1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the primary stateless implementation of the
10 // Alias Analysis interface that implements identities (two different
11 // globals cannot alias, etc), but does no stateful analysis.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/BasicAliasAnalysis.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/PhiValues.h"
30 #include "llvm/Analysis/TargetLibraryInfo.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/Argument.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GetElementPtrTypeIterator.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/Metadata.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/User.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/KnownBits.h"
59 #include <cassert>
60 #include <cstdint>
61 #include <cstdlib>
62 #include <utility>
63 
64 #define DEBUG_TYPE "basicaa"
65 
66 using namespace llvm;
67 
68 /// Enable analysis of recursive PHI nodes.
69 static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden,
70                                           cl::init(true));
71 
72 /// By default, even on 32-bit architectures we use 64-bit integers for
73 /// calculations. This will allow us to more-aggressively decompose indexing
74 /// expressions calculated using i64 values (e.g., long long in C) which is
75 /// common enough to worry about.
76 static cl::opt<bool> ForceAtLeast64Bits("basic-aa-force-at-least-64b",
77                                         cl::Hidden, cl::init(true));
78 static cl::opt<bool> DoubleCalcBits("basic-aa-double-calc-bits",
79                                     cl::Hidden, cl::init(false));
80 
81 /// SearchLimitReached / SearchTimes shows how often the limit of
82 /// to decompose GEPs is reached. It will affect the precision
83 /// of basic alias analysis.
84 STATISTIC(SearchLimitReached, "Number of times the limit to "
85                               "decompose GEPs is reached");
86 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
87 
88 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
89 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
90 /// careful with value equivalence. We use reachability to make sure a value
91 /// cannot be involved in a cycle.
92 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
93 
94 // The max limit of the search depth in DecomposeGEPExpression() and
95 // getUnderlyingObject(), both functions need to use the same search
96 // depth otherwise the algorithm in aliasGEP will assert.
97 static const unsigned MaxLookupSearchDepth = 6;
98 
99 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
100                                FunctionAnalysisManager::Invalidator &Inv) {
101   // We don't care if this analysis itself is preserved, it has no state. But
102   // we need to check that the analyses it depends on have been. Note that we
103   // may be created without handles to some analyses and in that case don't
104   // depend on them.
105   if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
106       (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) ||
107       (LI && Inv.invalidate<LoopAnalysis>(Fn, PA)) ||
108       (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA)))
109     return true;
110 
111   // Otherwise this analysis result remains valid.
112   return false;
113 }
114 
115 //===----------------------------------------------------------------------===//
116 // Useful predicates
117 //===----------------------------------------------------------------------===//
118 
119 /// Returns true if the pointer is one which would have been considered an
120 /// escape by isNonEscapingLocalObject.
121 static bool isEscapeSource(const Value *V) {
122   if (isa<CallBase>(V))
123     return true;
124 
125   if (isa<Argument>(V))
126     return true;
127 
128   // The load case works because isNonEscapingLocalObject considers all
129   // stores to be escapes (it passes true for the StoreCaptures argument
130   // to PointerMayBeCaptured).
131   if (isa<LoadInst>(V))
132     return true;
133 
134   return false;
135 }
136 
137 /// Returns the size of the object specified by V or UnknownSize if unknown.
138 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
139                               const TargetLibraryInfo &TLI,
140                               bool NullIsValidLoc,
141                               bool RoundToAlign = false) {
142   uint64_t Size;
143   ObjectSizeOpts Opts;
144   Opts.RoundToAlign = RoundToAlign;
145   Opts.NullIsUnknownSize = NullIsValidLoc;
146   if (getObjectSize(V, Size, DL, &TLI, Opts))
147     return Size;
148   return MemoryLocation::UnknownSize;
149 }
150 
151 /// Returns true if we can prove that the object specified by V is smaller than
152 /// Size.
153 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
154                                 const DataLayout &DL,
155                                 const TargetLibraryInfo &TLI,
156                                 bool NullIsValidLoc) {
157   // Note that the meanings of the "object" are slightly different in the
158   // following contexts:
159   //    c1: llvm::getObjectSize()
160   //    c2: llvm.objectsize() intrinsic
161   //    c3: isObjectSmallerThan()
162   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
163   // refers to the "entire object".
164   //
165   //  Consider this example:
166   //     char *p = (char*)malloc(100)
167   //     char *q = p+80;
168   //
169   //  In the context of c1 and c2, the "object" pointed by q refers to the
170   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
171   //
172   //  However, in the context of c3, the "object" refers to the chunk of memory
173   // being allocated. So, the "object" has 100 bytes, and q points to the middle
174   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
175   // parameter, before the llvm::getObjectSize() is called to get the size of
176   // entire object, we should:
177   //    - either rewind the pointer q to the base-address of the object in
178   //      question (in this case rewind to p), or
179   //    - just give up. It is up to caller to make sure the pointer is pointing
180   //      to the base address the object.
181   //
182   // We go for 2nd option for simplicity.
183   if (!isIdentifiedObject(V))
184     return false;
185 
186   // This function needs to use the aligned object size because we allow
187   // reads a bit past the end given sufficient alignment.
188   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
189                                       /*RoundToAlign*/ true);
190 
191   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
192 }
193 
194 /// Return the minimal extent from \p V to the end of the underlying object,
195 /// assuming the result is used in an aliasing query. E.g., we do use the query
196 /// location size and the fact that null pointers cannot alias here.
197 static uint64_t getMinimalExtentFrom(const Value &V,
198                                      const LocationSize &LocSize,
199                                      const DataLayout &DL,
200                                      bool NullIsValidLoc) {
201   // If we have dereferenceability information we know a lower bound for the
202   // extent as accesses for a lower offset would be valid. We need to exclude
203   // the "or null" part if null is a valid pointer.
204   bool CanBeNull;
205   uint64_t DerefBytes = V.getPointerDereferenceableBytes(DL, CanBeNull);
206   DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes;
207   // If queried with a precise location size, we assume that location size to be
208   // accessed, thus valid.
209   if (LocSize.isPrecise())
210     DerefBytes = std::max(DerefBytes, LocSize.getValue());
211   return DerefBytes;
212 }
213 
214 /// Returns true if we can prove that the object specified by V has size Size.
215 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
216                          const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
217   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc);
218   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
219 }
220 
221 //===----------------------------------------------------------------------===//
222 // GetElementPtr Instruction Decomposition and Analysis
223 //===----------------------------------------------------------------------===//
224 
225 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
226 /// B are constant integers.
227 ///
228 /// Returns the scale and offset values as APInts and return V as a Value*, and
229 /// return whether we looked through any sign or zero extends.  The incoming
230 /// Value is known to have IntegerType, and it may already be sign or zero
231 /// extended.
232 ///
233 /// Note that this looks through extends, so the high bits may not be
234 /// represented in the result.
235 /*static*/ const Value *BasicAAResult::GetLinearExpression(
236     const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
237     unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
238     AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
239   assert(V->getType()->isIntegerTy() && "Not an integer value");
240 
241   // Limit our recursion depth.
242   if (Depth == 6) {
243     Scale = 1;
244     Offset = 0;
245     return V;
246   }
247 
248   if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
249     // If it's a constant, just convert it to an offset and remove the variable.
250     // If we've been called recursively, the Offset bit width will be greater
251     // than the constant's (the Offset's always as wide as the outermost call),
252     // so we'll zext here and process any extension in the isa<SExtInst> &
253     // isa<ZExtInst> cases below.
254     Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
255     assert(Scale == 0 && "Constant values don't have a scale");
256     return V;
257   }
258 
259   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
260     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
261       // If we've been called recursively, then Offset and Scale will be wider
262       // than the BOp operands. We'll always zext it here as we'll process sign
263       // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
264       APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
265 
266       switch (BOp->getOpcode()) {
267       default:
268         // We don't understand this instruction, so we can't decompose it any
269         // further.
270         Scale = 1;
271         Offset = 0;
272         return V;
273       case Instruction::Or:
274         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
275         // analyze it.
276         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
277                                BOp, DT)) {
278           Scale = 1;
279           Offset = 0;
280           return V;
281         }
282         LLVM_FALLTHROUGH;
283       case Instruction::Add:
284         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
285                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
286         Offset += RHS;
287         break;
288       case Instruction::Sub:
289         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
290                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
291         Offset -= RHS;
292         break;
293       case Instruction::Mul:
294         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
295                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
296         Offset *= RHS;
297         Scale *= RHS;
298         break;
299       case Instruction::Shl:
300         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
301                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
302 
303         // We're trying to linearize an expression of the kind:
304         //   shl i8 -128, 36
305         // where the shift count exceeds the bitwidth of the type.
306         // We can't decompose this further (the expression would return
307         // a poison value).
308         if (Offset.getBitWidth() < RHS.getLimitedValue() ||
309             Scale.getBitWidth() < RHS.getLimitedValue()) {
310           Scale = 1;
311           Offset = 0;
312           return V;
313         }
314 
315         Offset <<= RHS.getLimitedValue();
316         Scale <<= RHS.getLimitedValue();
317         // the semantics of nsw and nuw for left shifts don't match those of
318         // multiplications, so we won't propagate them.
319         NSW = NUW = false;
320         return V;
321       }
322 
323       if (isa<OverflowingBinaryOperator>(BOp)) {
324         NUW &= BOp->hasNoUnsignedWrap();
325         NSW &= BOp->hasNoSignedWrap();
326       }
327       return V;
328     }
329   }
330 
331   // Since GEP indices are sign extended anyway, we don't care about the high
332   // bits of a sign or zero extended value - just scales and offsets.  The
333   // extensions have to be consistent though.
