 1748 1749 // If we didn't consume this entry, add it to the end of the Dest list. 1750 if (!!Scale) { 1751 VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale}; 1752 Dest.push_back(Entry); 1753 } 1754 } 1755 } 1756 1757 bool BasicAAResult::constantOffsetHeuristic( 1758 const SmallVectorImpl<VariableGEPIndex> &VarIndices, 1759 LocationSize MaybeV1Size, LocationSize MaybeV2Size, const APInt &BaseOffset, 1760 AssumptionCache *AC, DominatorTree *DT) { 1761 if (VarIndices.size() != 2 || !MaybeV1Size.hasValue() || 1762 !MaybeV2Size.hasValue()) 1763 return false; 1764 1765 const uint64_t V1Size = MaybeV1Size.getValue(); 1766 const uint64_t V2Size = MaybeV2Size.getValue(); 1767 1768 const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1]; 1769 1770 if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits || 1771 Var0.Scale != -Var1.Scale) 1772 return false; 1773 1774 unsigned Width = Var1.V->getType()->getIntegerBitWidth(); 1775 1776 // We'll strip off the Extensions of Var0 and Var1 and do another round 1777 // of GetLinearExpression decomposition. In the example above, if Var0 1778 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 1779 1780 APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0), 1781 V1Offset(Width, 0); 1782 bool NSW = true, NUW = true; 1783 unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0; 1784 const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits, 1785 V0SExtBits, DL, 0, AC, DT, NSW, NUW); 1786 NSW = true; 1787 NUW = true; 1788 const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits, 1789 V1SExtBits, DL, 0, AC, DT, NSW, NUW); 1790 1791 if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits || 1792 V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1)) 1793 return false; 1794 1795 // We have a hit - Var0 and Var1 only differ by a constant offset! 1796 1797 // If we've been sext'ed then zext'd the maximum difference between Var0 and 1798 // Var1 is possible to calculate, but we're just interested in the absolute 1799 // minimum difference between the two. The minimum distance may occur due to 1800 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 1801 // the minimum distance between %i and %i + 5 is 3. 1802 APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff; 1803 MinDiff = APIntOps::umin(MinDiff, Wrapped); 1804 APInt MinDiffBytes = 1805 MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs(); 1806 1807 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 1808 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 1809 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 1810 // V2Size can fit in the MinDiffBytes gap. 1811 return MinDiffBytes.uge(V1Size + BaseOffset.abs()) && 1812 MinDiffBytes.uge(V2Size + BaseOffset.abs()); 1813 } 1814 1815 //===----------------------------------------------------------------------===// 1816 // BasicAliasAnalysis Pass 1817 //===----------------------------------------------------------------------===// 1818 1819 AnalysisKey BasicAA::Key; 1820 1821 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) { 1822 return BasicAAResult(F.getParent()->getDataLayout(), 1823 F, 1824 AM.getResult<TargetLibraryAnalysis>(F), 1825 AM.getResult<AssumptionAnalysis>(F), 1826 &AM.getResult<DominatorTreeAnalysis>(F), 1827 AM.getCachedResult<LoopAnalysis>(F), 1828 AM.getCachedResult<PhiValuesAnalysis>(F)); 1829 } 1830 1831 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 1832 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1833 } 1834 1835 char BasicAAWrapperPass::ID = 0; 1836 1837 void BasicAAWrapperPass::anchor() {} 1838 1839 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa", 1840 "Basic Alias Analysis (stateless AA impl)", true, true) 1841 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1842 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1843 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1844 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass) 1845 INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa", 1846 "Basic Alias Analysis (stateless AA impl)", true, true) 1847 1848 FunctionPass *llvm::createBasicAAWrapperPass() { 1849 return new BasicAAWrapperPass(); 1850 } 1851 1852 bool BasicAAWrapperPass::runOnFunction(Function &F) { 1853 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 1854 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 1855 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); 1856 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 1857 auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>(); 1858 1859 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F, 1860 TLIWP.getTLI(F), ACT.getAssumptionCache(F), 1861 &DTWP.getDomTree(), 1862 LIWP ? &LIWP->getLoopInfo() : nullptr, 1863 PVWP ? &PVWP->getResult() : nullptr)); 1864 1865 return false; 1866 } 1867 1868 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1869 AU.setPreservesAll(); 1870 AU.addRequired<AssumptionCacheTracker>(); 1871 AU.addRequired<DominatorTreeWrapperPass>(); 1872 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1873 AU.addUsedIfAvailable<PhiValuesWrapperPass>(); 1874 } 1875 1876 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { 1877 return BasicAAResult( 1878 F.getParent()->getDataLayout(), F, 1879 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 1880 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 1881 } 1882