334   if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
335     Value *CastOp = cast<CastInst>(V)->getOperand(0);
336     unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
337     unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
338     unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
339     const Value *Result =
340         GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
341                             Depth + 1, AC, DT, NSW, NUW);
342 
343     // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this
344     // by just incrementing the number of bits we've extended by.
345     unsigned ExtendedBy = NewWidth - SmallWidth;
346 
347     if (isa<SExtInst>(V) && ZExtBits == 0) {
348       // sext(sext(%x, a), b) == sext(%x, a + b)
349 
350       if (NSW) {
351         // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
352         // into sext(%x) + sext(c). We'll sext the Offset ourselves:
353         unsigned OldWidth = Offset.getBitWidth();
354         Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
355       } else {
356         // We may have signed-wrapped, so don't decompose sext(%x + c) into
357         // sext(%x) + sext(c)
358         Scale = 1;
359         Offset = 0;
360         Result = CastOp;
361         ZExtBits = OldZExtBits;
362         SExtBits = OldSExtBits;
363       }
364       SExtBits += ExtendedBy;
365     } else {
366       // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
367 
368       if (!NUW) {
369         // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
370         // zext(%x) + zext(c)
371         Scale = 1;
372         Offset = 0;
373         Result = CastOp;
374         ZExtBits = OldZExtBits;
375         SExtBits = OldSExtBits;
376       }
377       ZExtBits += ExtendedBy;
378     }
379 
380     return Result;
381   }
382 
383   Scale = 1;
384   Offset = 0;
385   return V;
386 }
387 
388 /// To ensure a pointer offset fits in an integer of size PointerSize
389 /// (in bits) when that size is smaller than the maximum pointer size. This is
390 /// an issue, for example, in particular for 32b pointers with negative indices
391 /// that rely on two's complement wrap-arounds for precise alias information
392 /// where the maximum pointer size is 64b.
393 static APInt adjustToPointerSize(const APInt &Offset, unsigned PointerSize) {
394   assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!");
395   unsigned ShiftBits = Offset.getBitWidth() - PointerSize;
396   return (Offset << ShiftBits).ashr(ShiftBits);
397 }
398 
399 static unsigned getMaxPointerSize(const DataLayout &DL) {
400   unsigned MaxPointerSize = DL.getMaxPointerSizeInBits();
401   if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64;
402   if (DoubleCalcBits) MaxPointerSize *= 2;
403 
404   return MaxPointerSize;
405 }
406 
407 /// If V is a symbolic pointer expression, decompose it into a base pointer
408 /// with a constant offset and a number of scaled symbolic offsets.
409 ///
410 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
411 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
412 /// specified amount, but which may have other unrepresented high bits. As
413 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
414 ///
415 /// This function is capable of analyzing everything that getUnderlyingObject
416 /// can look through. To be able to do that getUnderlyingObject and
417 /// DecomposeGEPExpression must use the same search depth
418 /// (MaxLookupSearchDepth).
419 bool BasicAAResult::DecomposeGEPExpression(const Value *V,
420        DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC,
421        DominatorTree *DT) {
422   // Limit recursion depth to limit compile time in crazy cases.
423   unsigned MaxLookup = MaxLookupSearchDepth;
424   SearchTimes++;
425 
426   unsigned MaxPointerSize = getMaxPointerSize(DL);
427   Decomposed.VarIndices.clear();
428   do {
429     // See if this is a bitcast or GEP.
430     const Operator *Op = dyn_cast<Operator>(V);
431     if (!Op) {
432       // The only non-operator case we can handle are GlobalAliases.
433       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
434         if (!GA->isInterposable()) {
435           V = GA->getAliasee();
436           continue;
437         }
438       }
439       Decomposed.Base = V;
440       return false;
441     }
442 
443     if (Op->getOpcode() == Instruction::BitCast ||
444         Op->getOpcode() == Instruction::AddrSpaceCast) {
445       V = Op->getOperand(0);
446       continue;
447     }
448 
449     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
450     if (!GEPOp) {
451       if (const auto *PHI = dyn_cast<PHINode>(V)) {
452         // Look through single-arg phi nodes created by LCSSA.
453         if (PHI->getNumIncomingValues() == 1) {
454           V = PHI->getIncomingValue(0);
455           continue;
456         }
457       } else if (const auto *Call = dyn_cast<CallBase>(V)) {
458         // CaptureTracking can know about special capturing properties of some
459         // intrinsics like launder.invariant.group, that can't be expressed with
460         // the attributes, but have properties like returning aliasing pointer.
461         // Because some analysis may assume that nocaptured pointer is not
462         // returned from some special intrinsic (because function would have to
463         // be marked with returns attribute), it is crucial to use this function
464         // because it should be in sync with CaptureTracking. Not using it may
465         // cause weird miscompilations where 2 aliasing pointers are assumed to
466         // noalias.
467         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
468           V = RP;
469           continue;
470         }
471       }
472 
473       Decomposed.Base = V;
474       return false;
475     }
476 
477     // Don't attempt to analyze GEPs over unsized objects.
478     if (!GEPOp->getSourceElementType()->isSized()) {
479       Decomposed.Base = V;
480       return false;
481     }
482 
483     // Don't attempt to analyze GEPs if index scale is not a compile-time
484     // constant.
485     if (isa<ScalableVectorType>(GEPOp->getSourceElementType())) {
486       Decomposed.Base = V;
487       Decomposed.HasCompileTimeConstantScale = false;
488       return false;
489     }
490 
491     unsigned AS = GEPOp->getPointerAddressSpace();
492     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
493     gep_type_iterator GTI = gep_type_begin(GEPOp);
494     unsigned PointerSize = DL.getPointerSizeInBits(AS);
495     // Assume all GEP operands are constants until proven otherwise.
496     bool GepHasConstantOffset = true;
497     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
498          I != E; ++I, ++GTI) {
499       const Value *Index = *I;
500       // Compute the (potentially symbolic) offset in bytes for this index.
501       if (StructType *STy = GTI.getStructTypeOrNull()) {
502         // For a struct, add the member offset.
503         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
504         if (FieldNo == 0)
505           continue;
506 
507         Decomposed.StructOffset +=
508           DL.getStructLayout(STy)->getElementOffset(FieldNo);
509         continue;
510       }
511 
512       // For an array/pointer, add the element offset, explicitly scaled.
513       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
514         if (CIdx->isZero())
515           continue;
516         Decomposed.OtherOffset +=
517             (DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize() *
518              CIdx->getValue().sextOrSelf(MaxPointerSize))
519                 .sextOrTrunc(MaxPointerSize);
520         continue;
521       }
522 
523       GepHasConstantOffset = false;
524 
525       APInt Scale(MaxPointerSize,
526                   DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize());
527       unsigned ZExtBits = 0, SExtBits = 0;
528 
529       // If the integer type is smaller than the pointer size, it is implicitly
530       // sign extended to pointer size.
531       unsigned Width = Index->getType()->getIntegerBitWidth();
532       if (PointerSize > Width)
533         SExtBits += PointerSize - Width;
534 
535       // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
536       APInt IndexScale(Width, 0), IndexOffset(Width, 0);
537       bool NSW = true, NUW = true;
538       const Value *OrigIndex = Index;
539       Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
540                                   SExtBits, DL, 0, AC, DT, NSW, NUW);
541 
542       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
543       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
544 
545       // It can be the case that, even through C1*V+C2 does not overflow for
546       // relevant values of V, (C2*Scale) can overflow. In that case, we cannot
547       // decompose the expression in this way.
548       //
549       // FIXME: C1*Scale and the other operations in the decomposed
550       // (C1*Scale)*V+C2*Scale can also overflow. We should check for this
551       // possibility.
552       APInt WideScaledOffset = IndexOffset.sextOrTrunc(MaxPointerSize*2) *
553                                  Scale.sext(MaxPointerSize*2);
554       if (WideScaledOffset.getMinSignedBits() > MaxPointerSize) {
555         Index = OrigIndex;
556         IndexScale = 1;
557         IndexOffset = 0;
558 
559         ZExtBits = SExtBits = 0;
560         if (PointerSize > Width)
561           SExtBits += PointerSize - Width;
562       } else {
563         Decomposed.OtherOffset += IndexOffset.sextOrTrunc(MaxPointerSize) * Scale;
564         Scale *= IndexScale.sextOrTrunc(MaxPointerSize);
565       }
566 
567       // If we already had an occurrence of this index variable, merge this
568       // scale into it.  For example, we want to handle:
569       //   A[x][x] -> x*16 + x*4 -> x*20
570       // This also ensures that 'x' only appears in the index list once.
571       for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
572         if (Decomposed.VarIndices[i].V == Index &&
573             Decomposed.VarIndices[i].ZExtBits == ZExtBits &&
574             Decomposed.VarIndices[i].SExtBits == SExtBits) {
575           Scale += Decomposed.VarIndices[i].Scale;
576           Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
577           break;
578         }
579       }
580 
581       // Make sure that we have a scale that makes sense for this target's
582       // pointer size.
583       Scale = adjustToPointerSize(Scale, PointerSize);
584 
585       if (!!Scale) {
586         VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, Scale};
587         Decomposed.VarIndices.push_back(Entry);
588       }
589     }
590 
591     // Take care of wrap-arounds
592     if (GepHasConstantOffset) {
593       Decomposed.StructOffset =
594           adjustToPointerSize(Decomposed.StructOffset, PointerSize);
595       Decomposed.OtherOffset =
596           adjustToPointerSize(Decomposed.OtherOffset, PointerSize);
597     }
598 
599     // Analyze the base pointer next.
600     V = GEPOp->getOperand(0);
601   } while (--MaxLookup);
602 
603   // If the chain of expressions is too deep, just return early.
604   Decomposed.Base = V;
605   SearchLimitReached++;
606   return true;
607 }
608 
609 /// Returns whether the given pointer value points to memory that is local to
610 /// the function, with global constants being considered local to all
611 /// functions.
612 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
613                                            AAQueryInfo &AAQI, bool OrLocal) {
614   assert(Visited.empty() && "Visited must be cleared after use!");
615 
616   unsigned MaxLookup = 8;
617   SmallVector<const Value *, 16> Worklist;
618   Worklist.push_back(Loc.Ptr);
619   do {
620     const Value *V = getUnderlyingObject(Worklist.pop_back_val());
621     if (!Visited.insert(V).second) {
622       Visited.clear();
623       return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
624     }
625 
626     // An alloca instruction defines local memory.
627     if (OrLocal && isa<AllocaInst>(V))
628       continue;
629 
630     // A global constant counts as local memory for our purposes.
631     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
632       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
633       // global to be marked constant in some modules and non-constant in
634       // others.  GV may even be a declaration, not a definition.
635       if (!GV->isConstant()) {
636         Visited.clear();
637         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
638       }
639       continue;
640     }
641 
642     // If both select values point to local memory, then so does the select.
643     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
644       Worklist.push_back(SI->getTrueValue());
645       Worklist.push_back(SI->getFalseValue());
646       continue;
647     }
648 
649     // If all values incoming to a phi node point to local memory, then so does
650     // the phi.
651     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
652       // Don't bother inspecting phi nodes with many operands.
653       if (PN->getNumIncomingValues() > MaxLookup) {
654         Visited.clear();
655         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
656       }
657       for (Value *IncValue : PN->incoming_values())
658         Worklist.push_back(IncValue);
659       continue;
660     }
661 
662     // Otherwise be conservative.
663     Visited.clear();
664     return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
665   } while (!Worklist.empty() && --MaxLookup);
666 
667   Visited.clear();
668   return Worklist.empty();
669 }
670 
671 /// Returns the behavior when calling the given call site.
672 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) {
673   if (Call->doesNotAccessMemory())
674     // Can't do better than this.
675     return FMRB_DoesNotAccessMemory;
676 
677   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
678 
679   // If the callsite knows it only reads memory, don't return worse
680   // than that.
681   if (Call->onlyReadsMemory())
682     Min = FMRB_OnlyReadsMemory;
683   else if (Call->doesNotReadMemory())
684     Min = FMRB_OnlyWritesMemory;
685 
686   if (Call->onlyAccessesArgMemory())
687     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
688   else if (Call->onlyAccessesInaccessibleMemory())
689     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
690   else if (Call->onlyAccessesInaccessibleMemOrArgMem())
691     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
692 
693   // If the call has operand bundles then aliasing attributes from the function
694   // it calls do not directly apply to the call.  This can be made more precise
695   // in the future.
696   if (!Call->hasOperandBundles())
697     if (const Function *F = Call->getCalledFunction())
698       Min =
699           FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
700 
701   return Min;
702 }
703 
704 /// Returns the behavior when calling the given function. For use when the call
705 /// site is not known.
706 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
707   // If the function declares it doesn't access memory, we can't do better.
708   if (F->doesNotAccessMemory())
709     return FMRB_DoesNotAccessMemory;
710 
711   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
712 
713   // If the function declares it only reads memory, go with that.
714   if (F->onlyReadsMemory())
715     Min = FMRB_OnlyReadsMemory;
716   else if (F->doesNotReadMemory())
717     Min = FMRB_OnlyWritesMemory;
718 
719   if (F->onlyAccessesArgMemory())
720     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
721   else if (F->onlyAccessesInaccessibleMemory())
722     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
723   else if (F->onlyAccessesInaccessibleMemOrArgMem())
724     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
725 
726   return Min;
727 }
728 
729 /// Returns true if this is a writeonly (i.e Mod only) parameter.
730 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx,
731                              const TargetLibraryInfo &TLI) {
732   if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly))
733     return true;
734 
735   // We can bound the aliasing properties of memset_pattern16 just as we can
736   // for memcpy/memset.  This is particularly important because the
737   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
738   // whenever possible.
739   // FIXME Consider handling this in InferFunctionAttr.cpp together with other
740   // attributes.
741   LibFunc F;
742   if (Call->getCalledFunction() &&
743       TLI.getLibFunc(*Call->getCalledFunction(), F) &&
744       F == LibFunc_memset_pattern16 && TLI.has(F))
745     if (ArgIdx == 0)
746       return true;
747 
748   // TODO: memset_pattern4, memset_pattern8
749   // TODO: _chk variants
750   // TODO: strcmp, strcpy
751 
752   return false;
753 }
754 
755 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
756                                            unsigned ArgIdx) {
757   // Checking for known builtin intrinsics and target library functions.
758   if (isWriteOnlyParam(Call, ArgIdx, TLI))
759     return ModRefInfo::Mod;
760 
761   if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly))
762     return ModRefInfo::Ref;
763 
764   if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone))
765     return ModRefInfo::NoModRef;
766 
767   return AAResultBase::getArgModRefInfo(Call, ArgIdx);
768 }
769 
770 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
771   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
772   return II && II->getIntrinsicID() == IID;
773 }
774 
775 #ifndef NDEBUG
776 static const Function *getParent(const Value *V) {
777   if (const Instruction *inst = dyn_cast<Instruction>(V)) {
778     if (!inst->getParent())
779       return nullptr;
780     return inst->getParent()->getParent();
781   }
782 
783   if (const Argument *arg = dyn_cast<Argument>(V))
784     return arg->getParent();
785 
786   return nullptr;
787 }
788 
789 static bool notDifferentParent(const Value *O1, const Value *O2) {
790 
791   const Function *F1 = getParent(O1);
792   const Function *F2 = getParent(O2);
793 
794   return !F1 || !F2 || F1 == F2;
795 }
796 #endif
797 
798 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
799                                  const MemoryLocation &LocB,
800                                  AAQueryInfo &AAQI) {
801   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
802          "BasicAliasAnalysis doesn't support interprocedural queries.");
803 
804   // If we have a directly cached entry for these locations, we have recursed
805   // through this once, so just return the cached results. Notably, when this
806   // happens, we don't clear the cache.
807   AAQueryInfo::LocPair Locs(LocA, LocB);
808   if (Locs.first.Ptr > Locs.second.Ptr)
809     std::swap(Locs.first, Locs.second);
810   auto CacheIt = AAQI.AliasCache.find(Locs);
811   if (CacheIt != AAQI.AliasCache.end())
812     return CacheIt->second;
813 
814   AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
815                                  LocB.Size, LocB.AATags, AAQI);
816 
817   assert(VisitedPhiBBs.empty());
818   return Alias;
819 }
820 
821 /// Checks to see if the specified callsite can clobber the specified memory
822 /// object.
823 ///
824 /// Since we only look at local properties of this function, we really can't
825 /// say much about this query.  We do, however, use simple "address taken"
826 /// analysis on local objects.
827 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
828                                         const MemoryLocation &Loc,
829                                         AAQueryInfo &AAQI) {
830   assert(notDifferentParent(Call, Loc.Ptr) &&
831          "AliasAnalysis query involving multiple functions!");
832 
833   const Value *Object = getUnderlyingObject(Loc.Ptr);
834 
835   // Calls marked 'tail' cannot read or write allocas from the current frame
836   // because the current frame might be destroyed by the time they run. However,
837   // a tail call may use an alloca with byval. Calling with byval copies the
838   // contents of the alloca into argument registers or stack slots, so there is
839   // no lifetime issue.
840   if (isa<AllocaInst>(Object))
841     if (const CallInst *CI = dyn_cast<CallInst>(Call))
842       if (CI->isTailCall() &&
843           !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal))
844         return ModRefInfo::NoModRef;
845 
846   // Stack restore is able to modify unescaped dynamic allocas. Assume it may
847   // modify them even though the alloca is not escaped.
848   if (auto *AI = dyn_cast<AllocaInst>(Object))
849     if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore))
850       return ModRefInfo::Mod;
851 
852   // If the pointer is to a locally allocated object that does not escape,
853   // then the call can not mod/ref the pointer unless the call takes the pointer
854   // as an argument, and itself doesn't capture it.
855   if (!isa<Constant>(Object) && Call != Object &&
856       isNonEscapingLocalObject(Object, &AAQI.IsCapturedCache)) {
857 
858     // Optimistically assume that call doesn't touch Object and check this
859     // assumption in the following loop.
860     ModRefInfo Result = ModRefInfo::NoModRef;
861     bool IsMustAlias = true;
862 
863     unsigned OperandNo = 0;
864     for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
865          CI != CE; ++CI, ++OperandNo) {
866       // Only look at the no-capture or byval pointer arguments.  If this
867       // pointer were passed to arguments that were neither of these, then it
868       // couldn't be no-capture.
869       if (!(*CI)->getType()->isPointerTy() ||
870           (!Call->doesNotCapture(OperandNo) &&
871            OperandNo < Call->getNumArgOperands() &&
872            !Call->isByValArgument(OperandNo)))
873         continue;
874 
875       // Call doesn't access memory through this operand, so we don't care
876       // if it aliases with Object.
877       if (Call->doesNotAccessMemory(OperandNo))
878         continue;
879 
880       // If this is a no-capture pointer argument, see if we can tell that it
881       // is impossible to alias the pointer we're checking.
882       AliasResult AR = getBestAAResults().alias(MemoryLocation(*CI),
883                                                 MemoryLocation(Object), AAQI);
884       if (AR != MustAlias)
885         IsMustAlias = false;
886       // Operand doesn't alias 'Object', continue looking for other aliases
887       if (AR == NoAlias)
888         continue;
889       // Operand aliases 'Object', but call doesn't modify it. Strengthen
890       // initial assumption and keep looking in case if there are more aliases.
891       if (Call->onlyReadsMemory(OperandNo)) {
892         Result = setRef(Result);
893         continue;
894       }
895       // Operand aliases 'Object' but call only writes into it.
896       if (Call->doesNotReadMemory(OperandNo)) {
897         Result = setMod(Result);
898         continue;
899       }
900       // This operand aliases 'Object' and call reads and writes into it.
901       // Setting ModRef will not yield an early return below, MustAlias is not
902       // used further.
903       Result = ModRefInfo::ModRef;
904       break;
905     }
906 
907     // No operand aliases, reset Must bit. Add below if at least one aliases
908     // and all aliases found are MustAlias.
909     if (isNoModRef(Result))
910       IsMustAlias = false;
911 
912     // Early return if we improved mod ref information
913     if (!isModAndRefSet(Result)) {
914       if (isNoModRef(Result))
915         return ModRefInfo::NoModRef;
916       return IsMustAlias ? setMust(Result) : clearMust(Result);
917     }
918   }
919 
920   // If the call is malloc/calloc like, we can assume that it doesn't
921   // modify any IR visible value.  This is only valid because we assume these
922   // routines do not read values visible in the IR.  TODO: Consider special
923   // casing realloc and strdup routines which access only their arguments as
924   // well.  Or alternatively, replace all of this with inaccessiblememonly once
925   // that's implemented fully.
926   if (isMallocOrCallocLikeFn(Call, &TLI)) {
927     // Be conservative if the accessed pointer may alias the allocation -
928     // fallback to the generic handling below.
929     if (getBestAAResults().alias(MemoryLocation(Call), Loc, AAQI) == NoAlias)
930       return ModRefInfo::NoModRef;
931   }
932 
933   // The semantics of memcpy intrinsics either exactly overlap or do not
934   // overlap, i.e., source and destination of any given memcpy are either
935   // no-alias or must-alias.
936   if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) {
937     AliasResult SrcAA =
938         getBestAAResults().alias(MemoryLocation::getForSource(Inst), Loc, AAQI);
939     AliasResult DestAA =
940         getBestAAResults().alias(MemoryLocation::getForDest(Inst), Loc, AAQI);
941     // It's also possible for Loc to alias both src and dest, or neither.
942     ModRefInfo rv = ModRefInfo::NoModRef;
943     if (SrcAA != NoAlias)
944       rv = setRef(rv);
945     if (DestAA != NoAlias)
946       rv = setMod(rv);
947     return rv;
948   }
949 
950   // While the assume intrinsic is marked as arbitrarily writing so that
951   // proper control dependencies will be maintained, it never aliases any
952   // particular memory location.
953   if (isIntrinsicCall(Call, Intrinsic::assume))
954     return ModRefInfo::NoModRef;
955 
956   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
957   // that proper control dependencies are maintained but they never mods any
958   // particular memory location.
959   //
960   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
961   // heap state at the point the guard is issued needs to be consistent in case
962   // the guard invokes the "deopt" continuation.
963   if (isIntrinsicCall(Call, Intrinsic::experimental_guard))
964     return ModRefInfo::Ref;
965 
966   // Like assumes, invariant.start intrinsics were also marked as arbitrarily
967   // writing so that proper control dependencies are maintained but they never
968   // mod any particular memory location visible to the IR.
969   // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
970   // intrinsic is now modeled as reading memory. This prevents hoisting the
971   // invariant.start intrinsic over stores. Consider:
972   // *ptr = 40;
973   // *ptr = 50;
974   // invariant_start(ptr)
975   // int val = *ptr;
976   // print(val);
977   //
978   // This cannot be transformed to:
979   //
980   // *ptr = 40;
981   // invariant_start(ptr)
982   // *ptr = 50;
983   // int val = *ptr;
984   // print(val);
985   //
986   // The transformation will cause the second store to be ignored (based on
987   // rules of invariant.start)  and print 40, while the first program always
988   // prints 50.
989   if (isIntrinsicCall(Call, Intrinsic::invariant_start))
990     return ModRefInfo::Ref;
991 
992   // The AAResultBase base class has some smarts, lets use them.
993   return AAResultBase::getModRefInfo(Call, Loc, AAQI);
994 }
995 
996 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
997                                         const CallBase *Call2,
998                                         AAQueryInfo &AAQI) {
999   // While the assume intrinsic is marked as arbitrarily writing so that
1000   // proper control dependencies will be maintained, it never aliases any
1001   // particular memory location.
1002   if (isIntrinsicCall(Call1, Intrinsic::assume) ||
1003       isIntrinsicCall(Call2, Intrinsic::assume))
1004     return ModRefInfo::NoModRef;
1005 
1006   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
1007   // that proper control dependencies are maintained but they never mod any
1008   // particular memory location.
1009   //
1010   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1011   // heap state at the point the guard is issued needs to be consistent in case
1012   // the guard invokes the "deopt" continuation.
1013 
1014   // NB! This function is *not* commutative, so we special case two
1015   // possibilities for guard intrinsics.
1016 
1017   if (isIntrinsicCall(Call1, Intrinsic::experimental_guard))
1018     return isModSet(createModRefInfo(getModRefBehavior(Call2)))
1019                ? ModRefInfo::Ref
1020                : ModRefInfo::NoModRef;
1021 
1022   if (isIntrinsicCall(Call2, Intrinsic::experimental_guard))
1023     return isModSet(createModRefInfo(getModRefBehavior(Call1)))
1024                ? ModRefInfo::Mod
1025                : ModRefInfo::NoModRef;
1026 
1027   // The AAResultBase base class has some smarts, lets use them.
1028   return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
1029 }
1030 
1031 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
1032 /// both having the exact same pointer operand.
1033 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
1034                                             LocationSize MaybeV1Size,
1035                                             const GEPOperator *GEP2,
1036                                             LocationSize MaybeV2Size,
1037                                             const DataLayout &DL) {
1038   assert(GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
1039              GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
1040          GEP1->getPointerOperandType() == GEP2->getPointerOperandType() &&
1041          "Expected GEPs with the same pointer operand");
1042 
1043   // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
1044   // such that the struct field accesses provably cannot alias.
1045   // We also need at least two indices (the pointer, and the struct field).
1046   if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
1047       GEP1->getNumIndices() < 2)
1048     return MayAlias;
1049 
1050   // If we don't know the size of the accesses through both GEPs, we can't
1051   // determine whether the struct fields accessed can't alias.
1052   if (MaybeV1Size == LocationSize::unknown() ||
1053       MaybeV2Size == LocationSize::unknown())
1054     return MayAlias;
1055 
1056   const uint64_t V1Size = MaybeV1Size.getValue();
1057   const uint64_t V2Size = MaybeV2Size.getValue();
1058 
1059   ConstantInt *C1 =
1060       dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
1061   ConstantInt *C2 =
1062       dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
1063 
1064   // If the last (struct) indices are constants and are equal, the other indices
1065   // might be also be dynamically equal, so the GEPs can alias.
1066   if (C1 && C2) {
1067     unsigned BitWidth = std::max(C1->getBitWidth(), C2->getBitWidth());
1068     if (C1->getValue().sextOrSelf(BitWidth) ==
1069         C2->getValue().sextOrSelf(BitWidth))
1070       return MayAlias;
1071   }
1072 
1073   // Find the last-indexed type of the GEP, i.e., the type you'd get if
1074   // you stripped the last index.
1075   // On the way, look at each indexed type.  If there's something other
1076   // than an array, different indices can lead to different final types.
1077   SmallVector<Value *, 8> IntermediateIndices;
1078 
1079   // Insert the first index; we don't need to check the type indexed
1080   // through it as it only drops the pointer indirection.
1081   assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
1082   IntermediateIndices.push_back(GEP1->getOperand(1));
1083 
1084   // Insert all the remaining indices but the last one.
1085   // Also, check that they all index through arrays.
1086   for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
1087     if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
1088             GEP1->getSourceElementType(), IntermediateIndices)))
1089       return MayAlias;
1090     IntermediateIndices.push_back(GEP1->getOperand(i + 1));
1091   }
1092 
1093   auto *Ty = GetElementPtrInst::getIndexedType(
1094     GEP1->getSourceElementType(), IntermediateIndices);
1095   StructType *LastIndexedStruct = dyn_cast<StructType>(Ty);
1096 
1097   if (isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
1098     // We know that:
1099     // - both GEPs begin indexing from the exact same pointer;
1100     // - the last indices in both GEPs are constants, indexing into a sequential
1101     //   type (array or vector);
1102     // - both GEPs only index through arrays prior to that.
1103     //
1104     // Because array indices greater than the number of elements are valid in
1105     // GEPs, unless we know the intermediate indices are identical between
1106     // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
1107     // partially overlap. We also need to check that the loaded size matches
1108     // the element size, otherwise we could still have overlap.
1109     Type *LastElementTy = GetElementPtrInst::getTypeAtIndex(Ty, (uint64_t)0);
1110     const uint64_t ElementSize =
1111         DL.getTypeStoreSize(LastElementTy).getFixedSize();
1112     if (V1Size != ElementSize || V2Size != ElementSize)
1113       return MayAlias;
1114 
1115     for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i)
1116       if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1))
1117         return MayAlias;
1118 
1119     // Now we know that the array/pointer that GEP1 indexes into and that
1120     // that GEP2 indexes into must either precisely overlap or be disjoint.
1121     // Because they cannot partially overlap and because fields in an array
1122     // cannot overlap, if we can prove the final indices are different between
1123     // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
1124 
1125     // If the last indices are constants, we've already checked they don't
1126     // equal each other so we can exit early.
1127     if (C1 && C2)
1128       return NoAlias;
1129     {
1130       Value *GEP1LastIdx = GEP1->getOperand(GEP1->getNumOperands() - 1);
1131       Value *GEP2LastIdx = GEP2->getOperand(GEP2->getNumOperands() - 1);
1132       if (isa<PHINode>(GEP1LastIdx) || isa<PHINode>(GEP2LastIdx)) {
1133         // If one of the indices is a PHI node, be safe and only use
1134         // computeKnownBits so we don't make any assumptions about the
1135         // relationships between the two indices. This is important if we're
1136         // asking about values from different loop iterations. See PR32314.
1137         // TODO: We may be able to change the check so we only do this when
1138         // we definitely looked through a PHINode.
1139         if (GEP1LastIdx != GEP2LastIdx &&
1140             GEP1LastIdx->getType() == GEP2LastIdx->getType()) {
1141           KnownBits Known1 = computeKnownBits(GEP1LastIdx, DL);
1142           KnownBits Known2 = computeKnownBits(GEP2LastIdx, DL);
1143           if (Known1.Zero.intersects(Known2.One) ||
1144               Known1.One.intersects(Known2.Zero))
1145             return NoAlias;
1146         }
1147       } else if (isKnownNonEqual(GEP1LastIdx, GEP2LastIdx, DL))
1148         return NoAlias;
1149     }
1150     return MayAlias;
1151   } else if (!LastIndexedStruct || !C1 || !C2) {
1152     return MayAlias;
1153   }
1154 
1155   if (C1->getValue().getActiveBits() > 64 ||
1156       C2->getValue().getActiveBits() > 64)
1157     return MayAlias;
1158 
1159   // We know that:
1160   // - both GEPs begin indexing from the exact same pointer;
1161   // - the last indices in both GEPs are constants, indexing into a struct;
1162   // - said indices are different, hence, the pointed-to fields are different;
1163   // - both GEPs only index through arrays prior to that.
1164   //
1165   // This lets us determine that the struct that GEP1 indexes into and the
1166   // struct that GEP2 indexes into must either precisely overlap or be
1167   // completely disjoint.  Because they cannot partially overlap, indexing into
1168   // different non-overlapping fields of the struct will never alias.
1169 
1170   // Therefore, the only remaining thing needed to show that both GEPs can't
1171   // alias is that the fields are not overlapping.
1172   const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
1173   const uint64_t StructSize = SL->getSizeInBytes();
1174   const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
1175   const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
1176 
1177   auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
1178                                       uint64_t V2Off, uint64_t V2Size) {
1179     return V1Off < V2Off && V1Off + V1Size <= V2Off &&
1180            ((V2Off + V2Size <= StructSize) ||
1181             (V2Off + V2Size - StructSize <= V1Off));
1182   };
1183 
1184   if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
1185       EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
1186     return NoAlias;
1187 
1188   return MayAlias;
1189 }
1190 
1191 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the
1192 // beginning of the object the GEP points would have a negative offset with
1193 // repsect to the alloca, that means the GEP can not alias pointer (b).
1194 // Note that the pointer based on the alloca may not be a GEP. For
1195 // example, it may be the alloca itself.
1196 // The same applies if (b) is based on a GlobalVariable. Note that just being
1197 // based on isIdentifiedObject() is not enough - we need an identified object
1198 // that does not permit access to negative offsets. For example, a negative
1199 // offset from a noalias argument or call can be inbounds w.r.t the actual
1200 // underlying object.
1201 //
1202 // For example, consider:
1203 //
1204 //   struct { int f0, int f1, ...} foo;
1205 //   foo alloca;
1206 //   foo* random = bar(alloca);
1207 //   int *f0 = &alloca.f0
1208 //   int *f1 = &random->f1;
1209 //
1210 // Which is lowered, approximately, to:
1211 //
1212 //  %alloca = alloca %struct.foo
1213 //  %random = call %struct.foo* @random(%struct.foo* %alloca)
1214 //  %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0
1215 //  %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1
1216 //
1217 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated
1218 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also
1219 // point into the same object. But since %f0 points to the beginning of %alloca,
1220 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher
1221 // than (%alloca - 1), and so is not inbounds, a contradiction.
1222 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp,
1223       const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject,
1224       LocationSize MaybeObjectAccessSize) {
1225   // If the object access size is unknown, or the GEP isn't inbounds, bail.
1226   if (MaybeObjectAccessSize == LocationSize::unknown() || !GEPOp->isInBounds())
1227     return false;
1228 
1229   const uint64_t ObjectAccessSize = MaybeObjectAccessSize.getValue();
1230 
1231   // We need the object to be an alloca or a globalvariable, and want to know
1232   // the offset of the pointer from the object precisely, so no variable
1233   // indices are allowed.
1234   if (!(isa<AllocaInst>(DecompObject.Base) ||
1235         isa<GlobalVariable>(DecompObject.Base)) ||
1236       !DecompObject.VarIndices.empty())
1237     return false;
1238 
1239   APInt ObjectBaseOffset = DecompObject.StructOffset +
1240                            DecompObject.OtherOffset;
1241 
1242   // If the GEP has no variable indices, we know the precise offset
1243   // from the base, then use it. If the GEP has variable indices,
1244   // we can't get exact GEP offset to identify pointer alias. So return
1245   // false in that case.
1246   if (!DecompGEP.VarIndices.empty())
1247     return false;
1248 
1249   APInt GEPBaseOffset = DecompGEP.StructOffset;
1250   GEPBaseOffset += DecompGEP.OtherOffset;
1251 
1252   return GEPBaseOffset.sge(ObjectBaseOffset + (int64_t)ObjectAccessSize);
1253 }
1254 
1255 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1256 /// another pointer.
1257 ///
1258 /// We know that V1 is a GEP, but we don't know anything about V2.
1259 /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for
1260 /// V2.
1261 AliasResult BasicAAResult::aliasGEP(
1262     const GEPOperator *GEP1, LocationSize V1Size, const AAMDNodes &V1AAInfo,
1263     const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo,
1264     const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) {
1265   DecomposedGEP DecompGEP1, DecompGEP2;
1266   unsigned MaxPointerSize = getMaxPointerSize(DL);
1267   DecompGEP1.StructOffset = DecompGEP1.OtherOffset = APInt(MaxPointerSize, 0);
1268   DecompGEP2.StructOffset = DecompGEP2.OtherOffset = APInt(MaxPointerSize, 0);
1269   DecompGEP1.HasCompileTimeConstantScale =
1270       DecompGEP2.HasCompileTimeConstantScale = true;
1271 
1272   bool GEP1MaxLookupReached =
1273     DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT);
1274   bool GEP2MaxLookupReached =
1275     DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT);
1276 
1277   // Don't attempt to analyze the decomposed GEP if index scale is not a
1278   // compile-time constant.
1279   if (!DecompGEP1.HasCompileTimeConstantScale ||
1280       !DecompGEP2.HasCompileTimeConstantScale)
1281     return MayAlias;
1282 
1283   APInt GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset;
1284   APInt GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset;
1285 
1286   assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
1287          "DecomposeGEPExpression returned a result different from "
1288          "getUnderlyingObject");
1289 
1290   // If the GEP's offset relative to its base is such that the base would
1291   // fall below the start of the object underlying V2, then the GEP and V2
1292   // cannot alias.
1293   if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1294       isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size))
1295     return NoAlias;
1296   // If we have two gep instructions with must-alias or not-alias'ing base
1297   // pointers, figure out if the indexes to the GEP tell us anything about the
1298   // derived pointer.
1299   if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
1300     // Check for the GEP base being at a negative offset, this time in the other
1301     // direction.
1302     if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1303         isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size))
1304       return NoAlias;
1305     // Do the base pointers alias?
1306     AliasResult BaseAlias =
1307         aliasCheck(UnderlyingV1, LocationSize::unknown(), AAMDNodes(),
1308                    UnderlyingV2, LocationSize::unknown(), AAMDNodes(), AAQI);
1309 
1310     // For GEPs with identical sizes and offsets, we can preserve the size
1311     // and AAInfo when performing the alias check on the underlying objects.
1312     if (BaseAlias == MayAlias && V1Size == V2Size &&
1313         GEP1BaseOffset == GEP2BaseOffset &&
1314         DecompGEP1.VarIndices == DecompGEP2.VarIndices &&
1315         !GEP1MaxLookupReached && !GEP2MaxLookupReached) {
1316       AliasResult PreciseBaseAlias = aliasCheck(
1317           UnderlyingV1, V1Size, V1AAInfo, UnderlyingV2, V2Size, V2AAInfo, AAQI);
1318       if (PreciseBaseAlias == NoAlias)
1319         return NoAlias;
1320     }
1321 
1322     // If we get a No or May, then return it immediately, no amount of analysis
1323     // will improve this situation.
1324     if (BaseAlias != MustAlias) {
1325       assert(BaseAlias == NoAlias || BaseAlias == MayAlias);
1326       return BaseAlias;
1327     }
1328 
1329     // Otherwise, we have a MustAlias.  Since the base pointers alias each other
1330     // exactly, see if the computed offset from the common pointer tells us
1331     // about the relation of the resulting pointer.
1332     // If we know the two GEPs are based off of the exact same pointer (and not
1333     // just the same underlying object), see if that tells us anything about
1334     // the resulting pointers.
1335     if (GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
1336             GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
1337         GEP1->getPointerOperandType() == GEP2->getPointerOperandType()) {
1338       AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL);
1339       // If we couldn't find anything interesting, don't abandon just yet.
1340       if (R != MayAlias)
1341         return R;
1342     }
1343 
1344     // If the max search depth is reached, the result is undefined
1345     if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1346       return MayAlias;
1347 
1348     // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1349     // symbolic difference.
1350     GEP1BaseOffset -= GEP2BaseOffset;
1351     GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);
1352 
1353   } else {
1354     // Check to see if these two pointers are related by the getelementptr
1355     // instruction.  If one pointer is a GEP with a non-zero index of the other
1356     // pointer, we know they cannot alias.
1357 
1358     // If both accesses are unknown size, we can't do anything useful here.
1359     if (V1Size == LocationSize::unknown() && V2Size == LocationSize::unknown())
1360       return MayAlias;
1361 
1362     AliasResult R = aliasCheck(UnderlyingV1, LocationSize::unknown(),
1363                                AAMDNodes(), V2, LocationSize::unknown(),
1364                                V2AAInfo, AAQI, nullptr, UnderlyingV2);
1365     if (R != MustAlias) {
1366       // If V2 may alias GEP base pointer, conservatively returns MayAlias.
1367       // If V2 is known not to alias GEP base pointer, then the two values
1368       // cannot alias per GEP semantics: "Any memory access must be done through
1369       // a pointer value associated with an address range of the memory access,
1370       // otherwise the behavior is undefined.".
1371       assert(R == NoAlias || R == MayAlias);
1372       return R;
1373     }
1374 
1375     // If the max search depth is reached the result is undefined
1376     if (GEP1MaxLookupReached)
1377       return MayAlias;
1378   }
1379 
1380   // In the two GEP Case, if there is no difference in the offsets of the
1381   // computed pointers, the resultant pointers are a must alias.  This
1382   // happens when we have two lexically identical GEP's (for example).
1383   //
1384   // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
1385   // must aliases the GEP, the end result is a must alias also.
1386   if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty())
1387     return MustAlias;
1388 
1389   // If there is a constant difference between the pointers, but the difference
1390   // is less than the size of the associated memory object, then we know
1391   // that the objects are partially overlapping.  If the difference is
1392   // greater, we know they do not overlap.
1393   if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) {
1394     if (GEP1BaseOffset.sge(0)) {
1395       if (V2Size != LocationSize::unknown()) {
1396         if (GEP1BaseOffset.ult(V2Size.getValue()))
1397           return PartialAlias;
1398         return NoAlias;
1399       }
1400     } else {
1401       // We have the situation where:
1402       // +                +
1403       // | BaseOffset     |
1404       // ---------------->|
1405       // |-->V1Size       |-------> V2Size
1406       // GEP1             V2
1407       // We need to know that V2Size is not unknown, otherwise we might have
1408       // stripped a gep with negative index ('gep <ptr>, -1, ...).
1409       if (V1Size != LocationSize::unknown() &&
1410           V2Size != LocationSize::unknown()) {
1411         if ((-GEP1BaseOffset).ult(V1Size.getValue()))
1412           return PartialAlias;
1413         return NoAlias;
1414       }
1415     }
1416   }
1417 
1418   if (!DecompGEP1.VarIndices.empty()) {
1419     APInt Modulo(MaxPointerSize, 0);
1420     bool AllPositive = true;
1421     for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1422 
1423       // Try to distinguish something like &A[i][1] against &A[42][0].
1424       // Grab the least significant bit set in any of the scales. We
1425       // don't need std::abs here (even if the scale's negative) as we'll
1426       // be ^'ing Modulo with itself later.
1427       Modulo |= DecompGEP1.VarIndices[i].Scale;
1428 
1429       if (AllPositive) {
1430         // If the Value could change between cycles, then any reasoning about
1431         // the Value this cycle may not hold in the next cycle. We'll just
1432         // give up if we can't determine conditions that hold for every cycle:
1433         const Value *V = DecompGEP1.VarIndices[i].V;
1434 
1435         KnownBits Known =
1436             computeKnownBits(V, DL, 0, &AC, dyn_cast<Instruction>(GEP1), DT);
1437         bool SignKnownZero = Known.isNonNegative();
1438         bool SignKnownOne = Known.isNegative();
1439 
1440         // Zero-extension widens the variable, and so forces the sign
1441         // bit to zero.
1442         bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
1443         SignKnownZero |= IsZExt;
1444         SignKnownOne &= !IsZExt;
1445 
1446         // If the variable begins with a zero then we know it's
1447         // positive, regardless of whether the value is signed or
1448         // unsigned.
1449         APInt Scale = DecompGEP1.VarIndices[i].Scale;
1450         AllPositive =
1451             (SignKnownZero && Scale.sge(0)) || (SignKnownOne && Scale.slt(0));
1452       }
1453     }
1454 
1455     Modulo = Modulo ^ (Modulo & (Modulo - 1));
1456 
1457     // We can compute the difference between the two addresses
1458     // mod Modulo. Check whether that difference guarantees that the
1459     // two locations do not alias.
1460     APInt ModOffset = GEP1BaseOffset & (Modulo - 1);
1461     if (V1Size != LocationSize::unknown() &&
1462         V2Size != LocationSize::unknown() && ModOffset.uge(V2Size.getValue()) &&
1463         (Modulo - ModOffset).uge(V1Size.getValue()))
1464       return NoAlias;
1465 
1466     // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
1467     // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
1468     // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
1469     if (AllPositive && GEP1BaseOffset.sgt(0) &&
1470         V2Size != LocationSize::unknown() &&
1471         GEP1BaseOffset.uge(V2Size.getValue()))
1472       return NoAlias;
1473 
1474     if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
1475                                 GEP1BaseOffset, &AC, DT))
1476       return NoAlias;
1477   }
1478 
1479   // Statically, we can see that the base objects are the same, but the
1480   // pointers have dynamic offsets which we can't resolve. And none of our
1481   // little tricks above worked.
1482   return MayAlias;
1483 }
1484 
1485 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1486   // If the results agree, take it.
1487   if (A == B)
1488     return A;
1489   // A mix of PartialAlias and MustAlias is PartialAlias.
1490   if ((A == PartialAlias && B == MustAlias) ||
1491       (B == PartialAlias && A == MustAlias))
1492     return PartialAlias;
1493   // Otherwise, we don't know anything.
1494   return MayAlias;
1495 }
1496 
1497 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1498 /// against another.
1499 AliasResult
1500 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize,
1501                            const AAMDNodes &SIAAInfo, const Value *V2,
1502                            LocationSize V2Size, const AAMDNodes &V2AAInfo,
1503                            const Value *UnderV2, AAQueryInfo &AAQI) {
1504   // If the values are Selects with the same condition, we can do a more precise
1505   // check: just check for aliases between the values on corresponding arms.
1506   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1507     if (SI->getCondition() == SI2->getCondition()) {
1508       AliasResult Alias =
1509           aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, SI2->getTrueValue(),
1510                      V2Size, V2AAInfo, AAQI);
1511       if (Alias == MayAlias)
1512         return MayAlias;
1513       AliasResult ThisAlias =
1514           aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
1515                      SI2->getFalseValue(), V2Size, V2AAInfo, AAQI);
1516       return MergeAliasResults(ThisAlias, Alias);
1517     }
1518 
1519   // If both arms of the Select node NoAlias or MustAlias V2, then returns
1520   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1521   AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(),
1522                                  SISize, SIAAInfo, AAQI, UnderV2);
1523   if (Alias == MayAlias)
1524     return MayAlias;
1525 
1526   AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(),
1527                                      SISize, SIAAInfo, AAQI, UnderV2);
1528   return MergeAliasResults(ThisAlias, Alias);
1529 }
1530 
1531 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1532 /// another.
1533 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
1534                                     const AAMDNodes &PNAAInfo, const Value *V2,
1535                                     LocationSize V2Size,
1536                                     const AAMDNodes &V2AAInfo,
1537                                     const Value *UnderV2, AAQueryInfo &AAQI) {
1538   // If the values are PHIs in the same block, we can do a more precise
1539   // as well as efficient check: just check for aliases between the values
1540   // on corresponding edges.
1541   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1542     if (PN2->getParent() == PN->getParent()) {
1543       AAQueryInfo::LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
1544                                 MemoryLocation(V2, V2Size, V2AAInfo));
1545       if (PN > V2)
1546         std::swap(Locs.first, Locs.second);
1547       // Analyse the PHIs' inputs under the assumption that the PHIs are
1548       // NoAlias.
1549       // If the PHIs are May/MustAlias there must be (recursively) an input
1550       // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1551       // there must be an operation on the PHIs within the PHIs' value cycle
1552       // that causes a MayAlias.
1553       // Pretend the phis do not alias.
1554       AliasResult Alias = NoAlias;
1555       AliasResult OrigAliasResult;
1556       {
1557         // Limited lifetime iterator invalidated by the aliasCheck call below.
1558         auto CacheIt = AAQI.AliasCache.find(Locs);
1559         assert((CacheIt != AAQI.AliasCache.end()) &&
1560                "There must exist an entry for the phi node");
1561         OrigAliasResult = CacheIt->second;
1562         CacheIt->second = NoAlias;
1563       }
1564 
1565       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1566         AliasResult ThisAlias =
1567             aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
1568                        PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1569                        V2Size, V2AAInfo, AAQI);
1570         Alias = MergeAliasResults(ThisAlias, Alias);
1571         if (Alias == MayAlias)
1572           break;
1573       }
1574 
1575       // Reset if speculation failed.
1576       if (Alias != NoAlias)
1577         AAQI.updateResult(Locs, OrigAliasResult);
1578       return Alias;
1579     }
1580 
1581   SmallVector<Value *, 4> V1Srcs;
1582   // For a recursive phi, that recurses through a contant gep, we can perform
1583   // aliasing calculations using the other phi operands with an unknown size to
1584   // specify that an unknown number of elements after the initial value are
1585   // potentially accessed.
1586   bool isRecursive = false;
1587   auto CheckForRecPhi = [&](Value *PV) {
1588     if (!EnableRecPhiAnalysis)
1589       return false;
1590     if (GEPOperator *PVGEP = dyn_cast<GEPOperator>(PV)) {
1591       // Check whether the incoming value is a GEP that advances the pointer
1592       // result of this PHI node (e.g. in a loop). If this is the case, we
1593       // would recurse and always get a MayAlias. Handle this case specially
1594       // below. We need to ensure that the phi is inbounds and has a constant
1595       // positive operand so that we can check for alias with the initial value
1596       // and an unknown but positive size.
1597       if (PVGEP->getPointerOperand() == PN && PVGEP->isInBounds() &&
1598           PVGEP->getNumIndices() == 1 && isa<ConstantInt>(PVGEP->idx_begin()) &&
1599           !cast<ConstantInt>(PVGEP->idx_begin())->isNegative()) {
1600         isRecursive = true;
1601         return true;
1602       }
1603     }
1604     return false;
1605   };
1606 
1607   if (PV) {
1608     // If we have PhiValues then use it to get the underlying phi values.
1609     const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN);
1610     // If we have more phi values than the search depth then return MayAlias
1611     // conservatively to avoid compile time explosion. The worst possible case
1612     // is if both sides are PHI nodes. In which case, this is O(m x n) time
1613     // where 'm' and 'n' are the number of PHI sources.
1614     if (PhiValueSet.size() > MaxLookupSearchDepth)
1615       return MayAlias;
1616     // Add the values to V1Srcs
1617     for (Value *PV1 : PhiValueSet) {
1618       if (CheckForRecPhi(PV1))
1619         continue;
1620       V1Srcs.push_back(PV1);
1621     }
1622   } else {
1623     // If we don't have PhiInfo then just look at the operands of the phi itself
1624     // FIXME: Remove this once we can guarantee that we have PhiInfo always
1625     SmallPtrSet<Value *, 4> UniqueSrc;
1626     for (Value *PV1 : PN->incoming_values()) {
1627       if (isa<PHINode>(PV1))
1628         // If any of the source itself is a PHI, return MayAlias conservatively
1629         // to avoid compile time explosion. The worst possible case is if both
1630         // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1631         // and 'n' are the number of PHI sources.
1632         return MayAlias;
1633 
1634       if (CheckForRecPhi(PV1))
1635         continue;
1636 
1637       if (UniqueSrc.insert(PV1).second)
1638         V1Srcs.push_back(PV1);
1639     }
1640   }
1641 
1642   // If V1Srcs is empty then that means that the phi has no underlying non-phi
1643   // value. This should only be possible in blocks unreachable from the entry
1644   // block, but return MayAlias just in case.
1645   if (V1Srcs.empty())
1646     return MayAlias;
1647 
1648   // If this PHI node is recursive, set the size of the accessed memory to
1649   // unknown to represent all the possible values the GEP could advance the
1650   // pointer to.
1651   if (isRecursive)
1652     PNSize = LocationSize::unknown();
1653 
1654   // In the recursive alias queries below, we may compare values from two
1655   // different loop iterations. Keep track of visited phi blocks, which will
1656   // be used when determining value equivalence.
1657   bool BlockInserted = VisitedPhiBBs.insert(PN->getParent()).second;
1658   auto _ = make_scope_exit([&]() {
1659     if (BlockInserted)
1660       VisitedPhiBBs.erase(PN->getParent());
1661   });
1662 
1663   // If we inserted a block into VisitedPhiBBs, alias analysis results that
1664   // have been cached earlier may no longer be valid. Perform recursive queries
1665   // with a new AAQueryInfo.
1666   AAQueryInfo NewAAQI;
1667   AAQueryInfo *UseAAQI = BlockInserted ? &NewAAQI : &AAQI;
1668 
1669   AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize,
1670                                  PNAAInfo, *UseAAQI, UnderV2);
1671 
1672   // Early exit if the check of the first PHI source against V2 is MayAlias.
1673   // Other results are not possible.
1674   if (Alias == MayAlias)
1675     return MayAlias;
1676   // With recursive phis we cannot guarantee that MustAlias/PartialAlias will
1677   // remain valid to all elements and needs to conservatively return MayAlias.
1678   if (isRecursive && Alias != NoAlias)
1679     return MayAlias;
1680 
1681   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1682   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1683   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1684     Value *V = V1Srcs[i];
1685 
1686     AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo, V, PNSize,
1687                                        PNAAInfo, *UseAAQI, UnderV2);
1688     Alias = MergeAliasResults(ThisAlias, Alias);
1689     if (Alias == MayAlias)
1690       break;
1691   }
1692 
1693   return Alias;
1694 }
1695 
1696 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1697 /// array references.
1698 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
1699                                       const AAMDNodes &V1AAInfo,
1700                                       const Value *V2, LocationSize V2Size,
1701                                       const AAMDNodes &V2AAInfo,
1702                                       AAQueryInfo &AAQI, const Value *O1,
1703                                       const Value *O2) {
1704   // If either of the memory references is empty, it doesn't matter what the
1705   // pointer values are.
1706   if (V1Size.isZero() || V2Size.isZero())
1707     return NoAlias;
1708 
1709   // Strip off any casts if they exist.
1710   V1 = V1->stripPointerCastsAndInvariantGroups();
1711   V2 = V2->stripPointerCastsAndInvariantGroups();
1712 
1713   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1714   // value for undef that aliases nothing in the program.
1715   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1716     return NoAlias;
1717 
1718   // Are we checking for alias of the same value?
1719   // Because we look 'through' phi nodes, we could look at "Value" pointers from
1720   // different iterations. We must therefore make sure that this is not the
1721   // case. The function isValueEqualInPotentialCycles ensures that this cannot
1722   // happen by looking at the visited phi nodes and making sure they cannot
1723   // reach the value.
1724   if (isValueEqualInPotentialCycles(V1, V2))
1725     return MustAlias;
1726 
1727   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1728     return NoAlias; // Scalars cannot alias each other
1729 
1730   // Figure out what objects these things are pointing to if we can.
1731   if (O1 == nullptr)
1732     O1 = getUnderlyingObject(V1, MaxLookupSearchDepth);
1733 
1734   if (O2 == nullptr)
1735     O2 = getUnderlyingObject(V2, MaxLookupSearchDepth);
1736 
1737   // Null values in the default address space don't point to any object, so they
1738   // don't alias any other pointer.
1739   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1740     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1741       return NoAlias;
1742   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1743     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1744       return NoAlias;
1745 
1746   if (O1 != O2) {
1747     // If V1/V2 point to two different objects, we know that we have no alias.
1748     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1749       return NoAlias;
1750 
1751     // Constant pointers can't alias with non-const isIdentifiedObject objects.
1752     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1753         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1754       return NoAlias;
1755 
1756     // Function arguments can't alias with things that are known to be
1757     // unambigously identified at the function level.
1758     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1759         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1760       return NoAlias;
1761 
1762     // If one pointer is the result of a call/invoke or load and the other is a
1763     // non-escaping local object within the same function, then we know the
1764     // object couldn't escape to a point where the call could return it.
1765     //
1766     // Note that if the pointers are in different functions, there are a
1767     // variety of complications. A call with a nocapture argument may still
1768     // temporary store the nocapture argument's value in a temporary memory
1769     // location if that memory location doesn't escape. Or it may pass a
1770     // nocapture value to other functions as long as they don't capture it.
1771     if (isEscapeSource(O1) &&
1772         isNonEscapingLocalObject(O2, &AAQI.IsCapturedCache))
1773       return NoAlias;
1774     if (isEscapeSource(O2) &&
1775         isNonEscapingLocalObject(O1, &AAQI.IsCapturedCache))
1776       return NoAlias;
1777   }
1778 
1779   // If the size of one access is larger than the entire object on the other
1780   // side, then we know such behavior is undefined and can assume no alias.
1781   bool NullIsValidLocation = NullPointerIsDefined(&F);
1782   if ((isObjectSmallerThan(
1783           O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL,
1784           TLI, NullIsValidLocation)) ||
1785       (isObjectSmallerThan(
1786           O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL,
1787           TLI, NullIsValidLocation)))
1788     return NoAlias;
1789 
1790   // Check the cache before climbing up use-def chains. This also terminates
1791   // otherwise infinitely recursive queries.
1792   AAQueryInfo::LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
1793                             MemoryLocation(V2, V2Size, V2AAInfo));
1794   if (V1 > V2)
1795     std::swap(Locs.first, Locs.second);
1796   std::pair<AAQueryInfo::AliasCacheT::iterator, bool> Pair =
1797       AAQI.AliasCache.try_emplace(Locs, MayAlias);
1798   if (!Pair.second)
1799     return Pair.first->second;
1800 
1801   // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1802   // GEP can't simplify, we don't even look at the PHI cases.
1803   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1804     AliasResult Result =
1805         aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2, AAQI);
1806     if (Result != MayAlias)
1807       return AAQI.updateResult(Locs, Result);
1808   } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) {
1809     AliasResult Result =
1810         aliasGEP(GV2, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, O2, O1, AAQI);
1811     if (Result != MayAlias)
1812       return AAQI.updateResult(Locs, Result);
1813   }
1814 
1815   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1816     AliasResult Result =
1817         aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI);
1818     if (Result != MayAlias)
1819       return AAQI.updateResult(Locs, Result);
1820   } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) {
1821     AliasResult Result =
1822         aliasPHI(PN, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, O1, AAQI);
1823     if (Result != MayAlias)
1824       return AAQI.updateResult(Locs, Result);
1825   }
1826 
1827   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1828     AliasResult Result =
1829         aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI);
1830     if (Result != MayAlias)
1831       return AAQI.updateResult(Locs, Result);
1832   } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) {
1833     AliasResult Result =
1834         aliasSelect(S2, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, O1, AAQI);
1835     if (Result != MayAlias)
1836       return AAQI.updateResult(Locs, Result);
1837   }
1838 
1839   // If both pointers are pointing into the same object and one of them
1840   // accesses the entire object, then the accesses must overlap in some way.
1841   if (O1 == O2)
1842     if (V1Size.isPrecise() && V2Size.isPrecise() &&
1843         (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
1844          isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation)))
1845       return AAQI.updateResult(Locs, PartialAlias);
1846 
1847   // Recurse back into the best AA results we have, potentially with refined
1848   // memory locations. We have already ensured that BasicAA has a MayAlias
1849   // cache result for these, so any recursion back into BasicAA won't loop.
1850   AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second, AAQI);
1851   return AAQI.updateResult(Locs, Result);
1852 }
1853 
1854 /// Check whether two Values can be considered equivalent.
1855 ///
1856 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1857 /// they can not be part of a cycle in the value graph by looking at all
1858 /// visited phi nodes an making sure that the phis cannot reach the value. We
1859 /// have to do this because we are looking through phi nodes (That is we say
1860 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1861 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1862                                                   const Value *V2) {
1863   if (V != V2)
1864     return false;
1865 
1866   const Instruction *Inst = dyn_cast<Instruction>(V);
1867   if (!Inst)
1868     return true;
1869 
1870   if (VisitedPhiBBs.empty())
1871     return true;
1872 
1873   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1874     return false;
1875 
1876   // Make sure that the visited phis cannot reach the Value. This ensures that
1877   // the Values cannot come from different iterations of a potential cycle the
1878   // phi nodes could be involved in.
1879   for (auto *P : VisitedPhiBBs)
1880     if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT, LI))
1881       return false;
1882 
1883   return true;
1884 }
1885 
1886 /// Computes the symbolic difference between two de-composed GEPs.
1887 ///
1888 /// Dest and Src are the variable indices from two decomposed GetElementPtr
1889 /// instructions GEP1 and GEP2 which have common base pointers.
1890 void BasicAAResult::GetIndexDifference(
1891     SmallVectorImpl<VariableGEPIndex> &Dest,
1892     const SmallVectorImpl<VariableGEPIndex> &Src) {
1893   if (Src.empty())
1894     return;
1895 
1896   for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1897     const Value *V = Src[i].V;
1898     unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
1899     APInt Scale = Src[i].Scale;
1900 
1901     // Find V in Dest.  This is N^2, but pointer indices almost never have more
1902     // than a few variable indexes.
1903     for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1904       if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1905           Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
1906         continue;
1907 
1908       // If we found it, subtract off Scale V's from the entry in Dest.  If it
1909       // goes to zero, remove the entry.
1910       if (Dest[j].Scale != Scale)
1911         Dest[j].Scale -= Scale;
1912       else
1913         Dest.erase(Dest.begin() + j);
1914       Scale = 0;
1915       break;
1916     }
1917 
1918     // If we didn't consume this entry, add it to the end of the Dest list.
1919     if (!!Scale) {
1920       VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale};
1921       Dest.push_back(Entry);
1922     }
1923   }
1924 }
1925 
1926 bool BasicAAResult::constantOffsetHeuristic(
1927     const SmallVectorImpl<VariableGEPIndex> &VarIndices,
1928     LocationSize MaybeV1Size, LocationSize MaybeV2Size, const APInt &BaseOffset,
1929     AssumptionCache *AC, DominatorTree *DT) {
1930   if (VarIndices.size() != 2 || MaybeV1Size == LocationSize::unknown() ||
1931       MaybeV2Size == LocationSize::unknown())
1932     return false;
1933 
1934   const uint64_t V1Size = MaybeV1Size.getValue();
1935   const uint64_t V2Size = MaybeV2Size.getValue();
1936 
1937   const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
1938 
1939   if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
1940       Var0.Scale != -Var1.Scale)
1941     return false;
1942 
1943   unsigned Width = Var1.V->getType()->getIntegerBitWidth();
1944 
1945   // We'll strip off the Extensions of Var0 and Var1 and do another round
1946   // of GetLinearExpression decomposition. In the example above, if Var0
1947   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1948 
1949   APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
1950       V1Offset(Width, 0);
1951   bool NSW = true, NUW = true;
1952   unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
1953   const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
1954                                         V0SExtBits, DL, 0, AC, DT, NSW, NUW);
1955   NSW = true;
1956   NUW = true;
1957   const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
1958                                         V1SExtBits, DL, 0, AC, DT, NSW, NUW);
1959 
1960   if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
1961       V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
1962     return false;
1963 
1964   // We have a hit - Var0 and Var1 only differ by a constant offset!
1965 
1966   // If we've been sext'ed then zext'd the maximum difference between Var0 and
1967   // Var1 is possible to calculate, but we're just interested in the absolute
1968   // minimum difference between the two. The minimum distance may occur due to
1969   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1970   // the minimum distance between %i and %i + 5 is 3.
1971   APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
1972   MinDiff = APIntOps::umin(MinDiff, Wrapped);
1973   APInt MinDiffBytes =
1974     MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs();
1975 
1976   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
1977   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
1978   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
1979   // V2Size can fit in the MinDiffBytes gap.
1980   return MinDiffBytes.uge(V1Size + BaseOffset.abs()) &&
1981          MinDiffBytes.uge(V2Size + BaseOffset.abs());
1982 }
1983 
1984 //===----------------------------------------------------------------------===//
1985 // BasicAliasAnalysis Pass
1986 //===----------------------------------------------------------------------===//
1987 
1988 AnalysisKey BasicAA::Key;
1989 
1990 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
1991   return BasicAAResult(F.getParent()->getDataLayout(),
1992                        F,
1993                        AM.getResult<TargetLibraryAnalysis>(F),
1994                        AM.getResult<AssumptionAnalysis>(F),
1995                        &AM.getResult<DominatorTreeAnalysis>(F),
1996                        AM.getCachedResult<LoopAnalysis>(F),
1997                        AM.getCachedResult<PhiValuesAnalysis>(F));
1998 }
1999 
2000 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
2001   initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
2002 }
2003 
2004 char BasicAAWrapperPass::ID = 0;
2005 
2006 void BasicAAWrapperPass::anchor() {}
2007 
2008 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa",
2009                       "Basic Alias Analysis (stateless AA impl)", true, true)
2010 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2011 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2012 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2013 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
2014 INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa",
2015                     "Basic Alias Analysis (stateless AA impl)", true, true)
2016 
2017 FunctionPass *llvm::createBasicAAWrapperPass() {
2018   return new BasicAAWrapperPass();
2019 }
2020 
2021 bool BasicAAWrapperPass::runOnFunction(Function &F) {
2022   auto &ACT = getAnalysis<AssumptionCacheTracker>();
2023   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
2024   auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
2025   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
2026   auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>();
2027 
2028   Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F,
2029                                  TLIWP.getTLI(F), ACT.getAssumptionCache(F),
2030                                  &DTWP.getDomTree(),
2031                                  LIWP ? &LIWP->getLoopInfo() : nullptr,
2032                                  PVWP ? &PVWP->getResult() : nullptr));
2033 
2034   return false;
2035 }
2036 
2037 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
2038   AU.setPreservesAll();
2039   AU.addRequired<AssumptionCacheTracker>();
2040   AU.addRequired<DominatorTreeWrapperPass>();
2041   AU.addRequired<TargetLibraryInfoWrapperPass>();
2042   AU.addUsedIfAvailable<PhiValuesWrapperPass>();
2043 }
2044 
2045 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
2046   return BasicAAResult(
2047       F.getParent()->getDataLayout(), F,
2048       P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
2049       P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
2050 }
2051